LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
JumpThreading.cpp
Go to the documentation of this file.
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/Pass.h"
32 #include "llvm/Support/Debug.h"
39 using namespace llvm;
40 
41 STATISTIC(NumThreads, "Number of jumps threaded");
42 STATISTIC(NumFolds, "Number of terminators folded");
43 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
44 
45 static cl::opt<unsigned>
46 Threshold("jump-threading-threshold",
47  cl::desc("Max block size to duplicate for jump threading"),
48  cl::init(6), cl::Hidden);
49 
50 namespace {
51  // These are at global scope so static functions can use them too.
53  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
54 
55  // This is used to keep track of what kind of constant we're currently hoping
56  // to find.
58  WantInteger,
59  WantBlockAddress
60  };
61 
62  /// This pass performs 'jump threading', which looks at blocks that have
63  /// multiple predecessors and multiple successors. If one or more of the
64  /// predecessors of the block can be proven to always jump to one of the
65  /// successors, we forward the edge from the predecessor to the successor by
66  /// duplicating the contents of this block.
67  ///
68  /// An example of when this can occur is code like this:
69  ///
70  /// if () { ...
71  /// X = 4;
72  /// }
73  /// if (X < 3) {
74  ///
75  /// In this case, the unconditional branch at the end of the first if can be
76  /// revectored to the false side of the second if.
77  ///
78  class JumpThreading : public FunctionPass {
79  DataLayout *TD;
80  TargetLibraryInfo *TLI;
81  LazyValueInfo *LVI;
82 #ifdef NDEBUG
83  SmallPtrSet<BasicBlock*, 16> LoopHeaders;
84 #else
85  SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
86 #endif
88 
89  // RAII helper for updating the recursion stack.
90  struct RecursionSetRemover {
92  std::pair<Value*, BasicBlock*> ThePair;
93 
94  RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
95  std::pair<Value*, BasicBlock*> P)
96  : TheSet(S), ThePair(P) { }
97 
98  ~RecursionSetRemover() {
99  TheSet.erase(ThePair);
100  }
101  };
102  public:
103  static char ID; // Pass identification
104  JumpThreading() : FunctionPass(ID) {
106  }
107 
108  bool runOnFunction(Function &F);
109 
110  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
114  }
115 
116  void FindLoopHeaders(Function &F);
117  bool ProcessBlock(BasicBlock *BB);
118  bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
119  BasicBlock *SuccBB);
120  bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
121  const SmallVectorImpl<BasicBlock *> &PredBBs);
122 
123  bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
124  PredValueInfo &Result,
126  bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
128 
129  bool ProcessBranchOnPHI(PHINode *PN);
130  bool ProcessBranchOnXOR(BinaryOperator *BO);
131 
132  bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
133  bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
134  };
135 }
136 
137 char JumpThreading::ID = 0;
138 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
139  "Jump Threading", false, false)
142 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
143  "Jump Threading", false, false)
144 
145 // Public interface to the Jump Threading pass
146 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
147 
148 /// runOnFunction - Top level algorithm.
149 ///
150 bool JumpThreading::runOnFunction(Function &F) {
151  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
152  TD = getAnalysisIfAvailable<DataLayout>();
153  TLI = &getAnalysis<TargetLibraryInfo>();
154  LVI = &getAnalysis<LazyValueInfo>();
155 
156  FindLoopHeaders(F);
157 
158  bool Changed, EverChanged = false;
159  do {
160  Changed = false;
161  for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
162  BasicBlock *BB = I;
163  // Thread all of the branches we can over this block.
164  while (ProcessBlock(BB))
165  Changed = true;
166 
167  ++I;
168 
169  // If the block is trivially dead, zap it. This eliminates the successor
170  // edges which simplifies the CFG.
171  if (pred_begin(BB) == pred_end(BB) &&
172  BB != &BB->getParent()->getEntryBlock()) {
173  DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
174  << "' with terminator: " << *BB->getTerminator() << '\n');
175  LoopHeaders.erase(BB);
176  LVI->eraseBlock(BB);
177  DeleteDeadBlock(BB);
178  Changed = true;
179  continue;
180  }
181 
183 
184  // Can't thread an unconditional jump, but if the block is "almost
185  // empty", we can replace uses of it with uses of the successor and make
186  // this dead.
187  if (BI && BI->isUnconditional() &&
188  BB != &BB->getParent()->getEntryBlock() &&
189  // If the terminator is the only non-phi instruction, try to nuke it.
191  // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
192  // block, we have to make sure it isn't in the LoopHeaders set. We
193  // reinsert afterward if needed.
194  bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
195  BasicBlock *Succ = BI->getSuccessor(0);
196 
197  // FIXME: It is always conservatively correct to drop the info
198  // for a block even if it doesn't get erased. This isn't totally
199  // awesome, but it allows us to use AssertingVH to prevent nasty
200  // dangling pointer issues within LazyValueInfo.
201  LVI->eraseBlock(BB);
203  Changed = true;
204  // If we deleted BB and BB was the header of a loop, then the
205  // successor is now the header of the loop.
206  BB = Succ;
207  }
208 
209  if (ErasedFromLoopHeaders)
210  LoopHeaders.insert(BB);
211  }
212  }
213  EverChanged |= Changed;
214  } while (Changed);
215 
216  LoopHeaders.clear();
217  return EverChanged;
218 }
219 
220 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
221 /// thread across it. Stop scanning the block when passing the threshold.
222 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
223  unsigned Threshold) {
224  /// Ignore PHI nodes, these will be flattened when duplication happens.
226 
227  // FIXME: THREADING will delete values that are just used to compute the
228  // branch, so they shouldn't count against the duplication cost.
229 
230  // Sum up the cost of each instruction until we get to the terminator. Don't
231  // include the terminator because the copy won't include it.
232  unsigned Size = 0;
233  for (; !isa<TerminatorInst>(I); ++I) {
234 
235  // Stop scanning the block if we've reached the threshold.
236  if (Size > Threshold)
237  return Size;
238 
239  // Debugger intrinsics don't incur code size.
240  if (isa<DbgInfoIntrinsic>(I)) continue;
241 
242  // If this is a pointer->pointer bitcast, it is free.
243  if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
244  continue;
245 
246  // All other instructions count for at least one unit.
247  ++Size;
248 
249  // Calls are more expensive. If they are non-intrinsic calls, we model them
250  // as having cost of 4. If they are a non-vector intrinsic, we model them
251  // as having cost of 2 total, and if they are a vector intrinsic, we model
252  // them as having cost 1.
253  if (const CallInst *CI = dyn_cast<CallInst>(I)) {
254  if (CI->hasFnAttr(Attribute::NoDuplicate))
255  // Blocks with NoDuplicate are modelled as having infinite cost, so they
256  // are never duplicated.
257  return ~0U;
258  else if (!isa<IntrinsicInst>(CI))
259  Size += 3;
260  else if (!CI->getType()->isVectorTy())
261  Size += 1;
262  }
263  }
264 
265  // Threading through a switch statement is particularly profitable. If this
266  // block ends in a switch, decrease its cost to make it more likely to happen.
267  if (isa<SwitchInst>(I))
268  Size = Size > 6 ? Size-6 : 0;
269 
270  // The same holds for indirect branches, but slightly more so.
271  if (isa<IndirectBrInst>(I))
272  Size = Size > 8 ? Size-8 : 0;
273 
274  return Size;
275 }
276 
277 /// FindLoopHeaders - We do not want jump threading to turn proper loop
278 /// structures into irreducible loops. Doing this breaks up the loop nesting
279 /// hierarchy and pessimizes later transformations. To prevent this from
280 /// happening, we first have to find the loop headers. Here we approximate this
281 /// by finding targets of backedges in the CFG.
282 ///
283 /// Note that there definitely are cases when we want to allow threading of
284 /// edges across a loop header. For example, threading a jump from outside the
285 /// loop (the preheader) to an exit block of the loop is definitely profitable.
286 /// It is also almost always profitable to thread backedges from within the loop
287 /// to exit blocks, and is often profitable to thread backedges to other blocks
288 /// within the loop (forming a nested loop). This simple analysis is not rich
289 /// enough to track all of these properties and keep it up-to-date as the CFG
290 /// mutates, so we don't allow any of these transformations.
291 ///
292 void JumpThreading::FindLoopHeaders(Function &F) {
294  FindFunctionBackedges(F, Edges);
295 
296  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
297  LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
298 }
299 
300 /// getKnownConstant - Helper method to determine if we can thread over a
301 /// terminator with the given value as its condition, and if so what value to
302 /// use for that. What kind of value this is depends on whether we want an
303 /// integer or a block address, but an undef is always accepted.
304 /// Returns null if Val is null or not an appropriate constant.
306  if (!Val)
307  return 0;
308 
309  // Undef is "known" enough.
310  if (UndefValue *U = dyn_cast<UndefValue>(Val))
311  return U;
312 
313  if (Preference == WantBlockAddress)
314  return dyn_cast<BlockAddress>(Val->stripPointerCasts());
315 
316  return dyn_cast<ConstantInt>(Val);
317 }
318 
319 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
320 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
321 /// in any of our predecessors. If so, return the known list of value and pred
322 /// BB in the result vector.
323 ///
324 /// This returns true if there were any known values.
325 ///
326 bool JumpThreading::
327 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
329  // This method walks up use-def chains recursively. Because of this, we could
330  // get into an infinite loop going around loops in the use-def chain. To
331  // prevent this, keep track of what (value, block) pairs we've already visited
332  // and terminate the search if we loop back to them
333  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
334  return false;
335 
336  // An RAII help to remove this pair from the recursion set once the recursion
337  // stack pops back out again.
338  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
339 
340  // If V is a constant, then it is known in all predecessors.
341  if (Constant *KC = getKnownConstant(V, Preference)) {
342  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
343  Result.push_back(std::make_pair(KC, *PI));
344 
345  return true;
346  }
347 
348  // If V is a non-instruction value, or an instruction in a different block,
349  // then it can't be derived from a PHI.
351  if (I == 0 || I->getParent() != BB) {
352 
353  // Okay, if this is a live-in value, see if it has a known value at the end
354  // of any of our predecessors.
355  //
356  // FIXME: This should be an edge property, not a block end property.
357  /// TODO: Per PR2563, we could infer value range information about a
358  /// predecessor based on its terminator.
359  //
360  // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
361  // "I" is a non-local compare-with-a-constant instruction. This would be
362  // able to handle value inequalities better, for example if the compare is
363  // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
364  // Perhaps getConstantOnEdge should be smart enough to do this?
365 
366  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
367  BasicBlock *P = *PI;
368  // If the value is known by LazyValueInfo to be a constant in a
369  // predecessor, use that information to try to thread this block.
370  Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
371  if (Constant *KC = getKnownConstant(PredCst, Preference))
372  Result.push_back(std::make_pair(KC, P));
373  }
374 
375  return !Result.empty();
376  }
377 
378  /// If I is a PHI node, then we know the incoming values for any constants.
379  if (PHINode *PN = dyn_cast<PHINode>(I)) {
380  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
381  Value *InVal = PN->getIncomingValue(i);
382  if (Constant *KC = getKnownConstant(InVal, Preference)) {
383  Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
384  } else {
385  Constant *CI = LVI->getConstantOnEdge(InVal,
386  PN->getIncomingBlock(i), BB);
387  if (Constant *KC = getKnownConstant(CI, Preference))
388  Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
389  }
390  }
391 
392  return !Result.empty();
393  }
394 
395  PredValueInfoTy LHSVals, RHSVals;
396 
397  // Handle some boolean conditions.
398  if (I->getType()->getPrimitiveSizeInBits() == 1) {
399  assert(Preference == WantInteger && "One-bit non-integer type?");
400  // X | true -> true
401  // X & false -> false
402  if (I->getOpcode() == Instruction::Or ||
403  I->getOpcode() == Instruction::And) {
404  ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
405  WantInteger);
406  ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
407  WantInteger);
408 
409  if (LHSVals.empty() && RHSVals.empty())
410  return false;
411 
412  ConstantInt *InterestingVal;
413  if (I->getOpcode() == Instruction::Or)
414  InterestingVal = ConstantInt::getTrue(I->getContext());
415  else
416  InterestingVal = ConstantInt::getFalse(I->getContext());
417 
418  SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
419 
420  // Scan for the sentinel. If we find an undef, force it to the
421  // interesting value: x|undef -> true and x&undef -> false.
422  for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
423  if (LHSVals[i].first == InterestingVal ||
424  isa<UndefValue>(LHSVals[i].first)) {
425  Result.push_back(LHSVals[i]);
426  Result.back().first = InterestingVal;
427  LHSKnownBBs.insert(LHSVals[i].second);
428  }
429  for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
430  if (RHSVals[i].first == InterestingVal ||
431  isa<UndefValue>(RHSVals[i].first)) {
432  // If we already inferred a value for this block on the LHS, don't
433  // re-add it.
434  if (!LHSKnownBBs.count(RHSVals[i].second)) {
435  Result.push_back(RHSVals[i]);
436  Result.back().first = InterestingVal;
437  }
438  }
439 
440  return !Result.empty();
441  }
442 
443  // Handle the NOT form of XOR.
444  if (I->getOpcode() == Instruction::Xor &&
445  isa<ConstantInt>(I->getOperand(1)) &&
446  cast<ConstantInt>(I->getOperand(1))->isOne()) {
447  ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
448  WantInteger);
449  if (Result.empty())
450  return false;
451 
452  // Invert the known values.
453  for (unsigned i = 0, e = Result.size(); i != e; ++i)
454  Result[i].first = ConstantExpr::getNot(Result[i].first);
455 
456  return true;
457  }
458 
459  // Try to simplify some other binary operator values.
460  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
461  assert(Preference != WantBlockAddress
462  && "A binary operator creating a block address?");
463  if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
464  PredValueInfoTy LHSVals;
465  ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
466  WantInteger);
467 
468  // Try to use constant folding to simplify the binary operator.
469  for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
470  Constant *V = LHSVals[i].first;
471  Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
472 
473  if (Constant *KC = getKnownConstant(Folded, WantInteger))
474  Result.push_back(std::make_pair(KC, LHSVals[i].second));
475  }
476  }
477 
478  return !Result.empty();
479  }
480 
481  // Handle compare with phi operand, where the PHI is defined in this block.
482  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
483  assert(Preference == WantInteger && "Compares only produce integers");
484  PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
485  if (PN && PN->getParent() == BB) {
486  // We can do this simplification if any comparisons fold to true or false.
487  // See if any do.
488  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
489  BasicBlock *PredBB = PN->getIncomingBlock(i);
490  Value *LHS = PN->getIncomingValue(i);
491  Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
492 
493  Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
494  if (Res == 0) {
495  if (!isa<Constant>(RHS))
496  continue;
497 
499  ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
500  cast<Constant>(RHS), PredBB, BB);
501  if (ResT == LazyValueInfo::Unknown)
502  continue;
503  Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
504  }
505 
506  if (Constant *KC = getKnownConstant(Res, WantInteger))
507  Result.push_back(std::make_pair(KC, PredBB));
508  }
509 
510  return !Result.empty();
511  }
512 
513 
514  // If comparing a live-in value against a constant, see if we know the
515  // live-in value on any predecessors.
516  if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
517  if (!isa<Instruction>(Cmp->getOperand(0)) ||
518  cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
519  Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
520 
521  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
522  BasicBlock *P = *PI;
523  // If the value is known by LazyValueInfo to be a constant in a
524  // predecessor, use that information to try to thread this block.
526  LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
527  RHSCst, P, BB);
528  if (Res == LazyValueInfo::Unknown)
529  continue;
530 
531  Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
532  Result.push_back(std::make_pair(ResC, P));
533  }
534 
535  return !Result.empty();
536  }
537 
538  // Try to find a constant value for the LHS of a comparison,
539  // and evaluate it statically if we can.
540  if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
541  PredValueInfoTy LHSVals;
542  ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
543  WantInteger);
544 
545  for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
546  Constant *V = LHSVals[i].first;
547  Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
548  V, CmpConst);
549  if (Constant *KC = getKnownConstant(Folded, WantInteger))
550  Result.push_back(std::make_pair(KC, LHSVals[i].second));
551  }
552 
553  return !Result.empty();
554  }
555  }
556  }
557 
558  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
559  // Handle select instructions where at least one operand is a known constant
560  // and we can figure out the condition value for any predecessor block.
561  Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
562  Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
563  PredValueInfoTy Conds;
564  if ((TrueVal || FalseVal) &&
565  ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
566  WantInteger)) {
567  for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
568  Constant *Cond = Conds[i].first;
569 
570  // Figure out what value to use for the condition.
571  bool KnownCond;
572  if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
573  // A known boolean.
574  KnownCond = CI->isOne();
575  } else {
576  assert(isa<UndefValue>(Cond) && "Unexpected condition value");
577  // Either operand will do, so be sure to pick the one that's a known
578  // constant.
579  // FIXME: Do this more cleverly if both values are known constants?
580  KnownCond = (TrueVal != 0);
581  }
582 
583  // See if the select has a known constant value for this predecessor.
584  if (Constant *Val = KnownCond ? TrueVal : FalseVal)
585  Result.push_back(std::make_pair(Val, Conds[i].second));
586  }
587 
588  return !Result.empty();
589  }
590  }
591 
592  // If all else fails, see if LVI can figure out a constant value for us.
593  Constant *CI = LVI->getConstant(V, BB);
594  if (Constant *KC = getKnownConstant(CI, Preference)) {
595  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
596  Result.push_back(std::make_pair(KC, *PI));
597  }
598 
599  return !Result.empty();
600 }
601 
602 
603 
604 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
605 /// in an undefined jump, decide which block is best to revector to.
606 ///
607 /// Since we can pick an arbitrary destination, we pick the successor with the
608 /// fewest predecessors. This should reduce the in-degree of the others.
609 ///
610 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
611  TerminatorInst *BBTerm = BB->getTerminator();
612  unsigned MinSucc = 0;
613  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
614  // Compute the successor with the minimum number of predecessors.
615  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
616  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
617  TestBB = BBTerm->getSuccessor(i);
618  unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
619  if (NumPreds < MinNumPreds) {
620  MinSucc = i;
621  MinNumPreds = NumPreds;
622  }
623  }
624 
625  return MinSucc;
626 }
627 
629  if (!BB->hasAddressTaken()) return false;
630 
631  // If the block has its address taken, it may be a tree of dead constants
632  // hanging off of it. These shouldn't keep the block alive.
635  return !BA->use_empty();
636 }
637 
638 /// ProcessBlock - If there are any predecessors whose control can be threaded
639 /// through to a successor, transform them now.
640 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
641  // If the block is trivially dead, just return and let the caller nuke it.
642  // This simplifies other transformations.
643  if (pred_begin(BB) == pred_end(BB) &&
644  BB != &BB->getParent()->getEntryBlock())
645  return false;
646 
647  // If this block has a single predecessor, and if that pred has a single
648  // successor, merge the blocks. This encourages recursive jump threading
649  // because now the condition in this block can be threaded through
650  // predecessors of our predecessor block.
651  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
652  if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
653  SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
654  // If SinglePred was a loop header, BB becomes one.
655  if (LoopHeaders.erase(SinglePred))
656  LoopHeaders.insert(BB);
657 
658  // Remember if SinglePred was the entry block of the function. If so, we
659  // will need to move BB back to the entry position.
660  bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
661  LVI->eraseBlock(SinglePred);
663 
664  if (isEntry && BB != &BB->getParent()->getEntryBlock())
665  BB->moveBefore(&BB->getParent()->getEntryBlock());
666  return true;
667  }
668  }
669 
670  // What kind of constant we're looking for.
671  ConstantPreference Preference = WantInteger;
672 
673  // Look to see if the terminator is a conditional branch, switch or indirect
674  // branch, if not we can't thread it.
675  Value *Condition;
677  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
678  // Can't thread an unconditional jump.
679  if (BI->isUnconditional()) return false;
680  Condition = BI->getCondition();
681  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
682  Condition = SI->getCondition();
683  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
684  // Can't thread indirect branch with no successors.
685  if (IB->getNumSuccessors() == 0) return false;
686  Condition = IB->getAddress()->stripPointerCasts();
687  Preference = WantBlockAddress;
688  } else {
689  return false; // Must be an invoke.
690  }
691 
692  // Run constant folding to see if we can reduce the condition to a simple
693  // constant.
694  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
695  Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
696  if (SimpleVal) {
697  I->replaceAllUsesWith(SimpleVal);
698  I->eraseFromParent();
699  Condition = SimpleVal;
700  }
701  }
702 
703  // If the terminator is branching on an undef, we can pick any of the
704  // successors to branch to. Let GetBestDestForJumpOnUndef decide.
705  if (isa<UndefValue>(Condition)) {
706  unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
707 
708  // Fold the branch/switch.
709  TerminatorInst *BBTerm = BB->getTerminator();
710  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
711  if (i == BestSucc) continue;
712  BBTerm->getSuccessor(i)->removePredecessor(BB, true);
713  }
714 
715  DEBUG(dbgs() << " In block '" << BB->getName()
716  << "' folding undef terminator: " << *BBTerm << '\n');
717  BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
718  BBTerm->eraseFromParent();
719  return true;
720  }
721 
722  // If the terminator of this block is branching on a constant, simplify the
723  // terminator to an unconditional branch. This can occur due to threading in
724  // other blocks.
725  if (getKnownConstant(Condition, Preference)) {
726  DEBUG(dbgs() << " In block '" << BB->getName()
727  << "' folding terminator: " << *BB->getTerminator() << '\n');
728  ++NumFolds;
729  ConstantFoldTerminator(BB, true);
730  return true;
731  }
732 
733  Instruction *CondInst = dyn_cast<Instruction>(Condition);
734 
735  // All the rest of our checks depend on the condition being an instruction.
736  if (CondInst == 0) {
737  // FIXME: Unify this with code below.
738  if (ProcessThreadableEdges(Condition, BB, Preference))
739  return true;
740  return false;
741  }
742 
743 
744  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
745  // For a comparison where the LHS is outside this block, it's possible
746  // that we've branched on it before. Used LVI to see if we can simplify
747  // the branch based on that.
748  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
749  Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
750  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
751  if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
752  (!isa<Instruction>(CondCmp->getOperand(0)) ||
753  cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
754  // For predecessor edge, determine if the comparison is true or false
755  // on that edge. If they're all true or all false, we can simplify the
756  // branch.
757  // FIXME: We could handle mixed true/false by duplicating code.
758  LazyValueInfo::Tristate Baseline =
759  LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
760  CondConst, *PI, BB);
761  if (Baseline != LazyValueInfo::Unknown) {
762  // Check that all remaining incoming values match the first one.
763  while (++PI != PE) {
765  LVI->getPredicateOnEdge(CondCmp->getPredicate(),
766  CondCmp->getOperand(0), CondConst, *PI, BB);
767  if (Ret != Baseline) break;
768  }
769 
770  // If we terminated early, then one of the values didn't match.
771  if (PI == PE) {
772  unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
773  unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
774  CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
775  BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
776  CondBr->eraseFromParent();
777  return true;
778  }
779  }
780 
781  }
782 
783  if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
784  return true;
785  }
786 
787  // Check for some cases that are worth simplifying. Right now we want to look
788  // for loads that are used by a switch or by the condition for the branch. If
789  // we see one, check to see if it's partially redundant. If so, insert a PHI
790  // which can then be used to thread the values.
791  //
792  Value *SimplifyValue = CondInst;
793  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
794  if (isa<Constant>(CondCmp->getOperand(1)))
795  SimplifyValue = CondCmp->getOperand(0);
796 
797  // TODO: There are other places where load PRE would be profitable, such as
798  // more complex comparisons.
799  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
800  if (SimplifyPartiallyRedundantLoad(LI))
801  return true;
802 
803 
804  // Handle a variety of cases where we are branching on something derived from
805  // a PHI node in the current block. If we can prove that any predecessors
806  // compute a predictable value based on a PHI node, thread those predecessors.
807  //
808  if (ProcessThreadableEdges(CondInst, BB, Preference))
809  return true;
810 
811  // If this is an otherwise-unfoldable branch on a phi node in the current
812  // block, see if we can simplify.
813  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
814  if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
815  return ProcessBranchOnPHI(PN);
816 
817 
818  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
819  if (CondInst->getOpcode() == Instruction::Xor &&
820  CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
821  return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
822 
823 
824  // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
825  // "(X == 4)", thread through this block.
826 
827  return false;
828 }
829 
830 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
831 /// load instruction, eliminate it by replacing it with a PHI node. This is an
832 /// important optimization that encourages jump threading, and needs to be run
833 /// interlaced with other jump threading tasks.
834 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
835  // Don't hack volatile/atomic loads.
836  if (!LI->isSimple()) return false;
837 
838  // If the load is defined in a block with exactly one predecessor, it can't be
839  // partially redundant.
840  BasicBlock *LoadBB = LI->getParent();
841  if (LoadBB->getSinglePredecessor())
842  return false;
843 
844  // If the load is defined in a landing pad, it can't be partially redundant,
845  // because the edges between the invoke and the landing pad cannot have other
846  // instructions between them.
847  if (LoadBB->isLandingPad())
848  return false;
849 
850  Value *LoadedPtr = LI->getOperand(0);
851 
852  // If the loaded operand is defined in the LoadBB, it can't be available.
853  // TODO: Could do simple PHI translation, that would be fun :)
854  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
855  if (PtrOp->getParent() == LoadBB)
856  return false;
857 
858  // Scan a few instructions up from the load, to see if it is obviously live at
859  // the entry to its block.
860  BasicBlock::iterator BBIt = LI;
861 
862  if (Value *AvailableVal =
863  FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
864  // If the value if the load is locally available within the block, just use
865  // it. This frequently occurs for reg2mem'd allocas.
866  //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
867 
868  // If the returned value is the load itself, replace with an undef. This can
869  // only happen in dead loops.
870  if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
871  LI->replaceAllUsesWith(AvailableVal);
872  LI->eraseFromParent();
873  return true;
874  }
875 
876  // Otherwise, if we scanned the whole block and got to the top of the block,
877  // we know the block is locally transparent to the load. If not, something
878  // might clobber its value.
879  if (BBIt != LoadBB->begin())
880  return false;
881 
882  // If all of the loads and stores that feed the value have the same TBAA tag,
883  // then we can propagate it onto any newly inserted loads.
884  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
885 
886  SmallPtrSet<BasicBlock*, 8> PredsScanned;
887  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
888  AvailablePredsTy AvailablePreds;
889  BasicBlock *OneUnavailablePred = 0;
890 
891  // If we got here, the loaded value is transparent through to the start of the
892  // block. Check to see if it is available in any of the predecessor blocks.
893  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
894  PI != PE; ++PI) {
895  BasicBlock *PredBB = *PI;
896 
897  // If we already scanned this predecessor, skip it.
898  if (!PredsScanned.insert(PredBB))
899  continue;
900 
901  // Scan the predecessor to see if the value is available in the pred.
902  BBIt = PredBB->end();
903  MDNode *ThisTBAATag = 0;
904  Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
905  0, &ThisTBAATag);
906  if (!PredAvailable) {
907  OneUnavailablePred = PredBB;
908  continue;
909  }
910 
911  // If tbaa tags disagree or are not present, forget about them.
912  if (TBAATag != ThisTBAATag) TBAATag = 0;
913 
914  // If so, this load is partially redundant. Remember this info so that we
915  // can create a PHI node.
916  AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
917  }
918 
919  // If the loaded value isn't available in any predecessor, it isn't partially
920  // redundant.
921  if (AvailablePreds.empty()) return false;
922 
923  // Okay, the loaded value is available in at least one (and maybe all!)
924  // predecessors. If the value is unavailable in more than one unique
925  // predecessor, we want to insert a merge block for those common predecessors.
926  // This ensures that we only have to insert one reload, thus not increasing
927  // code size.
928  BasicBlock *UnavailablePred = 0;
929 
930  // If there is exactly one predecessor where the value is unavailable, the
931  // already computed 'OneUnavailablePred' block is it. If it ends in an
932  // unconditional branch, we know that it isn't a critical edge.
933  if (PredsScanned.size() == AvailablePreds.size()+1 &&
934  OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
935  UnavailablePred = OneUnavailablePred;
936  } else if (PredsScanned.size() != AvailablePreds.size()) {
937  // Otherwise, we had multiple unavailable predecessors or we had a critical
938  // edge from the one.
939  SmallVector<BasicBlock*, 8> PredsToSplit;
940  SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
941 
942  for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
943  AvailablePredSet.insert(AvailablePreds[i].first);
944 
945  // Add all the unavailable predecessors to the PredsToSplit list.
946  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
947  PI != PE; ++PI) {
948  BasicBlock *P = *PI;
949  // If the predecessor is an indirect goto, we can't split the edge.
950  if (isa<IndirectBrInst>(P->getTerminator()))
951  return false;
952 
953  if (!AvailablePredSet.count(P))
954  PredsToSplit.push_back(P);
955  }
956 
957  // Split them out to their own block.
958  UnavailablePred =
959  SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
960  }
961 
962  // If the value isn't available in all predecessors, then there will be
963  // exactly one where it isn't available. Insert a load on that edge and add
964  // it to the AvailablePreds list.
965  if (UnavailablePred) {
966  assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
967  "Can't handle critical edge here!");
968  LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
969  LI->getAlignment(),
970  UnavailablePred->getTerminator());
971  NewVal->setDebugLoc(LI->getDebugLoc());
972  if (TBAATag)
973  NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
974 
975  AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
976  }
977 
978  // Now we know that each predecessor of this block has a value in
979  // AvailablePreds, sort them for efficient access as we're walking the preds.
980  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
981 
982  // Create a PHI node at the start of the block for the PRE'd load value.
983  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
984  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
985  LoadBB->begin());
986  PN->takeName(LI);
987  PN->setDebugLoc(LI->getDebugLoc());
988 
989  // Insert new entries into the PHI for each predecessor. A single block may
990  // have multiple entries here.
991  for (pred_iterator PI = PB; PI != PE; ++PI) {
992  BasicBlock *P = *PI;
993  AvailablePredsTy::iterator I =
994  std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
995  std::make_pair(P, (Value*)0));
996 
997  assert(I != AvailablePreds.end() && I->first == P &&
998  "Didn't find entry for predecessor!");
999 
1000  PN->addIncoming(I->second, I->first);
1001  }
1002 
1003  //cerr << "PRE: " << *LI << *PN << "\n";
1004 
1005  LI->replaceAllUsesWith(PN);
1006  LI->eraseFromParent();
1007 
1008  return true;
1009 }
1010 
1011 /// FindMostPopularDest - The specified list contains multiple possible
1012 /// threadable destinations. Pick the one that occurs the most frequently in
1013 /// the list.
1014 static BasicBlock *
1016  const SmallVectorImpl<std::pair<BasicBlock*,
1017  BasicBlock*> > &PredToDestList) {
1018  assert(!PredToDestList.empty());
1019 
1020  // Determine popularity. If there are multiple possible destinations, we
1021  // explicitly choose to ignore 'undef' destinations. We prefer to thread
1022  // blocks with known and real destinations to threading undef. We'll handle
1023  // them later if interesting.
1024  DenseMap<BasicBlock*, unsigned> DestPopularity;
1025  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1026  if (PredToDestList[i].second)
1027  DestPopularity[PredToDestList[i].second]++;
1028 
1029  // Find the most popular dest.
1030  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1031  BasicBlock *MostPopularDest = DPI->first;
1032  unsigned Popularity = DPI->second;
1033  SmallVector<BasicBlock*, 4> SamePopularity;
1034 
1035  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1036  // If the popularity of this entry isn't higher than the popularity we've
1037  // seen so far, ignore it.
1038  if (DPI->second < Popularity)
1039  ; // ignore.
1040  else if (DPI->second == Popularity) {
1041  // If it is the same as what we've seen so far, keep track of it.
1042  SamePopularity.push_back(DPI->first);
1043  } else {
1044  // If it is more popular, remember it.
1045  SamePopularity.clear();
1046  MostPopularDest = DPI->first;
1047  Popularity = DPI->second;
1048  }
1049  }
1050 
1051  // Okay, now we know the most popular destination. If there is more than one
1052  // destination, we need to determine one. This is arbitrary, but we need
1053  // to make a deterministic decision. Pick the first one that appears in the
1054  // successor list.
1055  if (!SamePopularity.empty()) {
1056  SamePopularity.push_back(MostPopularDest);
1057  TerminatorInst *TI = BB->getTerminator();
1058  for (unsigned i = 0; ; ++i) {
1059  assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1060 
1061  if (std::find(SamePopularity.begin(), SamePopularity.end(),
1062  TI->getSuccessor(i)) == SamePopularity.end())
1063  continue;
1064 
1065  MostPopularDest = TI->getSuccessor(i);
1066  break;
1067  }
1068  }
1069 
1070  // Okay, we have finally picked the most popular destination.
1071  return MostPopularDest;
1072 }
1073 
1074 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1075  ConstantPreference Preference) {
1076  // If threading this would thread across a loop header, don't even try to
1077  // thread the edge.
1078  if (LoopHeaders.count(BB))
1079  return false;
1080 
1081  PredValueInfoTy PredValues;
1082  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1083  return false;
1084 
1085  assert(!PredValues.empty() &&
1086  "ComputeValueKnownInPredecessors returned true with no values");
1087 
1088  DEBUG(dbgs() << "IN BB: " << *BB;
1089  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1090  dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
1091  << *PredValues[i].first
1092  << " for pred '" << PredValues[i].second->getName() << "'.\n";
1093  });
1094 
1095  // Decide what we want to thread through. Convert our list of known values to
1096  // a list of known destinations for each pred. This also discards duplicate
1097  // predecessors and keeps track of the undefined inputs (which are represented
1098  // as a null dest in the PredToDestList).
1099  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1101 
1102  BasicBlock *OnlyDest = 0;
1103  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1104 
1105  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1106  BasicBlock *Pred = PredValues[i].second;
1107  if (!SeenPreds.insert(Pred))
1108  continue; // Duplicate predecessor entry.
1109 
1110  // If the predecessor ends with an indirect goto, we can't change its
1111  // destination.
1112  if (isa<IndirectBrInst>(Pred->getTerminator()))
1113  continue;
1114 
1115  Constant *Val = PredValues[i].first;
1116 
1117  BasicBlock *DestBB;
1118  if (isa<UndefValue>(Val))
1119  DestBB = 0;
1120  else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1121  DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1122  else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1123  DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1124  } else {
1125  assert(isa<IndirectBrInst>(BB->getTerminator())
1126  && "Unexpected terminator");
1127  DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1128  }
1129 
1130  // If we have exactly one destination, remember it for efficiency below.
1131  if (PredToDestList.empty())
1132  OnlyDest = DestBB;
1133  else if (OnlyDest != DestBB)
1134  OnlyDest = MultipleDestSentinel;
1135 
1136  PredToDestList.push_back(std::make_pair(Pred, DestBB));
1137  }
1138 
1139  // If all edges were unthreadable, we fail.
1140  if (PredToDestList.empty())
1141  return false;
1142 
1143  // Determine which is the most common successor. If we have many inputs and
1144  // this block is a switch, we want to start by threading the batch that goes
1145  // to the most popular destination first. If we only know about one
1146  // threadable destination (the common case) we can avoid this.
1147  BasicBlock *MostPopularDest = OnlyDest;
1148 
1149  if (MostPopularDest == MultipleDestSentinel)
1150  MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1151 
1152  // Now that we know what the most popular destination is, factor all
1153  // predecessors that will jump to it into a single predecessor.
1154  SmallVector<BasicBlock*, 16> PredsToFactor;
1155  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1156  if (PredToDestList[i].second == MostPopularDest) {
1157  BasicBlock *Pred = PredToDestList[i].first;
1158 
1159  // This predecessor may be a switch or something else that has multiple
1160  // edges to the block. Factor each of these edges by listing them
1161  // according to # occurrences in PredsToFactor.
1162  TerminatorInst *PredTI = Pred->getTerminator();
1163  for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1164  if (PredTI->getSuccessor(i) == BB)
1165  PredsToFactor.push_back(Pred);
1166  }
1167 
1168  // If the threadable edges are branching on an undefined value, we get to pick
1169  // the destination that these predecessors should get to.
1170  if (MostPopularDest == 0)
1171  MostPopularDest = BB->getTerminator()->
1172  getSuccessor(GetBestDestForJumpOnUndef(BB));
1173 
1174  // Ok, try to thread it!
1175  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1176 }
1177 
1178 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1179 /// a PHI node in the current block. See if there are any simplifications we
1180 /// can do based on inputs to the phi node.
1181 ///
1182 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1183  BasicBlock *BB = PN->getParent();
1184 
1185  // TODO: We could make use of this to do it once for blocks with common PHI
1186  // values.
1188  PredBBs.resize(1);
1189 
1190  // If any of the predecessor blocks end in an unconditional branch, we can
1191  // *duplicate* the conditional branch into that block in order to further
1192  // encourage jump threading and to eliminate cases where we have branch on a
1193  // phi of an icmp (branch on icmp is much better).
1194  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1195  BasicBlock *PredBB = PN->getIncomingBlock(i);
1196  if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1197  if (PredBr->isUnconditional()) {
1198  PredBBs[0] = PredBB;
1199  // Try to duplicate BB into PredBB.
1200  if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1201  return true;
1202  }
1203  }
1204 
1205  return false;
1206 }
1207 
1208 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1209 /// a xor instruction in the current block. See if there are any
1210 /// simplifications we can do based on inputs to the xor.
1211 ///
1212 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1213  BasicBlock *BB = BO->getParent();
1214 
1215  // If either the LHS or RHS of the xor is a constant, don't do this
1216  // optimization.
1217  if (isa<ConstantInt>(BO->getOperand(0)) ||
1218  isa<ConstantInt>(BO->getOperand(1)))
1219  return false;
1220 
1221  // If the first instruction in BB isn't a phi, we won't be able to infer
1222  // anything special about any particular predecessor.
1223  if (!isa<PHINode>(BB->front()))
1224  return false;
1225 
1226  // If we have a xor as the branch input to this block, and we know that the
1227  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1228  // the condition into the predecessor and fix that value to true, saving some
1229  // logical ops on that path and encouraging other paths to simplify.
1230  //
1231  // This copies something like this:
1232  //
1233  // BB:
1234  // %X = phi i1 [1], [%X']
1235  // %Y = icmp eq i32 %A, %B
1236  // %Z = xor i1 %X, %Y
1237  // br i1 %Z, ...
1238  //
1239  // Into:
1240  // BB':
1241  // %Y = icmp ne i32 %A, %B
1242  // br i1 %Z, ...
1243 
1244  PredValueInfoTy XorOpValues;
1245  bool isLHS = true;
1246  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1247  WantInteger)) {
1248  assert(XorOpValues.empty());
1249  if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1250  WantInteger))
1251  return false;
1252  isLHS = false;
1253  }
1254 
1255  assert(!XorOpValues.empty() &&
1256  "ComputeValueKnownInPredecessors returned true with no values");
1257 
1258  // Scan the information to see which is most popular: true or false. The
1259  // predecessors can be of the set true, false, or undef.
1260  unsigned NumTrue = 0, NumFalse = 0;
1261  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1262  if (isa<UndefValue>(XorOpValues[i].first))
1263  // Ignore undefs for the count.
1264  continue;
1265  if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1266  ++NumFalse;
1267  else
1268  ++NumTrue;
1269  }
1270 
1271  // Determine which value to split on, true, false, or undef if neither.
1272  ConstantInt *SplitVal = 0;
1273  if (NumTrue > NumFalse)
1274  SplitVal = ConstantInt::getTrue(BB->getContext());
1275  else if (NumTrue != 0 || NumFalse != 0)
1276  SplitVal = ConstantInt::getFalse(BB->getContext());
1277 
1278  // Collect all of the blocks that this can be folded into so that we can
1279  // factor this once and clone it once.
1280  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1281  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1282  if (XorOpValues[i].first != SplitVal &&
1283  !isa<UndefValue>(XorOpValues[i].first))
1284  continue;
1285 
1286  BlocksToFoldInto.push_back(XorOpValues[i].second);
1287  }
1288 
1289  // If we inferred a value for all of the predecessors, then duplication won't
1290  // help us. However, we can just replace the LHS or RHS with the constant.
1291  if (BlocksToFoldInto.size() ==
1292  cast<PHINode>(BB->front()).getNumIncomingValues()) {
1293  if (SplitVal == 0) {
1294  // If all preds provide undef, just nuke the xor, because it is undef too.
1296  BO->eraseFromParent();
1297  } else if (SplitVal->isZero()) {
1298  // If all preds provide 0, replace the xor with the other input.
1299  BO->replaceAllUsesWith(BO->getOperand(isLHS));
1300  BO->eraseFromParent();
1301  } else {
1302  // If all preds provide 1, set the computed value to 1.
1303  BO->setOperand(!isLHS, SplitVal);
1304  }
1305 
1306  return true;
1307  }
1308 
1309  // Try to duplicate BB into PredBB.
1310  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1311 }
1312 
1313 
1314 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1315 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1316 /// NewPred using the entries from OldPred (suitably mapped).
1318  BasicBlock *OldPred,
1319  BasicBlock *NewPred,
1321  for (BasicBlock::iterator PNI = PHIBB->begin();
1322  PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1323  // Ok, we have a PHI node. Figure out what the incoming value was for the
1324  // DestBlock.
1325  Value *IV = PN->getIncomingValueForBlock(OldPred);
1326 
1327  // Remap the value if necessary.
1328  if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1330  if (I != ValueMap.end())
1331  IV = I->second;
1332  }
1333 
1334  PN->addIncoming(IV, NewPred);
1335  }
1336 }
1337 
1338 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1339 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1340 /// across BB. Transform the IR to reflect this change.
1341 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1342  const SmallVectorImpl<BasicBlock*> &PredBBs,
1343  BasicBlock *SuccBB) {
1344  // If threading to the same block as we come from, we would infinite loop.
1345  if (SuccBB == BB) {
1346  DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1347  << "' - would thread to self!\n");
1348  return false;
1349  }
1350 
1351  // If threading this would thread across a loop header, don't thread the edge.
1352  // See the comments above FindLoopHeaders for justifications and caveats.
1353  if (LoopHeaders.count(BB)) {
1354  DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1355  << "' to dest BB '" << SuccBB->getName()
1356  << "' - it might create an irreducible loop!\n");
1357  return false;
1358  }
1359 
1360  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
1361  if (JumpThreadCost > Threshold) {
1362  DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1363  << "' - Cost is too high: " << JumpThreadCost << "\n");
1364  return false;
1365  }
1366 
1367  // And finally, do it! Start by factoring the predecessors is needed.
1368  BasicBlock *PredBB;
1369  if (PredBBs.size() == 1)
1370  PredBB = PredBBs[0];
1371  else {
1372  DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1373  << " common predecessors.\n");
1374  PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1375  }
1376 
1377  // And finally, do it!
1378  DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1379  << SuccBB->getName() << "' with cost: " << JumpThreadCost
1380  << ", across block:\n "
1381  << *BB << "\n");
1382 
1383  LVI->threadEdge(PredBB, BB, SuccBB);
1384 
1385  // We are going to have to map operands from the original BB block to the new
1386  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1387  // account for entry from PredBB.
1388  DenseMap<Instruction*, Value*> ValueMapping;
1389 
1390  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1391  BB->getName()+".thread",
1392  BB->getParent(), BB);
1393  NewBB->moveAfter(PredBB);
1394 
1395  BasicBlock::iterator BI = BB->begin();
1396  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1397  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1398 
1399  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1400  // mapping and using it to remap operands in the cloned instructions.
1401  for (; !isa<TerminatorInst>(BI); ++BI) {
1402  Instruction *New = BI->clone();
1403  New->setName(BI->getName());
1404  NewBB->getInstList().push_back(New);
1405  ValueMapping[BI] = New;
1406 
1407  // Remap operands to patch up intra-block references.
1408  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1409  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1410  DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1411  if (I != ValueMapping.end())
1412  New->setOperand(i, I->second);
1413  }
1414  }
1415 
1416  // We didn't copy the terminator from BB over to NewBB, because there is now
1417  // an unconditional jump to SuccBB. Insert the unconditional jump.
1418  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1419  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1420 
1421  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1422  // PHI nodes for NewBB now.
1423  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1424 
1425  // If there were values defined in BB that are used outside the block, then we
1426  // now have to update all uses of the value to use either the original value,
1427  // the cloned value, or some PHI derived value. This can require arbitrary
1428  // PHI insertion, of which we are prepared to do, clean these up now.
1429  SSAUpdater SSAUpdate;
1430  SmallVector<Use*, 16> UsesToRename;
1431  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1432  // Scan all uses of this instruction to see if it is used outside of its
1433  // block, and if so, record them in UsesToRename.
1434  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1435  ++UI) {
1436  Instruction *User = cast<Instruction>(*UI);
1437  if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1438  if (UserPN->getIncomingBlock(UI) == BB)
1439  continue;
1440  } else if (User->getParent() == BB)
1441  continue;
1442 
1443  UsesToRename.push_back(&UI.getUse());
1444  }
1445 
1446  // If there are no uses outside the block, we're done with this instruction.
1447  if (UsesToRename.empty())
1448  continue;
1449 
1450  DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1451 
1452  // We found a use of I outside of BB. Rename all uses of I that are outside
1453  // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1454  // with the two values we know.
1455  SSAUpdate.Initialize(I->getType(), I->getName());
1456  SSAUpdate.AddAvailableValue(BB, I);
1457  SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1458 
1459  while (!UsesToRename.empty())
1460  SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1461  DEBUG(dbgs() << "\n");
1462  }
1463 
1464 
1465  // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1466  // NewBB instead of BB. This eliminates predecessors from BB, which requires
1467  // us to simplify any PHI nodes in BB.
1468  TerminatorInst *PredTerm = PredBB->getTerminator();
1469  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1470  if (PredTerm->getSuccessor(i) == BB) {
1471  BB->removePredecessor(PredBB, true);
1472  PredTerm->setSuccessor(i, NewBB);
1473  }
1474 
1475  // At this point, the IR is fully up to date and consistent. Do a quick scan
1476  // over the new instructions and zap any that are constants or dead. This
1477  // frequently happens because of phi translation.
1478  SimplifyInstructionsInBlock(NewBB, TD, TLI);
1479 
1480  // Threaded an edge!
1481  ++NumThreads;
1482  return true;
1483 }
1484 
1485 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1486 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1487 /// If we can duplicate the contents of BB up into PredBB do so now, this
1488 /// improves the odds that the branch will be on an analyzable instruction like
1489 /// a compare.
1490 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1491  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1492  assert(!PredBBs.empty() && "Can't handle an empty set");
1493 
1494  // If BB is a loop header, then duplicating this block outside the loop would
1495  // cause us to transform this into an irreducible loop, don't do this.
1496  // See the comments above FindLoopHeaders for justifications and caveats.
1497  if (LoopHeaders.count(BB)) {
1498  DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1499  << "' into predecessor block '" << PredBBs[0]->getName()
1500  << "' - it might create an irreducible loop!\n");
1501  return false;
1502  }
1503 
1504  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
1505  if (DuplicationCost > Threshold) {
1506  DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1507  << "' - Cost is too high: " << DuplicationCost << "\n");
1508  return false;
1509  }
1510 
1511  // And finally, do it! Start by factoring the predecessors is needed.
1512  BasicBlock *PredBB;
1513  if (PredBBs.size() == 1)
1514  PredBB = PredBBs[0];
1515  else {
1516  DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1517  << " common predecessors.\n");
1518  PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1519  }
1520 
1521  // Okay, we decided to do this! Clone all the instructions in BB onto the end
1522  // of PredBB.
1523  DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1524  << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1525  << DuplicationCost << " block is:" << *BB << "\n");
1526 
1527  // Unless PredBB ends with an unconditional branch, split the edge so that we
1528  // can just clone the bits from BB into the end of the new PredBB.
1529  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1530 
1531  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1532  PredBB = SplitEdge(PredBB, BB, this);
1533  OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1534  }
1535 
1536  // We are going to have to map operands from the original BB block into the
1537  // PredBB block. Evaluate PHI nodes in BB.
1538  DenseMap<Instruction*, Value*> ValueMapping;
1539 
1540  BasicBlock::iterator BI = BB->begin();
1541  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1542  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1543 
1544  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1545  // mapping and using it to remap operands in the cloned instructions.
1546  for (; BI != BB->end(); ++BI) {
1547  Instruction *New = BI->clone();
1548 
1549  // Remap operands to patch up intra-block references.
1550  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1551  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1552  DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1553  if (I != ValueMapping.end())
1554  New->setOperand(i, I->second);
1555  }
1556 
1557  // If this instruction can be simplified after the operands are updated,
1558  // just use the simplified value instead. This frequently happens due to
1559  // phi translation.
1560  if (Value *IV = SimplifyInstruction(New, TD)) {
1561  delete New;
1562  ValueMapping[BI] = IV;
1563  } else {
1564  // Otherwise, insert the new instruction into the block.
1565  New->setName(BI->getName());
1566  PredBB->getInstList().insert(OldPredBranch, New);
1567  ValueMapping[BI] = New;
1568  }
1569  }
1570 
1571  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1572  // add entries to the PHI nodes for branch from PredBB now.
1573  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1574  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1575  ValueMapping);
1576  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1577  ValueMapping);
1578 
1579  // If there were values defined in BB that are used outside the block, then we
1580  // now have to update all uses of the value to use either the original value,
1581  // the cloned value, or some PHI derived value. This can require arbitrary
1582  // PHI insertion, of which we are prepared to do, clean these up now.
1583  SSAUpdater SSAUpdate;
1584  SmallVector<Use*, 16> UsesToRename;
1585  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1586  // Scan all uses of this instruction to see if it is used outside of its
1587  // block, and if so, record them in UsesToRename.
1588  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1589  ++UI) {
1590  Instruction *User = cast<Instruction>(*UI);
1591  if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1592  if (UserPN->getIncomingBlock(UI) == BB)
1593  continue;
1594  } else if (User->getParent() == BB)
1595  continue;
1596 
1597  UsesToRename.push_back(&UI.getUse());
1598  }
1599 
1600  // If there are no uses outside the block, we're done with this instruction.
1601  if (UsesToRename.empty())
1602  continue;
1603 
1604  DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1605 
1606  // We found a use of I outside of BB. Rename all uses of I that are outside
1607  // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1608  // with the two values we know.
1609  SSAUpdate.Initialize(I->getType(), I->getName());
1610  SSAUpdate.AddAvailableValue(BB, I);
1611  SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1612 
1613  while (!UsesToRename.empty())
1614  SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1615  DEBUG(dbgs() << "\n");
1616  }
1617 
1618  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1619  // that we nuked.
1620  BB->removePredecessor(PredBB, true);
1621 
1622  // Remove the unconditional branch at the end of the PredBB block.
1623  OldPredBranch->eraseFromParent();
1624 
1625  ++NumDupes;
1626  return true;
1627 }
1628 
1629 /// TryToUnfoldSelect - Look for blocks of the form
1630 /// bb1:
1631 /// %a = select
1632 /// br bb
1633 ///
1634 /// bb2:
1635 /// %p = phi [%a, %bb] ...
1636 /// %c = icmp %p
1637 /// br i1 %c
1638 ///
1639 /// And expand the select into a branch structure if one of its arms allows %c
1640 /// to be folded. This later enables threading from bb1 over bb2.
1641 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1642  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1643  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1644  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1645 
1646  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1647  CondLHS->getParent() != BB)
1648  return false;
1649 
1650  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1651  BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1652  SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1653 
1654  // Look if one of the incoming values is a select in the corresponding
1655  // predecessor.
1656  if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1657  continue;
1658 
1659  BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1660  if (!PredTerm || !PredTerm->isUnconditional())
1661  continue;
1662 
1663  // Now check if one of the select values would allow us to constant fold the
1664  // terminator in BB. We don't do the transform if both sides fold, those
1665  // cases will be threaded in any case.
1666  LazyValueInfo::Tristate LHSFolds =
1667  LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1668  CondRHS, Pred, BB);
1669  LazyValueInfo::Tristate RHSFolds =
1670  LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1671  CondRHS, Pred, BB);
1672  if ((LHSFolds != LazyValueInfo::Unknown ||
1673  RHSFolds != LazyValueInfo::Unknown) &&
1674  LHSFolds != RHSFolds) {
1675  // Expand the select.
1676  //
1677  // Pred --
1678  // | v
1679  // | NewBB
1680  // | |
1681  // |-----
1682  // v
1683  // BB
1684  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1685  BB->getParent(), BB);
1686  // Move the unconditional branch to NewBB.
1687  PredTerm->removeFromParent();
1688  NewBB->getInstList().insert(NewBB->end(), PredTerm);
1689  // Create a conditional branch and update PHI nodes.
1690  BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1691  CondLHS->setIncomingValue(I, SI->getFalseValue());
1692  CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1693  // The select is now dead.
1694  SI->eraseFromParent();
1695 
1696  // Update any other PHI nodes in BB.
1697  for (BasicBlock::iterator BI = BB->begin();
1698  PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1699  if (Phi != CondLHS)
1700  Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1701  return true;
1702  }
1703  }
1704  return false;
1705 }
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
AnalysisUsage & addPreserved()
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, Pass *P)
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:37
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:45
iterator end()
Definition: Function.h:397
void initializeJumpThreadingPass(PassRegistry &)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
void DeleteDeadBlock(BasicBlock *BB)
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value...
Definition: SSAUpdater.cpp:58
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P=0)
Definition: Local.cpp:477
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
const Instruction & front() const
Definition: BasicBlock.h:205
MDNode - a tuple of other values.
Definition: Metadata.h:69
static cl::opt< unsigned > Threshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden)
F(f)
bool isSimple() const
Definition: Instructions.h:218
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
INITIALIZE_PASS_BEGIN(JumpThreading,"jump-threading","Jump Threading", false, false) INITIALIZE_PASS_END(JumpThreading
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
Instruction * getFirstNonPHIOrDbg()
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic...
Definition: BasicBlock.cpp:140
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
bool isUnconditional() const
void push_back(NodeTy *val)
Definition: ilist.h:554
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, DenseMap< Instruction *, Value * > &ValueMap)
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
jump threading
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc. to it.
Definition: BasicBlock.h:268
void setName(const Twine &Name)
Definition: Value.cpp:175
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, Pass *P=0)
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
BasicBlock * getSuccessor(unsigned i) const
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
void setSuccessor(unsigned idx, BasicBlock *B)
Definition: InstrTypes.h:71
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
static Constant * getKnownConstant(Value *Val, ConstantPreference Preference)
unsigned getNumIncomingValues() const
bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:398
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
void array_pod_sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:289
FunctionPass * createJumpThreadingPass()
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB)
Definition: Local.cpp:725
static BlockAddress * get(Function *F, BasicBlock *BB)
get - Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1358
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
jump Jump false
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
iterator insert(iterator where, NodeTy *New)
Definition: ilist.h:412
jump Jump Threading
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2023
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
const Value * getTrueValue() const
Call cannot be duplicated.
Definition: Attributes.h:83
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB)
Tristate
Tristate - This is used to return true/false/dunno results.
Definition: LazyValueInfo.h:42
bool isTerminator() const
Definition: Instruction.h:86
bool isConditional() const
static bool isZero(Value *V, DataLayout *DL)
Definition: Lint.cpp:507
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:113
See the file comment.
Definition: ValueMap.h:75
void FindFunctionBackedges(const Function &F, SmallVectorImpl< std::pair< const BasicBlock *, const BasicBlock * > > &Result)
Definition: CFG.cpp:28
Class for constant integers.
Definition: Constants.h:51
Value * FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=6, AliasAnalysis *AA=0, MDNode **TBAATag=0)
Definition: Loads.cpp:139
Value * getIncomingValue(unsigned i) const
Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB)
Definition: Value.cpp:509
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
unsigned size() const
Definition: SmallPtrSet.h:75
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
Value * SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:59
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, unsigned Threshold)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
iterator begin()
Definition: DenseMap.h:53
ConstantPreference
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
Value * getCondition() const
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:360
bool hasOneUse() const
Definition: Value.h:161
void resize(unsigned N)
Definition: SmallVector.h:401
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
bool use_empty() const
Definition: Value.h:149
static BasicBlock * FindMostPopularDest(BasicBlock *BB, const SmallVectorImpl< std::pair< BasicBlock *, BasicBlock * > > &PredToDestList)
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
void removeDeadConstantUsers() const
Definition: Constants.cpp:395
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
static const Function * getParent(const Value *V)
#define DEBUG(X)
Definition: Debug.h:97
const Value * getFalseValue() const
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1798
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:177
static bool hasAddressTakenAndUsed(BasicBlock *BB)
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
Definition: BasicBlock.cpp:106
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
STATISTIC(NumThreads,"Number of jumps threaded")