LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ConstantFold.cpp
Go to the documentation of this file.
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
13 //
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "ConstantFold.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
34 #include <limits>
35 using namespace llvm;
36 
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
40 
41 /// BitCastConstantVector - Convert the specified vector Constant node to the
42 /// specified vector type. At this point, we know that the elements of the
43 /// input vector constant are all simple integer or FP values.
45 
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48 
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information. This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getType()->getVectorNumElements())
54  return 0;
55 
56  Type *DstEltTy = DstTy->getElementType();
57 
59  Type *Ty = IntegerType::get(CV->getContext(), 32);
60  for (unsigned i = 0; i != NumElts; ++i) {
61  Constant *C =
63  C = ConstantExpr::getBitCast(C, DstEltTy);
64  Result.push_back(C);
65  }
66 
67  return ConstantVector::get(Result);
68 }
69 
70 /// This function determines which opcode to use to fold two constant cast
71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
72 /// the opcode. Consequently its just a wrapper around that function.
73 /// @brief Determine if it is valid to fold a cast of a cast
74 static unsigned
76  unsigned opc, ///< opcode of the second cast constant expression
77  ConstantExpr *Op, ///< the first cast constant expression
78  Type *DstTy ///< destination type of the first cast
79 ) {
80  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
81  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
82  assert(CastInst::isCast(opc) && "Invalid cast opcode");
83 
84  // The the types and opcodes for the two Cast constant expressions
85  Type *SrcTy = Op->getOperand(0)->getType();
86  Type *MidTy = Op->getType();
89 
90  // Assume that pointers are never more than 64 bits wide, and only use this
91  // for the middle type. Otherwise we could end up folding away illegal
92  // bitcasts between address spaces with different sizes.
93  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
94 
95  // Let CastInst::isEliminableCastPair do the heavy lifting.
96  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
97  0, FakeIntPtrTy, 0);
98 }
99 
100 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
101  Type *SrcTy = V->getType();
102  if (SrcTy == DestTy)
103  return V; // no-op cast
104 
105  // Check to see if we are casting a pointer to an aggregate to a pointer to
106  // the first element. If so, return the appropriate GEP instruction.
107  if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
108  if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
109  if (PTy->getAddressSpace() == DPTy->getAddressSpace()
110  && DPTy->getElementType()->isSized()) {
111  SmallVector<Value*, 8> IdxList;
112  Value *Zero =
113  Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
114  IdxList.push_back(Zero);
115  Type *ElTy = PTy->getElementType();
116  while (ElTy != DPTy->getElementType()) {
117  if (StructType *STy = dyn_cast<StructType>(ElTy)) {
118  if (STy->getNumElements() == 0) break;
119  ElTy = STy->getElementType(0);
120  IdxList.push_back(Zero);
121  } else if (SequentialType *STy =
122  dyn_cast<SequentialType>(ElTy)) {
123  if (ElTy->isPointerTy()) break; // Can't index into pointers!
124  ElTy = STy->getElementType();
125  IdxList.push_back(Zero);
126  } else {
127  break;
128  }
129  }
130 
131  if (ElTy == DPTy->getElementType())
132  // This GEP is inbounds because all indices are zero.
133  return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
134  }
135 
136  // Handle casts from one vector constant to another. We know that the src
137  // and dest type have the same size (otherwise its an illegal cast).
138  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
139  if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
140  assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
141  "Not cast between same sized vectors!");
142  SrcTy = NULL;
143  // First, check for null. Undef is already handled.
144  if (isa<ConstantAggregateZero>(V))
145  return Constant::getNullValue(DestTy);
146 
147  // Handle ConstantVector and ConstantAggregateVector.
148  return BitCastConstantVector(V, DestPTy);
149  }
150 
151  // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
152  // This allows for other simplifications (although some of them
153  // can only be handled by Analysis/ConstantFolding.cpp).
154  if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
155  return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
156  }
157 
158  // Finally, implement bitcast folding now. The code below doesn't handle
159  // bitcast right.
160  if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
161  return ConstantPointerNull::get(cast<PointerType>(DestTy));
162 
163  // Handle integral constant input.
164  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
165  if (DestTy->isIntegerTy())
166  // Integral -> Integral. This is a no-op because the bit widths must
167  // be the same. Consequently, we just fold to V.
168  return V;
169 
170  if (DestTy->isFloatingPointTy())
171  return ConstantFP::get(DestTy->getContext(),
172  APFloat(DestTy->getFltSemantics(),
173  CI->getValue()));
174 
175  // Otherwise, can't fold this (vector?)
176  return 0;
177  }
178 
179  // Handle ConstantFP input: FP -> Integral.
180  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
181  return ConstantInt::get(FP->getContext(),
182  FP->getValueAPF().bitcastToAPInt());
183 
184  return 0;
185 }
186 
187 
188 /// ExtractConstantBytes - V is an integer constant which only has a subset of
189 /// its bytes used. The bytes used are indicated by ByteStart (which is the
190 /// first byte used, counting from the least significant byte) and ByteSize,
191 /// which is the number of bytes used.
192 ///
193 /// This function analyzes the specified constant to see if the specified byte
194 /// range can be returned as a simplified constant. If so, the constant is
195 /// returned, otherwise null is returned.
196 ///
197 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
198  unsigned ByteSize) {
199  assert(C->getType()->isIntegerTy() &&
200  (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
201  "Non-byte sized integer input");
202  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
203  assert(ByteSize && "Must be accessing some piece");
204  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
205  assert(ByteSize != CSize && "Should not extract everything");
206 
207  // Constant Integers are simple.
208  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
209  APInt V = CI->getValue();
210  if (ByteStart)
211  V = V.lshr(ByteStart*8);
212  V = V.trunc(ByteSize*8);
213  return ConstantInt::get(CI->getContext(), V);
214  }
215 
216  // In the input is a constant expr, we might be able to recursively simplify.
217  // If not, we definitely can't do anything.
219  if (CE == 0) return 0;
220 
221  switch (CE->getOpcode()) {
222  default: return 0;
223  case Instruction::Or: {
224  Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
225  if (RHS == 0)
226  return 0;
227 
228  // X | -1 -> -1.
229  if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
230  if (RHSC->isAllOnesValue())
231  return RHSC;
232 
233  Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
234  if (LHS == 0)
235  return 0;
236  return ConstantExpr::getOr(LHS, RHS);
237  }
238  case Instruction::And: {
239  Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
240  if (RHS == 0)
241  return 0;
242 
243  // X & 0 -> 0.
244  if (RHS->isNullValue())
245  return RHS;
246 
247  Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
248  if (LHS == 0)
249  return 0;
250  return ConstantExpr::getAnd(LHS, RHS);
251  }
252  case Instruction::LShr: {
253  ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
254  if (Amt == 0)
255  return 0;
256  unsigned ShAmt = Amt->getZExtValue();
257  // Cannot analyze non-byte shifts.
258  if ((ShAmt & 7) != 0)
259  return 0;
260  ShAmt >>= 3;
261 
262  // If the extract is known to be all zeros, return zero.
263  if (ByteStart >= CSize-ShAmt)
265  ByteSize*8));
266  // If the extract is known to be fully in the input, extract it.
267  if (ByteStart+ByteSize+ShAmt <= CSize)
268  return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
269 
270  // TODO: Handle the 'partially zero' case.
271  return 0;
272  }
273 
274  case Instruction::Shl: {
275  ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
276  if (Amt == 0)
277  return 0;
278  unsigned ShAmt = Amt->getZExtValue();
279  // Cannot analyze non-byte shifts.
280  if ((ShAmt & 7) != 0)
281  return 0;
282  ShAmt >>= 3;
283 
284  // If the extract is known to be all zeros, return zero.
285  if (ByteStart+ByteSize <= ShAmt)
287  ByteSize*8));
288  // If the extract is known to be fully in the input, extract it.
289  if (ByteStart >= ShAmt)
290  return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
291 
292  // TODO: Handle the 'partially zero' case.
293  return 0;
294  }
295 
296  case Instruction::ZExt: {
297  unsigned SrcBitSize =
298  cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
299 
300  // If extracting something that is completely zero, return 0.
301  if (ByteStart*8 >= SrcBitSize)
303  ByteSize*8));
304 
305  // If exactly extracting the input, return it.
306  if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
307  return CE->getOperand(0);
308 
309  // If extracting something completely in the input, if if the input is a
310  // multiple of 8 bits, recurse.
311  if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
312  return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
313 
314  // Otherwise, if extracting a subset of the input, which is not multiple of
315  // 8 bits, do a shift and trunc to get the bits.
316  if ((ByteStart+ByteSize)*8 < SrcBitSize) {
317  assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
318  Constant *Res = CE->getOperand(0);
319  if (ByteStart)
320  Res = ConstantExpr::getLShr(Res,
321  ConstantInt::get(Res->getType(), ByteStart*8));
323  ByteSize*8));
324  }
325 
326  // TODO: Handle the 'partially zero' case.
327  return 0;
328  }
329  }
330 }
331 
332 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
333 /// on Ty, with any known factors factored out. If Folded is false,
334 /// return null if no factoring was possible, to avoid endlessly
335 /// bouncing an unfoldable expression back into the top-level folder.
336 ///
337 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
338  bool Folded) {
339  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
340  Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
341  Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
342  return ConstantExpr::getNUWMul(E, N);
343  }
344 
345  if (StructType *STy = dyn_cast<StructType>(Ty))
346  if (!STy->isPacked()) {
347  unsigned NumElems = STy->getNumElements();
348  // An empty struct has size zero.
349  if (NumElems == 0)
350  return ConstantExpr::getNullValue(DestTy);
351  // Check for a struct with all members having the same size.
352  Constant *MemberSize =
353  getFoldedSizeOf(STy->getElementType(0), DestTy, true);
354  bool AllSame = true;
355  for (unsigned i = 1; i != NumElems; ++i)
356  if (MemberSize !=
357  getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
358  AllSame = false;
359  break;
360  }
361  if (AllSame) {
362  Constant *N = ConstantInt::get(DestTy, NumElems);
363  return ConstantExpr::getNUWMul(MemberSize, N);
364  }
365  }
366 
367  // Pointer size doesn't depend on the pointee type, so canonicalize them
368  // to an arbitrary pointee.
369  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
370  if (!PTy->getElementType()->isIntegerTy(1))
371  return
372  getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
373  PTy->getAddressSpace()),
374  DestTy, true);
375 
376  // If there's no interesting folding happening, bail so that we don't create
377  // a constant that looks like it needs folding but really doesn't.
378  if (!Folded)
379  return 0;
380 
381  // Base case: Get a regular sizeof expression.
384  DestTy, false),
385  C, DestTy);
386  return C;
387 }
388 
389 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
390 /// on Ty, with any known factors factored out. If Folded is false,
391 /// return null if no factoring was possible, to avoid endlessly
392 /// bouncing an unfoldable expression back into the top-level folder.
393 ///
394 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
395  bool Folded) {
396  // The alignment of an array is equal to the alignment of the
397  // array element. Note that this is not always true for vectors.
398  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
399  Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
401  DestTy,
402  false),
403  C, DestTy);
404  return C;
405  }
406 
407  if (StructType *STy = dyn_cast<StructType>(Ty)) {
408  // Packed structs always have an alignment of 1.
409  if (STy->isPacked())
410  return ConstantInt::get(DestTy, 1);
411 
412  // Otherwise, struct alignment is the maximum alignment of any member.
413  // Without target data, we can't compare much, but we can check to see
414  // if all the members have the same alignment.
415  unsigned NumElems = STy->getNumElements();
416  // An empty struct has minimal alignment.
417  if (NumElems == 0)
418  return ConstantInt::get(DestTy, 1);
419  // Check for a struct with all members having the same alignment.
420  Constant *MemberAlign =
421  getFoldedAlignOf(STy->getElementType(0), DestTy, true);
422  bool AllSame = true;
423  for (unsigned i = 1; i != NumElems; ++i)
424  if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
425  AllSame = false;
426  break;
427  }
428  if (AllSame)
429  return MemberAlign;
430  }
431 
432  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
433  // to an arbitrary pointee.
434  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
435  if (!PTy->getElementType()->isIntegerTy(1))
436  return
438  1),
439  PTy->getAddressSpace()),
440  DestTy, true);
441 
442  // If there's no interesting folding happening, bail so that we don't create
443  // a constant that looks like it needs folding but really doesn't.
444  if (!Folded)
445  return 0;
446 
447  // Base case: Get a regular alignof expression.
450  DestTy, false),
451  C, DestTy);
452  return C;
453 }
454 
455 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
456 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
457 /// return null if no factoring was possible, to avoid endlessly
458 /// bouncing an unfoldable expression back into the top-level folder.
459 ///
460 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
461  Type *DestTy,
462  bool Folded) {
463  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
465  DestTy, false),
466  FieldNo, DestTy);
467  Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
468  return ConstantExpr::getNUWMul(E, N);
469  }
470 
471  if (StructType *STy = dyn_cast<StructType>(Ty))
472  if (!STy->isPacked()) {
473  unsigned NumElems = STy->getNumElements();
474  // An empty struct has no members.
475  if (NumElems == 0)
476  return 0;
477  // Check for a struct with all members having the same size.
478  Constant *MemberSize =
479  getFoldedSizeOf(STy->getElementType(0), DestTy, true);
480  bool AllSame = true;
481  for (unsigned i = 1; i != NumElems; ++i)
482  if (MemberSize !=
483  getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
484  AllSame = false;
485  break;
486  }
487  if (AllSame) {
489  false,
490  DestTy,
491  false),
492  FieldNo, DestTy);
493  return ConstantExpr::getNUWMul(MemberSize, N);
494  }
495  }
496 
497  // If there's no interesting folding happening, bail so that we don't create
498  // a constant that looks like it needs folding but really doesn't.
499  if (!Folded)
500  return 0;
501 
502  // Base case: Get a regular offsetof expression.
503  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
505  DestTy, false),
506  C, DestTy);
507  return C;
508 }
509 
511  Type *DestTy) {
512  if (isa<UndefValue>(V)) {
513  // zext(undef) = 0, because the top bits will be zero.
514  // sext(undef) = 0, because the top bits will all be the same.
515  // [us]itofp(undef) = 0, because the result value is bounded.
516  if (opc == Instruction::ZExt || opc == Instruction::SExt ||
517  opc == Instruction::UIToFP || opc == Instruction::SIToFP)
518  return Constant::getNullValue(DestTy);
519  return UndefValue::get(DestTy);
520  }
521 
522  if (V->isNullValue() && !DestTy->isX86_MMXTy())
523  return Constant::getNullValue(DestTy);
524 
525  // If the cast operand is a constant expression, there's a few things we can
526  // do to try to simplify it.
527  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
528  if (CE->isCast()) {
529  // Try hard to fold cast of cast because they are often eliminable.
530  if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
531  return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
532  } else if (CE->getOpcode() == Instruction::GetElementPtr) {
533  // If all of the indexes in the GEP are null values, there is no pointer
534  // adjustment going on. We might as well cast the source pointer.
535  bool isAllNull = true;
536  for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
537  if (!CE->getOperand(i)->isNullValue()) {
538  isAllNull = false;
539  break;
540  }
541  if (isAllNull)
542  // This is casting one pointer type to another, always BitCast
543  return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
544  }
545  }
546 
547  // If the cast operand is a constant vector, perform the cast by
548  // operating on each element. In the cast of bitcasts, the element
549  // count may be mismatched; don't attempt to handle that here.
550  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
551  DestTy->isVectorTy() &&
552  DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
554  VectorType *DestVecTy = cast<VectorType>(DestTy);
555  Type *DstEltTy = DestVecTy->getElementType();
556  Type *Ty = IntegerType::get(V->getContext(), 32);
557  for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
558  Constant *C =
560  res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
561  }
562  return ConstantVector::get(res);
563  }
564 
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569  llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572  if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573  bool ignored;
574  APFloat Val = FPC->getValueAPF();
575  Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
576  DestTy->isFloatTy() ? APFloat::IEEEsingle :
577  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
579  DestTy->isFP128Ty() ? APFloat::IEEEquad :
582  APFloat::rmNearestTiesToEven, &ignored);
583  return ConstantFP::get(V->getContext(), Val);
584  }
585  return 0; // Can't fold.
586  case Instruction::FPToUI:
587  case Instruction::FPToSI:
588  if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
589  const APFloat &V = FPC->getValueAPF();
590  bool ignored;
591  uint64_t x[2];
592  uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
593  (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
594  APFloat::rmTowardZero, &ignored);
595  APInt Val(DestBitWidth, x);
596  return ConstantInt::get(FPC->getContext(), Val);
597  }
598  return 0; // Can't fold.
599  case Instruction::IntToPtr: //always treated as unsigned
600  if (V->isNullValue()) // Is it an integral null value?
601  return ConstantPointerNull::get(cast<PointerType>(DestTy));
602  return 0; // Other pointer types cannot be casted
603  case Instruction::PtrToInt: // always treated as unsigned
604  // Is it a null pointer value?
605  if (V->isNullValue())
606  return ConstantInt::get(DestTy, 0);
607  // If this is a sizeof-like expression, pull out multiplications by
608  // known factors to expose them to subsequent folding. If it's an
609  // alignof-like expression, factor out known factors.
610  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
611  if (CE->getOpcode() == Instruction::GetElementPtr &&
612  CE->getOperand(0)->isNullValue()) {
613  Type *Ty =
614  cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
615  if (CE->getNumOperands() == 2) {
616  // Handle a sizeof-like expression.
617  Constant *Idx = CE->getOperand(1);
618  bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
619  if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
621  DestTy, false),
622  Idx, DestTy);
623  return ConstantExpr::getMul(C, Idx);
624  }
625  } else if (CE->getNumOperands() == 3 &&
626  CE->getOperand(1)->isNullValue()) {
627  // Handle an alignof-like expression.
628  if (StructType *STy = dyn_cast<StructType>(Ty))
629  if (!STy->isPacked()) {
630  ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
631  if (CI->isOne() &&
632  STy->getNumElements() == 2 &&
633  STy->getElementType(0)->isIntegerTy(1)) {
634  return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
635  }
636  }
637  // Handle an offsetof-like expression.
638  if (Ty->isStructTy() || Ty->isArrayTy()) {
639  if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
640  DestTy, false))
641  return C;
642  }
643  }
644  }
645  // Other pointer types cannot be casted
646  return 0;
647  case Instruction::UIToFP:
648  case Instruction::SIToFP:
649  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
650  APInt api = CI->getValue();
651  APFloat apf(DestTy->getFltSemantics(),
653  (void)apf.convertFromAPInt(api,
654  opc==Instruction::SIToFP,
656  return ConstantFP::get(V->getContext(), apf);
657  }
658  return 0;
659  case Instruction::ZExt:
660  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661  uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662  return ConstantInt::get(V->getContext(),
663  CI->getValue().zext(BitWidth));
664  }
665  return 0;
666  case Instruction::SExt:
667  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668  uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
669  return ConstantInt::get(V->getContext(),
670  CI->getValue().sext(BitWidth));
671  }
672  return 0;
673  case Instruction::Trunc: {
674  uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
675  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
676  return ConstantInt::get(V->getContext(),
677  CI->getValue().trunc(DestBitWidth));
678  }
679 
680  // The input must be a constantexpr. See if we can simplify this based on
681  // the bytes we are demanding. Only do this if the source and dest are an
682  // even multiple of a byte.
683  if ((DestBitWidth & 7) == 0 &&
684  (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
685  if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
686  return Res;
687 
688  return 0;
689  }
690  case Instruction::BitCast:
691  return FoldBitCast(V, DestTy);
692  case Instruction::AddrSpaceCast:
693  return 0;
694  }
695 }
696 
698  Constant *V1, Constant *V2) {
699  // Check for i1 and vector true/false conditions.
700  if (Cond->isNullValue()) return V2;
701  if (Cond->isAllOnesValue()) return V1;
702 
703  // If the condition is a vector constant, fold the result elementwise.
704  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
706  Type *Ty = IntegerType::get(CondV->getContext(), 32);
707  for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
708  ConstantInt *Cond = dyn_cast<ConstantInt>(CondV->getOperand(i));
709  if (Cond == 0) break;
710 
711  Constant *V = Cond->isNullValue() ? V2 : V1;
713  Result.push_back(Res);
714  }
715 
716  // If we were able to build the vector, return it.
717  if (Result.size() == V1->getType()->getVectorNumElements())
718  return ConstantVector::get(Result);
719  }
720 
721  if (isa<UndefValue>(Cond)) {
722  if (isa<UndefValue>(V1)) return V1;
723  return V2;
724  }
725  if (isa<UndefValue>(V1)) return V2;
726  if (isa<UndefValue>(V2)) return V1;
727  if (V1 == V2) return V1;
728 
729  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
730  if (TrueVal->getOpcode() == Instruction::Select)
731  if (TrueVal->getOperand(0) == Cond)
732  return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
733  }
734  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
735  if (FalseVal->getOpcode() == Instruction::Select)
736  if (FalseVal->getOperand(0) == Cond)
737  return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
738  }
739 
740  return 0;
741 }
742 
744  Constant *Idx) {
745  if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
746  return UndefValue::get(Val->getType()->getVectorElementType());
747  if (Val->isNullValue()) // ee(zero, x) -> zero
749  // ee({w,x,y,z}, undef) -> undef
750  if (isa<UndefValue>(Idx))
751  return UndefValue::get(Val->getType()->getVectorElementType());
752 
753  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
754  uint64_t Index = CIdx->getZExtValue();
755  // ee({w,x,y,z}, wrong_value) -> undef
756  if (Index >= Val->getType()->getVectorNumElements())
757  return UndefValue::get(Val->getType()->getVectorElementType());
758  return Val->getAggregateElement(Index);
759  }
760  return 0;
761 }
762 
764  Constant *Elt,
765  Constant *Idx) {
766  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
767  if (!CIdx) return 0;
768  const APInt &IdxVal = CIdx->getValue();
769 
771  Type *Ty = IntegerType::get(Val->getContext(), 32);
772  for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
773  if (i == IdxVal) {
774  Result.push_back(Elt);
775  continue;
776  }
777 
778  Constant *C =
780  Result.push_back(C);
781  }
782 
783  return ConstantVector::get(Result);
784 }
785 
787  Constant *V2,
788  Constant *Mask) {
789  unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
790  Type *EltTy = V1->getType()->getVectorElementType();
791 
792  // Undefined shuffle mask -> undefined value.
793  if (isa<UndefValue>(Mask))
794  return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
795 
796  // Don't break the bitcode reader hack.
797  if (isa<ConstantExpr>(Mask)) return 0;
798 
799  unsigned SrcNumElts = V1->getType()->getVectorNumElements();
800 
801  // Loop over the shuffle mask, evaluating each element.
803  for (unsigned i = 0; i != MaskNumElts; ++i) {
804  int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
805  if (Elt == -1) {
806  Result.push_back(UndefValue::get(EltTy));
807  continue;
808  }
809  Constant *InElt;
810  if (unsigned(Elt) >= SrcNumElts*2)
811  InElt = UndefValue::get(EltTy);
812  else if (unsigned(Elt) >= SrcNumElts) {
813  Type *Ty = IntegerType::get(V2->getContext(), 32);
814  InElt =
816  ConstantInt::get(Ty, Elt - SrcNumElts));
817  } else {
818  Type *Ty = IntegerType::get(V1->getContext(), 32);
820  }
821  Result.push_back(InElt);
822  }
823 
824  return ConstantVector::get(Result);
825 }
826 
828  ArrayRef<unsigned> Idxs) {
829  // Base case: no indices, so return the entire value.
830  if (Idxs.empty())
831  return Agg;
832 
833  if (Constant *C = Agg->getAggregateElement(Idxs[0]))
835 
836  return 0;
837 }
838 
840  Constant *Val,
841  ArrayRef<unsigned> Idxs) {
842  // Base case: no indices, so replace the entire value.
843  if (Idxs.empty())
844  return Val;
845 
846  unsigned NumElts;
847  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
848  NumElts = ST->getNumElements();
849  else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
850  NumElts = AT->getNumElements();
851  else
852  NumElts = Agg->getType()->getVectorNumElements();
853 
855  for (unsigned i = 0; i != NumElts; ++i) {
856  Constant *C = Agg->getAggregateElement(i);
857  if (C == 0) return 0;
858 
859  if (Idxs[0] == i)
860  C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
861 
862  Result.push_back(C);
863  }
864 
865  if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
866  return ConstantStruct::get(ST, Result);
867  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
868  return ConstantArray::get(AT, Result);
869  return ConstantVector::get(Result);
870 }
871 
872 
874  Constant *C1, Constant *C2) {
875  // Handle UndefValue up front.
876  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
877  switch (Opcode) {
878  case Instruction::Xor:
879  if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
880  // Handle undef ^ undef -> 0 special case. This is a common
881  // idiom (misuse).
882  return Constant::getNullValue(C1->getType());
883  // Fallthrough
884  case Instruction::Add:
885  case Instruction::Sub:
886  return UndefValue::get(C1->getType());
887  case Instruction::And:
888  if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
889  return C1;
890  return Constant::getNullValue(C1->getType()); // undef & X -> 0
891  case Instruction::Mul: {
892  ConstantInt *CI;
893  // X * undef -> undef if X is odd or undef
894  if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
895  ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
896  (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
897  return UndefValue::get(C1->getType());
898 
899  // X * undef -> 0 otherwise
900  return Constant::getNullValue(C1->getType());
901  }
902  case Instruction::UDiv:
903  case Instruction::SDiv:
904  // undef / 1 -> undef
905  if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
906  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
907  if (CI2->isOne())
908  return C1;
909  // FALL THROUGH
910  case Instruction::URem:
911  case Instruction::SRem:
912  if (!isa<UndefValue>(C2)) // undef / X -> 0
913  return Constant::getNullValue(C1->getType());
914  return C2; // X / undef -> undef
915  case Instruction::Or: // X | undef -> -1
916  if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
917  return C1;
918  return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
919  case Instruction::LShr:
920  if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
921  return C1; // undef lshr undef -> undef
922  return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
923  // undef lshr X -> 0
924  case Instruction::AShr:
925  if (!isa<UndefValue>(C2)) // undef ashr X --> all ones
926  return Constant::getAllOnesValue(C1->getType());
927  else if (isa<UndefValue>(C1))
928  return C1; // undef ashr undef -> undef
929  else
930  return C1; // X ashr undef --> X
931  case Instruction::Shl:
932  if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
933  return C1; // undef shl undef -> undef
934  // undef << X -> 0 or X << undef -> 0
935  return Constant::getNullValue(C1->getType());
936  }
937  }
938 
939  // Handle simplifications when the RHS is a constant int.
940  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
941  switch (Opcode) {
942  case Instruction::Add:
943  if (CI2->equalsInt(0)) return C1; // X + 0 == X
944  break;
945  case Instruction::Sub:
946  if (CI2->equalsInt(0)) return C1; // X - 0 == X
947  break;
948  case Instruction::Mul:
949  if (CI2->equalsInt(0)) return C2; // X * 0 == 0
950  if (CI2->equalsInt(1))
951  return C1; // X * 1 == X
952  break;
953  case Instruction::UDiv:
954  case Instruction::SDiv:
955  if (CI2->equalsInt(1))
956  return C1; // X / 1 == X
957  if (CI2->equalsInt(0))
958  return UndefValue::get(CI2->getType()); // X / 0 == undef
959  break;
960  case Instruction::URem:
961  case Instruction::SRem:
962  if (CI2->equalsInt(1))
963  return Constant::getNullValue(CI2->getType()); // X % 1 == 0
964  if (CI2->equalsInt(0))
965  return UndefValue::get(CI2->getType()); // X % 0 == undef
966  break;
967  case Instruction::And:
968  if (CI2->isZero()) return C2; // X & 0 == 0
969  if (CI2->isAllOnesValue())
970  return C1; // X & -1 == X
971 
972  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
973  // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
974  if (CE1->getOpcode() == Instruction::ZExt) {
975  unsigned DstWidth = CI2->getType()->getBitWidth();
976  unsigned SrcWidth =
977  CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
978  APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
979  if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
980  return C1;
981  }
982 
983  // If and'ing the address of a global with a constant, fold it.
984  if (CE1->getOpcode() == Instruction::PtrToInt &&
985  isa<GlobalValue>(CE1->getOperand(0))) {
986  GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
987 
988  // Functions are at least 4-byte aligned.
989  unsigned GVAlign = GV->getAlignment();
990  if (isa<Function>(GV))
991  GVAlign = std::max(GVAlign, 4U);
992 
993  if (GVAlign > 1) {
994  unsigned DstWidth = CI2->getType()->getBitWidth();
995  unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
996  APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
997 
998  // If checking bits we know are clear, return zero.
999  if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1000  return Constant::getNullValue(CI2->getType());
1001  }
1002  }
1003  }
1004  break;
1005  case Instruction::Or:
1006  if (CI2->equalsInt(0)) return C1; // X | 0 == X
1007  if (CI2->isAllOnesValue())
1008  return C2; // X | -1 == -1
1009  break;
1010  case Instruction::Xor:
1011  if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
1012 
1013  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1014  switch (CE1->getOpcode()) {
1015  default: break;
1016  case Instruction::ICmp:
1017  case Instruction::FCmp:
1018  // cmp pred ^ true -> cmp !pred
1019  assert(CI2->equalsInt(1));
1020  CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1021  pred = CmpInst::getInversePredicate(pred);
1022  return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1023  CE1->getOperand(1));
1024  }
1025  }
1026  break;
1027  case Instruction::AShr:
1028  // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1029  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1030  if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1031  return ConstantExpr::getLShr(C1, C2);
1032  break;
1033  }
1034  } else if (isa<ConstantInt>(C1)) {
1035  // If C1 is a ConstantInt and C2 is not, swap the operands.
1036  if (Instruction::isCommutative(Opcode))
1037  return ConstantExpr::get(Opcode, C2, C1);
1038  }
1039 
1040  // At this point we know neither constant is an UndefValue.
1041  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1042  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1043  const APInt &C1V = CI1->getValue();
1044  const APInt &C2V = CI2->getValue();
1045  switch (Opcode) {
1046  default:
1047  break;
1048  case Instruction::Add:
1049  return ConstantInt::get(CI1->getContext(), C1V + C2V);
1050  case Instruction::Sub:
1051  return ConstantInt::get(CI1->getContext(), C1V - C2V);
1052  case Instruction::Mul:
1053  return ConstantInt::get(CI1->getContext(), C1V * C2V);
1054  case Instruction::UDiv:
1055  assert(!CI2->isNullValue() && "Div by zero handled above");
1056  return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1057  case Instruction::SDiv:
1058  assert(!CI2->isNullValue() && "Div by zero handled above");
1059  if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1060  return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1061  return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1062  case Instruction::URem:
1063  assert(!CI2->isNullValue() && "Div by zero handled above");
1064  return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1065  case Instruction::SRem:
1066  assert(!CI2->isNullValue() && "Div by zero handled above");
1067  if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1068  return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1069  return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1070  case Instruction::And:
1071  return ConstantInt::get(CI1->getContext(), C1V & C2V);
1072  case Instruction::Or:
1073  return ConstantInt::get(CI1->getContext(), C1V | C2V);
1074  case Instruction::Xor:
1075  return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1076  case Instruction::Shl: {
1077  uint32_t shiftAmt = C2V.getZExtValue();
1078  if (shiftAmt < C1V.getBitWidth())
1079  return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1080  else
1081  return UndefValue::get(C1->getType()); // too big shift is undef
1082  }
1083  case Instruction::LShr: {
1084  uint32_t shiftAmt = C2V.getZExtValue();
1085  if (shiftAmt < C1V.getBitWidth())
1086  return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1087  else
1088  return UndefValue::get(C1->getType()); // too big shift is undef
1089  }
1090  case Instruction::AShr: {
1091  uint32_t shiftAmt = C2V.getZExtValue();
1092  if (shiftAmt < C1V.getBitWidth())
1093  return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1094  else
1095  return UndefValue::get(C1->getType()); // too big shift is undef
1096  }
1097  }
1098  }
1099 
1100  switch (Opcode) {
1101  case Instruction::SDiv:
1102  case Instruction::UDiv:
1103  case Instruction::URem:
1104  case Instruction::SRem:
1105  case Instruction::LShr:
1106  case Instruction::AShr:
1107  case Instruction::Shl:
1108  if (CI1->equalsInt(0)) return C1;
1109  break;
1110  default:
1111  break;
1112  }
1113  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1114  if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1115  APFloat C1V = CFP1->getValueAPF();
1116  APFloat C2V = CFP2->getValueAPF();
1117  APFloat C3V = C1V; // copy for modification
1118  switch (Opcode) {
1119  default:
1120  break;
1121  case Instruction::FAdd:
1122  (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1123  return ConstantFP::get(C1->getContext(), C3V);
1124  case Instruction::FSub:
1125  (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1126  return ConstantFP::get(C1->getContext(), C3V);
1127  case Instruction::FMul:
1128  (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1129  return ConstantFP::get(C1->getContext(), C3V);
1130  case Instruction::FDiv:
1131  (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1132  return ConstantFP::get(C1->getContext(), C3V);
1133  case Instruction::FRem:
1134  (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1135  return ConstantFP::get(C1->getContext(), C3V);
1136  }
1137  }
1138  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1139  // Perform elementwise folding.
1141  Type *Ty = IntegerType::get(VTy->getContext(), 32);
1142  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1143  Constant *LHS =
1145  Constant *RHS =
1147 
1148  Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1149  }
1150 
1151  return ConstantVector::get(Result);
1152  }
1153 
1154  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1155  // There are many possible foldings we could do here. We should probably
1156  // at least fold add of a pointer with an integer into the appropriate
1157  // getelementptr. This will improve alias analysis a bit.
1158 
1159  // Given ((a + b) + c), if (b + c) folds to something interesting, return
1160  // (a + (b + c)).
1161  if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1162  Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1163  if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1164  return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1165  }
1166  } else if (isa<ConstantExpr>(C2)) {
1167  // If C2 is a constant expr and C1 isn't, flop them around and fold the
1168  // other way if possible.
1169  if (Instruction::isCommutative(Opcode))
1170  return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1171  }
1172 
1173  // i1 can be simplified in many cases.
1174  if (C1->getType()->isIntegerTy(1)) {
1175  switch (Opcode) {
1176  case Instruction::Add:
1177  case Instruction::Sub:
1178  return ConstantExpr::getXor(C1, C2);
1179  case Instruction::Mul:
1180  return ConstantExpr::getAnd(C1, C2);
1181  case Instruction::Shl:
1182  case Instruction::LShr:
1183  case Instruction::AShr:
1184  // We can assume that C2 == 0. If it were one the result would be
1185  // undefined because the shift value is as large as the bitwidth.
1186  return C1;
1187  case Instruction::SDiv:
1188  case Instruction::UDiv:
1189  // We can assume that C2 == 1. If it were zero the result would be
1190  // undefined through division by zero.
1191  return C1;
1192  case Instruction::URem:
1193  case Instruction::SRem:
1194  // We can assume that C2 == 1. If it were zero the result would be
1195  // undefined through division by zero.
1196  return ConstantInt::getFalse(C1->getContext());
1197  default:
1198  break;
1199  }
1200  }
1201 
1202  // We don't know how to fold this.
1203  return 0;
1204 }
1205 
1206 /// isZeroSizedType - This type is zero sized if its an array or structure of
1207 /// zero sized types. The only leaf zero sized type is an empty structure.
1208 static bool isMaybeZeroSizedType(Type *Ty) {
1209  if (StructType *STy = dyn_cast<StructType>(Ty)) {
1210  if (STy->isOpaque()) return true; // Can't say.
1211 
1212  // If all of elements have zero size, this does too.
1213  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1214  if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1215  return true;
1216 
1217  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1218  return isMaybeZeroSizedType(ATy->getElementType());
1219  }
1220  return false;
1221 }
1222 
1223 /// IdxCompare - Compare the two constants as though they were getelementptr
1224 /// indices. This allows coersion of the types to be the same thing.
1225 ///
1226 /// If the two constants are the "same" (after coersion), return 0. If the
1227 /// first is less than the second, return -1, if the second is less than the
1228 /// first, return 1. If the constants are not integral, return -2.
1229 ///
1230 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1231  if (C1 == C2) return 0;
1232 
1233  // Ok, we found a different index. If they are not ConstantInt, we can't do
1234  // anything with them.
1235  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1236  return -2; // don't know!
1237 
1238  // Ok, we have two differing integer indices. Sign extend them to be the same
1239  // type. Long is always big enough, so we use it.
1240  if (!C1->getType()->isIntegerTy(64))
1242 
1243  if (!C2->getType()->isIntegerTy(64))
1245 
1246  if (C1 == C2) return 0; // They are equal
1247 
1248  // If the type being indexed over is really just a zero sized type, there is
1249  // no pointer difference being made here.
1250  if (isMaybeZeroSizedType(ElTy))
1251  return -2; // dunno.
1252 
1253  // If they are really different, now that they are the same type, then we
1254  // found a difference!
1255  if (cast<ConstantInt>(C1)->getSExtValue() <
1256  cast<ConstantInt>(C2)->getSExtValue())
1257  return -1;
1258  else
1259  return 1;
1260 }
1261 
1262 /// evaluateFCmpRelation - This function determines if there is anything we can
1263 /// decide about the two constants provided. This doesn't need to handle simple
1264 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1265 /// If we can determine that the two constants have a particular relation to
1266 /// each other, we should return the corresponding FCmpInst predicate,
1267 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1268 /// ConstantFoldCompareInstruction.
1269 ///
1270 /// To simplify this code we canonicalize the relation so that the first
1271 /// operand is always the most "complex" of the two. We consider ConstantFP
1272 /// to be the simplest, and ConstantExprs to be the most complex.
1274  assert(V1->getType() == V2->getType() &&
1275  "Cannot compare values of different types!");
1276 
1277  // Handle degenerate case quickly
1278  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1279 
1280  if (!isa<ConstantExpr>(V1)) {
1281  if (!isa<ConstantExpr>(V2)) {
1282  // We distilled thisUse the standard constant folder for a few cases
1283  ConstantInt *R = 0;
1284  R = dyn_cast<ConstantInt>(
1286  if (R && !R->isZero())
1287  return FCmpInst::FCMP_OEQ;
1288  R = dyn_cast<ConstantInt>(
1290  if (R && !R->isZero())
1291  return FCmpInst::FCMP_OLT;
1292  R = dyn_cast<ConstantInt>(
1294  if (R && !R->isZero())
1295  return FCmpInst::FCMP_OGT;
1296 
1297  // Nothing more we can do
1299  }
1300 
1301  // If the first operand is simple and second is ConstantExpr, swap operands.
1302  FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1303  if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1304  return FCmpInst::getSwappedPredicate(SwappedRelation);
1305  } else {
1306  // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1307  // constantexpr or a simple constant.
1308  ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1309  switch (CE1->getOpcode()) {
1310  case Instruction::FPTrunc:
1311  case Instruction::FPExt:
1312  case Instruction::UIToFP:
1313  case Instruction::SIToFP:
1314  // We might be able to do something with these but we don't right now.
1315  break;
1316  default:
1317  break;
1318  }
1319  }
1320  // There are MANY other foldings that we could perform here. They will
1321  // probably be added on demand, as they seem needed.
1323 }
1324 
1325 /// evaluateICmpRelation - This function determines if there is anything we can
1326 /// decide about the two constants provided. This doesn't need to handle simple
1327 /// things like integer comparisons, but should instead handle ConstantExprs
1328 /// and GlobalValues. If we can determine that the two constants have a
1329 /// particular relation to each other, we should return the corresponding ICmp
1330 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1331 ///
1332 /// To simplify this code we canonicalize the relation so that the first
1333 /// operand is always the most "complex" of the two. We consider simple
1334 /// constants (like ConstantInt) to be the simplest, followed by
1335 /// GlobalValues, followed by ConstantExpr's (the most complex).
1336 ///
1338  bool isSigned) {
1339  assert(V1->getType() == V2->getType() &&
1340  "Cannot compare different types of values!");
1341  if (V1 == V2) return ICmpInst::ICMP_EQ;
1342 
1343  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1344  !isa<BlockAddress>(V1)) {
1345  if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1346  !isa<BlockAddress>(V2)) {
1347  // We distilled this down to a simple case, use the standard constant
1348  // folder.
1349  ConstantInt *R = 0;
1351  R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1352  if (R && !R->isZero())
1353  return pred;
1354  pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1355  R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1356  if (R && !R->isZero())
1357  return pred;
1358  pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1359  R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1360  if (R && !R->isZero())
1361  return pred;
1362 
1363  // If we couldn't figure it out, bail.
1365  }
1366 
1367  // If the first operand is simple, swap operands.
1368  ICmpInst::Predicate SwappedRelation =
1369  evaluateICmpRelation(V2, V1, isSigned);
1370  if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1371  return ICmpInst::getSwappedPredicate(SwappedRelation);
1372 
1373  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1374  if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1375  ICmpInst::Predicate SwappedRelation =
1376  evaluateICmpRelation(V2, V1, isSigned);
1377  if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1378  return ICmpInst::getSwappedPredicate(SwappedRelation);
1380  }
1381 
1382  // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1383  // constant (which, since the types must match, means that it's a
1384  // ConstantPointerNull).
1385  if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1386  // Don't try to decide equality of aliases.
1387  if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1388  if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1389  return ICmpInst::ICMP_NE;
1390  } else if (isa<BlockAddress>(V2)) {
1391  return ICmpInst::ICMP_NE; // Globals never equal labels.
1392  } else {
1393  assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1394  // GlobalVals can never be null unless they have external weak linkage.
1395  // We don't try to evaluate aliases here.
1396  if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1397  return ICmpInst::ICMP_NE;
1398  }
1399  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1400  if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1401  ICmpInst::Predicate SwappedRelation =
1402  evaluateICmpRelation(V2, V1, isSigned);
1403  if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1404  return ICmpInst::getSwappedPredicate(SwappedRelation);
1406  }
1407 
1408  // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1409  // constant (which, since the types must match, means that it is a
1410  // ConstantPointerNull).
1411  if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1412  // Block address in another function can't equal this one, but block
1413  // addresses in the current function might be the same if blocks are
1414  // empty.
1415  if (BA2->getFunction() != BA->getFunction())
1416  return ICmpInst::ICMP_NE;
1417  } else {
1418  // Block addresses aren't null, don't equal the address of globals.
1419  assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1420  "Canonicalization guarantee!");
1421  return ICmpInst::ICMP_NE;
1422  }
1423  } else {
1424  // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1425  // constantexpr, a global, block address, or a simple constant.
1426  ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1427  Constant *CE1Op0 = CE1->getOperand(0);
1428 
1429  switch (CE1->getOpcode()) {
1430  case Instruction::Trunc:
1431  case Instruction::FPTrunc:
1432  case Instruction::FPExt:
1433  case Instruction::FPToUI:
1434  case Instruction::FPToSI:
1435  break; // We can't evaluate floating point casts or truncations.
1436 
1437  case Instruction::UIToFP:
1438  case Instruction::SIToFP:
1439  case Instruction::BitCast:
1440  case Instruction::ZExt:
1441  case Instruction::SExt:
1442  // If the cast is not actually changing bits, and the second operand is a
1443  // null pointer, do the comparison with the pre-casted value.
1444  if (V2->isNullValue() &&
1445  (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1446  if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1447  if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1448  return evaluateICmpRelation(CE1Op0,
1449  Constant::getNullValue(CE1Op0->getType()),
1450  isSigned);
1451  }
1452  break;
1453 
1454  case Instruction::GetElementPtr:
1455  // Ok, since this is a getelementptr, we know that the constant has a
1456  // pointer type. Check the various cases.
1457  if (isa<ConstantPointerNull>(V2)) {
1458  // If we are comparing a GEP to a null pointer, check to see if the base
1459  // of the GEP equals the null pointer.
1460  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1461  if (GV->hasExternalWeakLinkage())
1462  // Weak linkage GVals could be zero or not. We're comparing that
1463  // to null pointer so its greater-or-equal
1464  return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1465  else
1466  // If its not weak linkage, the GVal must have a non-zero address
1467  // so the result is greater-than
1468  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1469  } else if (isa<ConstantPointerNull>(CE1Op0)) {
1470  // If we are indexing from a null pointer, check to see if we have any
1471  // non-zero indices.
1472  for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1473  if (!CE1->getOperand(i)->isNullValue())
1474  // Offsetting from null, must not be equal.
1475  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1476  // Only zero indexes from null, must still be zero.
1477  return ICmpInst::ICMP_EQ;
1478  }
1479  // Otherwise, we can't really say if the first operand is null or not.
1480  } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1481  if (isa<ConstantPointerNull>(CE1Op0)) {
1482  if (GV2->hasExternalWeakLinkage())
1483  // Weak linkage GVals could be zero or not. We're comparing it to
1484  // a null pointer, so its less-or-equal
1485  return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1486  else
1487  // If its not weak linkage, the GVal must have a non-zero address
1488  // so the result is less-than
1489  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1490  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1491  if (GV == GV2) {
1492  // If this is a getelementptr of the same global, then it must be
1493  // different. Because the types must match, the getelementptr could
1494  // only have at most one index, and because we fold getelementptr's
1495  // with a single zero index, it must be nonzero.
1496  assert(CE1->getNumOperands() == 2 &&
1497  !CE1->getOperand(1)->isNullValue() &&
1498  "Surprising getelementptr!");
1499  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1500  } else {
1501  // If they are different globals, we don't know what the value is.
1503  }
1504  }
1505  } else {
1506  ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1507  Constant *CE2Op0 = CE2->getOperand(0);
1508 
1509  // There are MANY other foldings that we could perform here. They will
1510  // probably be added on demand, as they seem needed.
1511  switch (CE2->getOpcode()) {
1512  default: break;
1513  case Instruction::GetElementPtr:
1514  // By far the most common case to handle is when the base pointers are
1515  // obviously to the same global.
1516  if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1517  if (CE1Op0 != CE2Op0) // Don't know relative ordering.
1519  // Ok, we know that both getelementptr instructions are based on the
1520  // same global. From this, we can precisely determine the relative
1521  // ordering of the resultant pointers.
1522  unsigned i = 1;
1523 
1524  // The logic below assumes that the result of the comparison
1525  // can be determined by finding the first index that differs.
1526  // This doesn't work if there is over-indexing in any
1527  // subsequent indices, so check for that case first.
1528  if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1530  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1531 
1532  // Compare all of the operands the GEP's have in common.
1533  gep_type_iterator GTI = gep_type_begin(CE1);
1534  for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1535  ++i, ++GTI)
1536  switch (IdxCompare(CE1->getOperand(i),
1537  CE2->getOperand(i), GTI.getIndexedType())) {
1538  case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1539  case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1540  case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1541  }
1542 
1543  // Ok, we ran out of things they have in common. If any leftovers
1544  // are non-zero then we have a difference, otherwise we are equal.
1545  for (; i < CE1->getNumOperands(); ++i)
1546  if (!CE1->getOperand(i)->isNullValue()) {
1547  if (isa<ConstantInt>(CE1->getOperand(i)))
1548  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1549  else
1550  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1551  }
1552 
1553  for (; i < CE2->getNumOperands(); ++i)
1554  if (!CE2->getOperand(i)->isNullValue()) {
1555  if (isa<ConstantInt>(CE2->getOperand(i)))
1556  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1557  else
1558  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1559  }
1560  return ICmpInst::ICMP_EQ;
1561  }
1562  }
1563  }
1564  default:
1565  break;
1566  }
1567  }
1568 
1570 }
1571 
1573  Constant *C1, Constant *C2) {
1574  Type *ResultTy;
1575  if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1576  ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1577  VT->getNumElements());
1578  else
1579  ResultTy = Type::getInt1Ty(C1->getContext());
1580 
1581  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1582  if (pred == FCmpInst::FCMP_FALSE)
1583  return Constant::getNullValue(ResultTy);
1584 
1585  if (pred == FCmpInst::FCMP_TRUE)
1586  return Constant::getAllOnesValue(ResultTy);
1587 
1588  // Handle some degenerate cases first
1589  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1590  // For EQ and NE, we can always pick a value for the undef to make the
1591  // predicate pass or fail, so we can return undef.
1592  // Also, if both operands are undef, we can return undef.
1594  (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1595  return UndefValue::get(ResultTy);
1596  // Otherwise, pick the same value as the non-undef operand, and fold
1597  // it to true or false.
1598  return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1599  }
1600 
1601  // icmp eq/ne(null,GV) -> false/true
1602  if (C1->isNullValue()) {
1603  if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1604  // Don't try to evaluate aliases. External weak GV can be null.
1605  if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1606  if (pred == ICmpInst::ICMP_EQ)
1607  return ConstantInt::getFalse(C1->getContext());
1608  else if (pred == ICmpInst::ICMP_NE)
1609  return ConstantInt::getTrue(C1->getContext());
1610  }
1611  // icmp eq/ne(GV,null) -> false/true
1612  } else if (C2->isNullValue()) {
1613  if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1614  // Don't try to evaluate aliases. External weak GV can be null.
1615  if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1616  if (pred == ICmpInst::ICMP_EQ)
1617  return ConstantInt::getFalse(C1->getContext());
1618  else if (pred == ICmpInst::ICMP_NE)
1619  return ConstantInt::getTrue(C1->getContext());
1620  }
1621  }
1622 
1623  // If the comparison is a comparison between two i1's, simplify it.
1624  if (C1->getType()->isIntegerTy(1)) {
1625  switch(pred) {
1626  case ICmpInst::ICMP_EQ:
1627  if (isa<ConstantInt>(C2))
1630  case ICmpInst::ICMP_NE:
1631  return ConstantExpr::getXor(C1, C2);
1632  default:
1633  break;
1634  }
1635  }
1636 
1637  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1638  APInt V1 = cast<ConstantInt>(C1)->getValue();
1639  APInt V2 = cast<ConstantInt>(C2)->getValue();
1640  switch (pred) {
1641  default: llvm_unreachable("Invalid ICmp Predicate");
1642  case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1643  case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1644  case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1645  case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1646  case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1647  case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1648  case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1649  case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1650  case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1651  case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1652  }
1653  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1654  APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1655  APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1656  APFloat::cmpResult R = C1V.compare(C2V);
1657  switch (pred) {
1658  default: llvm_unreachable("Invalid FCmp Predicate");
1659  case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1660  case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1661  case FCmpInst::FCMP_UNO:
1662  return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1663  case FCmpInst::FCMP_ORD:
1664  return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1665  case FCmpInst::FCMP_UEQ:
1666  return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1667  R==APFloat::cmpEqual);
1668  case FCmpInst::FCMP_OEQ:
1669  return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1670  case FCmpInst::FCMP_UNE:
1671  return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1672  case FCmpInst::FCMP_ONE:
1673  return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1675  case FCmpInst::FCMP_ULT:
1676  return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1678  case FCmpInst::FCMP_OLT:
1679  return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1680  case FCmpInst::FCMP_UGT:
1681  return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1683  case FCmpInst::FCMP_OGT:
1684  return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1685  case FCmpInst::FCMP_ULE:
1686  return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1687  case FCmpInst::FCMP_OLE:
1688  return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1689  R==APFloat::cmpEqual);
1690  case FCmpInst::FCMP_UGE:
1691  return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1692  case FCmpInst::FCMP_OGE:
1693  return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1694  R==APFloat::cmpEqual);
1695  }
1696  } else if (C1->getType()->isVectorTy()) {
1697  // If we can constant fold the comparison of each element, constant fold
1698  // the whole vector comparison.
1699  SmallVector<Constant*, 4> ResElts;
1700  Type *Ty = IntegerType::get(C1->getContext(), 32);
1701  // Compare the elements, producing an i1 result or constant expr.
1702  for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1703  Constant *C1E =
1705  Constant *C2E =
1707 
1708  ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1709  }
1710 
1711  return ConstantVector::get(ResElts);
1712  }
1713 
1714  if (C1->getType()->isFloatingPointTy()) {
1715  int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1716  switch (evaluateFCmpRelation(C1, C2)) {
1717  default: llvm_unreachable("Unknown relation!");
1718  case FCmpInst::FCMP_UNO:
1719  case FCmpInst::FCMP_ORD:
1720  case FCmpInst::FCMP_UEQ:
1721  case FCmpInst::FCMP_UNE:
1722  case FCmpInst::FCMP_ULT:
1723  case FCmpInst::FCMP_UGT:
1724  case FCmpInst::FCMP_ULE:
1725  case FCmpInst::FCMP_UGE:
1726  case FCmpInst::FCMP_TRUE:
1727  case FCmpInst::FCMP_FALSE:
1729  break; // Couldn't determine anything about these constants.
1730  case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1731  Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1732  pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1733  pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1734  break;
1735  case FCmpInst::FCMP_OLT: // We know that C1 < C2
1736  Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1737  pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1738  pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1739  break;
1740  case FCmpInst::FCMP_OGT: // We know that C1 > C2
1741  Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1742  pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1743  pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1744  break;
1745  case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1746  // We can only partially decide this relation.
1747  if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1748  Result = 0;
1749  else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1750  Result = 1;
1751  break;
1752  case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1753  // We can only partially decide this relation.
1754  if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1755  Result = 0;
1756  else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1757  Result = 1;
1758  break;
1759  case FCmpInst::FCMP_ONE: // We know that C1 != C2
1760  // We can only partially decide this relation.
1761  if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1762  Result = 0;
1763  else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1764  Result = 1;
1765  break;
1766  }
1767 
1768  // If we evaluated the result, return it now.
1769  if (Result != -1)
1770  return ConstantInt::get(ResultTy, Result);
1771 
1772  } else {
1773  // Evaluate the relation between the two constants, per the predicate.
1774  int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1775  switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1776  default: llvm_unreachable("Unknown relational!");
1778  break; // Couldn't determine anything about these constants.
1779  case ICmpInst::ICMP_EQ: // We know the constants are equal!
1780  // If we know the constants are equal, we can decide the result of this
1781  // computation precisely.
1783  break;
1784  case ICmpInst::ICMP_ULT:
1785  switch (pred) {
1787  Result = 1; break;
1789  Result = 0; break;
1790  }
1791  break;
1792  case ICmpInst::ICMP_SLT:
1793  switch (pred) {
1795  Result = 1; break;
1797  Result = 0; break;
1798  }
1799  break;
1800  case ICmpInst::ICMP_UGT:
1801  switch (pred) {
1803  Result = 1; break;
1805  Result = 0; break;
1806  }
1807  break;
1808  case ICmpInst::ICMP_SGT:
1809  switch (pred) {
1811  Result = 1; break;
1813  Result = 0; break;
1814  }
1815  break;
1816  case ICmpInst::ICMP_ULE:
1817  if (pred == ICmpInst::ICMP_UGT) Result = 0;
1818  if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1819  break;
1820  case ICmpInst::ICMP_SLE:
1821  if (pred == ICmpInst::ICMP_SGT) Result = 0;
1822  if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1823  break;
1824  case ICmpInst::ICMP_UGE:
1825  if (pred == ICmpInst::ICMP_ULT) Result = 0;
1826  if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1827  break;
1828  case ICmpInst::ICMP_SGE:
1829  if (pred == ICmpInst::ICMP_SLT) Result = 0;
1830  if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1831  break;
1832  case ICmpInst::ICMP_NE:
1833  if (pred == ICmpInst::ICMP_EQ) Result = 0;
1834  if (pred == ICmpInst::ICMP_NE) Result = 1;
1835  break;
1836  }
1837 
1838  // If we evaluated the result, return it now.
1839  if (Result != -1)
1840  return ConstantInt::get(ResultTy, Result);
1841 
1842  // If the right hand side is a bitcast, try using its inverse to simplify
1843  // it by moving it to the left hand side. We can't do this if it would turn
1844  // a vector compare into a scalar compare or visa versa.
1845  if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1846  Constant *CE2Op0 = CE2->getOperand(0);
1847  if (CE2->getOpcode() == Instruction::BitCast &&
1848  CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1850  return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1851  }
1852  }
1853 
1854  // If the left hand side is an extension, try eliminating it.
1855  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1856  if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
1857  (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
1858  Constant *CE1Op0 = CE1->getOperand(0);
1859  Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1860  if (CE1Inverse == CE1Op0) {
1861  // Check whether we can safely truncate the right hand side.
1862  Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1863  if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1864  C2->getType()) == C2)
1865  return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1866  }
1867  }
1868  }
1869 
1870  if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1871  (C1->isNullValue() && !C2->isNullValue())) {
1872  // If C2 is a constant expr and C1 isn't, flip them around and fold the
1873  // other way if possible.
1874  // Also, if C1 is null and C2 isn't, flip them around.
1876  return ConstantExpr::getICmp(pred, C2, C1);
1877  }
1878  }
1879  return 0;
1880 }
1881 
1882 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1883 /// is "inbounds".
1884 template<typename IndexTy>
1886  // No indices means nothing that could be out of bounds.
1887  if (Idxs.empty()) return true;
1888 
1889  // If the first index is zero, it's in bounds.
1890  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1891 
1892  // If the first index is one and all the rest are zero, it's in bounds,
1893  // by the one-past-the-end rule.
1894  if (!cast<ConstantInt>(Idxs[0])->isOne())
1895  return false;
1896  for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1897  if (!cast<Constant>(Idxs[i])->isNullValue())
1898  return false;
1899  return true;
1900 }
1901 
1902 /// \brief Test whether a given ConstantInt is in-range for a SequentialType.
1904  const ConstantInt *CI) {
1905  if (const PointerType *PTy = dyn_cast<PointerType>(STy))
1906  // Only handle pointers to sized types, not pointers to functions.
1907  return PTy->getElementType()->isSized();
1908 
1909  uint64_t NumElements = 0;
1910  // Determine the number of elements in our sequential type.
1911  if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
1912  NumElements = ATy->getNumElements();
1913  else if (const VectorType *VTy = dyn_cast<VectorType>(STy))
1914  NumElements = VTy->getNumElements();
1915 
1916  assert((isa<ArrayType>(STy) || NumElements > 0) &&
1917  "didn't expect non-array type to have zero elements!");
1918 
1919  // We cannot bounds check the index if it doesn't fit in an int64_t.
1920  if (CI->getValue().getActiveBits() > 64)
1921  return false;
1922 
1923  // A negative index or an index past the end of our sequential type is
1924  // considered out-of-range.
1925  int64_t IndexVal = CI->getSExtValue();
1926  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
1927  return false;
1928 
1929  // Otherwise, it is in-range.
1930  return true;
1931 }
1932 
1933 template<typename IndexTy>
1935  bool inBounds,
1936  ArrayRef<IndexTy> Idxs) {
1937  if (Idxs.empty()) return C;
1938  Constant *Idx0 = cast<Constant>(Idxs[0]);
1939  if ((Idxs.size() == 1 && Idx0->isNullValue()))
1940  return C;
1941 
1942  if (isa<UndefValue>(C)) {
1943  PointerType *Ptr = cast<PointerType>(C->getType());
1944  Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1945  assert(Ty != 0 && "Invalid indices for GEP!");
1946  return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1947  }
1948 
1949  if (C->isNullValue()) {
1950  bool isNull = true;
1951  for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1952  if (!cast<Constant>(Idxs[i])->isNullValue()) {
1953  isNull = false;
1954  break;
1955  }
1956  if (isNull) {
1957  PointerType *Ptr = cast<PointerType>(C->getType());
1958  Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
1959  assert(Ty != 0 && "Invalid indices for GEP!");
1961  Ptr->getAddressSpace()));
1962  }
1963  }
1964 
1965  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1966  // Combine Indices - If the source pointer to this getelementptr instruction
1967  // is a getelementptr instruction, combine the indices of the two
1968  // getelementptr instructions into a single instruction.
1969  //
1970  if (CE->getOpcode() == Instruction::GetElementPtr) {
1971  Type *LastTy = 0;
1972  for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1973  I != E; ++I)
1974  LastTy = *I;
1975 
1976  // We cannot combine indices if doing so would take us outside of an
1977  // array or vector. Doing otherwise could trick us if we evaluated such a
1978  // GEP as part of a load.
1979  //
1980  // e.g. Consider if the original GEP was:
1981  // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1982  // i32 0, i32 0, i64 0)
1983  //
1984  // If we then tried to offset it by '8' to get to the third element,
1985  // an i8, we should *not* get:
1986  // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
1987  // i32 0, i32 0, i64 8)
1988  //
1989  // This GEP tries to index array element '8 which runs out-of-bounds.
1990  // Subsequent evaluation would get confused and produce erroneous results.
1991  //
1992  // The following prohibits such a GEP from being formed by checking to see
1993  // if the index is in-range with respect to an array or vector.
1994  bool PerformFold = false;
1995  if (Idx0->isNullValue())
1996  PerformFold = true;
1997  else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
1998  if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
1999  PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2000 
2001  if (PerformFold) {
2002  SmallVector<Value*, 16> NewIndices;
2003  NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2004  for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2005  NewIndices.push_back(CE->getOperand(i));
2006 
2007  // Add the last index of the source with the first index of the new GEP.
2008  // Make sure to handle the case when they are actually different types.
2009  Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2010  // Otherwise it must be an array.
2011  if (!Idx0->isNullValue()) {
2012  Type *IdxTy = Combined->getType();
2013  if (IdxTy != Idx0->getType()) {
2014  Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2015  Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2016  Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2017  Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2018  } else {
2019  Combined =
2020  ConstantExpr::get(Instruction::Add, Idx0, Combined);
2021  }
2022  }
2023 
2024  NewIndices.push_back(Combined);
2025  NewIndices.append(Idxs.begin() + 1, Idxs.end());
2026  return
2027  ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
2028  inBounds &&
2029  cast<GEPOperator>(CE)->isInBounds());
2030  }
2031  }
2032 
2033  // Attempt to fold casts to the same type away. For example, folding:
2034  //
2035  // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2036  // i64 0, i64 0)
2037  // into:
2038  //
2039  // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2040  //
2041  // Don't fold if the cast is changing address spaces.
2042  if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2043  PointerType *SrcPtrTy =
2044  dyn_cast<PointerType>(CE->getOperand(0)->getType());
2045  PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2046  if (SrcPtrTy && DstPtrTy) {
2047  ArrayType *SrcArrayTy =
2048  dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2049  ArrayType *DstArrayTy =
2050  dyn_cast<ArrayType>(DstPtrTy->getElementType());
2051  if (SrcArrayTy && DstArrayTy
2052  && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2053  && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2054  return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
2055  Idxs, inBounds);
2056  }
2057  }
2058  }
2059 
2060  // Check to see if any array indices are not within the corresponding
2061  // notional array or vector bounds. If so, try to determine if they can be
2062  // factored out into preceding dimensions.
2063  bool Unknown = false;
2065  Type *Ty = C->getType();
2066  Type *Prev = 0;
2067  for (unsigned i = 0, e = Idxs.size(); i != e;
2068  Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2069  if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2070  if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
2071  if (CI->getSExtValue() > 0 &&
2072  !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
2073  if (isa<SequentialType>(Prev)) {
2074  // It's out of range, but we can factor it into the prior
2075  // dimension.
2076  NewIdxs.resize(Idxs.size());
2077  uint64_t NumElements = 0;
2078  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2079  NumElements = ATy->getNumElements();
2080  else
2081  NumElements = cast<VectorType>(Ty)->getNumElements();
2082 
2083  ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2084  NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2085 
2086  Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2087  Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2088 
2089  // Before adding, extend both operands to i64 to avoid
2090  // overflow trouble.
2091  if (!PrevIdx->getType()->isIntegerTy(64))
2092  PrevIdx = ConstantExpr::getSExt(PrevIdx,
2093  Type::getInt64Ty(Div->getContext()));
2094  if (!Div->getType()->isIntegerTy(64))
2095  Div = ConstantExpr::getSExt(Div,
2096  Type::getInt64Ty(Div->getContext()));
2097 
2098  NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2099  } else {
2100  // It's out of range, but the prior dimension is a struct
2101  // so we can't do anything about it.
2102  Unknown = true;
2103  }
2104  }
2105  } else {
2106  // We don't know if it's in range or not.
2107  Unknown = true;
2108  }
2109  }
2110 
2111  // If we did any factoring, start over with the adjusted indices.
2112  if (!NewIdxs.empty()) {
2113  for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2114  if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2115  return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
2116  }
2117 
2118  // If all indices are known integers and normalized, we can do a simple
2119  // check for the "inbounds" property.
2120  if (!Unknown && !inBounds &&
2121  isa<GlobalVariable>(C) && isInBoundsIndices(Idxs))
2123 
2124  return 0;
2125 }
2126 
2128  bool inBounds,
2129  ArrayRef<Constant *> Idxs) {
2130  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2131 }
2132 
2134  bool inBounds,
2135  ArrayRef<Value *> Idxs) {
2136  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
2137 }
static int getMaskValue(Constant *Mask, unsigned i)
static Constant * FoldBitCast(Constant *V, Type *DestTy)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const
Arithmetic right-shift function.
Definition: APInt.cpp:1038
opStatus divide(const APFloat &, roundingMode)
Definition: APFloat.cpp:1675
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
void reserve(unsigned N)
Definition: SmallVector.h:425
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
unsigned getAlignment() const
Definition: GlobalValue.h:79
static Constant * getSelect(Constant *C, Constant *V1, Constant *V2)
Definition: Constants.cpp:1820
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
iterator end() const
Definition: ArrayRef.h:98
Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:528
static Constant * getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, bool Folded)
Predicate getInversePredicate() const
Return the inverse of the instruction's predicate.
Definition: InstrTypes.h:737
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
bool isSigned() const
Determine if this instruction is using a signed comparison.
Definition: InstrTypes.h:780
static Constant * getExtractElement(Constant *Vec, Constant *Idx)
Definition: Constants.cpp:1912
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
static Constant * getFCmp(unsigned short pred, Constant *LHS, Constant *RHS)
Definition: Constants.cpp:1892
static Constant * getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded)
static const fltSemantics Bogus
Definition: APFloat.h:140
unsigned getOpcode() const
getOpcode - Return the opcode at the root of this constant expression
Definition: Constants.h:1049
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2029
bool isCast() const
Definition: Instruction.h:89
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1890
static const fltSemantics x87DoubleExtended
Definition: APFloat.h:136
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const
Definition: APFloat.cpp:2157
#define llvm_unreachable(msg)
static Constant * getLShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2107
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, bool isSigned)
static Constant * BitCastConstantVector(Constant *CV, VectorType *DstTy)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1127
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:923
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
static const fltSemantics IEEEquad
Definition: APFloat.h:134
Type * getVectorElementType() const
Definition: Type.h:371
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
static Constant * getSizeOf(Type *Ty)
Definition: Constants.cpp:1756
static unsigned foldConstantCastPair(unsigned opc, ConstantExpr *Op, Type *DstTy)
Determine if it is valid to fold a cast of a cast.
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy)
bool isAssociative() const
bool isHalfTy() const
isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:143
ArrayRef< T > slice(unsigned N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:134
#define T
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS)
Definition: Constants.cpp:1870
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1100
bool isFirstClassType() const
Definition: Type.h:251
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1276
bool isFloatingPointTy() const
Definition: Type.h:162
Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:856
bool isArrayTy() const
Definition: Type.h:216
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
bool isPPC_FP128Ty() const
isPPC_FP128Ty - Return true if this is powerpc long double.
Definition: Type.h:158
Type * getElementType() const
Definition: DerivedTypes.h:319
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:515
opStatus mod(const APFloat &, roundingMode)
C fmod, or llvm frem.
Definition: APFloat.cpp:1731
opStatus convertFromAPInt(const APInt &, bool, roundingMode)
Definition: APFloat.cpp:2238
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
bool isX86_MMXTy() const
isX86_MMXTy - Return true if this is X86 MMX.
Definition: Type.h:182
Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, Constant *Mask)
static ConstantPointerNull * get(PointerType *T)
get() - Static factory methods - Return objects of the specified value
Definition: Constants.cpp:1314
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
cmpResult compare(const APFloat &) const
Definition: APFloat.cpp:1859
bool isVectorTy() const
Definition: Type.h:229
bool sge(const APInt &RHS) const
Signed greather or equal comparison.
Definition: APInt.h:1132
bool isEquality() const
LLVM Constant Representation.
Definition: Constant.h:41
static Constant * getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded)
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
static Constant * getAnd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2088
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:745
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static Constant * getSExtOrBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1475
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1068
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
iterator begin() const
Definition: ArrayRef.h:97
opStatus convert(const fltSemantics &, roundingMode, bool *)
Definition: APFloat.cpp:1938
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1116
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1879
Value * getOperand(unsigned i) const
Definition: User.h:88
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
bool isCommutative() const
Definition: Instruction.h:269
Integer representation type.
Definition: DerivedTypes.h:37
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:874
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:104
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2023
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:668
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
bool isFP128Ty() const
isFP128Ty - Return true if this is 'fp128'.
Definition: Type.h:155
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
static const fltSemantics IEEEhalf
Definition: APFloat.h:131
signed greater than
Definition: InstrTypes.h:678
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1927
Constant * ConstantFoldGetElementPtr(Constant *C, bool inBounds, ArrayRef< Constant * > Idxs)
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1084
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast or a PtrToInt cast constant expression.
Definition: Constants.cpp:1487
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
static Constant * ExtractConstantBytes(Constant *C, unsigned ByteStart, unsigned ByteSize)
static const fltSemantics PPCDoubleDouble
Definition: APFloat.h:135
Class for constant integers.
Definition: Constants.h:51
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.cpp:547
unsigned getVectorNumElements() const
Definition: Type.cpp:214
opStatus add(const APFloat &, roundingMode)
Definition: APFloat.cpp:1642
static Constant * getSDiv(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2067
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
opStatus multiply(const APFloat &, roundingMode)
Definition: APFloat.cpp:1656
static Constant * getNUWMul(Constant *C1, Constant *C2)
Definition: Constants.h:884
signed less than
Definition: InstrTypes.h:680
bool isTrueWhenEqual() const
Determine if this is true when both operands are the same.
Definition: InstrTypes.h:792
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine if a cast pair is eliminable.
Predicate getSwappedPredicate() const
Return the predicate as if the operands were swapped.
Definition: InstrTypes.h:753
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
static Constant * getTrunc(Constant *C, Type *Ty)
Definition: Constants.cpp:1527
static Constant * get(Type *Ty, double V)
Definition: Constants.cpp:557
const fltSemantics & getFltSemantics() const
Definition: Type.h:169
bool isNullValue() const
Definition: Constants.cpp:75
static bool isMaybeZeroSizedType(Type *Ty)
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
bool isAllOnesValue() const
Definition: Constants.cpp:88
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isCast() const
Return true if this is a convert constant expression.
Definition: Constants.cpp:1036
bool isIntegerTy() const
Definition: Type.h:196
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
bool isStructTy() const
Definition: Type.h:212
bool isGEPWithNoNotionalOverIndexing() const
Return true if this is a getelementptr expression and all the index operands are compile-time known i...
Definition: Constants.cpp:1044
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
Constant * ConstantFoldCompareInstruction(unsigned short predicate, Constant *C1, Constant *C2)
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
bool isX86_FP80Ty() const
isX86_FP80Ty - Return true if this is x86 long double.
Definition: Type.h:152
static Constant * getSExt(Constant *C, Type *Ty)
Definition: Constants.cpp:1541
static Constant * getInBoundsGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList)
Definition: Constants.h:1025
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:371
APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1842
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
static Constant * getOffsetOf(StructType *STy, unsigned FieldNo)
Definition: Constants.cpp:1780
unsigned greater or equal
Definition: InstrTypes.h:675
static bool isInBoundsIndices(ArrayRef< IndexTy > Idxs)
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Infer the opcode for cast operand and type.
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
static Constant * getOr(Constant *C1, Constant *C2)
Definition: Constants.cpp:2092
void resize(unsigned N)
Definition: SmallVector.h:401
Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
static Type * getIndexedType(Type *Ptr, ArrayRef< Value * > IdxList)
static Constant * getSRem(Constant *C1, Constant *C2)
Definition: Constants.cpp:2080
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
static VectorType * get(Type *ElementType, unsigned NumElements)
Definition: Type.cpp:706
unsigned greater than
Definition: InstrTypes.h:674
Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1798
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:457
static Constant * getAlignOf(Type *Ty)
Definition: Constants.cpp:1766
static Constant * getMul(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2051
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition: APFloat.h:147
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1052
opStatus subtract(const APFloat &, roundingMode)
Definition: APFloat.cpp:1649
static Constant * ConstantFoldGetElementPtrImpl(Constant *C, bool inBounds, ArrayRef< IndexTy > Idxs)
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2)
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:653
signed greater or equal
Definition: InstrTypes.h:679
static Constant * getXor(Constant *C1, Constant *C2)
Definition: Constants.cpp:2096
static bool isIndexInRangeOfSequentialType(const SequentialType *STy, const ConstantInt *CI)
Test whether a given ConstantInt is in-range for a SequentialType.
gep_type_iterator gep_type_begin(const User *GEP)