LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TargetInstrInfo.h
Go to the documentation of this file.
1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16 
17 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 
22 namespace llvm {
23 
24 class InstrItineraryData;
25 class LiveVariables;
26 class MCAsmInfo;
27 class MachineMemOperand;
28 class MachineRegisterInfo;
29 class MDNode;
30 class MCInst;
31 class MCSchedModel;
32 class SDNode;
33 class ScheduleHazardRecognizer;
34 class SelectionDAG;
35 class ScheduleDAG;
36 class TargetRegisterClass;
37 class TargetRegisterInfo;
38 class BranchProbability;
39 
40 template<class T> class SmallVectorImpl;
41 
42 
43 //---------------------------------------------------------------------------
44 ///
45 /// TargetInstrInfo - Interface to description of machine instruction set
46 ///
47 class TargetInstrInfo : public MCInstrInfo {
49  void operator=(const TargetInstrInfo &) LLVM_DELETED_FUNCTION;
50 public:
51  TargetInstrInfo(int CFSetupOpcode = -1, int CFDestroyOpcode = -1)
52  : CallFrameSetupOpcode(CFSetupOpcode),
53  CallFrameDestroyOpcode(CFDestroyOpcode) {
54  }
55 
56  virtual ~TargetInstrInfo();
57 
58  /// getRegClass - Givem a machine instruction descriptor, returns the register
59  /// class constraint for OpNum, or NULL.
61  unsigned OpNum,
62  const TargetRegisterInfo *TRI,
63  const MachineFunction &MF) const;
64 
65  /// isTriviallyReMaterializable - Return true if the instruction is trivially
66  /// rematerializable, meaning it has no side effects and requires no operands
67  /// that aren't always available.
69  AliasAnalysis *AA = 0) const {
70  return MI->getOpcode() == TargetOpcode::IMPLICIT_DEF ||
71  (MI->getDesc().isRematerializable() &&
73  isReallyTriviallyReMaterializableGeneric(MI, AA)));
74  }
75 
76 protected:
77  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
78  /// which the M_REMATERIALIZABLE flag is set, this hook lets the target
79  /// specify whether the instruction is actually trivially rematerializable,
80  /// taking into consideration its operands. This predicate must return false
81  /// if the instruction has any side effects other than producing a value, or
82  /// if it requres any address registers that are not always available.
84  AliasAnalysis *AA) const {
85  return false;
86  }
87 
88 private:
89  /// isReallyTriviallyReMaterializableGeneric - For instructions with opcodes
90  /// for which the M_REMATERIALIZABLE flag is set and the target hook
91  /// isReallyTriviallyReMaterializable returns false, this function does
92  /// target-independent tests to determine if the instruction is really
93  /// trivially rematerializable.
94  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
95  AliasAnalysis *AA) const;
96 
97 public:
98  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
99  /// frame setup/destroy instructions if they exist (-1 otherwise). Some
100  /// targets use pseudo instructions in order to abstract away the difference
101  /// between operating with a frame pointer and operating without, through the
102  /// use of these two instructions.
103  ///
104  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
105  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
106 
107  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
108  /// extension instruction. That is, it's like a copy where it's legal for the
109  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
110  /// true, then it's expected the pre-extension value is available as a subreg
111  /// of the result register. This also returns the sub-register index in
112  /// SubIdx.
113  virtual bool isCoalescableExtInstr(const MachineInstr &MI,
114  unsigned &SrcReg, unsigned &DstReg,
115  unsigned &SubIdx) const {
116  return false;
117  }
118 
119  /// isLoadFromStackSlot - If the specified machine instruction is a direct
120  /// load from a stack slot, return the virtual or physical register number of
121  /// the destination along with the FrameIndex of the loaded stack slot. If
122  /// not, return 0. This predicate must return 0 if the instruction has
123  /// any side effects other than loading from the stack slot.
124  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
125  int &FrameIndex) const {
126  return 0;
127  }
128 
129  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
130  /// stack locations as well. This uses a heuristic so it isn't
131  /// reliable for correctness.
132  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
133  int &FrameIndex) const {
134  return 0;
135  }
136 
137  /// hasLoadFromStackSlot - If the specified machine instruction has
138  /// a load from a stack slot, return true along with the FrameIndex
139  /// of the loaded stack slot and the machine mem operand containing
140  /// the reference. If not, return false. Unlike
141  /// isLoadFromStackSlot, this returns true for any instructions that
142  /// loads from the stack. This is just a hint, as some cases may be
143  /// missed.
144  virtual bool hasLoadFromStackSlot(const MachineInstr *MI,
145  const MachineMemOperand *&MMO,
146  int &FrameIndex) const;
147 
148  /// isStoreToStackSlot - If the specified machine instruction is a direct
149  /// store to a stack slot, return the virtual or physical register number of
150  /// the source reg along with the FrameIndex of the loaded stack slot. If
151  /// not, return 0. This predicate must return 0 if the instruction has
152  /// any side effects other than storing to the stack slot.
153  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
154  int &FrameIndex) const {
155  return 0;
156  }
157 
158  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
159  /// stack locations as well. This uses a heuristic so it isn't
160  /// reliable for correctness.
161  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
162  int &FrameIndex) const {
163  return 0;
164  }
165 
166  /// hasStoreToStackSlot - If the specified machine instruction has a
167  /// store to a stack slot, return true along with the FrameIndex of
168  /// the loaded stack slot and the machine mem operand containing the
169  /// reference. If not, return false. Unlike isStoreToStackSlot,
170  /// this returns true for any instructions that stores to the
171  /// stack. This is just a hint, as some cases may be missed.
172  virtual bool hasStoreToStackSlot(const MachineInstr *MI,
173  const MachineMemOperand *&MMO,
174  int &FrameIndex) const;
175 
176  /// isStackSlotCopy - Return true if the specified machine instruction
177  /// is a copy of one stack slot to another and has no other effect.
178  /// Provide the identity of the two frame indices.
179  virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex,
180  int &SrcFrameIndex) const {
181  return false;
182  }
183 
184  /// Compute the size in bytes and offset within a stack slot of a spilled
185  /// register or subregister.
186  ///
187  /// \param [out] Size in bytes of the spilled value.
188  /// \param [out] Offset in bytes within the stack slot.
189  /// \returns true if both Size and Offset are successfully computed.
190  ///
191  /// Not all subregisters have computable spill slots. For example,
192  /// subregisters registers may not be byte-sized, and a pair of discontiguous
193  /// subregisters has no single offset.
194  ///
195  /// Targets with nontrivial bigendian implementations may need to override
196  /// this, particularly to support spilled vector registers.
197  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
198  unsigned &Size, unsigned &Offset,
199  const TargetMachine *TM) const;
200 
201  /// reMaterialize - Re-issue the specified 'original' instruction at the
202  /// specific location targeting a new destination register.
203  /// The register in Orig->getOperand(0).getReg() will be substituted by
204  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
205  /// SubIdx.
206  virtual void reMaterialize(MachineBasicBlock &MBB,
208  unsigned DestReg, unsigned SubIdx,
209  const MachineInstr *Orig,
210  const TargetRegisterInfo &TRI) const;
211 
212  /// duplicate - Create a duplicate of the Orig instruction in MF. This is like
213  /// MachineFunction::CloneMachineInstr(), but the target may update operands
214  /// that are required to be unique.
215  ///
216  /// The instruction must be duplicable as indicated by isNotDuplicable().
217  virtual MachineInstr *duplicate(MachineInstr *Orig,
218  MachineFunction &MF) const;
219 
220  /// convertToThreeAddress - This method must be implemented by targets that
221  /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
222  /// may be able to convert a two-address instruction into one or more true
223  /// three-address instructions on demand. This allows the X86 target (for
224  /// example) to convert ADD and SHL instructions into LEA instructions if they
225  /// would require register copies due to two-addressness.
226  ///
227  /// This method returns a null pointer if the transformation cannot be
228  /// performed, otherwise it returns the last new instruction.
229  ///
230  virtual MachineInstr *
232  MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
233  return 0;
234  }
235 
236  /// commuteInstruction - If a target has any instructions that are
237  /// commutable but require converting to different instructions or making
238  /// non-trivial changes to commute them, this method can overloaded to do
239  /// that. The default implementation simply swaps the commutable operands.
240  /// If NewMI is false, MI is modified in place and returned; otherwise, a
241  /// new machine instruction is created and returned. Do not call this
242  /// method for a non-commutable instruction, but there may be some cases
243  /// where this method fails and returns null.
245  bool NewMI = false) const;
246 
247  /// findCommutedOpIndices - If specified MI is commutable, return the two
248  /// operand indices that would swap value. Return false if the instruction
249  /// is not in a form which this routine understands.
250  virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
251  unsigned &SrcOpIdx2) const;
252 
253  /// produceSameValue - Return true if two machine instructions would produce
254  /// identical values. By default, this is only true when the two instructions
255  /// are deemed identical except for defs. If this function is called when the
256  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
257  /// aggressive checks.
258  virtual bool produceSameValue(const MachineInstr *MI0,
259  const MachineInstr *MI1,
260  const MachineRegisterInfo *MRI = 0) const;
261 
262  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
263  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
264  /// implemented for a target). Upon success, this returns false and returns
265  /// with the following information in various cases:
266  ///
267  /// 1. If this block ends with no branches (it just falls through to its succ)
268  /// just return false, leaving TBB/FBB null.
269  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
270  /// the destination block.
271  /// 3. If this block ends with a conditional branch and it falls through to a
272  /// successor block, it sets TBB to be the branch destination block and a
273  /// list of operands that evaluate the condition. These operands can be
274  /// passed to other TargetInstrInfo methods to create new branches.
275  /// 4. If this block ends with a conditional branch followed by an
276  /// unconditional branch, it returns the 'true' destination in TBB, the
277  /// 'false' destination in FBB, and a list of operands that evaluate the
278  /// condition. These operands can be passed to other TargetInstrInfo
279  /// methods to create new branches.
280  ///
281  /// Note that RemoveBranch and InsertBranch must be implemented to support
282  /// cases where this method returns success.
283  ///
284  /// If AllowModify is true, then this routine is allowed to modify the basic
285  /// block (e.g. delete instructions after the unconditional branch).
286  ///
288  MachineBasicBlock *&FBB,
290  bool AllowModify = false) const {
291  return true;
292  }
293 
294  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
295  /// This is only invoked in cases where AnalyzeBranch returns success. It
296  /// returns the number of instructions that were removed.
297  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
298  llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
299  }
300 
301  /// InsertBranch - Insert branch code into the end of the specified
302  /// MachineBasicBlock. The operands to this method are the same as those
303  /// returned by AnalyzeBranch. This is only invoked in cases where
304  /// AnalyzeBranch returns success. It returns the number of instructions
305  /// inserted.
306  ///
307  /// It is also invoked by tail merging to add unconditional branches in
308  /// cases where AnalyzeBranch doesn't apply because there was no original
309  /// branch to analyze. At least this much must be implemented, else tail
310  /// merging needs to be disabled.
311  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
312  MachineBasicBlock *FBB,
314  DebugLoc DL) const {
315  llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
316  }
317 
318  /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
319  /// after it, replacing it with an unconditional branch to NewDest. This is
320  /// used by the tail merging pass.
322  MachineBasicBlock *NewDest) const;
323 
324  /// isLegalToSplitMBBAt - Return true if it's legal to split the given basic
325  /// block at the specified instruction (i.e. instruction would be the start
326  /// of a new basic block).
328  MachineBasicBlock::iterator MBBI) const {
329  return true;
330  }
331 
332  /// isProfitableToIfCvt - Return true if it's profitable to predicate
333  /// instructions with accumulated instruction latency of "NumCycles"
334  /// of the specified basic block, where the probability of the instructions
335  /// being executed is given by Probability, and Confidence is a measure
336  /// of our confidence that it will be properly predicted.
337  virtual
338  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
339  unsigned ExtraPredCycles,
340  const BranchProbability &Probability) const {
341  return false;
342  }
343 
344  /// isProfitableToIfCvt - Second variant of isProfitableToIfCvt, this one
345  /// checks for the case where two basic blocks from true and false path
346  /// of a if-then-else (diamond) are predicated on mutally exclusive
347  /// predicates, where the probability of the true path being taken is given
348  /// by Probability, and Confidence is a measure of our confidence that it
349  /// will be properly predicted.
350  virtual bool
352  unsigned NumTCycles, unsigned ExtraTCycles,
353  MachineBasicBlock &FMBB,
354  unsigned NumFCycles, unsigned ExtraFCycles,
355  const BranchProbability &Probability) const {
356  return false;
357  }
358 
359  /// isProfitableToDupForIfCvt - Return true if it's profitable for
360  /// if-converter to duplicate instructions of specified accumulated
361  /// instruction latencies in the specified MBB to enable if-conversion.
362  /// The probability of the instructions being executed is given by
363  /// Probability, and Confidence is a measure of our confidence that it
364  /// will be properly predicted.
365  virtual bool
367  const BranchProbability &Probability) const {
368  return false;
369  }
370 
371  /// isProfitableToUnpredicate - Return true if it's profitable to unpredicate
372  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
373  /// exclusive predicates.
374  /// e.g.
375  /// subeq r0, r1, #1
376  /// addne r0, r1, #1
377  /// =>
378  /// sub r0, r1, #1
379  /// addne r0, r1, #1
380  ///
381  /// This may be profitable is conditional instructions are always executed.
383  MachineBasicBlock &FMBB) const {
384  return false;
385  }
386 
387  /// canInsertSelect - Return true if it is possible to insert a select
388  /// instruction that chooses between TrueReg and FalseReg based on the
389  /// condition code in Cond.
390  ///
391  /// When successful, also return the latency in cycles from TrueReg,
392  /// FalseReg, and Cond to the destination register. In most cases, a select
393  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
394  ///
395  /// Some x86 implementations have 2-cycle cmov instructions.
396  ///
397  /// @param MBB Block where select instruction would be inserted.
398  /// @param Cond Condition returned by AnalyzeBranch.
399  /// @param TrueReg Virtual register to select when Cond is true.
400  /// @param FalseReg Virtual register to select when Cond is false.
401  /// @param CondCycles Latency from Cond+Branch to select output.
402  /// @param TrueCycles Latency from TrueReg to select output.
403  /// @param FalseCycles Latency from FalseReg to select output.
404  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
406  unsigned TrueReg, unsigned FalseReg,
407  int &CondCycles,
408  int &TrueCycles, int &FalseCycles) const {
409  return false;
410  }
411 
412  /// insertSelect - Insert a select instruction into MBB before I that will
413  /// copy TrueReg to DstReg when Cond is true, and FalseReg to DstReg when
414  /// Cond is false.
415  ///
416  /// This function can only be called after canInsertSelect() returned true.
417  /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
418  /// that the same flags or registers required by Cond are available at the
419  /// insertion point.
420  ///
421  /// @param MBB Block where select instruction should be inserted.
422  /// @param I Insertion point.
423  /// @param DL Source location for debugging.
424  /// @param DstReg Virtual register to be defined by select instruction.
425  /// @param Cond Condition as computed by AnalyzeBranch.
426  /// @param TrueReg Virtual register to copy when Cond is true.
427  /// @param FalseReg Virtual register to copy when Cons is false.
428  virtual void insertSelect(MachineBasicBlock &MBB,
430  unsigned DstReg,
432  unsigned TrueReg, unsigned FalseReg) const {
433  llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
434  }
435 
436  /// analyzeSelect - Analyze the given select instruction, returning true if
437  /// it cannot be understood. It is assumed that MI->isSelect() is true.
438  ///
439  /// When successful, return the controlling condition and the operands that
440  /// determine the true and false result values.
441  ///
442  /// Result = SELECT Cond, TrueOp, FalseOp
443  ///
444  /// Some targets can optimize select instructions, for example by predicating
445  /// the instruction defining one of the operands. Such targets should set
446  /// Optimizable.
447  ///
448  /// @param MI Select instruction to analyze.
449  /// @param Cond Condition controlling the select.
450  /// @param TrueOp Operand number of the value selected when Cond is true.
451  /// @param FalseOp Operand number of the value selected when Cond is false.
452  /// @param Optimizable Returned as true if MI is optimizable.
453  /// @returns False on success.
454  virtual bool analyzeSelect(const MachineInstr *MI,
456  unsigned &TrueOp, unsigned &FalseOp,
457  bool &Optimizable) const {
458  assert(MI && MI->getDesc().isSelect() && "MI must be a select instruction");
459  return true;
460  }
461 
462  /// optimizeSelect - Given a select instruction that was understood by
463  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
464  /// merging it with one of its operands. Returns NULL on failure.
465  ///
466  /// When successful, returns the new select instruction. The client is
467  /// responsible for deleting MI.
468  ///
469  /// If both sides of the select can be optimized, PreferFalse is used to pick
470  /// a side.
471  ///
472  /// @param MI Optimizable select instruction.
473  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
474  /// @returns Optimized instruction or NULL.
476  bool PreferFalse = false) const {
477  // This function must be implemented if Optimizable is ever set.
478  llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
479  }
480 
481  /// copyPhysReg - Emit instructions to copy a pair of physical registers.
482  ///
483  /// This function should support copies within any legal register class as
484  /// well as any cross-class copies created during instruction selection.
485  ///
486  /// The source and destination registers may overlap, which may require a
487  /// careful implementation when multiple copy instructions are required for
488  /// large registers. See for example the ARM target.
489  virtual void copyPhysReg(MachineBasicBlock &MBB,
491  unsigned DestReg, unsigned SrcReg,
492  bool KillSrc) const {
493  llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
494  }
495 
496  /// storeRegToStackSlot - Store the specified register of the given register
497  /// class to the specified stack frame index. The store instruction is to be
498  /// added to the given machine basic block before the specified machine
499  /// instruction. If isKill is true, the register operand is the last use and
500  /// must be marked kill.
503  unsigned SrcReg, bool isKill, int FrameIndex,
504  const TargetRegisterClass *RC,
505  const TargetRegisterInfo *TRI) const {
506  llvm_unreachable("Target didn't implement "
507  "TargetInstrInfo::storeRegToStackSlot!");
508  }
509 
510  /// loadRegFromStackSlot - Load the specified register of the given register
511  /// class from the specified stack frame index. The load instruction is to be
512  /// added to the given machine basic block before the specified machine
513  /// instruction.
516  unsigned DestReg, int FrameIndex,
517  const TargetRegisterClass *RC,
518  const TargetRegisterInfo *TRI) const {
519  llvm_unreachable("Target didn't implement "
520  "TargetInstrInfo::loadRegFromStackSlot!");
521  }
522 
523  /// expandPostRAPseudo - This function is called for all pseudo instructions
524  /// that remain after register allocation. Many pseudo instructions are
525  /// created to help register allocation. This is the place to convert them
526  /// into real instructions. The target can edit MI in place, or it can insert
527  /// new instructions and erase MI. The function should return true if
528  /// anything was changed.
530  return false;
531  }
532 
533  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
534  /// slot into the specified machine instruction for the specified operand(s).
535  /// If this is possible, a new instruction is returned with the specified
536  /// operand folded, otherwise NULL is returned.
537  /// The new instruction is inserted before MI, and the client is responsible
538  /// for removing the old instruction.
540  const SmallVectorImpl<unsigned> &Ops,
541  int FrameIndex) const;
542 
543  /// foldMemoryOperand - Same as the previous version except it allows folding
544  /// of any load and store from / to any address, not just from a specific
545  /// stack slot.
547  const SmallVectorImpl<unsigned> &Ops,
548  MachineInstr* LoadMI) const;
549 
550 protected:
551  /// foldMemoryOperandImpl - Target-dependent implementation for
552  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
553  /// take care of adding a MachineMemOperand to the newly created instruction.
555  MachineInstr* MI,
556  const SmallVectorImpl<unsigned> &Ops,
557  int FrameIndex) const {
558  return 0;
559  }
560 
561  /// foldMemoryOperandImpl - Target-dependent implementation for
562  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
563  /// take care of adding a MachineMemOperand to the newly created instruction.
565  MachineInstr* MI,
566  const SmallVectorImpl<unsigned> &Ops,
567  MachineInstr* LoadMI) const {
568  return 0;
569  }
570 
571 public:
572  /// canFoldMemoryOperand - Returns true for the specified load / store if
573  /// folding is possible.
574  virtual
576  const SmallVectorImpl<unsigned> &Ops) const;
577 
578  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
579  /// a store or a load and a store into two or more instruction. If this is
580  /// possible, returns true as well as the new instructions by reference.
582  unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
583  SmallVectorImpl<MachineInstr*> &NewMIs) const{
584  return false;
585  }
586 
588  SmallVectorImpl<SDNode*> &NewNodes) const {
589  return false;
590  }
591 
592  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
593  /// instruction after load / store are unfolded from an instruction of the
594  /// specified opcode. It returns zero if the specified unfolding is not
595  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
596  /// index of the operand which will hold the register holding the loaded
597  /// value.
598  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
599  bool UnfoldLoad, bool UnfoldStore,
600  unsigned *LoadRegIndex = 0) const {
601  return 0;
602  }
603 
604  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
605  /// to determine if two loads are loading from the same base address. It
606  /// should only return true if the base pointers are the same and the
607  /// only differences between the two addresses are the offset. It also returns
608  /// the offsets by reference.
609  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
610  int64_t &Offset1, int64_t &Offset2) const {
611  return false;
612  }
613 
614  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
615  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
616  /// be scheduled togther. On some targets if two loads are loading from
617  /// addresses in the same cache line, it's better if they are scheduled
618  /// together. This function takes two integers that represent the load offsets
619  /// from the common base address. It returns true if it decides it's desirable
620  /// to schedule the two loads together. "NumLoads" is the number of loads that
621  /// have already been scheduled after Load1.
622  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
623  int64_t Offset1, int64_t Offset2,
624  unsigned NumLoads) const {
625  return false;
626  }
627 
628  /// \brief Get the base register and byte offset of a load/store instr.
629  virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt,
630  unsigned &BaseReg, unsigned &Offset,
631  const TargetRegisterInfo *TRI) const {
632  return false;
633  }
634 
635  virtual bool enableClusterLoads() const { return false; }
636 
637  virtual bool shouldClusterLoads(MachineInstr *FirstLdSt,
638  MachineInstr *SecondLdSt,
639  unsigned NumLoads) const {
640  return false;
641  }
642 
643  /// \brief Can this target fuse the given instructions if they are scheduled
644  /// adjacent.
646  MachineInstr *Second) const {
647  return false;
648  }
649 
650  /// ReverseBranchCondition - Reverses the branch condition of the specified
651  /// condition list, returning false on success and true if it cannot be
652  /// reversed.
653  virtual
655  return true;
656  }
657 
658  /// insertNoop - Insert a noop into the instruction stream at the specified
659  /// point.
660  virtual void insertNoop(MachineBasicBlock &MBB,
662 
663 
664  /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
665  virtual void getNoopForMachoTarget(MCInst &NopInst) const {
666  // Default to just using 'nop' string.
667  }
668 
669 
670  /// isPredicated - Returns true if the instruction is already predicated.
671  ///
672  virtual bool isPredicated(const MachineInstr *MI) const {
673  return false;
674  }
675 
676  /// isUnpredicatedTerminator - Returns true if the instruction is a
677  /// terminator instruction that has not been predicated.
678  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
679 
680  /// PredicateInstruction - Convert the instruction into a predicated
681  /// instruction. It returns true if the operation was successful.
682  virtual
684  const SmallVectorImpl<MachineOperand> &Pred) const;
685 
686  /// SubsumesPredicate - Returns true if the first specified predicate
687  /// subsumes the second, e.g. GE subsumes GT.
688  virtual
690  const SmallVectorImpl<MachineOperand> &Pred2) const {
691  return false;
692  }
693 
694  /// DefinesPredicate - If the specified instruction defines any predicate
695  /// or condition code register(s) used for predication, returns true as well
696  /// as the definition predicate(s) by reference.
698  std::vector<MachineOperand> &Pred) const {
699  return false;
700  }
701 
702  /// isPredicable - Return true if the specified instruction can be predicated.
703  /// By default, this returns true for every instruction with a
704  /// PredicateOperand.
705  virtual bool isPredicable(MachineInstr *MI) const {
706  return MI->getDesc().isPredicable();
707  }
708 
709  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
710  /// instruction that defines the specified register class.
711  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
712  return true;
713  }
714 
715  /// isSchedulingBoundary - Test if the given instruction should be
716  /// considered a scheduling boundary. This primarily includes labels and
717  /// terminators.
718  virtual bool isSchedulingBoundary(const MachineInstr *MI,
719  const MachineBasicBlock *MBB,
720  const MachineFunction &MF) const;
721 
722  /// Measure the specified inline asm to determine an approximation of its
723  /// length.
724  virtual unsigned getInlineAsmLength(const char *Str,
725  const MCAsmInfo &MAI) const;
726 
727  /// CreateTargetHazardRecognizer - Allocate and return a hazard recognizer to
728  /// use for this target when scheduling the machine instructions before
729  /// register allocation.
730  virtual ScheduleHazardRecognizer*
732  const ScheduleDAG *DAG) const;
733 
734  /// CreateTargetMIHazardRecognizer - Allocate and return a hazard recognizer
735  /// to use for this target when scheduling the machine instructions before
736  /// register allocation.
737  virtual ScheduleHazardRecognizer*
739  const ScheduleDAG *DAG) const;
740 
741  /// CreateTargetPostRAHazardRecognizer - Allocate and return a hazard
742  /// recognizer to use for this target when scheduling the machine instructions
743  /// after register allocation.
744  virtual ScheduleHazardRecognizer*
746  const ScheduleDAG *DAG) const;
747 
748  /// Provide a global flag for disabling the PreRA hazard recognizer that
749  /// targets may choose to honor.
750  bool usePreRAHazardRecognizer() const;
751 
752  /// analyzeCompare - For a comparison instruction, return the source registers
753  /// in SrcReg and SrcReg2 if having two register operands, and the value it
754  /// compares against in CmpValue. Return true if the comparison instruction
755  /// can be analyzed.
756  virtual bool analyzeCompare(const MachineInstr *MI,
757  unsigned &SrcReg, unsigned &SrcReg2,
758  int &Mask, int &Value) const {
759  return false;
760  }
761 
762  /// optimizeCompareInstr - See if the comparison instruction can be converted
763  /// into something more efficient. E.g., on ARM most instructions can set the
764  /// flags register, obviating the need for a separate CMP.
765  virtual bool optimizeCompareInstr(MachineInstr *CmpInstr,
766  unsigned SrcReg, unsigned SrcReg2,
767  int Mask, int Value,
768  const MachineRegisterInfo *MRI) const {
769  return false;
770  }
771 
772  /// optimizeLoadInstr - Try to remove the load by folding it to a register
773  /// operand at the use. We fold the load instructions if and only if the
774  /// def and use are in the same BB. We only look at one load and see
775  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
776  /// defined by the load we are trying to fold. DefMI returns the machine
777  /// instruction that defines FoldAsLoadDefReg, and the function returns
778  /// the machine instruction generated due to folding.
780  const MachineRegisterInfo *MRI,
781  unsigned &FoldAsLoadDefReg,
782  MachineInstr *&DefMI) const {
783  return 0;
784  }
785 
786  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
787  /// instruction, try to fold the immediate into the use instruction.
788  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
789  /// then the caller may assume that DefMI has been erased from its parent
790  /// block. The caller may assume that it will not be erased by this
791  /// function otherwise.
792  virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
793  unsigned Reg, MachineRegisterInfo *MRI) const {
794  return false;
795  }
796 
797  /// getNumMicroOps - Return the number of u-operations the given machine
798  /// instruction will be decoded to on the target cpu. The itinerary's
799  /// IssueWidth is the number of microops that can be dispatched each
800  /// cycle. An instruction with zero microops takes no dispatch resources.
801  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
802  const MachineInstr *MI) const;
803 
804  /// isZeroCost - Return true for pseudo instructions that don't consume any
805  /// machine resources in their current form. These are common cases that the
806  /// scheduler should consider free, rather than conservatively handling them
807  /// as instructions with no itinerary.
808  bool isZeroCost(unsigned Opcode) const {
809  return Opcode <= TargetOpcode::COPY;
810  }
811 
812  virtual int getOperandLatency(const InstrItineraryData *ItinData,
813  SDNode *DefNode, unsigned DefIdx,
814  SDNode *UseNode, unsigned UseIdx) const;
815 
816  /// getOperandLatency - Compute and return the use operand latency of a given
817  /// pair of def and use.
818  /// In most cases, the static scheduling itinerary was enough to determine the
819  /// operand latency. But it may not be possible for instructions with variable
820  /// number of defs / uses.
821  ///
822  /// This is a raw interface to the itinerary that may be directly overriden by
823  /// a target. Use computeOperandLatency to get the best estimate of latency.
824  virtual int getOperandLatency(const InstrItineraryData *ItinData,
825  const MachineInstr *DefMI, unsigned DefIdx,
826  const MachineInstr *UseMI,
827  unsigned UseIdx) const;
828 
829  /// computeOperandLatency - Compute and return the latency of the given data
830  /// dependent def and use when the operand indices are already known.
831  unsigned computeOperandLatency(const InstrItineraryData *ItinData,
832  const MachineInstr *DefMI, unsigned DefIdx,
833  const MachineInstr *UseMI, unsigned UseIdx)
834  const;
835 
836  /// getInstrLatency - Compute the instruction latency of a given instruction.
837  /// If the instruction has higher cost when predicated, it's returned via
838  /// PredCost.
839  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
840  const MachineInstr *MI,
841  unsigned *PredCost = 0) const;
842 
843  virtual unsigned getPredicationCost(const MachineInstr *MI) const;
844 
845  virtual int getInstrLatency(const InstrItineraryData *ItinData,
846  SDNode *Node) const;
847 
848  /// Return the default expected latency for a def based on it's opcode.
849  unsigned defaultDefLatency(const MCSchedModel *SchedModel,
850  const MachineInstr *DefMI) const;
851 
852  int computeDefOperandLatency(const InstrItineraryData *ItinData,
853  const MachineInstr *DefMI) const;
854 
855  /// isHighLatencyDef - Return true if this opcode has high latency to its
856  /// result.
857  virtual bool isHighLatencyDef(int opc) const { return false; }
858 
859  /// hasHighOperandLatency - Compute operand latency between a def of 'Reg'
860  /// and an use in the current loop, return true if the target considered
861  /// it 'high'. This is used by optimization passes such as machine LICM to
862  /// determine whether it makes sense to hoist an instruction out even in
863  /// high register pressure situation.
864  virtual
866  const MachineRegisterInfo *MRI,
867  const MachineInstr *DefMI, unsigned DefIdx,
868  const MachineInstr *UseMI, unsigned UseIdx) const {
869  return false;
870  }
871 
872  /// hasLowDefLatency - Compute operand latency of a def of 'Reg', return true
873  /// if the target considered it 'low'.
874  virtual
875  bool hasLowDefLatency(const InstrItineraryData *ItinData,
876  const MachineInstr *DefMI, unsigned DefIdx) const;
877 
878  /// verifyInstruction - Perform target specific instruction verification.
879  virtual
880  bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const {
881  return true;
882  }
883 
884  /// getExecutionDomain - Return the current execution domain and bit mask of
885  /// possible domains for instruction.
886  ///
887  /// Some micro-architectures have multiple execution domains, and multiple
888  /// opcodes that perform the same operation in different domains. For
889  /// example, the x86 architecture provides the por, orps, and orpd
890  /// instructions that all do the same thing. There is a latency penalty if a
891  /// register is written in one domain and read in another.
892  ///
893  /// This function returns a pair (domain, mask) containing the execution
894  /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
895  /// function can be used to change the opcode to one of the domains in the
896  /// bit mask. Instructions whose execution domain can't be changed should
897  /// return a 0 mask.
898  ///
899  /// The execution domain numbers don't have any special meaning except domain
900  /// 0 is used for instructions that are not associated with any interesting
901  /// execution domain.
902  ///
903  virtual std::pair<uint16_t, uint16_t>
905  return std::make_pair(0, 0);
906  }
907 
908  /// setExecutionDomain - Change the opcode of MI to execute in Domain.
909  ///
910  /// The bit (1 << Domain) must be set in the mask returned from
911  /// getExecutionDomain(MI).
912  ///
913  virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const {}
914 
915 
916  /// getPartialRegUpdateClearance - Returns the preferred minimum clearance
917  /// before an instruction with an unwanted partial register update.
918  ///
919  /// Some instructions only write part of a register, and implicitly need to
920  /// read the other parts of the register. This may cause unwanted stalls
921  /// preventing otherwise unrelated instructions from executing in parallel in
922  /// an out-of-order CPU.
923  ///
924  /// For example, the x86 instruction cvtsi2ss writes its result to bits
925  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
926  /// the instruction needs to wait for the old value of the register to become
927  /// available:
928  ///
929  /// addps %xmm1, %xmm0
930  /// movaps %xmm0, (%rax)
931  /// cvtsi2ss %rbx, %xmm0
932  ///
933  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
934  /// instruction before it can issue, even though the high bits of %xmm0
935  /// probably aren't needed.
936  ///
937  /// This hook returns the preferred clearance before MI, measured in
938  /// instructions. Other defs of MI's operand OpNum are avoided in the last N
939  /// instructions before MI. It should only return a positive value for
940  /// unwanted dependencies. If the old bits of the defined register have
941  /// useful values, or if MI is determined to otherwise read the dependency,
942  /// the hook should return 0.
943  ///
944  /// The unwanted dependency may be handled by:
945  ///
946  /// 1. Allocating the same register for an MI def and use. That makes the
947  /// unwanted dependency identical to a required dependency.
948  ///
949  /// 2. Allocating a register for the def that has no defs in the previous N
950  /// instructions.
951  ///
952  /// 3. Calling breakPartialRegDependency() with the same arguments. This
953  /// allows the target to insert a dependency breaking instruction.
954  ///
955  virtual unsigned
957  const TargetRegisterInfo *TRI) const {
958  // The default implementation returns 0 for no partial register dependency.
959  return 0;
960  }
961 
962  /// \brief Return the minimum clearance before an instruction that reads an
963  /// unused register.
964  ///
965  /// For example, AVX instructions may copy part of an register operand into
966  /// the unused high bits of the destination register.
967  ///
968  /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
969  ///
970  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
971  /// false dependence on any previous write to %xmm0.
972  ///
973  /// This hook works similarly to getPartialRegUpdateClearance, except that it
974  /// does not take an operand index. Instead sets \p OpNum to the index of the
975  /// unused register.
976  virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
977  const TargetRegisterInfo *TRI) const {
978  // The default implementation returns 0 for no undef register dependency.
979  return 0;
980  }
981 
982  /// breakPartialRegDependency - Insert a dependency-breaking instruction
983  /// before MI to eliminate an unwanted dependency on OpNum.
984  ///
985  /// If it wasn't possible to avoid a def in the last N instructions before MI
986  /// (see getPartialRegUpdateClearance), this hook will be called to break the
987  /// unwanted dependency.
988  ///
989  /// On x86, an xorps instruction can be used as a dependency breaker:
990  ///
991  /// addps %xmm1, %xmm0
992  /// movaps %xmm0, (%rax)
993  /// xorps %xmm0, %xmm0
994  /// cvtsi2ss %rbx, %xmm0
995  ///
996  /// An <imp-kill> operand should be added to MI if an instruction was
997  /// inserted. This ties the instructions together in the post-ra scheduler.
998  ///
999  virtual void
1001  const TargetRegisterInfo *TRI) const {}
1002 
1003  /// Create machine specific model for scheduling.
1004  virtual DFAPacketizer*
1006  return NULL;
1007  }
1008 
1009 private:
1010  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
1011 };
1012 
1013 } // End llvm namespace
1014 
1015 #endif
virtual MachineInstr * duplicate(MachineInstr *Orig, MachineFunction &MF) const
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
virtual bool getLdStBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, unsigned &Offset, const TargetRegisterInfo *TRI) const
Get the base register and byte offset of a load/store instr.
virtual MachineInstr * optimizeSelect(MachineInstr *MI, bool PreferFalse=false) const
virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, const BranchProbability &Probability) const
virtual bool hasStoreToStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DstReg, const SmallVectorImpl< MachineOperand > &Cond, unsigned TrueReg, unsigned FalseReg) const
virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const
unsigned computeOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const
virtual void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
virtual bool hasLoadFromStackSlot(const MachineInstr *MI, const MachineMemOperand *&MMO, int &FrameIndex) const
bool usePreRAHazardRecognizer() const
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify=false) const
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex=0) const
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
virtual bool isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
int getCallFrameSetupOpcode() const
virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const
virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig, const TargetRegisterInfo &TRI) const
bool isRematerializable() const
Definition: MCInstrDesc.h:457
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl< unsigned > &Ops, MachineInstr *LoadMI) const
MachineInstr * foldMemoryOperand(MachineBasicBlock::iterator MI, const SmallVectorImpl< unsigned > &Ops, int FrameIndex) const
virtual bool DefinesPredicate(MachineInstr *MI, std::vector< MachineOperand > &Pred) const
virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const
virtual bool hasHighOperandLatency(const InstrItineraryData *ItinData, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const
virtual unsigned getPredicationCost(const MachineInstr *MI) const
virtual unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, int &FrameIndex) const
#define llvm_unreachable(msg)
virtual bool SubsumesPredicate(const SmallVectorImpl< MachineOperand > &Pred1, const SmallVectorImpl< MachineOperand > &Pred2) const
virtual unsigned getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, const TargetRegisterInfo *TRI) const
bool isPredicable() const
Return true if this instruction has a predicate operand that controls execution. It may be set to 'al...
Definition: MCInstrDesc.h:310
virtual bool analyzeSelect(const MachineInstr *MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const
virtual MachineInstr * commuteInstruction(MachineInstr *MI, bool NewMI=false) const
int getOpcode() const
Definition: MachineInstr.h:261
virtual void getNoopForMachoTarget(MCInst &NopInst) const
getNoopForMachoTarget - Return the noop instruction to use for a noop.
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const TargetMachine *TM) const
virtual bool ReverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
virtual bool enableClusterLoads() const
virtual DFAPacketizer * CreateTargetScheduleState(const TargetMachine *, const ScheduleDAG *) const
Create machine specific model for scheduling.
bundle_iterator< MachineInstr, instr_iterator > iterator
virtual bool hasLowDefLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI, unsigned DefIdx) const
virtual bool isStackSlotCopy(const MachineInstr *MI, int &DestFrameIndex, int &SrcFrameIndex) const
virtual bool produceSameValue(const MachineInstr *MI0, const MachineInstr *MI1, const MachineRegisterInfo *MRI=0) const
virtual MachineInstr * optimizeLoadInstr(MachineInstr *MI, const MachineRegisterInfo *MRI, unsigned &FoldAsLoadDefReg, MachineInstr *&DefMI) const
virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const
virtual unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, const TargetRegisterInfo *TRI) const
Return the minimum clearance before an instruction that reads an unused register. ...
virtual unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const
virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl< MachineInstr * > &NewMIs) const
virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, const BranchProbability &Probability) const
virtual bool shouldClusterLoads(MachineInstr *FirstLdSt, MachineInstr *SecondLdSt, unsigned NumLoads) const
TargetInstrInfo(int CFSetupOpcode=-1, int CFDestroyOpcode=-1)
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const
virtual void setExecutionDomain(MachineInstr *MI, unsigned Domain) const
bool isZeroCost(unsigned Opcode) const
virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl< MachineOperand > &Pred) const
virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA) const
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const
virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const
virtual bool verifyInstruction(const MachineInstr *MI, StringRef &ErrInfo) const
verifyInstruction - Perform target specific instruction verification.
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const
virtual bool isPredicable(MachineInstr *MI) const
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl< MachineOperand > &Cond, DebugLoc DL) const
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
unsigned defaultDefLatency(const MCSchedModel *SchedModel, const MachineInstr *DefMI) const
Return the default expected latency for a def based on it's opcode.
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost=0) const
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const
virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const
virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl< SDNode * > &NewNodes) const
virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI) const
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl< unsigned > &Ops, int FrameIndex) const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int Mask, int Value, const MachineRegisterInfo *MRI) const
virtual bool canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl< unsigned > &Ops) const
virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool canInsertSelect(const MachineBasicBlock &MBB, const SmallVectorImpl< MachineOperand > &Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const
bool isSelect() const
Return true if this is a select instruction.
Definition: MCInstrDesc.h:331
bool isTriviallyReMaterializable(const MachineInstr *MI, AliasAnalysis *AA=0) const
LLVM Value Representation.
Definition: Value.h:66
int computeDefOperandLatency(const InstrItineraryData *ItinData, const MachineInstr *DefMI) const
virtual std::pair< uint16_t, uint16_t > getExecutionDomain(const MachineInstr *MI) const
virtual bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const
BasicBlockListType::iterator iterator
virtual bool isPredicated(const MachineInstr *MI) const
virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const
const TargetRegisterClass * getRegClass(const MCInstrDesc &TID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
const MCRegisterInfo & MRI
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const
int getCallFrameDestroyOpcode() const
virtual bool shouldScheduleAdjacent(MachineInstr *First, MachineInstr *Second) const
Can this target fuse the given instructions if they are scheduled adjacent.
virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, MachineBasicBlock &FMBB) const
virtual bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const
virtual bool isHighLatencyDef(int opc) const