LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
X86MCCodeEmitter.cpp
Go to the documentation of this file.
1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "mccodeemitter"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCRegisterInfo.h"
25 #include "llvm/MC/MCSymbol.h"
27 
28 using namespace llvm;
29 
30 namespace {
31 class X86MCCodeEmitter : public MCCodeEmitter {
32  X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
33  void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34  const MCInstrInfo &MCII;
35  const MCSubtargetInfo &STI;
36  MCContext &Ctx;
37 public:
38  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
39  MCContext &ctx)
40  : MCII(mcii), STI(sti), Ctx(ctx) {
41  }
42 
43  ~X86MCCodeEmitter() {}
44 
45  bool is64BitMode() const {
46  // FIXME: Can tablegen auto-generate this?
47  return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
48  }
49 
50  bool is32BitMode() const {
51  // FIXME: Can tablegen auto-generate this?
52  return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
53  }
54 
55  unsigned GetX86RegNum(const MCOperand &MO) const {
56  return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
57  }
58 
59  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
60  // 0-7 and the difference between the 2 groups is given by the REX prefix.
61  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
62  // in 1's complement form, example:
63  //
64  // ModRM field => XMM9 => 1
65  // VEX.VVVV => XMM9 => ~9
66  //
67  // See table 4-35 of Intel AVX Programming Reference for details.
68  unsigned char getVEXRegisterEncoding(const MCInst &MI,
69  unsigned OpNum) const {
70  unsigned SrcReg = MI.getOperand(OpNum).getReg();
71  unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
72  if (X86II::isX86_64ExtendedReg(SrcReg))
73  SrcRegNum |= 8;
74 
75  // The registers represented through VEX_VVVV should
76  // be encoded in 1's complement form.
77  return (~SrcRegNum) & 0xf;
78  }
79 
80  unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
81  unsigned OpNum) const {
82  assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
83  "Invalid mask register as write-mask!");
84  unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
85  return MaskRegNum;
86  }
87 
88  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
89  OS << (char)C;
90  ++CurByte;
91  }
92 
93  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
94  raw_ostream &OS) const {
95  // Output the constant in little endian byte order.
96  for (unsigned i = 0; i != Size; ++i) {
97  EmitByte(Val & 255, CurByte, OS);
98  Val >>= 8;
99  }
100  }
101 
102  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
103  unsigned ImmSize, MCFixupKind FixupKind,
104  unsigned &CurByte, raw_ostream &OS,
106  int ImmOffset = 0) const;
107 
108  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
109  unsigned RM) {
110  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
111  return RM | (RegOpcode << 3) | (Mod << 6);
112  }
113 
114  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
115  unsigned &CurByte, raw_ostream &OS) const {
116  EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
117  }
118 
119  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
120  unsigned &CurByte, raw_ostream &OS) const {
121  // SIB byte is in the same format as the ModRMByte.
122  EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
123  }
124 
125 
126  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
127  unsigned RegOpcodeField,
128  uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
129  SmallVectorImpl<MCFixup> &Fixups) const;
130 
131  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
132  SmallVectorImpl<MCFixup> &Fixups) const;
133 
134  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
135  const MCInst &MI, const MCInstrDesc &Desc,
136  raw_ostream &OS) const;
137 
138  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
139  int MemOperand, const MCInst &MI,
140  raw_ostream &OS) const;
141 
142  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
143  const MCInst &MI, const MCInstrDesc &Desc,
144  raw_ostream &OS) const;
145 };
146 
147 } // end anonymous namespace
148 
149 
151  const MCRegisterInfo &MRI,
152  const MCSubtargetInfo &STI,
153  MCContext &Ctx) {
154  return new X86MCCodeEmitter(MCII, STI, Ctx);
155 }
156 
157 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
158 /// sign-extended field.
159 static bool isDisp8(int Value) {
160  return Value == (signed char)Value;
161 }
162 
163 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
164 /// compressed dispacement field.
165 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
166  assert(((TSFlags >> X86II::VEXShift) & X86II::EVEX) &&
167  "Compressed 8-bit displacement is only valid for EVEX inst.");
168 
169  unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
170  unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
171 
172  if (CD8V == 0 && CD8E == 0) {
173  CValue = Value;
174  return isDisp8(Value);
175  }
176 
177  unsigned MemObjSize = 1U << CD8E;
178  if (CD8V & 4) {
179  // Fixed vector length
180  MemObjSize *= 1U << (CD8V & 0x3);
181  } else {
182  // Modified vector length
183  bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
184  if (!EVEX_b) {
185  unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
186  EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
187  assert(EVEX_LL < 3 && "");
188 
189  unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
190  NumElems /= 1U << (CD8V & 0x3);
191 
192  MemObjSize *= NumElems;
193  }
194  }
195 
196  unsigned MemObjMask = MemObjSize - 1;
197  assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
198 
199  if (Value & MemObjMask) // Unaligned offset
200  return false;
201  Value /= MemObjSize;
202  bool Ret = (Value == (signed char)Value);
203 
204  if (Ret)
205  CValue = Value;
206  return Ret;
207 }
208 
209 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
210 /// in an instruction with the specified TSFlags.
211 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
212  unsigned Size = X86II::getSizeOfImm(TSFlags);
213  bool isPCRel = X86II::isImmPCRel(TSFlags);
214 
215  return MCFixup::getKindForSize(Size, isPCRel);
216 }
217 
218 /// Is32BitMemOperand - Return true if the specified instruction has
219 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
220 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
221  const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
222  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
223 
224  if ((BaseReg.getReg() != 0 &&
225  X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
226  (IndexReg.getReg() != 0 &&
227  X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
228  return true;
229  return false;
230 }
231 
232 /// Is64BitMemOperand - Return true if the specified instruction has
233 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
234 #ifndef NDEBUG
235 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
236  const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
237  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
238 
239  if ((BaseReg.getReg() != 0 &&
240  X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
241  (IndexReg.getReg() != 0 &&
242  X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
243  return true;
244  return false;
245 }
246 #endif
247 
248 /// Is16BitMemOperand - Return true if the specified instruction has
249 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
250 static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
251  const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
252  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
253 
254  if ((BaseReg.getReg() != 0 &&
255  X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
256  (IndexReg.getReg() != 0 &&
257  X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
258  return true;
259  return false;
260 }
261 
262 /// StartsWithGlobalOffsetTable - Check if this expression starts with
263 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form
264 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
265 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
266 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
267 /// of a binary expression.
272 };
275  const MCExpr *RHS = 0;
276  if (Expr->getKind() == MCExpr::Binary) {
277  const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
278  Expr = BE->getLHS();
279  RHS = BE->getRHS();
280  }
281 
282  if (Expr->getKind() != MCExpr::SymbolRef)
283  return GOT_None;
284 
285  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
286  const MCSymbol &S = Ref->getSymbol();
287  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
288  return GOT_None;
289  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
290  return GOT_SymDiff;
291  return GOT_Normal;
292 }
293 
294 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
295  if (Expr->getKind() == MCExpr::SymbolRef) {
296  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
297  return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
298  }
299  return false;
300 }
301 
302 void X86MCCodeEmitter::
303 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
304  MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
305  SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
306  const MCExpr *Expr = NULL;
307  if (DispOp.isImm()) {
308  // If this is a simple integer displacement that doesn't require a
309  // relocation, emit it now.
310  if (FixupKind != FK_PCRel_1 &&
311  FixupKind != FK_PCRel_2 &&
312  FixupKind != FK_PCRel_4) {
313  EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
314  return;
315  }
316  Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
317  } else {
318  Expr = DispOp.getExpr();
319  }
320 
321  // If we have an immoffset, add it to the expression.
322  if ((FixupKind == FK_Data_4 ||
323  FixupKind == FK_Data_8 ||
324  FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
326  if (Kind != GOT_None) {
327  assert(ImmOffset == 0);
328 
330  if (Kind == GOT_Normal)
331  ImmOffset = CurByte;
332  } else if (Expr->getKind() == MCExpr::SymbolRef) {
333  if (HasSecRelSymbolRef(Expr)) {
334  FixupKind = MCFixupKind(FK_SecRel_4);
335  }
336  } else if (Expr->getKind() == MCExpr::Binary) {
337  const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
338  if (HasSecRelSymbolRef(Bin->getLHS())
339  || HasSecRelSymbolRef(Bin->getRHS())) {
340  FixupKind = MCFixupKind(FK_SecRel_4);
341  }
342  }
343  }
344 
345  // If the fixup is pc-relative, we need to bias the value to be relative to
346  // the start of the field, not the end of the field.
347  if (FixupKind == FK_PCRel_4 ||
348  FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
350  ImmOffset -= 4;
351  if (FixupKind == FK_PCRel_2)
352  ImmOffset -= 2;
353  if (FixupKind == FK_PCRel_1)
354  ImmOffset -= 1;
355 
356  if (ImmOffset)
357  Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
358  Ctx);
359 
360  // Emit a symbolic constant as a fixup and 4 zeros.
361  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
362  EmitConstant(0, Size, CurByte, OS);
363 }
364 
365 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
366  unsigned RegOpcodeField,
367  uint64_t TSFlags, unsigned &CurByte,
368  raw_ostream &OS,
369  SmallVectorImpl<MCFixup> &Fixups) const{
370  const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
371  const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
372  const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
373  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
374  unsigned BaseReg = Base.getReg();
375  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
376 
377  // Handle %rip relative addressing.
378  if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
379  assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
380  assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
381  EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
382 
383  unsigned FixupKind = X86::reloc_riprel_4byte;
384 
385  // movq loads are handled with a special relocation form which allows the
386  // linker to eliminate some loads for GOT references which end up in the
387  // same linkage unit.
388  if (MI.getOpcode() == X86::MOV64rm)
390 
391  // rip-relative addressing is actually relative to the *next* instruction.
392  // Since an immediate can follow the mod/rm byte for an instruction, this
393  // means that we need to bias the immediate field of the instruction with
394  // the size of the immediate field. If we have this case, add it into the
395  // expression to emit.
396  int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
397 
398  EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
399  CurByte, OS, Fixups, -ImmSize);
400  return;
401  }
402 
403  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
404 
405  // Determine whether a SIB byte is needed.
406  // If no BaseReg, issue a RIP relative instruction only if the MCE can
407  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
408  // 2-7) and absolute references.
409 
410  if (// The SIB byte must be used if there is an index register.
411  IndexReg.getReg() == 0 &&
412  // The SIB byte must be used if the base is ESP/RSP/R12, all of which
413  // encode to an R/M value of 4, which indicates that a SIB byte is
414  // present.
415  BaseRegNo != N86::ESP &&
416  // If there is no base register and we're in 64-bit mode, we need a SIB
417  // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
418  (!is64BitMode() || BaseReg != 0)) {
419 
420  if (BaseReg == 0) { // [disp32] in X86-32 mode
421  EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
422  EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
423  return;
424  }
425 
426  // If the base is not EBP/ESP and there is no displacement, use simple
427  // indirect register encoding, this handles addresses like [EAX]. The
428  // encoding for [EBP] with no displacement means [disp32] so we handle it
429  // by emitting a displacement of 0 below.
430  if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
431  EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
432  return;
433  }
434 
435  // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
436  if (Disp.isImm()) {
437  if (!HasEVEX && isDisp8(Disp.getImm())) {
438  EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
439  EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
440  return;
441  }
442  // Try EVEX compressed 8-bit displacement first; if failed, fall back to
443  // 32-bit displacement.
444  int CDisp8 = 0;
445  if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
446  EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
447  EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
448  CDisp8 - Disp.getImm());
449  return;
450  }
451  }
452 
453  // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
454  EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
455  EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
456  Fixups);
457  return;
458  }
459 
460  // We need a SIB byte, so start by outputting the ModR/M byte first
461  assert(IndexReg.getReg() != X86::ESP &&
462  IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
463 
464  bool ForceDisp32 = false;
465  bool ForceDisp8 = false;
466  int CDisp8 = 0;
467  int ImmOffset = 0;
468  if (BaseReg == 0) {
469  // If there is no base register, we emit the special case SIB byte with
470  // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
471  EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
472  ForceDisp32 = true;
473  } else if (!Disp.isImm()) {
474  // Emit the normal disp32 encoding.
475  EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
476  ForceDisp32 = true;
477  } else if (Disp.getImm() == 0 &&
478  // Base reg can't be anything that ends up with '5' as the base
479  // reg, it is the magic [*] nomenclature that indicates no base.
480  BaseRegNo != N86::EBP) {
481  // Emit no displacement ModR/M byte
482  EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
483  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
484  // Emit the disp8 encoding.
485  EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
486  ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
487  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
488  // Emit the disp8 encoding.
489  EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
490  ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
491  ImmOffset = CDisp8 - Disp.getImm();
492  } else {
493  // Emit the normal disp32 encoding.
494  EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
495  }
496 
497  // Calculate what the SS field value should be...
498  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
499  unsigned SS = SSTable[Scale.getImm()];
500 
501  if (BaseReg == 0) {
502  // Handle the SIB byte for the case where there is no base, see Intel
503  // Manual 2A, table 2-7. The displacement has already been output.
504  unsigned IndexRegNo;
505  if (IndexReg.getReg())
506  IndexRegNo = GetX86RegNum(IndexReg);
507  else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
508  IndexRegNo = 4;
509  EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
510  } else {
511  unsigned IndexRegNo;
512  if (IndexReg.getReg())
513  IndexRegNo = GetX86RegNum(IndexReg);
514  else
515  IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
516  EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
517  }
518 
519  // Do we need to output a displacement?
520  if (ForceDisp8)
521  EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
522  else if (ForceDisp32 || Disp.getImm() != 0)
523  EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
524  CurByte, OS, Fixups);
525 }
526 
527 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
528 /// called VEX.
529 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
530  int MemOperand, const MCInst &MI,
531  const MCInstrDesc &Desc,
532  raw_ostream &OS) const {
533  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
534  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
535  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
536  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
537  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
538 
539  // VEX_R: opcode externsion equivalent to REX.R in
540  // 1's complement (inverted) form
541  //
542  // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
543  // 0: Same as REX_R=1 (64 bit mode only)
544  //
545  unsigned char VEX_R = 0x1;
546  unsigned char EVEX_R2 = 0x1;
547 
548  // VEX_X: equivalent to REX.X, only used when a
549  // register is used for index in SIB Byte.
550  //
551  // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
552  // 0: Same as REX.X=1 (64-bit mode only)
553  unsigned char VEX_X = 0x1;
554 
555  // VEX_B:
556  //
557  // 1: Same as REX_B=0 (ignored in 32-bit mode)
558  // 0: Same as REX_B=1 (64 bit mode only)
559  //
560  unsigned char VEX_B = 0x1;
561 
562  // VEX_W: opcode specific (use like REX.W, or used for
563  // opcode extension, or ignored, depending on the opcode byte)
564  unsigned char VEX_W = 0;
565 
566  // XOP: Use XOP prefix byte 0x8f instead of VEX.
567  bool XOP = false;
568 
569  // VEX_5M (VEX m-mmmmm field):
570  //
571  // 0b00000: Reserved for future use
572  // 0b00001: implied 0F leading opcode
573  // 0b00010: implied 0F 38 leading opcode bytes
574  // 0b00011: implied 0F 3A leading opcode bytes
575  // 0b00100-0b11111: Reserved for future use
576  // 0b01000: XOP map select - 08h instructions with imm byte
577  // 0b01001: XOP map select - 09h instructions with no imm byte
578  // 0b01010: XOP map select - 0Ah instructions with imm dword
579  unsigned char VEX_5M = 0x1;
580 
581  // VEX_4V (VEX vvvv field): a register specifier
582  // (in 1's complement form) or 1111 if unused.
583  unsigned char VEX_4V = 0xf;
584  unsigned char EVEX_V2 = 0x1;
585 
586  // VEX_L (Vector Length):
587  //
588  // 0: scalar or 128-bit vector
589  // 1: 256-bit vector
590  //
591  unsigned char VEX_L = 0;
592  unsigned char EVEX_L2 = 0;
593 
594  // VEX_PP: opcode extension providing equivalent
595  // functionality of a SIMD prefix
596  //
597  // 0b00: None
598  // 0b01: 66
599  // 0b10: F3
600  // 0b11: F2
601  //
602  unsigned char VEX_PP = 0;
603 
604  // EVEX_U
605  unsigned char EVEX_U = 1; // Always '1' so far
606 
607  // EVEX_z
608  unsigned char EVEX_z = 0;
609 
610  // EVEX_b
611  unsigned char EVEX_b = 0;
612 
613  // EVEX_aaa
614  unsigned char EVEX_aaa = 0;
615 
616  // Encode the operand size opcode prefix as needed.
617  if (TSFlags & X86II::OpSize)
618  VEX_PP = 0x01;
619 
620  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
621  VEX_W = 1;
622 
623  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
624  XOP = true;
625 
626  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
627  VEX_L = 1;
628  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
629  EVEX_L2 = 1;
630 
631  if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
632  EVEX_z = 1;
633 
634  if (HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
635  EVEX_b = 1;
636 
637  switch (TSFlags & X86II::Op0Mask) {
638  default: llvm_unreachable("Invalid prefix!");
639  case X86II::T8: // 0F 38
640  VEX_5M = 0x2;
641  break;
642  case X86II::TA: // 0F 3A
643  VEX_5M = 0x3;
644  break;
645  case X86II::T8XS: // F3 0F 38
646  VEX_PP = 0x2;
647  VEX_5M = 0x2;
648  break;
649  case X86II::T8XD: // F2 0F 38
650  VEX_PP = 0x3;
651  VEX_5M = 0x2;
652  break;
653  case X86II::TAXD: // F2 0F 3A
654  VEX_PP = 0x3;
655  VEX_5M = 0x3;
656  break;
657  case X86II::XS: // F3 0F
658  VEX_PP = 0x2;
659  break;
660  case X86II::XD: // F2 0F
661  VEX_PP = 0x3;
662  break;
663  case X86II::XOP8:
664  VEX_5M = 0x8;
665  break;
666  case X86II::XOP9:
667  VEX_5M = 0x9;
668  break;
669  case X86II::XOPA:
670  VEX_5M = 0xA;
671  break;
672  case X86II::TB: // VEX_5M/VEX_PP already correct
673  break;
674  }
675 
676 
677  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
678  unsigned NumOps = Desc.getNumOperands();
679  unsigned CurOp = 0;
680  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
681  ++CurOp;
682  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
683  Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
684  // Special case for AVX-512 GATHER with 2 TIED_TO operands
685  // Skip the first 2 operands: dst, mask_wb
686  CurOp += 2;
687  else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
688  Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
689  // Special case for GATHER with 2 TIED_TO operands
690  // Skip the first 2 operands: dst, mask_wb
691  CurOp += 2;
692  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
693  // SCATTER
694  ++CurOp;
695 
696  switch (TSFlags & X86II::FormMask) {
697  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
698  case X86II::MRMDestMem: {
699  // MRMDestMem instructions forms:
700  // MemAddr, src1(ModR/M)
701  // MemAddr, src1(VEX_4V), src2(ModR/M)
702  // MemAddr, src1(ModR/M), imm8
703  //
704  if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
706  VEX_B = 0x0;
707  if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
709  VEX_X = 0x0;
710  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
712  EVEX_V2 = 0x0;
713 
714  CurOp += X86::AddrNumOperands;
715 
716  if (HasEVEX_K)
717  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
718 
719  if (HasVEX_4V) {
720  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
721  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
722  EVEX_V2 = 0x0;
723  CurOp++;
724  }
725 
726  const MCOperand &MO = MI.getOperand(CurOp);
727  if (MO.isReg()) {
729  VEX_R = 0x0;
730  if (HasEVEX && X86II::is32ExtendedReg(MO.getReg()))
731  EVEX_R2 = 0x0;
732  }
733  break;
734  }
735  case X86II::MRMSrcMem:
736  // MRMSrcMem instructions forms:
737  // src1(ModR/M), MemAddr
738  // src1(ModR/M), src2(VEX_4V), MemAddr
739  // src1(ModR/M), MemAddr, imm8
740  // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
741  //
742  // FMA4:
743  // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
744  // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
746  VEX_R = 0x0;
747  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
748  EVEX_R2 = 0x0;
749  CurOp++;
750 
751  if (HasEVEX_K)
752  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
753 
754  if (HasVEX_4V) {
755  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
756  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
757  EVEX_V2 = 0x0;
758  CurOp++;
759  }
760 
762  MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
763  VEX_B = 0x0;
765  MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
766  VEX_X = 0x0;
767  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(MemOperand +
769  EVEX_V2 = 0x0;
770 
771  if (HasVEX_4VOp3)
772  // Instruction format for 4VOp3:
773  // src1(ModR/M), MemAddr, src3(VEX_4V)
774  // CurOp points to start of the MemoryOperand,
775  // it skips TIED_TO operands if exist, then increments past src1.
776  // CurOp + X86::AddrNumOperands will point to src3.
777  VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
778  break;
779  case X86II::MRM0m: case X86II::MRM1m:
780  case X86II::MRM2m: case X86II::MRM3m:
781  case X86II::MRM4m: case X86II::MRM5m:
782  case X86II::MRM6m: case X86II::MRM7m: {
783  // MRM[0-9]m instructions forms:
784  // MemAddr
785  // src1(VEX_4V), MemAddr
786  if (HasVEX_4V) {
787  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
788  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
789  EVEX_V2 = 0x0;
790  CurOp++;
791  }
792 
793  if (HasEVEX_K)
794  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
795 
797  MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
798  VEX_B = 0x0;
800  MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
801  VEX_X = 0x0;
802  break;
803  }
804  case X86II::MRMSrcReg:
805  // MRMSrcReg instructions forms:
806  // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
807  // dst(ModR/M), src1(ModR/M)
808  // dst(ModR/M), src1(ModR/M), imm8
809  //
810  // FMA4:
811  // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
812  // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
814  VEX_R = 0x0;
815  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
816  EVEX_R2 = 0x0;
817  CurOp++;
818 
819  if (HasEVEX_K)
820  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
821 
822  if (HasVEX_4V) {
823  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
824  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
825  EVEX_V2 = 0x0;
826  CurOp++;
827  }
828 
829  if (HasMemOp4) // Skip second register source (encoded in I8IMM)
830  CurOp++;
831 
833  VEX_B = 0x0;
834  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
835  VEX_X = 0x0;
836  CurOp++;
837  if (HasVEX_4VOp3)
838  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
839  break;
840  case X86II::MRMDestReg:
841  // MRMDestReg instructions forms:
842  // dst(ModR/M), src(ModR/M)
843  // dst(ModR/M), src(ModR/M), imm8
844  // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
846  VEX_B = 0x0;
847  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
848  VEX_X = 0x0;
849  CurOp++;
850 
851  if (HasEVEX_K)
852  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
853 
854  if (HasVEX_4V) {
855  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
856  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
857  EVEX_V2 = 0x0;
858  CurOp++;
859  }
860 
862  VEX_R = 0x0;
863  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
864  EVEX_R2 = 0x0;
865  break;
866  case X86II::MRM0r: case X86II::MRM1r:
867  case X86II::MRM2r: case X86II::MRM3r:
868  case X86II::MRM4r: case X86II::MRM5r:
869  case X86II::MRM6r: case X86II::MRM7r:
870  // MRM0r-MRM7r instructions forms:
871  // dst(VEX_4V), src(ModR/M), imm8
872  if (HasVEX_4V) {
873  VEX_4V = getVEXRegisterEncoding(MI, CurOp);
874  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
875  EVEX_V2 = 0x0;
876  CurOp++;
877  }
878  if (HasEVEX_K)
879  EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
880 
882  VEX_B = 0x0;
883  if (HasEVEX && X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
884  VEX_X = 0x0;
885  break;
886  default: // RawFrm
887  break;
888  }
889 
890  // Emit segment override opcode prefix as needed.
891  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
892 
893  if (!HasEVEX) {
894  // VEX opcode prefix can have 2 or 3 bytes
895  //
896  // 3 bytes:
897  // +-----+ +--------------+ +-------------------+
898  // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
899  // +-----+ +--------------+ +-------------------+
900  // 2 bytes:
901  // +-----+ +-------------------+
902  // | C5h | | R | vvvv | L | pp |
903  // +-----+ +-------------------+
904  //
905  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
906 
907  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
908  EmitByte(0xC5, CurByte, OS);
909  EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
910  return;
911  }
912 
913  // 3 byte VEX prefix
914  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
915  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
916  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
917  } else {
918  // EVEX opcode prefix can have 4 bytes
919  //
920  // +-----+ +--------------+ +-------------------+ +------------------------+
921  // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
922  // +-----+ +--------------+ +-------------------+ +------------------------+
923  assert((VEX_5M & 0x3) == VEX_5M
924  && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
925 
926  VEX_5M &= 0x3;
927 
928  EmitByte(0x62, CurByte, OS);
929  EmitByte((VEX_R << 7) |
930  (VEX_X << 6) |
931  (VEX_B << 5) |
932  (EVEX_R2 << 4) |
933  VEX_5M, CurByte, OS);
934  EmitByte((VEX_W << 7) |
935  (VEX_4V << 3) |
936  (EVEX_U << 2) |
937  VEX_PP, CurByte, OS);
938  EmitByte((EVEX_z << 7) |
939  (EVEX_L2 << 6) |
940  (VEX_L << 5) |
941  (EVEX_b << 4) |
942  (EVEX_V2 << 3) |
943  EVEX_aaa, CurByte, OS);
944  }
945 }
946 
947 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
948 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
949 /// size, and 3) use of X86-64 extended registers.
950 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
951  const MCInstrDesc &Desc) {
952  unsigned REX = 0;
953  if (TSFlags & X86II::REX_W)
954  REX |= 1 << 3; // set REX.W
955 
956  if (MI.getNumOperands() == 0) return REX;
957 
958  unsigned NumOps = MI.getNumOperands();
959  // FIXME: MCInst should explicitize the two-addrness.
960  bool isTwoAddr = NumOps > 1 &&
961  Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
962 
963  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
964  unsigned i = isTwoAddr ? 1 : 0;
965  for (; i != NumOps; ++i) {
966  const MCOperand &MO = MI.getOperand(i);
967  if (!MO.isReg()) continue;
968  unsigned Reg = MO.getReg();
969  if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
970  // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
971  // that returns non-zero.
972  REX |= 0x40; // REX fixed encoding prefix
973  break;
974  }
975 
976  switch (TSFlags & X86II::FormMask) {
977  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
978  case X86II::MRMSrcReg:
979  if (MI.getOperand(0).isReg() &&
981  REX |= 1 << 2; // set REX.R
982  i = isTwoAddr ? 2 : 1;
983  for (; i != NumOps; ++i) {
984  const MCOperand &MO = MI.getOperand(i);
985  if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
986  REX |= 1 << 0; // set REX.B
987  }
988  break;
989  case X86II::MRMSrcMem: {
990  if (MI.getOperand(0).isReg() &&
992  REX |= 1 << 2; // set REX.R
993  unsigned Bit = 0;
994  i = isTwoAddr ? 2 : 1;
995  for (; i != NumOps; ++i) {
996  const MCOperand &MO = MI.getOperand(i);
997  if (MO.isReg()) {
999  REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1000  Bit++;
1001  }
1002  }
1003  break;
1004  }
1005  case X86II::MRM0m: case X86II::MRM1m:
1006  case X86II::MRM2m: case X86II::MRM3m:
1007  case X86II::MRM4m: case X86II::MRM5m:
1008  case X86II::MRM6m: case X86II::MRM7m:
1009  case X86II::MRMDestMem: {
1010  unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1011  i = isTwoAddr ? 1 : 0;
1012  if (NumOps > e && MI.getOperand(e).isReg() &&
1014  REX |= 1 << 2; // set REX.R
1015  unsigned Bit = 0;
1016  for (; i != e; ++i) {
1017  const MCOperand &MO = MI.getOperand(i);
1018  if (MO.isReg()) {
1020  REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1021  Bit++;
1022  }
1023  }
1024  break;
1025  }
1026  default:
1027  if (MI.getOperand(0).isReg() &&
1029  REX |= 1 << 0; // set REX.B
1030  i = isTwoAddr ? 2 : 1;
1031  for (unsigned e = NumOps; i != e; ++i) {
1032  const MCOperand &MO = MI.getOperand(i);
1033  if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1034  REX |= 1 << 2; // set REX.R
1035  }
1036  break;
1037  }
1038  return REX;
1039 }
1040 
1041 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
1042 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
1043  unsigned &CurByte, int MemOperand,
1044  const MCInst &MI,
1045  raw_ostream &OS) const {
1046  switch (TSFlags & X86II::SegOvrMask) {
1047  default: llvm_unreachable("Invalid segment!");
1048  case 0:
1049  // No segment override, check for explicit one on memory operand.
1050  if (MemOperand != -1) { // If the instruction has a memory operand.
1051  switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
1052  default: llvm_unreachable("Unknown segment register!");
1053  case 0: break;
1054  case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1055  case X86::SS: EmitByte(0x36, CurByte, OS); break;
1056  case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1057  case X86::ES: EmitByte(0x26, CurByte, OS); break;
1058  case X86::FS: EmitByte(0x64, CurByte, OS); break;
1059  case X86::GS: EmitByte(0x65, CurByte, OS); break;
1060  }
1061  }
1062  break;
1063  case X86II::FS:
1064  EmitByte(0x64, CurByte, OS);
1065  break;
1066  case X86II::GS:
1067  EmitByte(0x65, CurByte, OS);
1068  break;
1069  }
1070 }
1071 
1072 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1073 ///
1074 /// MemOperand is the operand # of the start of a memory operand if present. If
1075 /// Not present, it is -1.
1076 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1077  int MemOperand, const MCInst &MI,
1078  const MCInstrDesc &Desc,
1079  raw_ostream &OS) const {
1080 
1081  // Emit the lock opcode prefix as needed.
1082  if (TSFlags & X86II::LOCK)
1083  EmitByte(0xF0, CurByte, OS);
1084 
1085  // Emit segment override opcode prefix as needed.
1086  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
1087 
1088  // Emit the repeat opcode prefix as needed.
1089  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
1090  EmitByte(0xF3, CurByte, OS);
1091 
1092  // Emit the address size opcode prefix as needed.
1093  bool need_address_override;
1094  if (TSFlags & X86II::AdSize) {
1095  need_address_override = true;
1096  } else if (MemOperand == -1) {
1097  need_address_override = false;
1098  } else if (is64BitMode()) {
1099  assert(!Is16BitMemOperand(MI, MemOperand));
1100  need_address_override = Is32BitMemOperand(MI, MemOperand);
1101  } else if (is32BitMode()) {
1102  assert(!Is64BitMemOperand(MI, MemOperand));
1103  need_address_override = Is16BitMemOperand(MI, MemOperand);
1104  } else {
1105  need_address_override = false;
1106  }
1107 
1108  if (need_address_override)
1109  EmitByte(0x67, CurByte, OS);
1110 
1111  // Emit the operand size opcode prefix as needed.
1112  if (TSFlags & X86II::OpSize)
1113  EmitByte(0x66, CurByte, OS);
1114 
1115  bool Need0FPrefix = false;
1116  switch (TSFlags & X86II::Op0Mask) {
1117  default: llvm_unreachable("Invalid prefix!");
1118  case 0: break; // No prefix!
1119  case X86II::REP: break; // already handled.
1120  case X86II::TB: // Two-byte opcode prefix
1121  case X86II::T8: // 0F 38
1122  case X86II::TA: // 0F 3A
1123  case X86II::A6: // 0F A6
1124  case X86II::A7: // 0F A7
1125  Need0FPrefix = true;
1126  break;
1127  case X86II::T8XS: // F3 0F 38
1128  EmitByte(0xF3, CurByte, OS);
1129  Need0FPrefix = true;
1130  break;
1131  case X86II::T8XD: // F2 0F 38
1132  EmitByte(0xF2, CurByte, OS);
1133  Need0FPrefix = true;
1134  break;
1135  case X86II::TAXD: // F2 0F 3A
1136  EmitByte(0xF2, CurByte, OS);
1137  Need0FPrefix = true;
1138  break;
1139  case X86II::XS: // F3 0F
1140  EmitByte(0xF3, CurByte, OS);
1141  Need0FPrefix = true;
1142  break;
1143  case X86II::XD: // F2 0F
1144  EmitByte(0xF2, CurByte, OS);
1145  Need0FPrefix = true;
1146  break;
1147  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
1148  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
1149  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
1150  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
1151  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
1152  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
1153  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
1154  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
1155  }
1156 
1157  // Handle REX prefix.
1158  // FIXME: Can this come before F2 etc to simplify emission?
1159  if (is64BitMode()) {
1160  if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1161  EmitByte(0x40 | REX, CurByte, OS);
1162  }
1163 
1164  // 0x0F escape code must be emitted just before the opcode.
1165  if (Need0FPrefix)
1166  EmitByte(0x0F, CurByte, OS);
1167 
1168  // FIXME: Pull this up into previous switch if REX can be moved earlier.
1169  switch (TSFlags & X86II::Op0Mask) {
1170  case X86II::T8XS: // F3 0F 38
1171  case X86II::T8XD: // F2 0F 38
1172  case X86II::T8: // 0F 38
1173  EmitByte(0x38, CurByte, OS);
1174  break;
1175  case X86II::TAXD: // F2 0F 3A
1176  case X86II::TA: // 0F 3A
1177  EmitByte(0x3A, CurByte, OS);
1178  break;
1179  case X86II::A6: // 0F A6
1180  EmitByte(0xA6, CurByte, OS);
1181  break;
1182  case X86II::A7: // 0F A7
1183  EmitByte(0xA7, CurByte, OS);
1184  break;
1185  }
1186 }
1187 
1188 void X86MCCodeEmitter::
1189 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1190  SmallVectorImpl<MCFixup> &Fixups) const {
1191  unsigned Opcode = MI.getOpcode();
1192  const MCInstrDesc &Desc = MCII.get(Opcode);
1193  uint64_t TSFlags = Desc.TSFlags;
1194 
1195  // Pseudo instructions don't get encoded.
1196  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1197  return;
1198 
1199  unsigned NumOps = Desc.getNumOperands();
1200  unsigned CurOp = X86II::getOperandBias(Desc);
1201 
1202  // Keep track of the current byte being emitted.
1203  unsigned CurByte = 0;
1204 
1205  // Is this instruction encoded using the AVX VEX prefix?
1206  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1207 
1208  // It uses the VEX.VVVV field?
1209  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1210  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1211  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1212  const unsigned MemOp4_I8IMMOperand = 2;
1213 
1214  // It uses the EVEX.aaa field?
1215  bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
1216  bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
1217 
1218  // Determine where the memory operand starts, if present.
1219  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1220  if (MemoryOperand != -1) MemoryOperand += CurOp;
1221 
1222  if (!HasVEXPrefix)
1223  EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1224  else
1225  EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1226 
1227  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1228 
1229  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1230  BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1231 
1232  unsigned SrcRegNum = 0;
1233  switch (TSFlags & X86II::FormMask) {
1234  case X86II::MRMInitReg:
1235  llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1236  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1237  llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1238  case X86II::Pseudo:
1239  llvm_unreachable("Pseudo instruction shouldn't be emitted");
1240  case X86II::RawFrm:
1241  EmitByte(BaseOpcode, CurByte, OS);
1242  break;
1243  case X86II::RawFrmImm8:
1244  EmitByte(BaseOpcode, CurByte, OS);
1245  EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1246  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1247  CurByte, OS, Fixups);
1248  EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1249  OS, Fixups);
1250  break;
1251  case X86II::RawFrmImm16:
1252  EmitByte(BaseOpcode, CurByte, OS);
1253  EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1254  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1255  CurByte, OS, Fixups);
1256  EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1257  OS, Fixups);
1258  break;
1259 
1260  case X86II::AddRegFrm:
1261  EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1262  break;
1263 
1264  case X86II::MRMDestReg:
1265  EmitByte(BaseOpcode, CurByte, OS);
1266  SrcRegNum = CurOp + 1;
1267 
1268  if (HasEVEX_K) // Skip writemask
1269  SrcRegNum++;
1270 
1271  if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1272  ++SrcRegNum;
1273 
1274  EmitRegModRMByte(MI.getOperand(CurOp),
1275  GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1276  CurOp = SrcRegNum + 1;
1277  break;
1278 
1279  case X86II::MRMDestMem:
1280  EmitByte(BaseOpcode, CurByte, OS);
1281  SrcRegNum = CurOp + X86::AddrNumOperands;
1282 
1283  if (HasEVEX_K) // Skip writemask
1284  SrcRegNum++;
1285 
1286  if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1287  ++SrcRegNum;
1288 
1289  EmitMemModRMByte(MI, CurOp,
1290  GetX86RegNum(MI.getOperand(SrcRegNum)),
1291  TSFlags, CurByte, OS, Fixups);
1292  CurOp = SrcRegNum + 1;
1293  break;
1294 
1295  case X86II::MRMSrcReg:
1296  EmitByte(BaseOpcode, CurByte, OS);
1297  SrcRegNum = CurOp + 1;
1298 
1299  if (HasEVEX_K) // Skip writemask
1300  SrcRegNum++;
1301 
1302  if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1303  ++SrcRegNum;
1304 
1305  if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1306  ++SrcRegNum;
1307 
1308  EmitRegModRMByte(MI.getOperand(SrcRegNum),
1309  GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1310 
1311  // 2 operands skipped with HasMemOp4, compensate accordingly
1312  CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1313  if (HasVEX_4VOp3)
1314  ++CurOp;
1315  break;
1316 
1317  case X86II::MRMSrcMem: {
1318  int AddrOperands = X86::AddrNumOperands;
1319  unsigned FirstMemOp = CurOp+1;
1320 
1321  if (HasEVEX_K) { // Skip writemask
1322  ++AddrOperands;
1323  ++FirstMemOp;
1324  }
1325 
1326  if (HasVEX_4V) {
1327  ++AddrOperands;
1328  ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1329  }
1330  if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1331  ++FirstMemOp;
1332 
1333  EmitByte(BaseOpcode, CurByte, OS);
1334 
1335  EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1336  TSFlags, CurByte, OS, Fixups);
1337  CurOp += AddrOperands + 1;
1338  if (HasVEX_4VOp3)
1339  ++CurOp;
1340  break;
1341  }
1342 
1343  case X86II::MRM0r: case X86II::MRM1r:
1344  case X86II::MRM2r: case X86II::MRM3r:
1345  case X86II::MRM4r: case X86II::MRM5r:
1346  case X86II::MRM6r: case X86II::MRM7r:
1347  if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1348  ++CurOp;
1349  EmitByte(BaseOpcode, CurByte, OS);
1350  EmitRegModRMByte(MI.getOperand(CurOp++),
1351  (TSFlags & X86II::FormMask)-X86II::MRM0r,
1352  CurByte, OS);
1353  break;
1354  case X86II::MRM0m: case X86II::MRM1m:
1355  case X86II::MRM2m: case X86II::MRM3m:
1356  case X86II::MRM4m: case X86II::MRM5m:
1357  case X86II::MRM6m: case X86II::MRM7m:
1358  if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1359  ++CurOp;
1360  EmitByte(BaseOpcode, CurByte, OS);
1361  EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1362  TSFlags, CurByte, OS, Fixups);
1363  CurOp += X86::AddrNumOperands;
1364  break;
1365  case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
1366  case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
1367  case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_D0:
1368  case X86II::MRM_D1: case X86II::MRM_D4: case X86II::MRM_D5:
1369  case X86II::MRM_D6: case X86II::MRM_D8: case X86II::MRM_D9:
1370  case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
1371  case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
1372  case X86II::MRM_E8: case X86II::MRM_F0: case X86II::MRM_F8:
1373  case X86II::MRM_F9:
1374  EmitByte(BaseOpcode, CurByte, OS);
1375 
1376  unsigned char MRM;
1377  switch (TSFlags & X86II::FormMask) {
1378  default: llvm_unreachable("Invalid Form");
1379  case X86II::MRM_C1: MRM = 0xC1; break;
1380  case X86II::MRM_C2: MRM = 0xC2; break;
1381  case X86II::MRM_C3: MRM = 0xC3; break;
1382  case X86II::MRM_C4: MRM = 0xC4; break;
1383  case X86II::MRM_C8: MRM = 0xC8; break;
1384  case X86II::MRM_C9: MRM = 0xC9; break;
1385  case X86II::MRM_CA: MRM = 0xCA; break;
1386  case X86II::MRM_CB: MRM = 0xCB; break;
1387  case X86II::MRM_D0: MRM = 0xD0; break;
1388  case X86II::MRM_D1: MRM = 0xD1; break;
1389  case X86II::MRM_D4: MRM = 0xD4; break;
1390  case X86II::MRM_D5: MRM = 0xD5; break;
1391  case X86II::MRM_D6: MRM = 0xD6; break;
1392  case X86II::MRM_D8: MRM = 0xD8; break;
1393  case X86II::MRM_D9: MRM = 0xD9; break;
1394  case X86II::MRM_DA: MRM = 0xDA; break;
1395  case X86II::MRM_DB: MRM = 0xDB; break;
1396  case X86II::MRM_DC: MRM = 0xDC; break;
1397  case X86II::MRM_DD: MRM = 0xDD; break;
1398  case X86II::MRM_DE: MRM = 0xDE; break;
1399  case X86II::MRM_DF: MRM = 0xDF; break;
1400  case X86II::MRM_E8: MRM = 0xE8; break;
1401  case X86II::MRM_F0: MRM = 0xF0; break;
1402  case X86II::MRM_F8: MRM = 0xF8; break;
1403  case X86II::MRM_F9: MRM = 0xF9; break;
1404  }
1405  EmitByte(MRM, CurByte, OS);
1406  break;
1407  }
1408 
1409  // If there is a remaining operand, it must be a trailing immediate. Emit it
1410  // according to the right size for the instruction. Some instructions
1411  // (SSE4a extrq and insertq) have two trailing immediates.
1412  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1413  // The last source register of a 4 operand instruction in AVX is encoded
1414  // in bits[7:4] of a immediate byte.
1415  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1416  const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1417  : CurOp);
1418  ++CurOp;
1419  unsigned RegNum = GetX86RegNum(MO) << 4;
1421  RegNum |= 1 << 7;
1422  // If there is an additional 5th operand it must be an immediate, which
1423  // is encoded in bits[3:0]
1424  if (CurOp != NumOps) {
1425  const MCOperand &MIMM = MI.getOperand(CurOp++);
1426  if (MIMM.isImm()) {
1427  unsigned Val = MIMM.getImm();
1428  assert(Val < 16 && "Immediate operand value out of range");
1429  RegNum |= Val;
1430  }
1431  }
1432  EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1433  CurByte, OS, Fixups);
1434  } else {
1435  unsigned FixupKind;
1436  // FIXME: Is there a better way to know that we need a signed relocation?
1437  if (MI.getOpcode() == X86::ADD64ri32 ||
1438  MI.getOpcode() == X86::MOV64ri32 ||
1439  MI.getOpcode() == X86::MOV64mi32 ||
1440  MI.getOpcode() == X86::PUSH64i32)
1441  FixupKind = X86::reloc_signed_4byte;
1442  else
1443  FixupKind = getImmFixupKind(TSFlags);
1444  EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1445  X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1446  CurByte, OS, Fixups);
1447  }
1448  }
1449 
1450  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1451  EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1452 
1453 #ifndef NDEBUG
1454  // FIXME: Verify.
1455  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1456  errs() << "Cannot encode all operands of: ";
1457  MI.dump();
1458  errs() << '\n';
1459  abort();
1460  }
1461 #endif
1462 }
static bool HasSecRelSymbolRef(const MCExpr *Expr)
AddrSegmentReg - The operand # of the segment in the memory operand.
Definition: X86BaseInfo.h:39
static bool Is64BitMemOperand(const MCInst &MI, unsigned Op)
raw_ostream & errs()
bool isX86_64NonExtLowByteReg(unsigned reg)
Definition: X86BaseInfo.h:695
const MCSymbol & getSymbol() const
Definition: MCExpr.h:283
bool isReg() const
Definition: MCInst.h:56
static const MCConstantExpr * Create(int64_t Value, MCContext &Ctx)
Definition: MCExpr.cpp:152
static bool isDisp8(int Value)
static GlobalOffsetTableExprKind StartsWithGlobalOffsetTable(const MCExpr *Expr)
ExprKind getKind() const
Definition: MCExpr.h:61
static MCFixupKind getKindForSize(unsigned Size, bool isPCRel)
Definition: MCFixup.h:97
int getOperandBias(const MCInstrDesc &Desc)
Definition: X86BaseInfo.h:567
unsigned isImmPCRel(uint64_t TSFlags)
Definition: X86BaseInfo.h:547
A one-byte pc relative fixup.
Definition: MCFixup.h:27
MCCodeEmitter * createX86MCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx)
#define llvm_unreachable(msg)
A four-byte section relative fixup.
Definition: MCFixup.h:37
A four-byte fixup.
Definition: MCFixup.h:25
unsigned getReg() const
getReg - Returns the register number.
Definition: MCInst.h:63
bool hasImm(uint64_t TSFlags)
Definition: X86BaseInfo.h:526
static bool isCDisp8(uint64_t TSFlags, int Value, int &CValue)
bool isX86_64ExtendedReg(unsigned RegNo)
Definition: X86BaseInfo.h:660
bool isImm() const
Definition: MCInst.h:57
void dump() const
Definition: MCInst.cpp:68
const MCExpr * getExpr() const
Definition: MCInst.h:93
static MCFixupKind getImmFixupKind(uint64_t TSFlags)
const MCExpr * getLHS() const
getLHS - Get the left-hand side expression of the binary operator.
Definition: MCExpr.h:477
static bool Is16BitMemOperand(const MCInst &MI, unsigned Op)
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:22
MCFixupKind
MCFixupKind - Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:22
AddrNumOperands - Total number of operands in a memory reference.
Definition: X86BaseInfo.h:42
SMLoc getLoc() const
Definition: MCInst.h:161
MCBinaryExpr - Binary assembler expressions.
Definition: MCExpr.h:356
A one-byte fixup.
Definition: MCFixup.h:23
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specific constraint if it is set. Returns -1 if it is not set...
Definition: MCInstrDesc.h:156
static bool Is32BitMemOperand(const MCInst &MI, unsigned Op)
static bool is32ExtendedReg(unsigned RegNo)
Definition: X86BaseInfo.h:688
A two-byte pc relative fixup.
Definition: MCFixup.h:28
static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, const MCInstrDesc &Desc)
A four-byte pc relative fixup.
Definition: MCFixup.h:29
unsigned char getBaseOpcodeFor(uint64_t TSFlags)
Definition: X86BaseInfo.h:522
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
unsigned getOpcode() const
Definition: MCInst.h:158
int64_t getImm() const
Definition: MCInst.h:74
static const MCBinaryExpr * CreateAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:396
const MCExpr * getRHS() const
getRHS - Get the right-hand side expression of the binary operator.
Definition: MCExpr.h:480
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:70
VEX - The opcode prefix used by AVX instructions.
Definition: X86BaseInfo.h:437
static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM)
static MCOperand CreateImm(int64_t Val)
Definition: MCInst.h:117
unsigned getSizeOfImm(uint64_t TSFlags)
Definition: X86BaseInfo.h:532
unsigned getNumOperands() const
Definition: MCInst.h:165
A eight-byte fixup.
Definition: MCFixup.h:26
References to labels and assigned expressions.
Definition: MCExpr.h:36
VariantKind getKind() const
Definition: MCExpr.h:285
int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode)
Definition: X86BaseInfo.h:597
LLVM Value Representation.
Definition: Value.h:66
XOP - Opcode prefix used by XOP instructions.
Definition: X86BaseInfo.h:515
Binary expressions.
Definition: MCExpr.h:34
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
static MCFixup Create(uint32_t Offset, const MCExpr *Value, MCFixupKind Kind, SMLoc Loc=SMLoc())
Definition: MCFixup.h:77
GlobalOffsetTableExprKind
const MCRegisterInfo & MRI
Represents a location in source code.
Definition: SMLoc.h:23
A two-byte fixup.
Definition: MCFixup.h:24
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:163