LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SCCP.cpp
Go to the documentation of this file.
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #define DEBUG_TYPE "sccp"
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/InstVisitor.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CallSite.h"
36 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/IPO.h"
42 #include <algorithm>
43 using namespace llvm;
44 
45 STATISTIC(NumInstRemoved, "Number of instructions removed");
46 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
47 
48 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
49 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
50 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
51 
52 namespace {
53 /// LatticeVal class - This class represents the different lattice values that
54 /// an LLVM value may occupy. It is a simple class with value semantics.
55 ///
56 class LatticeVal {
57  enum LatticeValueTy {
58  /// undefined - This LLVM Value has no known value yet.
59  undefined,
60 
61  /// constant - This LLVM Value has a specific constant value.
62  constant,
63 
64  /// forcedconstant - This LLVM Value was thought to be undef until
65  /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
66  /// with another (different) constant, it goes to overdefined, instead of
67  /// asserting.
68  forcedconstant,
69 
70  /// overdefined - This instruction is not known to be constant, and we know
71  /// it has a value.
72  overdefined
73  };
74 
75  /// Val: This stores the current lattice value along with the Constant* for
76  /// the constant if this is a 'constant' or 'forcedconstant' value.
78 
79  LatticeValueTy getLatticeValue() const {
80  return Val.getInt();
81  }
82 
83 public:
84  LatticeVal() : Val(0, undefined) {}
85 
86  bool isUndefined() const { return getLatticeValue() == undefined; }
87  bool isConstant() const {
88  return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
89  }
90  bool isOverdefined() const { return getLatticeValue() == overdefined; }
91 
92  Constant *getConstant() const {
93  assert(isConstant() && "Cannot get the constant of a non-constant!");
94  return Val.getPointer();
95  }
96 
97  /// markOverdefined - Return true if this is a change in status.
98  bool markOverdefined() {
99  if (isOverdefined())
100  return false;
101 
102  Val.setInt(overdefined);
103  return true;
104  }
105 
106  /// markConstant - Return true if this is a change in status.
107  bool markConstant(Constant *V) {
108  if (getLatticeValue() == constant) { // Constant but not forcedconstant.
109  assert(getConstant() == V && "Marking constant with different value");
110  return false;
111  }
112 
113  if (isUndefined()) {
114  Val.setInt(constant);
115  assert(V && "Marking constant with NULL");
116  Val.setPointer(V);
117  } else {
118  assert(getLatticeValue() == forcedconstant &&
119  "Cannot move from overdefined to constant!");
120  // Stay at forcedconstant if the constant is the same.
121  if (V == getConstant()) return false;
122 
123  // Otherwise, we go to overdefined. Assumptions made based on the
124  // forced value are possibly wrong. Assuming this is another constant
125  // could expose a contradiction.
126  Val.setInt(overdefined);
127  }
128  return true;
129  }
130 
131  /// getConstantInt - If this is a constant with a ConstantInt value, return it
132  /// otherwise return null.
133  ConstantInt *getConstantInt() const {
134  if (isConstant())
135  return dyn_cast<ConstantInt>(getConstant());
136  return 0;
137  }
138 
139  void markForcedConstant(Constant *V) {
140  assert(isUndefined() && "Can't force a defined value!");
141  Val.setInt(forcedconstant);
142  Val.setPointer(V);
143  }
144 };
145 } // end anonymous namespace.
146 
147 
148 namespace {
149 
150 //===----------------------------------------------------------------------===//
151 //
152 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
153 /// Constant Propagation.
154 ///
155 class SCCPSolver : public InstVisitor<SCCPSolver> {
156  const DataLayout *TD;
157  const TargetLibraryInfo *TLI;
158  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
159  DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
160 
161  /// StructValueState - This maintains ValueState for values that have
162  /// StructType, for example for formal arguments, calls, insertelement, etc.
163  ///
164  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
165 
166  /// GlobalValue - If we are tracking any values for the contents of a global
167  /// variable, we keep a mapping from the constant accessor to the element of
168  /// the global, to the currently known value. If the value becomes
169  /// overdefined, it's entry is simply removed from this map.
171 
172  /// TrackedRetVals - If we are tracking arguments into and the return
173  /// value out of a function, it will have an entry in this map, indicating
174  /// what the known return value for the function is.
175  DenseMap<Function*, LatticeVal> TrackedRetVals;
176 
177  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
178  /// that return multiple values.
179  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
180 
181  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
182  /// represented here for efficient lookup.
183  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
184 
185  /// TrackingIncomingArguments - This is the set of functions for whose
186  /// arguments we make optimistic assumptions about and try to prove as
187  /// constants.
188  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
189 
190  /// The reason for two worklists is that overdefined is the lowest state
191  /// on the lattice, and moving things to overdefined as fast as possible
192  /// makes SCCP converge much faster.
193  ///
194  /// By having a separate worklist, we accomplish this because everything
195  /// possibly overdefined will become overdefined at the soonest possible
196  /// point.
197  SmallVector<Value*, 64> OverdefinedInstWorkList;
198  SmallVector<Value*, 64> InstWorkList;
199 
200 
201  SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
202 
203  /// KnownFeasibleEdges - Entries in this set are edges which have already had
204  /// PHI nodes retriggered.
205  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
206  DenseSet<Edge> KnownFeasibleEdges;
207 public:
208  SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
209  : TD(td), TLI(tli) {}
210 
211  /// MarkBlockExecutable - This method can be used by clients to mark all of
212  /// the blocks that are known to be intrinsically live in the processed unit.
213  ///
214  /// This returns true if the block was not considered live before.
215  bool MarkBlockExecutable(BasicBlock *BB) {
216  if (!BBExecutable.insert(BB)) return false;
217  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
218  BBWorkList.push_back(BB); // Add the block to the work list!
219  return true;
220  }
221 
222  /// TrackValueOfGlobalVariable - Clients can use this method to
223  /// inform the SCCPSolver that it should track loads and stores to the
224  /// specified global variable if it can. This is only legal to call if
225  /// performing Interprocedural SCCP.
226  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
227  // We only track the contents of scalar globals.
228  if (GV->getType()->getElementType()->isSingleValueType()) {
229  LatticeVal &IV = TrackedGlobals[GV];
230  if (!isa<UndefValue>(GV->getInitializer()))
231  IV.markConstant(GV->getInitializer());
232  }
233  }
234 
235  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
236  /// and out of the specified function (which cannot have its address taken),
237  /// this method must be called.
238  void AddTrackedFunction(Function *F) {
239  // Add an entry, F -> undef.
240  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
241  MRVFunctionsTracked.insert(F);
242  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
243  TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
244  LatticeVal()));
245  } else
246  TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
247  }
248 
249  void AddArgumentTrackedFunction(Function *F) {
250  TrackingIncomingArguments.insert(F);
251  }
252 
253  /// Solve - Solve for constants and executable blocks.
254  ///
255  void Solve();
256 
257  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
258  /// that branches on undef values cannot reach any of their successors.
259  /// However, this is not a safe assumption. After we solve dataflow, this
260  /// method should be use to handle this. If this returns true, the solver
261  /// should be rerun.
262  bool ResolvedUndefsIn(Function &F);
263 
264  bool isBlockExecutable(BasicBlock *BB) const {
265  return BBExecutable.count(BB);
266  }
267 
268  LatticeVal getLatticeValueFor(Value *V) const {
269  DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
270  assert(I != ValueState.end() && "V is not in valuemap!");
271  return I->second;
272  }
273 
274  /// getTrackedRetVals - Get the inferred return value map.
275  ///
276  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
277  return TrackedRetVals;
278  }
279 
280  /// getTrackedGlobals - Get and return the set of inferred initializers for
281  /// global variables.
282  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
283  return TrackedGlobals;
284  }
285 
286  void markOverdefined(Value *V) {
287  assert(!V->getType()->isStructTy() && "Should use other method");
288  markOverdefined(ValueState[V], V);
289  }
290 
291  /// markAnythingOverdefined - Mark the specified value overdefined. This
292  /// works with both scalars and structs.
293  void markAnythingOverdefined(Value *V) {
294  if (StructType *STy = dyn_cast<StructType>(V->getType()))
295  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
296  markOverdefined(getStructValueState(V, i), V);
297  else
298  markOverdefined(V);
299  }
300 
301 private:
302  // markConstant - Make a value be marked as "constant". If the value
303  // is not already a constant, add it to the instruction work list so that
304  // the users of the instruction are updated later.
305  //
306  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
307  if (!IV.markConstant(C)) return;
308  DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
309  if (IV.isOverdefined())
310  OverdefinedInstWorkList.push_back(V);
311  else
312  InstWorkList.push_back(V);
313  }
314 
315  void markConstant(Value *V, Constant *C) {
316  assert(!V->getType()->isStructTy() && "Should use other method");
317  markConstant(ValueState[V], V, C);
318  }
319 
320  void markForcedConstant(Value *V, Constant *C) {
321  assert(!V->getType()->isStructTy() && "Should use other method");
322  LatticeVal &IV = ValueState[V];
323  IV.markForcedConstant(C);
324  DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
325  if (IV.isOverdefined())
326  OverdefinedInstWorkList.push_back(V);
327  else
328  InstWorkList.push_back(V);
329  }
330 
331 
332  // markOverdefined - Make a value be marked as "overdefined". If the
333  // value is not already overdefined, add it to the overdefined instruction
334  // work list so that the users of the instruction are updated later.
335  void markOverdefined(LatticeVal &IV, Value *V) {
336  if (!IV.markOverdefined()) return;
337 
338  DEBUG(dbgs() << "markOverdefined: ";
339  if (Function *F = dyn_cast<Function>(V))
340  dbgs() << "Function '" << F->getName() << "'\n";
341  else
342  dbgs() << *V << '\n');
343  // Only instructions go on the work list
344  OverdefinedInstWorkList.push_back(V);
345  }
346 
347  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
348  if (IV.isOverdefined() || MergeWithV.isUndefined())
349  return; // Noop.
350  if (MergeWithV.isOverdefined())
351  markOverdefined(IV, V);
352  else if (IV.isUndefined())
353  markConstant(IV, V, MergeWithV.getConstant());
354  else if (IV.getConstant() != MergeWithV.getConstant())
355  markOverdefined(IV, V);
356  }
357 
358  void mergeInValue(Value *V, LatticeVal MergeWithV) {
359  assert(!V->getType()->isStructTy() && "Should use other method");
360  mergeInValue(ValueState[V], V, MergeWithV);
361  }
362 
363 
364  /// getValueState - Return the LatticeVal object that corresponds to the
365  /// value. This function handles the case when the value hasn't been seen yet
366  /// by properly seeding constants etc.
367  LatticeVal &getValueState(Value *V) {
368  assert(!V->getType()->isStructTy() && "Should use getStructValueState");
369 
370  std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
371  ValueState.insert(std::make_pair(V, LatticeVal()));
372  LatticeVal &LV = I.first->second;
373 
374  if (!I.second)
375  return LV; // Common case, already in the map.
376 
377  if (Constant *C = dyn_cast<Constant>(V)) {
378  // Undef values remain undefined.
379  if (!isa<UndefValue>(V))
380  LV.markConstant(C); // Constants are constant
381  }
382 
383  // All others are underdefined by default.
384  return LV;
385  }
386 
387  /// getStructValueState - Return the LatticeVal object that corresponds to the
388  /// value/field pair. This function handles the case when the value hasn't
389  /// been seen yet by properly seeding constants etc.
390  LatticeVal &getStructValueState(Value *V, unsigned i) {
391  assert(V->getType()->isStructTy() && "Should use getValueState");
392  assert(i < cast<StructType>(V->getType())->getNumElements() &&
393  "Invalid element #");
394 
395  std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
396  bool> I = StructValueState.insert(
397  std::make_pair(std::make_pair(V, i), LatticeVal()));
398  LatticeVal &LV = I.first->second;
399 
400  if (!I.second)
401  return LV; // Common case, already in the map.
402 
403  if (Constant *C = dyn_cast<Constant>(V)) {
404  Constant *Elt = C->getAggregateElement(i);
405 
406  if (Elt == 0)
407  LV.markOverdefined(); // Unknown sort of constant.
408  else if (isa<UndefValue>(Elt))
409  ; // Undef values remain undefined.
410  else
411  LV.markConstant(Elt); // Constants are constant.
412  }
413 
414  // All others are underdefined by default.
415  return LV;
416  }
417 
418 
419  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
420  /// work list if it is not already executable.
421  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
422  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
423  return; // This edge is already known to be executable!
424 
425  if (!MarkBlockExecutable(Dest)) {
426  // If the destination is already executable, we just made an *edge*
427  // feasible that wasn't before. Revisit the PHI nodes in the block
428  // because they have potentially new operands.
429  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
430  << " -> " << Dest->getName() << '\n');
431 
432  PHINode *PN;
433  for (BasicBlock::iterator I = Dest->begin();
434  (PN = dyn_cast<PHINode>(I)); ++I)
435  visitPHINode(*PN);
436  }
437  }
438 
439  // getFeasibleSuccessors - Return a vector of booleans to indicate which
440  // successors are reachable from a given terminator instruction.
441  //
442  void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
443 
444  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
445  // block to the 'To' basic block is currently feasible.
446  //
447  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
448 
449  // OperandChangedState - This method is invoked on all of the users of an
450  // instruction that was just changed state somehow. Based on this
451  // information, we need to update the specified user of this instruction.
452  //
453  void OperandChangedState(Instruction *I) {
454  if (BBExecutable.count(I->getParent())) // Inst is executable?
455  visit(*I);
456  }
457 
458 private:
459  friend class InstVisitor<SCCPSolver>;
460 
461  // visit implementations - Something changed in this instruction. Either an
462  // operand made a transition, or the instruction is newly executable. Change
463  // the value type of I to reflect these changes if appropriate.
464  void visitPHINode(PHINode &I);
465 
466  // Terminators
467  void visitReturnInst(ReturnInst &I);
468  void visitTerminatorInst(TerminatorInst &TI);
469 
470  void visitCastInst(CastInst &I);
471  void visitSelectInst(SelectInst &I);
472  void visitBinaryOperator(Instruction &I);
473  void visitCmpInst(CmpInst &I);
474  void visitExtractElementInst(ExtractElementInst &I);
475  void visitInsertElementInst(InsertElementInst &I);
476  void visitShuffleVectorInst(ShuffleVectorInst &I);
477  void visitExtractValueInst(ExtractValueInst &EVI);
478  void visitInsertValueInst(InsertValueInst &IVI);
479  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
480 
481  // Instructions that cannot be folded away.
482  void visitStoreInst (StoreInst &I);
483  void visitLoadInst (LoadInst &I);
484  void visitGetElementPtrInst(GetElementPtrInst &I);
485  void visitCallInst (CallInst &I) {
486  visitCallSite(&I);
487  }
488  void visitInvokeInst (InvokeInst &II) {
489  visitCallSite(&II);
490  visitTerminatorInst(II);
491  }
492  void visitCallSite (CallSite CS);
493  void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
494  void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
495  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
496  void visitFenceInst (FenceInst &I) { /*returns void*/ }
497  void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
498  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
499  void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
500  void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
501 
502  void visitInstruction(Instruction &I) {
503  // If a new instruction is added to LLVM that we don't handle.
504  dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
505  markAnythingOverdefined(&I); // Just in case
506  }
507 };
508 
509 } // end anonymous namespace
510 
511 
512 // getFeasibleSuccessors - Return a vector of booleans to indicate which
513 // successors are reachable from a given terminator instruction.
514 //
515 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
516  SmallVectorImpl<bool> &Succs) {
517  Succs.resize(TI.getNumSuccessors());
518  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
519  if (BI->isUnconditional()) {
520  Succs[0] = true;
521  return;
522  }
523 
524  LatticeVal BCValue = getValueState(BI->getCondition());
525  ConstantInt *CI = BCValue.getConstantInt();
526  if (CI == 0) {
527  // Overdefined condition variables, and branches on unfoldable constant
528  // conditions, mean the branch could go either way.
529  if (!BCValue.isUndefined())
530  Succs[0] = Succs[1] = true;
531  return;
532  }
533 
534  // Constant condition variables mean the branch can only go a single way.
535  Succs[CI->isZero()] = true;
536  return;
537  }
538 
539  if (isa<InvokeInst>(TI)) {
540  // Invoke instructions successors are always executable.
541  Succs[0] = Succs[1] = true;
542  return;
543  }
544 
545  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
546  if (!SI->getNumCases()) {
547  Succs[0] = true;
548  return;
549  }
550  LatticeVal SCValue = getValueState(SI->getCondition());
551  ConstantInt *CI = SCValue.getConstantInt();
552 
553  if (CI == 0) { // Overdefined or undefined condition?
554  // All destinations are executable!
555  if (!SCValue.isUndefined())
556  Succs.assign(TI.getNumSuccessors(), true);
557  return;
558  }
559 
560  Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
561  return;
562  }
563 
564  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
565  if (isa<IndirectBrInst>(&TI)) {
566  // Just mark all destinations executable!
567  Succs.assign(TI.getNumSuccessors(), true);
568  return;
569  }
570 
571 #ifndef NDEBUG
572  dbgs() << "Unknown terminator instruction: " << TI << '\n';
573 #endif
574  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
575 }
576 
577 
578 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
579 // block to the 'To' basic block is currently feasible.
580 //
581 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
582  assert(BBExecutable.count(To) && "Dest should always be alive!");
583 
584  // Make sure the source basic block is executable!!
585  if (!BBExecutable.count(From)) return false;
586 
587  // Check to make sure this edge itself is actually feasible now.
588  TerminatorInst *TI = From->getTerminator();
589  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
590  if (BI->isUnconditional())
591  return true;
592 
593  LatticeVal BCValue = getValueState(BI->getCondition());
594 
595  // Overdefined condition variables mean the branch could go either way,
596  // undef conditions mean that neither edge is feasible yet.
597  ConstantInt *CI = BCValue.getConstantInt();
598  if (CI == 0)
599  return !BCValue.isUndefined();
600 
601  // Constant condition variables mean the branch can only go a single way.
602  return BI->getSuccessor(CI->isZero()) == To;
603  }
604 
605  // Invoke instructions successors are always executable.
606  if (isa<InvokeInst>(TI))
607  return true;
608 
609  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
610  if (SI->getNumCases() < 1)
611  return true;
612 
613  LatticeVal SCValue = getValueState(SI->getCondition());
614  ConstantInt *CI = SCValue.getConstantInt();
615 
616  if (CI == 0)
617  return !SCValue.isUndefined();
618 
619  return SI->findCaseValue(CI).getCaseSuccessor() == To;
620  }
621 
622  // Just mark all destinations executable!
623  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
624  if (isa<IndirectBrInst>(TI))
625  return true;
626 
627 #ifndef NDEBUG
628  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
629 #endif
630  llvm_unreachable(0);
631 }
632 
633 // visit Implementations - Something changed in this instruction, either an
634 // operand made a transition, or the instruction is newly executable. Change
635 // the value type of I to reflect these changes if appropriate. This method
636 // makes sure to do the following actions:
637 //
638 // 1. If a phi node merges two constants in, and has conflicting value coming
639 // from different branches, or if the PHI node merges in an overdefined
640 // value, then the PHI node becomes overdefined.
641 // 2. If a phi node merges only constants in, and they all agree on value, the
642 // PHI node becomes a constant value equal to that.
643 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
644 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
645 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
646 // 6. If a conditional branch has a value that is constant, make the selected
647 // destination executable
648 // 7. If a conditional branch has a value that is overdefined, make all
649 // successors executable.
650 //
651 void SCCPSolver::visitPHINode(PHINode &PN) {
652  // If this PN returns a struct, just mark the result overdefined.
653  // TODO: We could do a lot better than this if code actually uses this.
654  if (PN.getType()->isStructTy())
655  return markAnythingOverdefined(&PN);
656 
657  if (getValueState(&PN).isOverdefined())
658  return; // Quick exit
659 
660  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
661  // and slow us down a lot. Just mark them overdefined.
662  if (PN.getNumIncomingValues() > 64)
663  return markOverdefined(&PN);
664 
665  // Look at all of the executable operands of the PHI node. If any of them
666  // are overdefined, the PHI becomes overdefined as well. If they are all
667  // constant, and they agree with each other, the PHI becomes the identical
668  // constant. If they are constant and don't agree, the PHI is overdefined.
669  // If there are no executable operands, the PHI remains undefined.
670  //
671  Constant *OperandVal = 0;
672  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
673  LatticeVal IV = getValueState(PN.getIncomingValue(i));
674  if (IV.isUndefined()) continue; // Doesn't influence PHI node.
675 
676  if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
677  continue;
678 
679  if (IV.isOverdefined()) // PHI node becomes overdefined!
680  return markOverdefined(&PN);
681 
682  if (OperandVal == 0) { // Grab the first value.
683  OperandVal = IV.getConstant();
684  continue;
685  }
686 
687  // There is already a reachable operand. If we conflict with it,
688  // then the PHI node becomes overdefined. If we agree with it, we
689  // can continue on.
690 
691  // Check to see if there are two different constants merging, if so, the PHI
692  // node is overdefined.
693  if (IV.getConstant() != OperandVal)
694  return markOverdefined(&PN);
695  }
696 
697  // If we exited the loop, this means that the PHI node only has constant
698  // arguments that agree with each other(and OperandVal is the constant) or
699  // OperandVal is null because there are no defined incoming arguments. If
700  // this is the case, the PHI remains undefined.
701  //
702  if (OperandVal)
703  markConstant(&PN, OperandVal); // Acquire operand value
704 }
705 
706 void SCCPSolver::visitReturnInst(ReturnInst &I) {
707  if (I.getNumOperands() == 0) return; // ret void
708 
709  Function *F = I.getParent()->getParent();
710  Value *ResultOp = I.getOperand(0);
711 
712  // If we are tracking the return value of this function, merge it in.
713  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
715  TrackedRetVals.find(F);
716  if (TFRVI != TrackedRetVals.end()) {
717  mergeInValue(TFRVI->second, F, getValueState(ResultOp));
718  return;
719  }
720  }
721 
722  // Handle functions that return multiple values.
723  if (!TrackedMultipleRetVals.empty()) {
724  if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
725  if (MRVFunctionsTracked.count(F))
726  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
727  mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
728  getStructValueState(ResultOp, i));
729 
730  }
731 }
732 
733 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
734  SmallVector<bool, 16> SuccFeasible;
735  getFeasibleSuccessors(TI, SuccFeasible);
736 
737  BasicBlock *BB = TI.getParent();
738 
739  // Mark all feasible successors executable.
740  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
741  if (SuccFeasible[i])
742  markEdgeExecutable(BB, TI.getSuccessor(i));
743 }
744 
745 void SCCPSolver::visitCastInst(CastInst &I) {
746  LatticeVal OpSt = getValueState(I.getOperand(0));
747  if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
748  markOverdefined(&I);
749  else if (OpSt.isConstant()) // Propagate constant value
750  markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
751  OpSt.getConstant(), I.getType()));
752 }
753 
754 
755 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
756  // If this returns a struct, mark all elements over defined, we don't track
757  // structs in structs.
758  if (EVI.getType()->isStructTy())
759  return markAnythingOverdefined(&EVI);
760 
761  // If this is extracting from more than one level of struct, we don't know.
762  if (EVI.getNumIndices() != 1)
763  return markOverdefined(&EVI);
764 
765  Value *AggVal = EVI.getAggregateOperand();
766  if (AggVal->getType()->isStructTy()) {
767  unsigned i = *EVI.idx_begin();
768  LatticeVal EltVal = getStructValueState(AggVal, i);
769  mergeInValue(getValueState(&EVI), &EVI, EltVal);
770  } else {
771  // Otherwise, must be extracting from an array.
772  return markOverdefined(&EVI);
773  }
774 }
775 
776 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
777  StructType *STy = dyn_cast<StructType>(IVI.getType());
778  if (STy == 0)
779  return markOverdefined(&IVI);
780 
781  // If this has more than one index, we can't handle it, drive all results to
782  // undef.
783  if (IVI.getNumIndices() != 1)
784  return markAnythingOverdefined(&IVI);
785 
786  Value *Aggr = IVI.getAggregateOperand();
787  unsigned Idx = *IVI.idx_begin();
788 
789  // Compute the result based on what we're inserting.
790  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
791  // This passes through all values that aren't the inserted element.
792  if (i != Idx) {
793  LatticeVal EltVal = getStructValueState(Aggr, i);
794  mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
795  continue;
796  }
797 
798  Value *Val = IVI.getInsertedValueOperand();
799  if (Val->getType()->isStructTy())
800  // We don't track structs in structs.
801  markOverdefined(getStructValueState(&IVI, i), &IVI);
802  else {
803  LatticeVal InVal = getValueState(Val);
804  mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
805  }
806  }
807 }
808 
809 void SCCPSolver::visitSelectInst(SelectInst &I) {
810  // If this select returns a struct, just mark the result overdefined.
811  // TODO: We could do a lot better than this if code actually uses this.
812  if (I.getType()->isStructTy())
813  return markAnythingOverdefined(&I);
814 
815  LatticeVal CondValue = getValueState(I.getCondition());
816  if (CondValue.isUndefined())
817  return;
818 
819  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
820  Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
821  mergeInValue(&I, getValueState(OpVal));
822  return;
823  }
824 
825  // Otherwise, the condition is overdefined or a constant we can't evaluate.
826  // See if we can produce something better than overdefined based on the T/F
827  // value.
828  LatticeVal TVal = getValueState(I.getTrueValue());
829  LatticeVal FVal = getValueState(I.getFalseValue());
830 
831  // select ?, C, C -> C.
832  if (TVal.isConstant() && FVal.isConstant() &&
833  TVal.getConstant() == FVal.getConstant())
834  return markConstant(&I, FVal.getConstant());
835 
836  if (TVal.isUndefined()) // select ?, undef, X -> X.
837  return mergeInValue(&I, FVal);
838  if (FVal.isUndefined()) // select ?, X, undef -> X.
839  return mergeInValue(&I, TVal);
840  markOverdefined(&I);
841 }
842 
843 // Handle Binary Operators.
844 void SCCPSolver::visitBinaryOperator(Instruction &I) {
845  LatticeVal V1State = getValueState(I.getOperand(0));
846  LatticeVal V2State = getValueState(I.getOperand(1));
847 
848  LatticeVal &IV = ValueState[&I];
849  if (IV.isOverdefined()) return;
850 
851  if (V1State.isConstant() && V2State.isConstant())
852  return markConstant(IV, &I,
853  ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
854  V2State.getConstant()));
855 
856  // If something is undef, wait for it to resolve.
857  if (!V1State.isOverdefined() && !V2State.isOverdefined())
858  return;
859 
860  // Otherwise, one of our operands is overdefined. Try to produce something
861  // better than overdefined with some tricks.
862 
863  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
864  // operand is overdefined.
865  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
866  LatticeVal *NonOverdefVal = 0;
867  if (!V1State.isOverdefined())
868  NonOverdefVal = &V1State;
869  else if (!V2State.isOverdefined())
870  NonOverdefVal = &V2State;
871 
872  if (NonOverdefVal) {
873  if (NonOverdefVal->isUndefined()) {
874  // Could annihilate value.
875  if (I.getOpcode() == Instruction::And)
876  markConstant(IV, &I, Constant::getNullValue(I.getType()));
877  else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
878  markConstant(IV, &I, Constant::getAllOnesValue(PT));
879  else
880  markConstant(IV, &I,
882  return;
883  }
884 
885  if (I.getOpcode() == Instruction::And) {
886  // X and 0 = 0
887  if (NonOverdefVal->getConstant()->isNullValue())
888  return markConstant(IV, &I, NonOverdefVal->getConstant());
889  } else {
890  if (ConstantInt *CI = NonOverdefVal->getConstantInt())
891  if (CI->isAllOnesValue()) // X or -1 = -1
892  return markConstant(IV, &I, NonOverdefVal->getConstant());
893  }
894  }
895  }
896 
897 
898  markOverdefined(&I);
899 }
900 
901 // Handle ICmpInst instruction.
902 void SCCPSolver::visitCmpInst(CmpInst &I) {
903  LatticeVal V1State = getValueState(I.getOperand(0));
904  LatticeVal V2State = getValueState(I.getOperand(1));
905 
906  LatticeVal &IV = ValueState[&I];
907  if (IV.isOverdefined()) return;
908 
909  if (V1State.isConstant() && V2State.isConstant())
910  return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
911  V1State.getConstant(),
912  V2State.getConstant()));
913 
914  // If operands are still undefined, wait for it to resolve.
915  if (!V1State.isOverdefined() && !V2State.isOverdefined())
916  return;
917 
918  markOverdefined(&I);
919 }
920 
921 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
922  // TODO : SCCP does not handle vectors properly.
923  return markOverdefined(&I);
924 
925 #if 0
926  LatticeVal &ValState = getValueState(I.getOperand(0));
927  LatticeVal &IdxState = getValueState(I.getOperand(1));
928 
929  if (ValState.isOverdefined() || IdxState.isOverdefined())
930  markOverdefined(&I);
931  else if(ValState.isConstant() && IdxState.isConstant())
932  markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
933  IdxState.getConstant()));
934 #endif
935 }
936 
937 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
938  // TODO : SCCP does not handle vectors properly.
939  return markOverdefined(&I);
940 #if 0
941  LatticeVal &ValState = getValueState(I.getOperand(0));
942  LatticeVal &EltState = getValueState(I.getOperand(1));
943  LatticeVal &IdxState = getValueState(I.getOperand(2));
944 
945  if (ValState.isOverdefined() || EltState.isOverdefined() ||
946  IdxState.isOverdefined())
947  markOverdefined(&I);
948  else if(ValState.isConstant() && EltState.isConstant() &&
949  IdxState.isConstant())
950  markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
951  EltState.getConstant(),
952  IdxState.getConstant()));
953  else if (ValState.isUndefined() && EltState.isConstant() &&
954  IdxState.isConstant())
956  EltState.getConstant(),
957  IdxState.getConstant()));
958 #endif
959 }
960 
961 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
962  // TODO : SCCP does not handle vectors properly.
963  return markOverdefined(&I);
964 #if 0
965  LatticeVal &V1State = getValueState(I.getOperand(0));
966  LatticeVal &V2State = getValueState(I.getOperand(1));
967  LatticeVal &MaskState = getValueState(I.getOperand(2));
968 
969  if (MaskState.isUndefined() ||
970  (V1State.isUndefined() && V2State.isUndefined()))
971  return; // Undefined output if mask or both inputs undefined.
972 
973  if (V1State.isOverdefined() || V2State.isOverdefined() ||
974  MaskState.isOverdefined()) {
975  markOverdefined(&I);
976  } else {
977  // A mix of constant/undef inputs.
978  Constant *V1 = V1State.isConstant() ?
979  V1State.getConstant() : UndefValue::get(I.getType());
980  Constant *V2 = V2State.isConstant() ?
981  V2State.getConstant() : UndefValue::get(I.getType());
982  Constant *Mask = MaskState.isConstant() ?
983  MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
984  markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
985  }
986 #endif
987 }
988 
989 // Handle getelementptr instructions. If all operands are constants then we
990 // can turn this into a getelementptr ConstantExpr.
991 //
992 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
993  if (ValueState[&I].isOverdefined()) return;
994 
995  SmallVector<Constant*, 8> Operands;
996  Operands.reserve(I.getNumOperands());
997 
998  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
999  LatticeVal State = getValueState(I.getOperand(i));
1000  if (State.isUndefined())
1001  return; // Operands are not resolved yet.
1002 
1003  if (State.isOverdefined())
1004  return markOverdefined(&I);
1005 
1006  assert(State.isConstant() && "Unknown state!");
1007  Operands.push_back(State.getConstant());
1008  }
1009 
1010  Constant *Ptr = Operands[0];
1011  ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1012  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1013 }
1014 
1015 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1016  // If this store is of a struct, ignore it.
1017  if (SI.getOperand(0)->getType()->isStructTy())
1018  return;
1019 
1020  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1021  return;
1022 
1023  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1024  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1025  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1026 
1027  // Get the value we are storing into the global, then merge it.
1028  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1029  if (I->second.isOverdefined())
1030  TrackedGlobals.erase(I); // No need to keep tracking this!
1031 }
1032 
1033 
1034 // Handle load instructions. If the operand is a constant pointer to a constant
1035 // global, we can replace the load with the loaded constant value!
1036 void SCCPSolver::visitLoadInst(LoadInst &I) {
1037  // If this load is of a struct, just mark the result overdefined.
1038  if (I.getType()->isStructTy())
1039  return markAnythingOverdefined(&I);
1040 
1041  LatticeVal PtrVal = getValueState(I.getOperand(0));
1042  if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1043 
1044  LatticeVal &IV = ValueState[&I];
1045  if (IV.isOverdefined()) return;
1046 
1047  if (!PtrVal.isConstant() || I.isVolatile())
1048  return markOverdefined(IV, &I);
1049 
1050  Constant *Ptr = PtrVal.getConstant();
1051 
1052  // load null -> null
1053  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1054  return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1055 
1056  // Transform load (constant global) into the value loaded.
1057  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1058  if (!TrackedGlobals.empty()) {
1059  // If we are tracking this global, merge in the known value for it.
1061  TrackedGlobals.find(GV);
1062  if (It != TrackedGlobals.end()) {
1063  mergeInValue(IV, &I, It->second);
1064  return;
1065  }
1066  }
1067  }
1068 
1069  // Transform load from a constant into a constant if possible.
1070  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1071  return markConstant(IV, &I, C);
1072 
1073  // Otherwise we cannot say for certain what value this load will produce.
1074  // Bail out.
1075  markOverdefined(IV, &I);
1076 }
1077 
1078 void SCCPSolver::visitCallSite(CallSite CS) {
1079  Function *F = CS.getCalledFunction();
1080  Instruction *I = CS.getInstruction();
1081 
1082  // The common case is that we aren't tracking the callee, either because we
1083  // are not doing interprocedural analysis or the callee is indirect, or is
1084  // external. Handle these cases first.
1085  if (F == 0 || F->isDeclaration()) {
1086 CallOverdefined:
1087  // Void return and not tracking callee, just bail.
1088  if (I->getType()->isVoidTy()) return;
1089 
1090  // Otherwise, if we have a single return value case, and if the function is
1091  // a declaration, maybe we can constant fold it.
1092  if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1093  canConstantFoldCallTo(F)) {
1094 
1095  SmallVector<Constant*, 8> Operands;
1096  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1097  AI != E; ++AI) {
1098  LatticeVal State = getValueState(*AI);
1099 
1100  if (State.isUndefined())
1101  return; // Operands are not resolved yet.
1102  if (State.isOverdefined())
1103  return markOverdefined(I);
1104  assert(State.isConstant() && "Unknown state!");
1105  Operands.push_back(State.getConstant());
1106  }
1107 
1108  // If we can constant fold this, mark the result of the call as a
1109  // constant.
1110  if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1111  return markConstant(I, C);
1112  }
1113 
1114  // Otherwise, we don't know anything about this call, mark it overdefined.
1115  return markAnythingOverdefined(I);
1116  }
1117 
1118  // If this is a local function that doesn't have its address taken, mark its
1119  // entry block executable and merge in the actual arguments to the call into
1120  // the formal arguments of the function.
1121  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1122  MarkBlockExecutable(F->begin());
1123 
1124  // Propagate information from this call site into the callee.
1125  CallSite::arg_iterator CAI = CS.arg_begin();
1126  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1127  AI != E; ++AI, ++CAI) {
1128  // If this argument is byval, and if the function is not readonly, there
1129  // will be an implicit copy formed of the input aggregate.
1130  if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1131  markOverdefined(AI);
1132  continue;
1133  }
1134 
1135  if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1136  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1137  LatticeVal CallArg = getStructValueState(*CAI, i);
1138  mergeInValue(getStructValueState(AI, i), AI, CallArg);
1139  }
1140  } else {
1141  mergeInValue(AI, getValueState(*CAI));
1142  }
1143  }
1144  }
1145 
1146  // If this is a single/zero retval case, see if we're tracking the function.
1147  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1148  if (!MRVFunctionsTracked.count(F))
1149  goto CallOverdefined; // Not tracking this callee.
1150 
1151  // If we are tracking this callee, propagate the result of the function
1152  // into this call site.
1153  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1154  mergeInValue(getStructValueState(I, i), I,
1155  TrackedMultipleRetVals[std::make_pair(F, i)]);
1156  } else {
1157  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1158  if (TFRVI == TrackedRetVals.end())
1159  goto CallOverdefined; // Not tracking this callee.
1160 
1161  // If so, propagate the return value of the callee into this call result.
1162  mergeInValue(I, TFRVI->second);
1163  }
1164 }
1165 
1166 void SCCPSolver::Solve() {
1167  // Process the work lists until they are empty!
1168  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1169  !OverdefinedInstWorkList.empty()) {
1170  // Process the overdefined instruction's work list first, which drives other
1171  // things to overdefined more quickly.
1172  while (!OverdefinedInstWorkList.empty()) {
1173  Value *I = OverdefinedInstWorkList.pop_back_val();
1174 
1175  DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1176 
1177  // "I" got into the work list because it either made the transition from
1178  // bottom to constant, or to overdefined.
1179  //
1180  // Anything on this worklist that is overdefined need not be visited
1181  // since all of its users will have already been marked as overdefined
1182  // Update all of the users of this instruction's value.
1183  //
1184  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1185  UI != E; ++UI)
1186  if (Instruction *I = dyn_cast<Instruction>(*UI))
1187  OperandChangedState(I);
1188  }
1189 
1190  // Process the instruction work list.
1191  while (!InstWorkList.empty()) {
1192  Value *I = InstWorkList.pop_back_val();
1193 
1194  DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1195 
1196  // "I" got into the work list because it made the transition from undef to
1197  // constant.
1198  //
1199  // Anything on this worklist that is overdefined need not be visited
1200  // since all of its users will have already been marked as overdefined.
1201  // Update all of the users of this instruction's value.
1202  //
1203  if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1204  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1205  UI != E; ++UI)
1206  if (Instruction *I = dyn_cast<Instruction>(*UI))
1207  OperandChangedState(I);
1208  }
1209 
1210  // Process the basic block work list.
1211  while (!BBWorkList.empty()) {
1212  BasicBlock *BB = BBWorkList.back();
1213  BBWorkList.pop_back();
1214 
1215  DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1216 
1217  // Notify all instructions in this basic block that they are newly
1218  // executable.
1219  visit(BB);
1220  }
1221  }
1222 }
1223 
1224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1225 /// that branches on undef values cannot reach any of their successors.
1226 /// However, this is not a safe assumption. After we solve dataflow, this
1227 /// method should be use to handle this. If this returns true, the solver
1228 /// should be rerun.
1229 ///
1230 /// This method handles this by finding an unresolved branch and marking it one
1231 /// of the edges from the block as being feasible, even though the condition
1232 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1233 /// CFG and only slightly pessimizes the analysis results (by marking one,
1234 /// potentially infeasible, edge feasible). This cannot usefully modify the
1235 /// constraints on the condition of the branch, as that would impact other users
1236 /// of the value.
1237 ///
1238 /// This scan also checks for values that use undefs, whose results are actually
1239 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1240 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1241 /// even if X isn't defined.
1242 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1243  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1244  if (!BBExecutable.count(BB))
1245  continue;
1246 
1247  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1248  // Look for instructions which produce undef values.
1249  if (I->getType()->isVoidTy()) continue;
1250 
1251  if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1252  // Only a few things that can be structs matter for undef.
1253 
1254  // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1255  if (CallSite CS = CallSite(I))
1256  if (Function *F = CS.getCalledFunction())
1257  if (MRVFunctionsTracked.count(F))
1258  continue;
1259 
1260  // extractvalue and insertvalue don't need to be marked; they are
1261  // tracked as precisely as their operands.
1262  if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1263  continue;
1264 
1265  // Send the results of everything else to overdefined. We could be
1266  // more precise than this but it isn't worth bothering.
1267  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1268  LatticeVal &LV = getStructValueState(I, i);
1269  if (LV.isUndefined())
1270  markOverdefined(LV, I);
1271  }
1272  continue;
1273  }
1274 
1275  LatticeVal &LV = getValueState(I);
1276  if (!LV.isUndefined()) continue;
1277 
1278  // extractvalue is safe; check here because the argument is a struct.
1279  if (isa<ExtractValueInst>(I))
1280  continue;
1281 
1282  // Compute the operand LatticeVals, for convenience below.
1283  // Anything taking a struct is conservatively assumed to require
1284  // overdefined markings.
1285  if (I->getOperand(0)->getType()->isStructTy()) {
1286  markOverdefined(I);
1287  return true;
1288  }
1289  LatticeVal Op0LV = getValueState(I->getOperand(0));
1290  LatticeVal Op1LV;
1291  if (I->getNumOperands() == 2) {
1292  if (I->getOperand(1)->getType()->isStructTy()) {
1293  markOverdefined(I);
1294  return true;
1295  }
1296 
1297  Op1LV = getValueState(I->getOperand(1));
1298  }
1299  // If this is an instructions whose result is defined even if the input is
1300  // not fully defined, propagate the information.
1301  Type *ITy = I->getType();
1302  switch (I->getOpcode()) {
1303  case Instruction::Add:
1304  case Instruction::Sub:
1305  case Instruction::Trunc:
1306  case Instruction::FPTrunc:
1307  case Instruction::BitCast:
1308  break; // Any undef -> undef
1309  case Instruction::FSub:
1310  case Instruction::FAdd:
1311  case Instruction::FMul:
1312  case Instruction::FDiv:
1313  case Instruction::FRem:
1314  // Floating-point binary operation: be conservative.
1315  if (Op0LV.isUndefined() && Op1LV.isUndefined())
1316  markForcedConstant(I, Constant::getNullValue(ITy));
1317  else
1318  markOverdefined(I);
1319  return true;
1320  case Instruction::ZExt:
1321  case Instruction::SExt:
1322  case Instruction::FPToUI:
1323  case Instruction::FPToSI:
1324  case Instruction::FPExt:
1325  case Instruction::PtrToInt:
1326  case Instruction::IntToPtr:
1327  case Instruction::SIToFP:
1328  case Instruction::UIToFP:
1329  // undef -> 0; some outputs are impossible
1330  markForcedConstant(I, Constant::getNullValue(ITy));
1331  return true;
1332  case Instruction::Mul:
1333  case Instruction::And:
1334  // Both operands undef -> undef
1335  if (Op0LV.isUndefined() && Op1LV.isUndefined())
1336  break;
1337  // undef * X -> 0. X could be zero.
1338  // undef & X -> 0. X could be zero.
1339  markForcedConstant(I, Constant::getNullValue(ITy));
1340  return true;
1341 
1342  case Instruction::Or:
1343  // Both operands undef -> undef
1344  if (Op0LV.isUndefined() && Op1LV.isUndefined())
1345  break;
1346  // undef | X -> -1. X could be -1.
1347  markForcedConstant(I, Constant::getAllOnesValue(ITy));
1348  return true;
1349 
1350  case Instruction::Xor:
1351  // undef ^ undef -> 0; strictly speaking, this is not strictly
1352  // necessary, but we try to be nice to people who expect this
1353  // behavior in simple cases
1354  if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1355  markForcedConstant(I, Constant::getNullValue(ITy));
1356  return true;
1357  }
1358  // undef ^ X -> undef
1359  break;
1360 
1361  case Instruction::SDiv:
1362  case Instruction::UDiv:
1363  case Instruction::SRem:
1364  case Instruction::URem:
1365  // X / undef -> undef. No change.
1366  // X % undef -> undef. No change.
1367  if (Op1LV.isUndefined()) break;
1368 
1369  // undef / X -> 0. X could be maxint.
1370  // undef % X -> 0. X could be 1.
1371  markForcedConstant(I, Constant::getNullValue(ITy));
1372  return true;
1373 
1374  case Instruction::AShr:
1375  // X >>a undef -> undef.
1376  if (Op1LV.isUndefined()) break;
1377 
1378  // undef >>a X -> all ones
1379  markForcedConstant(I, Constant::getAllOnesValue(ITy));
1380  return true;
1381  case Instruction::LShr:
1382  case Instruction::Shl:
1383  // X << undef -> undef.
1384  // X >> undef -> undef.
1385  if (Op1LV.isUndefined()) break;
1386 
1387  // undef << X -> 0
1388  // undef >> X -> 0
1389  markForcedConstant(I, Constant::getNullValue(ITy));
1390  return true;
1391  case Instruction::Select:
1392  Op1LV = getValueState(I->getOperand(1));
1393  // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1394  if (Op0LV.isUndefined()) {
1395  if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1396  Op1LV = getValueState(I->getOperand(2));
1397  } else if (Op1LV.isUndefined()) {
1398  // c ? undef : undef -> undef. No change.
1399  Op1LV = getValueState(I->getOperand(2));
1400  if (Op1LV.isUndefined())
1401  break;
1402  // Otherwise, c ? undef : x -> x.
1403  } else {
1404  // Leave Op1LV as Operand(1)'s LatticeValue.
1405  }
1406 
1407  if (Op1LV.isConstant())
1408  markForcedConstant(I, Op1LV.getConstant());
1409  else
1410  markOverdefined(I);
1411  return true;
1412  case Instruction::Load:
1413  // A load here means one of two things: a load of undef from a global,
1414  // a load from an unknown pointer. Either way, having it return undef
1415  // is okay.
1416  break;
1417  case Instruction::ICmp:
1418  // X == undef -> undef. Other comparisons get more complicated.
1419  if (cast<ICmpInst>(I)->isEquality())
1420  break;
1421  markOverdefined(I);
1422  return true;
1423  case Instruction::Call:
1424  case Instruction::Invoke: {
1425  // There are two reasons a call can have an undef result
1426  // 1. It could be tracked.
1427  // 2. It could be constant-foldable.
1428  // Because of the way we solve return values, tracked calls must
1429  // never be marked overdefined in ResolvedUndefsIn.
1430  if (Function *F = CallSite(I).getCalledFunction())
1431  if (TrackedRetVals.count(F))
1432  break;
1433 
1434  // If the call is constant-foldable, we mark it overdefined because
1435  // we do not know what return values are valid.
1436  markOverdefined(I);
1437  return true;
1438  }
1439  default:
1440  // If we don't know what should happen here, conservatively mark it
1441  // overdefined.
1442  markOverdefined(I);
1443  return true;
1444  }
1445  }
1446 
1447  // Check to see if we have a branch or switch on an undefined value. If so
1448  // we force the branch to go one way or the other to make the successor
1449  // values live. It doesn't really matter which way we force it.
1450  TerminatorInst *TI = BB->getTerminator();
1451  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1452  if (!BI->isConditional()) continue;
1453  if (!getValueState(BI->getCondition()).isUndefined())
1454  continue;
1455 
1456  // If the input to SCCP is actually branch on undef, fix the undef to
1457  // false.
1458  if (isa<UndefValue>(BI->getCondition())) {
1459  BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1460  markEdgeExecutable(BB, TI->getSuccessor(1));
1461  return true;
1462  }
1463 
1464  // Otherwise, it is a branch on a symbolic value which is currently
1465  // considered to be undef. Handle this by forcing the input value to the
1466  // branch to false.
1467  markForcedConstant(BI->getCondition(),
1469  return true;
1470  }
1471 
1472  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1473  if (!SI->getNumCases())
1474  continue;
1475  if (!getValueState(SI->getCondition()).isUndefined())
1476  continue;
1477 
1478  // If the input to SCCP is actually switch on undef, fix the undef to
1479  // the first constant.
1480  if (isa<UndefValue>(SI->getCondition())) {
1481  SI->setCondition(SI->case_begin().getCaseValue());
1482  markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1483  return true;
1484  }
1485 
1486  markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1487  return true;
1488  }
1489  }
1490 
1491  return false;
1492 }
1493 
1494 
1495 namespace {
1496  //===--------------------------------------------------------------------===//
1497  //
1498  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1499  /// Sparse Conditional Constant Propagator.
1500  ///
1501  struct SCCP : public FunctionPass {
1502  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1504  }
1505  static char ID; // Pass identification, replacement for typeid
1506  SCCP() : FunctionPass(ID) {
1508  }
1509 
1510  // runOnFunction - Run the Sparse Conditional Constant Propagation
1511  // algorithm, and return true if the function was modified.
1512  //
1513  bool runOnFunction(Function &F);
1514  };
1515 } // end anonymous namespace
1516 
1517 char SCCP::ID = 0;
1518 INITIALIZE_PASS(SCCP, "sccp",
1519  "Sparse Conditional Constant Propagation", false, false)
1520 
1521 // createSCCPPass - This is the public interface to this file.
1522 FunctionPass *llvm::createSCCPPass() {
1523  return new SCCP();
1524 }
1525 
1527  DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1528  ++NumDeadBlocks;
1529 
1530  // Check to see if there are non-terminating instructions to delete.
1531  if (isa<TerminatorInst>(BB->begin()))
1532  return;
1533 
1534  // Delete the instructions backwards, as it has a reduced likelihood of having
1535  // to update as many def-use and use-def chains.
1536  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1537  while (EndInst != BB->begin()) {
1538  // Delete the next to last instruction.
1539  BasicBlock::iterator I = EndInst;
1540  Instruction *Inst = --I;
1541  if (!Inst->use_empty())
1542  Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1543  if (isa<LandingPadInst>(Inst)) {
1544  EndInst = Inst;
1545  continue;
1546  }
1547  BB->getInstList().erase(Inst);
1548  ++NumInstRemoved;
1549  }
1550 }
1551 
1552 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1553 // and return true if the function was modified.
1554 //
1555 bool SCCP::runOnFunction(Function &F) {
1556  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1557  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
1558  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1559  SCCPSolver Solver(TD, TLI);
1560 
1561  // Mark the first block of the function as being executable.
1562  Solver.MarkBlockExecutable(F.begin());
1563 
1564  // Mark all arguments to the function as being overdefined.
1565  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1566  Solver.markAnythingOverdefined(AI);
1567 
1568  // Solve for constants.
1569  bool ResolvedUndefs = true;
1570  while (ResolvedUndefs) {
1571  Solver.Solve();
1572  DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1573  ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1574  }
1575 
1576  bool MadeChanges = false;
1577 
1578  // If we decided that there are basic blocks that are dead in this function,
1579  // delete their contents now. Note that we cannot actually delete the blocks,
1580  // as we cannot modify the CFG of the function.
1581 
1582  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1583  if (!Solver.isBlockExecutable(BB)) {
1585  MadeChanges = true;
1586  continue;
1587  }
1588 
1589  // Iterate over all of the instructions in a function, replacing them with
1590  // constants if we have found them to be of constant values.
1591  //
1592  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1593  Instruction *Inst = BI++;
1594  if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1595  continue;
1596 
1597  // TODO: Reconstruct structs from their elements.
1598  if (Inst->getType()->isStructTy())
1599  continue;
1600 
1601  LatticeVal IV = Solver.getLatticeValueFor(Inst);
1602  if (IV.isOverdefined())
1603  continue;
1604 
1605  Constant *Const = IV.isConstant()
1606  ? IV.getConstant() : UndefValue::get(Inst->getType());
1607  DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1608 
1609  // Replaces all of the uses of a variable with uses of the constant.
1610  Inst->replaceAllUsesWith(Const);
1611 
1612  // Delete the instruction.
1613  Inst->eraseFromParent();
1614 
1615  // Hey, we just changed something!
1616  MadeChanges = true;
1617  ++NumInstRemoved;
1618  }
1619  }
1620 
1621  return MadeChanges;
1622 }
1623 
1624 namespace {
1625  //===--------------------------------------------------------------------===//
1626  //
1627  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1628  /// Constant Propagation.
1629  ///
1630  struct IPSCCP : public ModulePass {
1631  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1633  }
1634  static char ID;
1635  IPSCCP() : ModulePass(ID) {
1637  }
1638  bool runOnModule(Module &M);
1639  };
1640 } // end anonymous namespace
1641 
1642 char IPSCCP::ID = 0;
1643 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1644  "Interprocedural Sparse Conditional Constant Propagation",
1645  false, false)
1648  "Interprocedural Sparse Conditional Constant Propagation",
1649  false, false)
1650 
1651 // createIPSCCPPass - This is the public interface to this file.
1653  return new IPSCCP();
1654 }
1655 
1656 
1657 static bool AddressIsTaken(const GlobalValue *GV) {
1658  // Delete any dead constantexpr klingons.
1660 
1661  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1662  UI != E; ++UI) {
1663  const User *U = *UI;
1664  if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
1665  if (SI->getOperand(0) == GV || SI->isVolatile())
1666  return true; // Storing addr of GV.
1667  } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
1668  // Make sure we are calling the function, not passing the address.
1669  ImmutableCallSite CS(cast<Instruction>(U));
1670  if (!CS.isCallee(UI))
1671  return true;
1672  } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1673  if (LI->isVolatile())
1674  return true;
1675  } else if (isa<BlockAddress>(U)) {
1676  // blockaddress doesn't take the address of the function, it takes addr
1677  // of label.
1678  } else {
1679  return true;
1680  }
1681  }
1682  return false;
1683 }
1684 
1685 bool IPSCCP::runOnModule(Module &M) {
1686  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
1687  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1688  SCCPSolver Solver(TD, TLI);
1689 
1690  // AddressTakenFunctions - This set keeps track of the address-taken functions
1691  // that are in the input. As IPSCCP runs through and simplifies code,
1692  // functions that were address taken can end up losing their
1693  // address-taken-ness. Because of this, we keep track of their addresses from
1694  // the first pass so we can use them for the later simplification pass.
1695  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1696 
1697  // Loop over all functions, marking arguments to those with their addresses
1698  // taken or that are external as overdefined.
1699  //
1700  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1701  if (F->isDeclaration())
1702  continue;
1703 
1704  // If this is a strong or ODR definition of this function, then we can
1705  // propagate information about its result into callsites of it.
1706  if (!F->mayBeOverridden())
1707  Solver.AddTrackedFunction(F);
1708 
1709  // If this function only has direct calls that we can see, we can track its
1710  // arguments and return value aggressively, and can assume it is not called
1711  // unless we see evidence to the contrary.
1712  if (F->hasLocalLinkage()) {
1713  if (AddressIsTaken(F))
1714  AddressTakenFunctions.insert(F);
1715  else {
1716  Solver.AddArgumentTrackedFunction(F);
1717  continue;
1718  }
1719  }
1720 
1721  // Assume the function is called.
1722  Solver.MarkBlockExecutable(F->begin());
1723 
1724  // Assume nothing about the incoming arguments.
1725  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1726  AI != E; ++AI)
1727  Solver.markAnythingOverdefined(AI);
1728  }
1729 
1730  // Loop over global variables. We inform the solver about any internal global
1731  // variables that do not have their 'addresses taken'. If they don't have
1732  // their addresses taken, we can propagate constants through them.
1733  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1734  G != E; ++G)
1735  if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1736  Solver.TrackValueOfGlobalVariable(G);
1737 
1738  // Solve for constants.
1739  bool ResolvedUndefs = true;
1740  while (ResolvedUndefs) {
1741  Solver.Solve();
1742 
1743  DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1744  ResolvedUndefs = false;
1745  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1746  ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1747  }
1748 
1749  bool MadeChanges = false;
1750 
1751  // Iterate over all of the instructions in the module, replacing them with
1752  // constants if we have found them to be of constant values.
1753  //
1754  SmallVector<BasicBlock*, 512> BlocksToErase;
1755 
1756  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1757  if (Solver.isBlockExecutable(F->begin())) {
1758  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1759  AI != E; ++AI) {
1760  if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1761 
1762  // TODO: Could use getStructLatticeValueFor to find out if the entire
1763  // result is a constant and replace it entirely if so.
1764 
1765  LatticeVal IV = Solver.getLatticeValueFor(AI);
1766  if (IV.isOverdefined()) continue;
1767 
1768  Constant *CST = IV.isConstant() ?
1769  IV.getConstant() : UndefValue::get(AI->getType());
1770  DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1771 
1772  // Replaces all of the uses of a variable with uses of the
1773  // constant.
1774  AI->replaceAllUsesWith(CST);
1775  ++IPNumArgsElimed;
1776  }
1777  }
1778 
1779  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1780  if (!Solver.isBlockExecutable(BB)) {
1782  MadeChanges = true;
1783 
1784  TerminatorInst *TI = BB->getTerminator();
1785  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1786  BasicBlock *Succ = TI->getSuccessor(i);
1787  if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1788  TI->getSuccessor(i)->removePredecessor(BB);
1789  }
1790  if (!TI->use_empty())
1792  TI->eraseFromParent();
1793 
1794  if (&*BB != &F->front())
1795  BlocksToErase.push_back(BB);
1796  else
1797  new UnreachableInst(M.getContext(), BB);
1798  continue;
1799  }
1800 
1801  for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1802  Instruction *Inst = BI++;
1803  if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1804  continue;
1805 
1806  // TODO: Could use getStructLatticeValueFor to find out if the entire
1807  // result is a constant and replace it entirely if so.
1808 
1809  LatticeVal IV = Solver.getLatticeValueFor(Inst);
1810  if (IV.isOverdefined())
1811  continue;
1812 
1813  Constant *Const = IV.isConstant()
1814  ? IV.getConstant() : UndefValue::get(Inst->getType());
1815  DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1816 
1817  // Replaces all of the uses of a variable with uses of the
1818  // constant.
1819  Inst->replaceAllUsesWith(Const);
1820 
1821  // Delete the instruction.
1822  if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1823  Inst->eraseFromParent();
1824 
1825  // Hey, we just changed something!
1826  MadeChanges = true;
1827  ++IPNumInstRemoved;
1828  }
1829  }
1830 
1831  // Now that all instructions in the function are constant folded, erase dead
1832  // blocks, because we can now use ConstantFoldTerminator to get rid of
1833  // in-edges.
1834  for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1835  // If there are any PHI nodes in this successor, drop entries for BB now.
1836  BasicBlock *DeadBB = BlocksToErase[i];
1837  for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1838  UI != UE; ) {
1839  // Grab the user and then increment the iterator early, as the user
1840  // will be deleted. Step past all adjacent uses from the same user.
1841  Instruction *I = dyn_cast<Instruction>(*UI);
1842  do { ++UI; } while (UI != UE && *UI == I);
1843 
1844  // Ignore blockaddress users; BasicBlock's dtor will handle them.
1845  if (!I) continue;
1846 
1847  bool Folded = ConstantFoldTerminator(I->getParent());
1848  if (!Folded) {
1849  // The constant folder may not have been able to fold the terminator
1850  // if this is a branch or switch on undef. Fold it manually as a
1851  // branch to the first successor.
1852 #ifndef NDEBUG
1853  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1854  assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1855  "Branch should be foldable!");
1856  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1857  assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1858  } else {
1859  llvm_unreachable("Didn't fold away reference to block!");
1860  }
1861 #endif
1862 
1863  // Make this an uncond branch to the first successor.
1864  TerminatorInst *TI = I->getParent()->getTerminator();
1865  BranchInst::Create(TI->getSuccessor(0), TI);
1866 
1867  // Remove entries in successor phi nodes to remove edges.
1868  for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1869  TI->getSuccessor(i)->removePredecessor(TI->getParent());
1870 
1871  // Remove the old terminator.
1872  TI->eraseFromParent();
1873  }
1874  }
1875 
1876  // Finally, delete the basic block.
1877  F->getBasicBlockList().erase(DeadBB);
1878  }
1879  BlocksToErase.clear();
1880  }
1881 
1882  // If we inferred constant or undef return values for a function, we replaced
1883  // all call uses with the inferred value. This means we don't need to bother
1884  // actually returning anything from the function. Replace all return
1885  // instructions with return undef.
1886  //
1887  // Do this in two stages: first identify the functions we should process, then
1888  // actually zap their returns. This is important because we can only do this
1889  // if the address of the function isn't taken. In cases where a return is the
1890  // last use of a function, the order of processing functions would affect
1891  // whether other functions are optimizable.
1892  SmallVector<ReturnInst*, 8> ReturnsToZap;
1893 
1894  // TODO: Process multiple value ret instructions also.
1895  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1897  E = RV.end(); I != E; ++I) {
1898  Function *F = I->first;
1899  if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1900  continue;
1901 
1902  // We can only do this if we know that nothing else can call the function.
1903  if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1904  continue;
1905 
1906  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1907  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1908  if (!isa<UndefValue>(RI->getOperand(0)))
1909  ReturnsToZap.push_back(RI);
1910  }
1911 
1912  // Zap all returns which we've identified as zap to change.
1913  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1914  Function *F = ReturnsToZap[i]->getParent()->getParent();
1915  ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1916  }
1917 
1918  // If we inferred constant or undef values for globals variables, we can
1919  // delete the global and any stores that remain to it.
1920  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1922  E = TG.end(); I != E; ++I) {
1923  GlobalVariable *GV = I->first;
1924  assert(!I->second.isOverdefined() &&
1925  "Overdefined values should have been taken out of the map!");
1926  DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1927  while (!GV->use_empty()) {
1928  StoreInst *SI = cast<StoreInst>(GV->use_back());
1929  SI->eraseFromParent();
1930  }
1931  M.getGlobalList().erase(GV);
1932  ++IPNumGlobalConst;
1933  }
1934 
1935  return MadeChanges;
1936 }
use_iterator use_end()
Definition: Value.h:152
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
bool isCallee(value_use_iterator< UserTy > UI) const
Definition: CallSite.h:107
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
void reserve(unsigned N)
Definition: SmallVector.h:425
static Constant * getShuffleVector(Constant *V1, Constant *V2, Constant *Mask)
Definition: Constants.cpp:1949
static PassRegistry * getPassRegistry()
Base class for instruction visitors.
Definition: InstVisitor.h:81
Value * getAggregateOperand()
const Instruction & back() const
Definition: BasicBlock.h:207
bool isVolatile() const
Definition: Instructions.h:287
bool onlyReadsMemory() const
Determine if the function does not access or only reads memory.
Definition: Function.h:246
bool canConstantFoldCallTo(const Function *F)
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
IterTy arg_end() const
Definition: CallSite.h:143
iterator end()
Definition: Function.h:397
static bool AddressIsTaken(const GlobalValue *GV)
Definition: SCCP.cpp:1657
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
const GlobalListType & getGlobalList() const
Get the Module's list of global variables (constant).
Definition: Module.h:485
unsigned getNumOperands() const
Definition: User.h:108
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
ModulePass * createIPSCCPPass()
Definition: SCCP.cpp:1652
static Constant * getExtractElement(Constant *Vec, Constant *Idx)
Definition: Constants.cpp:1912
static void DeleteInstructionInBlock(BasicBlock *BB)
Definition: SCCP.cpp:1526
Type * getReturnType() const
Definition: Function.cpp:179
unsigned getNumIndices() const
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
F(f)
const Constant * getInitializer() const
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
bool isSingleValueType() const
Definition: Type.h:259
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
Base class of casting instructions.
Definition: InstrTypes.h:387
#define llvm_unreachable(msg)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
unsigned getNumIndices() const
void assign(unsigned NumElts, const T &Elt)
Definition: SmallVector.h:470
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define G(x, y, z)
Definition: MD5.cpp:52
global_iterator global_begin()
Definition: Module.h:521
VectorType * getType() const
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
STATISTIC(NumInstRemoved,"Number of instructions removed")
bool empty() const
Definition: BasicBlock.h:204
Value * getInsertedValueOperand()
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
iterator begin()
Definition: Function.h:395
Type * getElementType() const
Definition: DerivedTypes.h:319
unsigned getNumIncomingValues() const
Constant * ConstantFoldCall(Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=0)
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
InstrTy * getInstruction() const
Definition: CallSite.h:79
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
static bool mayBeOverridden(LinkageTypes Linkage)
Definition: GlobalValue.h:171
void initializeSCCPPass(PassRegistry &)
ipsccp
Definition: SCCP.cpp:1647
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
Value * getOperand(unsigned i) const
Definition: User.h:88
void initializeIPSCCPPass(PassRegistry &)
arg_iterator arg_begin()
Definition: Function.h:410
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
Constant * ConstantFoldLoadFromConstPtr(Constant *C, const DataLayout *TD=0)
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
IntType getInt() const
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
const Value * getTrueValue() const
iterator erase(iterator where)
Definition: ilist.h:465
Interprocedural Sparse Conditional Constant Propagation
Definition: SCCP.cpp:1647
global_iterator global_end()
Definition: Module.h:523
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
idx_iterator idx_begin() const
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
Interprocedural Sparse Conditional Constant false
Definition: SCCP.cpp:1647
Class for constant integers.
Definition: Constants.h:51
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
bool isVolatile() const
Definition: Instructions.h:170
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:228
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:59
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
bool isStructTy() const
Definition: Type.h:212
use_iterator use_begin()
Definition: Value.h:150
PointerType * getType() const
getType - Global values are always pointers.
Definition: GlobalValue.h:107
FunctionPass * createSCCPPass()
iterator end()
Definition: Module.h:533
bool isDeclaration() const
Definition: Globals.cpp:66
User * use_back()
Definition: Value.h:154
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
iterator begin()
Definition: Module.h:531
void resize(unsigned N)
Definition: SmallVector.h:401
static Function * getCalledFunction(const Value *V, bool LookThroughBitCast)
VectorType * getType() const
IterTy arg_begin() const
Definition: CallSite.h:137
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
bool use_empty() const
Definition: Value.h:149
const BasicBlock & front() const
Definition: Function.h:402
void removeDeadConstantUsers() const
Definition: Constants.cpp:395
INITIALIZE_PASS_BEGIN(IPSCCP,"ipsccp","Interprocedural Sparse Conditional Constant Propagation", false, false) INITIALIZE_PASS_END(IPSCCP
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
INITIALIZE_PASS(SCCP,"sccp","Sparse Conditional Constant Propagation", false, false) FunctionPass *llvm
Definition: SCCP.cpp:1518
#define DEBUG(X)
Definition: Debug.h:97
const Value * getFalseValue() const
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1798
idx_iterator idx_begin() const
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:286
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx)
Definition: Constants.cpp:1930
LLVMContext & getContext() const
Definition: Module.h:249
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
FunTy * getCalledFunction() const
Definition: CallSite.h:93