LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
X86FixupLEAs.cpp
Go to the documentation of this file.
1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which will find instructions which
11 // can be re-written as LEA instructions in order to reduce pipeline
12 // delays for some models of the Intel Atom family.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "x86-fixup-LEAs"
17 #include "X86.h"
18 #include "X86InstrInfo.h"
19 #include "X86Subtarget.h"
20 #include "llvm/ADT/Statistic.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/Support/Debug.h"
29 using namespace llvm;
30 
31 STATISTIC(NumLEAs, "Number of LEA instructions created");
32 
33 namespace {
34  class FixupLEAPass : public MachineFunctionPass {
35  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
36  static char ID;
37  /// \brief Loop over all of the instructions in the basic block
38  /// replacing applicable instructions with LEA instructions,
39  /// where appropriate.
40  bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
41 
42  virtual const char *getPassName() const { return "X86 Atom LEA Fixup";}
43 
44  /// \brief Given a machine register, look for the instruction
45  /// which writes it in the current basic block. If found,
46  /// try to replace it with an equivalent LEA instruction.
47  /// If replacement succeeds, then also process the the newly created
48  /// instruction.
49  void seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
51 
52  /// \brief Given a memory access or LEA instruction
53  /// whose address mode uses a base and/or index register, look for
54  /// an opportunity to replace the instruction which sets the base or index
55  /// register with an equivalent LEA instruction.
56  void processInstruction(MachineBasicBlock::iterator& I,
58 
59  /// \brief Determine if an instruction references a machine register
60  /// and, if so, whether it reads or writes the register.
61  RegUsageState usesRegister(MachineOperand& p,
63 
64  /// \brief Step backwards through a basic block, looking
65  /// for an instruction which writes a register within
66  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
70 
71  /// \brief if an instruction can be converted to an
72  /// equivalent LEA, insert the new instruction into the basic block
73  /// and return a pointer to it. Otherwise, return zero.
74  MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
75  MachineBasicBlock::iterator &MBBI) const;
76 
77  public:
78  FixupLEAPass() : MachineFunctionPass(ID) {}
79 
80  /// \brief Loop over all of the basic blocks,
81  /// replacing instructions by equivalent LEA instructions
82  /// if needed and when possible.
83  virtual bool runOnMachineFunction(MachineFunction &MF);
84 
85  private:
86  MachineFunction *MF;
87  const TargetMachine *TM;
88  const TargetInstrInfo *TII; // Machine instruction info.
89 
90  };
91  char FixupLEAPass::ID = 0;
92 }
93 
95 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
96  MachineBasicBlock::iterator &MBBI) const {
97  MachineInstr* MI = MBBI;
98  MachineInstr* NewMI;
99  switch (MI->getOpcode()) {
100  case X86::MOV32rr:
101  case X86::MOV64rr: {
102  const MachineOperand& Src = MI->getOperand(1);
103  const MachineOperand& Dest = MI->getOperand(0);
104  NewMI = BuildMI(*MF, MI->getDebugLoc(),
105  TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
106  .addOperand(Dest)
107  .addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
108  MFI->insert(MBBI, NewMI); // Insert the new inst
109  return NewMI;
110  }
111  case X86::ADD64ri32:
112  case X86::ADD64ri8:
113  case X86::ADD64ri32_DB:
114  case X86::ADD64ri8_DB:
115  case X86::ADD32ri:
116  case X86::ADD32ri8:
117  case X86::ADD32ri_DB:
118  case X86::ADD32ri8_DB:
119  case X86::ADD16ri:
120  case X86::ADD16ri8:
121  case X86::ADD16ri_DB:
122  case X86::ADD16ri8_DB:
123  if (!MI->getOperand(2).isImm()) {
124  // convertToThreeAddress will call getImm()
125  // which requires isImm() to be true
126  return 0;
127  }
128  break;
129  case X86::ADD16rr:
130  case X86::ADD16rr_DB:
131  if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
132  // if src1 != src2, then convertToThreeAddress will
133  // need to create a Virtual register, which we cannot do
134  // after register allocation.
135  return 0;
136  }
137  }
138  return TII->convertToThreeAddress(MFI, MBBI, 0);
139 }
140 
142  return new FixupLEAPass();
143 }
144 
145 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
146  MF = &Func;
147  TM = &MF->getTarget();
148  TII = TM->getInstrInfo();
149 
150  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
151  // Process all basic blocks.
152  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
153  processBasicBlock(Func, I);
154  DEBUG(dbgs() << "End X86FixupLEAs\n";);
155 
156  return true;
157 }
158 
159 FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
161  RegUsageState RegUsage = RU_NotUsed;
162  MachineInstr* MI = I;
163 
164  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
165  MachineOperand& opnd = MI->getOperand(i);
166  if (opnd.isReg() && opnd.getReg() == p.getReg()){
167  if (opnd.isDef())
168  return RU_Write;
169  RegUsage = RU_Read;
170  }
171  }
172  return RegUsage;
173 }
174 
175 /// getPreviousInstr - Given a reference to an instruction in a basic
176 /// block, return a reference to the previous instruction in the block,
177 /// wrapping around to the last instruction of the block if the block
178 /// branches to itself.
181  if (I == MFI->begin()) {
182  if (MFI->isPredecessor(MFI)) {
183  I = --MFI->end();
184  return true;
185  }
186  else
187  return false;
188  }
189  --I;
190  return true;
191 }
192 
193 MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
196  int InstrDistance = 1;
198  static const int INSTR_DISTANCE_THRESHOLD = 5;
199 
200  CurInst = I;
201  bool Found;
202  Found = getPreviousInstr(CurInst, MFI);
203  while( Found && I != CurInst) {
204  if (CurInst->isCall() || CurInst->isInlineAsm())
205  break;
206  if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
207  break; // too far back to make a difference
208  if (usesRegister(p, CurInst) == RU_Write){
209  return CurInst;
210  }
211  InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
212  Found = getPreviousInstr(CurInst, MFI);
213  }
214  return 0;
215 }
216 
217 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
219  // Process a load, store, or LEA instruction.
220  MachineInstr *MI = I;
221  int opcode = MI->getOpcode();
222  const MCInstrDesc& Desc = MI->getDesc();
223  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
224  if (AddrOffset >= 0) {
225  AddrOffset += X86II::getOperandBias(Desc);
226  MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
227  if (p.isReg() && p.getReg() != X86::ESP) {
228  seekLEAFixup(p, I, MFI);
229  }
230  MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
231  if (q.isReg() && q.getReg() != X86::ESP) {
232  seekLEAFixup(q, I, MFI);
233  }
234  }
235 }
236 
237 void FixupLEAPass::seekLEAFixup(MachineOperand& p,
240  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
241  if (MBI) {
242  MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI);
243  if (NewMI) {
244  ++NumLEAs;
245  DEBUG(dbgs() << "Candidate to replace:"; MBI->dump(););
246  // now to replace with an equivalent LEA...
247  DEBUG(dbgs() << "Replaced by: "; NewMI->dump(););
248  MFI->erase(MBI);
250  static_cast<MachineBasicBlock::iterator> (NewMI);
251  processInstruction(J, MFI);
252  }
253  }
254 }
255 
256 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
258 
259  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I)
260  processInstruction(I, MFI);
261  return false;
262 }
static bool getPreviousInstr(MachineBasicBlock::iterator &I, MachineFunction::iterator MFI)
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
int getOperandBias(const MCInstrDesc &Desc)
Definition: X86BaseInfo.h:567
STATISTIC(NumLEAs,"Number of LEA instructions created")
const HexagonInstrInfo * TII
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
const MachineInstrBuilder & addImm(int64_t Val) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
int getOpcode() const
Definition: MachineInstr.h:261
FunctionPass * createX86FixupLEAs()
bundle_iterator< MachineInstr, instr_iterator > iterator
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void dump() const
#define I(x, y, z)
Definition: MD5.cpp:54
unsigned getReg() const
getReg - Returns the register number.
int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode)
Definition: X86BaseInfo.h:597
const MachineInstrBuilder & addOperand(const MachineOperand &MO) const
BasicBlockListType::iterator iterator
#define DEBUG(X)
Definition: Debug.h:97
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244