LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ARMCodeEmitter.cpp
Go to the documentation of this file.
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMRelocations.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
23 #include "llvm/ADT/Statistic.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/PassManager.h"
35 #include "llvm/Support/Debug.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42 
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44 
45 namespace {
46 
47  class ARMCodeEmitter : public MachineFunctionPass {
48  ARMJITInfo *JTI;
49  const ARMBaseInstrInfo *II;
50  const DataLayout *TD;
51  const ARMSubtarget *Subtarget;
53  JITCodeEmitter &MCE;
54  MachineModuleInfo *MMI;
55  const std::vector<MachineConstantPoolEntry> *MCPEs;
56  const std::vector<MachineJumpTableEntry> *MJTEs;
57  bool IsPIC;
58  bool IsThumb;
59 
60  void getAnalysisUsage(AnalysisUsage &AU) const {
63  }
64 
65  static char ID;
66  public:
67  ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68  : MachineFunctionPass(ID), JTI(0),
69  II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70  TD(tm.getDataLayout()), TM(tm),
71  MCE(mce), MCPEs(0), MJTEs(0),
72  IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73 
74  /// getBinaryCodeForInstr - This function, generated by the
75  /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76  /// machine instructions.
77  uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78 
79  bool runOnMachineFunction(MachineFunction &MF);
80 
81  virtual const char *getPassName() const {
82  return "ARM Machine Code Emitter";
83  }
84 
85  void emitInstruction(const MachineInstr &MI);
86 
87  private:
88 
89  void emitWordLE(unsigned Binary);
90  void emitDWordLE(uint64_t Binary);
91  void emitConstPoolInstruction(const MachineInstr &MI);
92  void emitMOVi32immInstruction(const MachineInstr &MI);
93  void emitMOVi2piecesInstruction(const MachineInstr &MI);
94  void emitLEApcrelJTInstruction(const MachineInstr &MI);
95  void emitPseudoMoveInstruction(const MachineInstr &MI);
96  void addPCLabel(unsigned LabelID);
97  void emitPseudoInstruction(const MachineInstr &MI);
98  unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99  const MCInstrDesc &MCID,
100  const MachineOperand &MO,
101  unsigned OpIdx);
102 
103  unsigned getMachineSoImmOpValue(unsigned SoImm);
104  unsigned getAddrModeSBit(const MachineInstr &MI,
105  const MCInstrDesc &MCID) const;
106 
107  void emitDataProcessingInstruction(const MachineInstr &MI,
108  unsigned ImplicitRd = 0,
109  unsigned ImplicitRn = 0);
110 
111  void emitLoadStoreInstruction(const MachineInstr &MI,
112  unsigned ImplicitRd = 0,
113  unsigned ImplicitRn = 0);
114 
115  void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116  unsigned ImplicitRn = 0);
117 
118  void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119 
120  void emitMulFrmInstruction(const MachineInstr &MI);
121 
122  void emitExtendInstruction(const MachineInstr &MI);
123 
124  void emitMiscArithInstruction(const MachineInstr &MI);
125 
126  void emitSaturateInstruction(const MachineInstr &MI);
127 
128  void emitBranchInstruction(const MachineInstr &MI);
129 
130  void emitInlineJumpTable(unsigned JTIndex);
131 
132  void emitMiscBranchInstruction(const MachineInstr &MI);
133 
134  void emitVFPArithInstruction(const MachineInstr &MI);
135 
136  void emitVFPConversionInstruction(const MachineInstr &MI);
137 
138  void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139 
140  void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141 
142  void emitNEONLaneInstruction(const MachineInstr &MI);
143  void emitNEONDupInstruction(const MachineInstr &MI);
144  void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145  void emitNEON2RegInstruction(const MachineInstr &MI);
146  void emitNEON3RegInstruction(const MachineInstr &MI);
147 
148  /// getMachineOpValue - Return binary encoding of operand. If the machine
149  /// operand requires relocation, record the relocation and return zero.
150  unsigned getMachineOpValue(const MachineInstr &MI,
151  const MachineOperand &MO) const;
152  unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153  return getMachineOpValue(MI, MI.getOperand(OpIdx));
154  }
155 
156  // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157  // TableGen'erated getBinaryCodeForInstr() function to encode any
158  // operand values, instead querying getMachineOpValue() directly for
159  // each operand it needs to encode. Thus, any of the new encoder
160  // helper functions can simply return 0 as the values the return
161  // are already handled elsewhere. They are placeholders to allow this
162  // encoder to continue to function until the MC encoder is sufficiently
163  // far along that this one can be eliminated entirely.
164  unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165  const { return 0; }
166  unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167  const { return 0; }
168  unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169  const { return 0; }
170  unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
171  const { return 0; }
172  unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
173  const { return 0; }
174  unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
175  const { return 0; }
176  unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
177  const { return 0; }
178  unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
179  const { return 0; }
180  unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
181  const { return 0; }
182  unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
183  const { return 0; }
184  unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
185  const { return 0; }
186  unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
187  const { return 0; }
188  unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
189  const { return 0; }
190  unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
191  unsigned Op) const { return 0; }
192  unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
193  const { return 0; }
194  unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
195  const { return 0; }
196  unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
197  const { return 0; }
198  unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
199  const { return 0; }
200  unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
201  const { return 0; }
202  unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
203  const { return 0; }
204  unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
205  const { return 0; }
206  unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
207  const { return 0; }
208  unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
209  const { return 0; }
210  unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
211  const { return 0; }
212  unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
213  const { return 0; }
214  unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
215  const { return 0; }
216  unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
217  const { return 0; }
218  unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
219  const { return 0; }
220  unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
221  const { return 0; }
222  unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
223  const { return 0; }
224  unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
225  const { return 0; }
226  unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
227  const { return 0; }
228  unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
229  const { return 0; }
230  unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
231  const { return 0; }
232  unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
233  unsigned Op)
234  const { return 0; }
235  unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
236  const { return 0; }
237  unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
238  const { return 0; }
239  unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
240  unsigned Op) const { return 0; }
241  unsigned getSsatBitPosValue(const MachineInstr &MI,
242  unsigned Op) const { return 0; }
243  uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
244  const {return 0; }
245  uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
246  const { return 0; }
247 
248  unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
249  const {
250  // {17-13} = reg
251  // {12} = (U)nsigned (add == '1', sub == '0')
252  // {11-0} = imm12
253  const MachineOperand &MO = MI.getOperand(Op);
254  const MachineOperand &MO1 = MI.getOperand(Op + 1);
255  if (!MO.isReg()) {
256  emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
257  return 0;
258  }
259  unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
260  int32_t Imm12 = MO1.getImm();
261  uint32_t Binary;
262  Binary = Imm12 & 0xfff;
263  if (Imm12 >= 0)
264  Binary |= (1 << 12);
265  Binary |= (Reg << 13);
266  return Binary;
267  }
268 
269  unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
270  return 0;
271  }
272 
273  uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
274  const { return 0;}
275  uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
276  const { return 0;}
277  uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
278  const { return 0;}
279  uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
280  const { return 0;}
281  uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
282  const { return 0; }
283  uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
284  const { return 0; }
285  uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
286  const { return 0; }
287  uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
288  const { return 0; }
289  uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
290  const { return 0; }
291  uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
292  // {17-13} = reg
293  // {12} = (U)nsigned (add == '1', sub == '0')
294  // {11-0} = imm12
295  const MachineOperand &MO = MI.getOperand(Op);
296  const MachineOperand &MO1 = MI.getOperand(Op + 1);
297  if (!MO.isReg()) {
298  emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
299  return 0;
300  }
301  unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
302  int32_t Imm12 = MO1.getImm();
303 
304  // Special value for #-0
305  if (Imm12 == INT32_MIN)
306  Imm12 = 0;
307 
308  // Immediate is always encoded as positive. The 'U' bit controls add vs
309  // sub.
310  bool isAdd = true;
311  if (Imm12 < 0) {
312  Imm12 = -Imm12;
313  isAdd = false;
314  }
315 
316  uint32_t Binary = Imm12 & 0xfff;
317  if (isAdd)
318  Binary |= (1 << 12);
319  Binary |= (Reg << 13);
320  return Binary;
321  }
322  unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
323  const { return 0; }
324 
325  unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
326  const { return 0; }
327 
328  unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
329  const { return 0; }
330  unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
331  const { return 0; }
332  unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
333  const { return 0; }
334  unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
335  const { return 0; }
336 
337  /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
338  /// machine operand requires relocation, record the relocation and return
339  /// zero.
340  unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
341  unsigned Reloc);
342 
343  /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
344  ///
345  unsigned getShiftOp(unsigned Imm) const ;
346 
347  /// Routines that handle operands which add machine relocations which are
348  /// fixed up by the relocation stage.
349  void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
350  bool MayNeedFarStub, bool Indirect,
351  intptr_t ACPV = 0) const;
352  void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
353  void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
354  void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
355  void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
356  intptr_t JTBase = 0) const;
357  unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
358  unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
359  unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
360  unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
361  unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
362  unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
363  };
364 }
365 
366 char ARMCodeEmitter::ID = 0;
367 
368 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
369 /// code to the specified MCE object.
371  JITCodeEmitter &JCE) {
372  return new ARMCodeEmitter(TM, JCE);
373 }
374 
375 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
376  TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
377 
378  assert((Target.getRelocationModel() != Reloc::Default ||
379  Target.getRelocationModel() != Reloc::Static) &&
380  "JIT relocation model must be set to static or default!");
381 
382  JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
383  II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
384  TD = Target.getDataLayout();
385 
386  Subtarget = &TM.getSubtarget<ARMSubtarget>();
387  MCPEs = &MF.getConstantPool()->getConstants();
388  MJTEs = 0;
389  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
390  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
391  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
392  JTI->Initialize(MF, IsPIC);
393  MMI = &getAnalysis<MachineModuleInfo>();
394  MCE.setModuleInfo(MMI);
395 
396  do {
397  DEBUG(errs() << "JITTing function '"
398  << MF.getName() << "'\n");
399  MCE.startFunction(MF);
400  for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
401  MBB != E; ++MBB) {
402  MCE.StartMachineBasicBlock(MBB);
403  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
404  I != E; ++I)
405  emitInstruction(*I);
406  }
407  } while (MCE.finishFunction(MF));
408 
409  return false;
410 }
411 
412 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
413 ///
414 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
415  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
416  default: llvm_unreachable("Unknown shift opc!");
417  case ARM_AM::asr: return 2;
418  case ARM_AM::lsl: return 0;
419  case ARM_AM::lsr: return 1;
420  case ARM_AM::ror:
421  case ARM_AM::rrx: return 3;
422  }
423 }
424 
425 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
426 /// machine operand requires relocation, record the relocation and return zero.
427 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
428  const MachineOperand &MO,
429  unsigned Reloc) {
430  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
431  && "Relocation to this function should be for movt or movw");
432 
433  if (MO.isImm())
434  return static_cast<unsigned>(MO.getImm());
435  else if (MO.isGlobal())
436  emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
437  else if (MO.isSymbol())
438  emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
439  else if (MO.isMBB())
440  emitMachineBasicBlock(MO.getMBB(), Reloc);
441  else {
442 #ifndef NDEBUG
443  errs() << MO;
444 #endif
445  llvm_unreachable("Unsupported operand type for movw/movt");
446  }
447  return 0;
448 }
449 
450 /// getMachineOpValue - Return binary encoding of operand. If the machine
451 /// operand requires relocation, record the relocation and return zero.
452 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
453  const MachineOperand &MO) const {
454  if (MO.isReg())
455  return II->getRegisterInfo().getEncodingValue(MO.getReg());
456  else if (MO.isImm())
457  return static_cast<unsigned>(MO.getImm());
458  else if (MO.isGlobal())
459  emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
460  else if (MO.isSymbol())
461  emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
462  else if (MO.isCPI()) {
463  const MCInstrDesc &MCID = MI.getDesc();
464  // For VFP load, the immediate offset is multiplied by 4.
465  unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
467  emitConstPoolAddress(MO.getIndex(), Reloc);
468  } else if (MO.isJTI())
469  emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
470  else if (MO.isMBB())
471  emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
472  else
473  llvm_unreachable("Unable to encode MachineOperand!");
474  return 0;
475 }
476 
477 /// emitGlobalAddress - Emit the specified address to the code stream.
478 ///
479 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
480  bool MayNeedFarStub, bool Indirect,
481  intptr_t ACPV) const {
482  MachineRelocation MR = Indirect
483  ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
484  const_cast<GlobalValue *>(GV),
485  ACPV, MayNeedFarStub)
486  : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
487  const_cast<GlobalValue *>(GV), ACPV,
488  MayNeedFarStub);
489  MCE.addRelocation(MR);
490 }
491 
492 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
493 /// be emitted to the current location in the function, and allow it to be PC
494 /// relative.
495 void ARMCodeEmitter::
496 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
497  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
498  Reloc, ES));
499 }
500 
501 /// emitConstPoolAddress - Arrange for the address of an constant pool
502 /// to be emitted to the current location in the function, and allow it to be PC
503 /// relative.
504 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
505  // Tell JIT emitter we'll resolve the address.
506  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
507  Reloc, CPI, 0, true));
508 }
509 
510 /// emitJumpTableAddress - Arrange for the address of a jump table to
511 /// be emitted to the current location in the function, and allow it to be PC
512 /// relative.
513 void ARMCodeEmitter::
514 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
515  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
516  Reloc, JTIndex, 0, true));
517 }
518 
519 /// emitMachineBasicBlock - Emit the specified address basic block.
520 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
521  unsigned Reloc,
522  intptr_t JTBase) const {
523  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
524  Reloc, BB, JTBase));
525 }
526 
527 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
528  DEBUG(errs() << " 0x";
529  errs().write_hex(Binary) << "\n");
530  MCE.emitWordLE(Binary);
531 }
532 
533 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
534  DEBUG(errs() << " 0x";
535  errs().write_hex(Binary) << "\n");
536  MCE.emitDWordLE(Binary);
537 }
538 
539 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
540  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
541 
542  MCE.processDebugLoc(MI.getDebugLoc(), true);
543 
544  ++NumEmitted; // Keep track of the # of mi's emitted
545  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
546  default: {
547  llvm_unreachable("Unhandled instruction encoding format!");
548  }
549  case ARMII::MiscFrm:
550  if (MI.getOpcode() == ARM::LEApcrelJT) {
551  // Materialize jumptable address.
552  emitLEApcrelJTInstruction(MI);
553  break;
554  }
555  llvm_unreachable("Unhandled instruction encoding!");
556  case ARMII::Pseudo:
557  emitPseudoInstruction(MI);
558  break;
559  case ARMII::DPFrm:
560  case ARMII::DPSoRegFrm:
561  emitDataProcessingInstruction(MI);
562  break;
563  case ARMII::LdFrm:
564  case ARMII::StFrm:
565  emitLoadStoreInstruction(MI);
566  break;
567  case ARMII::LdMiscFrm:
568  case ARMII::StMiscFrm:
569  emitMiscLoadStoreInstruction(MI);
570  break;
571  case ARMII::LdStMulFrm:
572  emitLoadStoreMultipleInstruction(MI);
573  break;
574  case ARMII::MulFrm:
575  emitMulFrmInstruction(MI);
576  break;
577  case ARMII::ExtFrm:
578  emitExtendInstruction(MI);
579  break;
580  case ARMII::ArithMiscFrm:
581  emitMiscArithInstruction(MI);
582  break;
583  case ARMII::SatFrm:
584  emitSaturateInstruction(MI);
585  break;
586  case ARMII::BrFrm:
587  emitBranchInstruction(MI);
588  break;
589  case ARMII::BrMiscFrm:
590  emitMiscBranchInstruction(MI);
591  break;
592  // VFP instructions.
593  case ARMII::VFPUnaryFrm:
594  case ARMII::VFPBinaryFrm:
595  emitVFPArithInstruction(MI);
596  break;
597  case ARMII::VFPConv1Frm:
598  case ARMII::VFPConv2Frm:
599  case ARMII::VFPConv3Frm:
600  case ARMII::VFPConv4Frm:
601  case ARMII::VFPConv5Frm:
602  emitVFPConversionInstruction(MI);
603  break;
604  case ARMII::VFPLdStFrm:
605  emitVFPLoadStoreInstruction(MI);
606  break;
608  emitVFPLoadStoreMultipleInstruction(MI);
609  break;
610 
611  // NEON instructions.
612  case ARMII::NGetLnFrm:
613  case ARMII::NSetLnFrm:
614  emitNEONLaneInstruction(MI);
615  break;
616  case ARMII::NDupFrm:
617  emitNEONDupInstruction(MI);
618  break;
620  emitNEON1RegModImmInstruction(MI);
621  break;
622  case ARMII::N2RegFrm:
623  emitNEON2RegInstruction(MI);
624  break;
625  case ARMII::N3RegFrm:
626  emitNEON3RegInstruction(MI);
627  break;
628  }
629  MCE.processDebugLoc(MI.getDebugLoc(), false);
630 }
631 
632 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
633  unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
634  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
635  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
636 
637  // Remember the CONSTPOOL_ENTRY address for later relocation.
638  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
639 
640  // Emit constpool island entry. In most cases, the actual values will be
641  // resolved and relocated after code emission.
642  if (MCPE.isMachineConstantPoolEntry()) {
643  ARMConstantPoolValue *ACPV =
644  static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
645 
646  DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
647  << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
648 
649  assert(ACPV->isGlobalValue() && "unsupported constant pool value");
650  const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
651  if (GV) {
652  Reloc::Model RelocM = TM.getRelocationModel();
653  emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
654  isa<Function>(GV),
655  Subtarget->GVIsIndirectSymbol(GV, RelocM),
656  (intptr_t)ACPV);
657  } else {
658  const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
659  emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
660  }
661  emitWordLE(0);
662  } else {
663  const Constant *CV = MCPE.Val.ConstVal;
664 
665  DEBUG({
666  errs() << " ** Constant pool #" << CPI << " @ "
667  << (void*)MCE.getCurrentPCValue() << " ";
668  if (const Function *F = dyn_cast<Function>(CV))
669  errs() << F->getName();
670  else
671  errs() << *CV;
672  errs() << '\n';
673  });
674 
675  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
676  emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
677  emitWordLE(0);
678  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
679  uint32_t Val = uint32_t(*CI->getValue().getRawData());
680  emitWordLE(Val);
681  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
682  if (CFP->getType()->isFloatTy())
683  emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
684  else if (CFP->getType()->isDoubleTy())
685  emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
686  else {
687  llvm_unreachable("Unable to handle this constantpool entry!");
688  }
689  } else {
690  llvm_unreachable("Unable to handle this constantpool entry!");
691  }
692  }
693 }
694 
695 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
696  const MachineOperand &MO0 = MI.getOperand(0);
697  const MachineOperand &MO1 = MI.getOperand(1);
698 
699  // Emit the 'movw' instruction.
700  unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
701 
702  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
703 
704  // Set the conditional execution predicate.
705  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
706 
707  // Encode Rd.
708  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
709 
710  // Encode imm16 as imm4:imm12
711  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
712  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
713  emitWordLE(Binary);
714 
715  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
716  // Emit the 'movt' instruction.
717  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
718 
719  // Set the conditional execution predicate.
720  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
721 
722  // Encode Rd.
723  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
724 
725  // Encode imm16 as imm4:imm1, same as movw above.
726  Binary |= Hi16 & 0xFFF;
727  Binary |= ((Hi16 >> 12) & 0xF) << 16;
728  emitWordLE(Binary);
729 }
730 
731 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
732  const MachineOperand &MO0 = MI.getOperand(0);
733  const MachineOperand &MO1 = MI.getOperand(1);
734  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
735  "Not a valid so_imm value!");
736  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
737  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
738 
739  // Emit the 'mov' instruction.
740  unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
741 
742  // Set the conditional execution predicate.
743  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
744 
745  // Encode Rd.
746  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
747 
748  // Encode so_imm.
749  // Set bit I(25) to identify this is the immediate form of <shifter_op>
750  Binary |= 1 << ARMII::I_BitShift;
751  Binary |= getMachineSoImmOpValue(V1);
752  emitWordLE(Binary);
753 
754  // Now the 'orr' instruction.
755  Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
756 
757  // Set the conditional execution predicate.
758  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
759 
760  // Encode Rd.
761  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
762 
763  // Encode Rn.
764  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
765 
766  // Encode so_imm.
767  // Set bit I(25) to identify this is the immediate form of <shifter_op>
768  Binary |= 1 << ARMII::I_BitShift;
769  Binary |= getMachineSoImmOpValue(V2);
770  emitWordLE(Binary);
771 }
772 
773 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
774  // It's basically add r, pc, (LJTI - $+8)
775 
776  const MCInstrDesc &MCID = MI.getDesc();
777 
778  // Emit the 'add' instruction.
779  unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
780 
781  // Set the conditional execution predicate
782  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
783 
784  // Encode S bit if MI modifies CPSR.
785  Binary |= getAddrModeSBit(MI, MCID);
786 
787  // Encode Rd.
788  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
789 
790  // Encode Rn which is PC.
791  Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
792 
793  // Encode the displacement.
794  Binary |= 1 << ARMII::I_BitShift;
795  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
796 
797  emitWordLE(Binary);
798 }
799 
800 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
801  unsigned Opcode = MI.getDesc().Opcode;
802 
803  // Part of binary is determined by TableGn.
804  unsigned Binary = getBinaryCodeForInstr(MI);
805 
806  // Set the conditional execution predicate
807  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
808 
809  // Encode S bit if MI modifies CPSR.
810  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
811  Binary |= 1 << ARMII::S_BitShift;
812 
813  // Encode register def if there is one.
814  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
815 
816  // Encode the shift operation.
817  switch (Opcode) {
818  default: break;
819  case ARM::RRX:
820  // rrx
821  Binary |= 0x6 << 4;
822  break;
823  case ARM::MOVsrl_flag:
824  // lsr #1
825  Binary |= (0x2 << 4) | (1 << 7);
826  break;
827  case ARM::MOVsra_flag:
828  // asr #1
829  Binary |= (0x4 << 4) | (1 << 7);
830  break;
831  }
832 
833  // Encode register Rm.
834  Binary |= getMachineOpValue(MI, 1);
835 
836  emitWordLE(Binary);
837 }
838 
839 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
840  DEBUG(errs() << " ** LPC" << LabelID << " @ "
841  << (void*)MCE.getCurrentPCValue() << '\n');
842  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
843 }
844 
845 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
846  unsigned Opcode = MI.getDesc().Opcode;
847  switch (Opcode) {
848  default:
849  llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
850  case ARM::BX_CALL:
851  case ARM::BMOVPCRX_CALL: {
852  // First emit mov lr, pc
853  unsigned Binary = 0x01a0e00f;
854  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
855  emitWordLE(Binary);
856 
857  // and then emit the branch.
858  emitMiscBranchInstruction(MI);
859  break;
860  }
862  // We allow inline assembler nodes with empty bodies - they can
863  // implicitly define registers, which is ok for JIT.
864  if (MI.getOperand(0).getSymbolName()[0]) {
865  report_fatal_error("JIT does not support inline asm!");
866  }
867  break;
868  }
871  MCE.emitLabel(MI.getOperand(0).getMCSymbol());
872  break;
874  case TargetOpcode::KILL:
875  // Do nothing.
876  break;
877  case ARM::CONSTPOOL_ENTRY:
878  emitConstPoolInstruction(MI);
879  break;
880  case ARM::PICADD: {
881  // Remember of the address of the PC label for relocation later.
882  addPCLabel(MI.getOperand(2).getImm());
883  // PICADD is just an add instruction that implicitly read pc.
884  emitDataProcessingInstruction(MI, 0, ARM::PC);
885  break;
886  }
887  case ARM::PICLDR:
888  case ARM::PICLDRB:
889  case ARM::PICSTR:
890  case ARM::PICSTRB: {
891  // Remember of the address of the PC label for relocation later.
892  addPCLabel(MI.getOperand(2).getImm());
893  // These are just load / store instructions that implicitly read pc.
894  emitLoadStoreInstruction(MI, 0, ARM::PC);
895  break;
896  }
897  case ARM::PICLDRH:
898  case ARM::PICLDRSH:
899  case ARM::PICLDRSB:
900  case ARM::PICSTRH: {
901  // Remember of the address of the PC label for relocation later.
902  addPCLabel(MI.getOperand(2).getImm());
903  // These are just load / store instructions that implicitly read pc.
904  emitMiscLoadStoreInstruction(MI, ARM::PC);
905  break;
906  }
907 
908  case ARM::MOVi32imm:
909  // Two instructions to materialize a constant.
910  if (Subtarget->hasV6T2Ops())
911  emitMOVi32immInstruction(MI);
912  else
913  emitMOVi2piecesInstruction(MI);
914  break;
915 
916  case ARM::LEApcrelJT:
917  // Materialize jumptable address.
918  emitLEApcrelJTInstruction(MI);
919  break;
920  case ARM::RRX:
921  case ARM::MOVsrl_flag:
922  case ARM::MOVsra_flag:
923  emitPseudoMoveInstruction(MI);
924  break;
925  }
926 }
927 
928 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
929  const MCInstrDesc &MCID,
930  const MachineOperand &MO,
931  unsigned OpIdx) {
932  unsigned Binary = getMachineOpValue(MI, MO);
933 
934  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
935  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
937 
938  // Encode the shift opcode.
939  unsigned SBits = 0;
940  unsigned Rs = MO1.getReg();
941  if (Rs) {
942  // Set shift operand (bit[7:4]).
943  // LSL - 0001
944  // LSR - 0011
945  // ASR - 0101
946  // ROR - 0111
947  // RRX - 0110 and bit[11:8] clear.
948  switch (SOpc) {
949  default: llvm_unreachable("Unknown shift opc!");
950  case ARM_AM::lsl: SBits = 0x1; break;
951  case ARM_AM::lsr: SBits = 0x3; break;
952  case ARM_AM::asr: SBits = 0x5; break;
953  case ARM_AM::ror: SBits = 0x7; break;
954  case ARM_AM::rrx: SBits = 0x6; break;
955  }
956  } else {
957  // Set shift operand (bit[6:4]).
958  // LSL - 000
959  // LSR - 010
960  // ASR - 100
961  // ROR - 110
962  switch (SOpc) {
963  default: llvm_unreachable("Unknown shift opc!");
964  case ARM_AM::lsl: SBits = 0x0; break;
965  case ARM_AM::lsr: SBits = 0x2; break;
966  case ARM_AM::asr: SBits = 0x4; break;
967  case ARM_AM::ror: SBits = 0x6; break;
968  }
969  }
970  Binary |= SBits << 4;
971  if (SOpc == ARM_AM::rrx)
972  return Binary;
973 
974  // Encode the shift operation Rs or shift_imm (except rrx).
975  if (Rs) {
976  // Encode Rs bit[11:8].
977  assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
978  return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
979  }
980 
981  // Encode shift_imm bit[11:7].
982  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
983 }
984 
985 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
986  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
987  assert(SoImmVal != -1 && "Not a valid so_imm value!");
988 
989  // Encode rotate_imm.
990  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
992 
993  // Encode immed_8.
994  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
995  return Binary;
996 }
997 
998 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
999  const MCInstrDesc &MCID) const {
1000  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
1001  const MachineOperand &MO = MI.getOperand(i-1);
1002  if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1003  return 1 << ARMII::S_BitShift;
1004  }
1005  return 0;
1006 }
1007 
1008 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1009  unsigned ImplicitRd,
1010  unsigned ImplicitRn) {
1011  const MCInstrDesc &MCID = MI.getDesc();
1012 
1013  // Part of binary is determined by TableGn.
1014  unsigned Binary = getBinaryCodeForInstr(MI);
1015 
1016  // Set the conditional execution predicate
1017  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1018 
1019  // Encode S bit if MI modifies CPSR.
1020  Binary |= getAddrModeSBit(MI, MCID);
1021 
1022  // Encode register def if there is one.
1023  unsigned NumDefs = MCID.getNumDefs();
1024  unsigned OpIdx = 0;
1025  if (NumDefs)
1026  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1027  else if (ImplicitRd)
1028  // Special handling for implicit use (e.g. PC).
1029  Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1030 
1031  if (MCID.Opcode == ARM::MOVi16) {
1032  // Get immediate from MI.
1033  unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1035  // Encode imm which is the same as in emitMOVi32immInstruction().
1036  Binary |= Lo16 & 0xFFF;
1037  Binary |= ((Lo16 >> 12) & 0xF) << 16;
1038  emitWordLE(Binary);
1039  return;
1040  } else if(MCID.Opcode == ARM::MOVTi16) {
1041  unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1042  ARM::reloc_arm_movt) >> 16);
1043  Binary |= Hi16 & 0xFFF;
1044  Binary |= ((Hi16 >> 12) & 0xF) << 16;
1045  emitWordLE(Binary);
1046  return;
1047  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1048  uint32_t v = ~MI.getOperand(2).getImm();
1049  int32_t lsb = countTrailingZeros(v);
1050  int32_t msb = (32 - countLeadingZeros(v)) - 1;
1051  // Instr{20-16} = msb, Instr{11-7} = lsb
1052  Binary |= (msb & 0x1F) << 16;
1053  Binary |= (lsb & 0x1F) << 7;
1054  emitWordLE(Binary);
1055  return;
1056  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1057  // Encode Rn in Instr{0-3}
1058  Binary |= getMachineOpValue(MI, OpIdx++);
1059 
1060  uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1061  uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1062 
1063  // Instr{20-16} = widthm1, Instr{11-7} = lsb
1064  Binary |= (widthm1 & 0x1F) << 16;
1065  Binary |= (lsb & 0x1F) << 7;
1066  emitWordLE(Binary);
1067  return;
1068  }
1069 
1070  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1071  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1072  ++OpIdx;
1073 
1074  // Encode first non-shifter register operand if there is one.
1075  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1076  if (!isUnary) {
1077  if (ImplicitRn)
1078  // Special handling for implicit use (e.g. PC).
1079  Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1080  else {
1081  Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1082  ++OpIdx;
1083  }
1084  }
1085 
1086  // Encode shifter operand.
1087  const MachineOperand &MO = MI.getOperand(OpIdx);
1088  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1089  // Encode SoReg.
1090  emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1091  return;
1092  }
1093 
1094  if (MO.isReg()) {
1095  // Encode register Rm.
1096  emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
1097  return;
1098  }
1099 
1100  // Encode so_imm.
1101  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1102 
1103  emitWordLE(Binary);
1104 }
1105 
1106 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1107  unsigned ImplicitRd,
1108  unsigned ImplicitRn) {
1109  const MCInstrDesc &MCID = MI.getDesc();
1110  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1111  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1112 
1113  // Part of binary is determined by TableGn.
1114  unsigned Binary = getBinaryCodeForInstr(MI);
1115 
1116  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1117  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1118  MI.getOpcode() == ARM::STRi12) {
1119  emitWordLE(Binary);
1120  return;
1121  }
1122 
1123  // Set the conditional execution predicate
1124  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1125 
1126  unsigned OpIdx = 0;
1127 
1128  // Operand 0 of a pre- and post-indexed store is the address base
1129  // writeback. Skip it.
1130  bool Skipped = false;
1131  if (IsPrePost && Form == ARMII::StFrm) {
1132  ++OpIdx;
1133  Skipped = true;
1134  }
1135 
1136  // Set first operand
1137  if (ImplicitRd)
1138  // Special handling for implicit use (e.g. PC).
1139  Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1140  else
1141  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1142 
1143  // Set second operand
1144  if (ImplicitRn)
1145  // Special handling for implicit use (e.g. PC).
1146  Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1147  else
1148  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1149 
1150  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1151  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1152  ++OpIdx;
1153 
1154  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1155  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1156  ? 0 : MI.getOperand(OpIdx+1).getImm();
1157 
1158  // Set bit U(23) according to sign of immed value (positive or negative).
1159  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1161  if (!MO2.getReg()) { // is immediate
1162  if (ARM_AM::getAM2Offset(AM2Opc))
1163  // Set the value of offset_12 field
1164  Binary |= ARM_AM::getAM2Offset(AM2Opc);
1165  emitWordLE(Binary);
1166  return;
1167  }
1168 
1169  // Set bit I(25), because this is not in immediate encoding.
1170  Binary |= 1 << ARMII::I_BitShift;
1172  // Set bit[3:0] to the corresponding Rm register
1173  Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1174 
1175  // If this instr is in scaled register offset/index instruction, set
1176  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1177  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1178  Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
1179  Binary |= ShImm << ARMII::ShiftShift; // shift_immed
1180  }
1181 
1182  emitWordLE(Binary);
1183 }
1184 
1185 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1186  unsigned ImplicitRn) {
1187  const MCInstrDesc &MCID = MI.getDesc();
1188  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1189  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1190 
1191  // Part of binary is determined by TableGn.
1192  unsigned Binary = getBinaryCodeForInstr(MI);
1193 
1194  // Set the conditional execution predicate
1195  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1196 
1197  unsigned OpIdx = 0;
1198 
1199  // Operand 0 of a pre- and post-indexed store is the address base
1200  // writeback. Skip it.
1201  bool Skipped = false;
1202  if (IsPrePost && Form == ARMII::StMiscFrm) {
1203  ++OpIdx;
1204  Skipped = true;
1205  }
1206 
1207  // Set first operand
1208  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1209 
1210  // Skip LDRD and STRD's second operand.
1211  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1212  ++OpIdx;
1213 
1214  // Set second operand
1215  if (ImplicitRn)
1216  // Special handling for implicit use (e.g. PC).
1217  Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1218  else
1219  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1220 
1221  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1222  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1223  ++OpIdx;
1224 
1225  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1226  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1227  ? 0 : MI.getOperand(OpIdx+1).getImm();
1228 
1229  // Set bit U(23) according to sign of immed value (positive or negative)
1230  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1232 
1233  // If this instr is in register offset/index encoding, set bit[3:0]
1234  // to the corresponding Rm register.
1235  if (MO2.getReg()) {
1236  Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1237  emitWordLE(Binary);
1238  return;
1239  }
1240 
1241  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1242  Binary |= 1 << ARMII::AM3_I_BitShift;
1243  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1244  // Set operands
1245  Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
1246  Binary |= (ImmOffs & 0xF); // immedL
1247  }
1248 
1249  emitWordLE(Binary);
1250 }
1251 
1252 static unsigned getAddrModeUPBits(unsigned Mode) {
1253  unsigned Binary = 0;
1254 
1255  // Set addressing mode by modifying bits U(23) and P(24)
1256  // IA - Increment after - bit U = 1 and bit P = 0
1257  // IB - Increment before - bit U = 1 and bit P = 1
1258  // DA - Decrement after - bit U = 0 and bit P = 0
1259  // DB - Decrement before - bit U = 0 and bit P = 1
1260  switch (Mode) {
1261  default: llvm_unreachable("Unknown addressing sub-mode!");
1262  case ARM_AM::da: break;
1263  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1264  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1265  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1266  }
1267 
1268  return Binary;
1269 }
1270 
1271 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1272  const MCInstrDesc &MCID = MI.getDesc();
1273  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1274 
1275  // Part of binary is determined by TableGn.
1276  unsigned Binary = getBinaryCodeForInstr(MI);
1277 
1278  // Set the conditional execution predicate
1279  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1280 
1281  // Skip operand 0 of an instruction with base register update.
1282  unsigned OpIdx = 0;
1283  if (IsUpdating)
1284  ++OpIdx;
1285 
1286  // Set base address operand
1287  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1288 
1289  // Set addressing mode by modifying bits U(23) and P(24)
1291  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1292 
1293  // Set bit W(21)
1294  if (IsUpdating)
1295  Binary |= 0x1 << ARMII::W_BitShift;
1296 
1297  // Set registers
1298  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1299  const MachineOperand &MO = MI.getOperand(i);
1300  if (!MO.isReg() || MO.isImplicit())
1301  break;
1302  unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
1304  RegNum < 16);
1305  Binary |= 0x1 << RegNum;
1306  }
1307 
1308  emitWordLE(Binary);
1309 }
1310 
1311 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1312  const MCInstrDesc &MCID = MI.getDesc();
1313 
1314  // Part of binary is determined by TableGn.
1315  unsigned Binary = getBinaryCodeForInstr(MI);
1316 
1317  // Set the conditional execution predicate
1318  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1319 
1320  // Encode S bit if MI modifies CPSR.
1321  Binary |= getAddrModeSBit(MI, MCID);
1322 
1323  // 32x32->64bit operations have two destination registers. The number
1324  // of register definitions will tell us if that's what we're dealing with.
1325  unsigned OpIdx = 0;
1326  if (MCID.getNumDefs() == 2)
1327  Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1328 
1329  // Encode Rd
1330  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1331 
1332  // Encode Rm
1333  Binary |= getMachineOpValue(MI, OpIdx++);
1334 
1335  // Encode Rs
1336  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1337 
1338  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1339  // it as Rn (for multiply, that's in the same offset as RdLo.
1340  if (MCID.getNumOperands() > OpIdx &&
1341  !MCID.OpInfo[OpIdx].isPredicate() &&
1342  !MCID.OpInfo[OpIdx].isOptionalDef())
1343  Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1344 
1345  emitWordLE(Binary);
1346 }
1347 
1348 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1349  const MCInstrDesc &MCID = MI.getDesc();
1350 
1351  // Part of binary is determined by TableGn.
1352  unsigned Binary = getBinaryCodeForInstr(MI);
1353 
1354  // Set the conditional execution predicate
1355  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1356 
1357  unsigned OpIdx = 0;
1358 
1359  // Encode Rd
1360  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1361 
1362  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1363  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1364  if (MO2.isReg()) {
1365  // Two register operand form.
1366  // Encode Rn.
1367  Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1368 
1369  // Encode Rm.
1370  Binary |= getMachineOpValue(MI, MO2);
1371  ++OpIdx;
1372  } else {
1373  Binary |= getMachineOpValue(MI, MO1);
1374  }
1375 
1376  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1377  if (MI.getOperand(OpIdx).isImm() &&
1378  !MCID.OpInfo[OpIdx].isPredicate() &&
1379  !MCID.OpInfo[OpIdx].isOptionalDef())
1380  Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1381 
1382  emitWordLE(Binary);
1383 }
1384 
1385 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1386  const MCInstrDesc &MCID = MI.getDesc();
1387 
1388  // Part of binary is determined by TableGn.
1389  unsigned Binary = getBinaryCodeForInstr(MI);
1390 
1391  // Set the conditional execution predicate
1392  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1393 
1394  // PKH instructions are finished at this point
1395  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1396  emitWordLE(Binary);
1397  return;
1398  }
1399 
1400  unsigned OpIdx = 0;
1401 
1402  // Encode Rd
1403  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1404 
1405  const MachineOperand &MO = MI.getOperand(OpIdx++);
1406  if (OpIdx == MCID.getNumOperands() ||
1407  MCID.OpInfo[OpIdx].isPredicate() ||
1408  MCID.OpInfo[OpIdx].isOptionalDef()) {
1409  // Encode Rm and it's done.
1410  Binary |= getMachineOpValue(MI, MO);
1411  emitWordLE(Binary);
1412  return;
1413  }
1414 
1415  // Encode Rn.
1416  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1417 
1418  // Encode Rm.
1419  Binary |= getMachineOpValue(MI, OpIdx++);
1420 
1421  // Encode shift_imm.
1422  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1423  if (MCID.Opcode == ARM::PKHTB) {
1424  assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1425  if (ShiftAmt == 32)
1426  ShiftAmt = 0;
1427  }
1428  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1429  Binary |= ShiftAmt << ARMII::ShiftShift;
1430 
1431  emitWordLE(Binary);
1432 }
1433 
1434 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1435  const MCInstrDesc &MCID = MI.getDesc();
1436 
1437  // Part of binary is determined by TableGen.
1438  unsigned Binary = getBinaryCodeForInstr(MI);
1439 
1440  // Set the conditional execution predicate
1441  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1442 
1443  // Encode Rd
1444  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1445 
1446  // Encode saturate bit position.
1447  unsigned Pos = MI.getOperand(1).getImm();
1448  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1449  Pos -= 1;
1450  assert((Pos < 16 || (Pos < 32 &&
1451  MCID.Opcode != ARM::SSAT16 &&
1452  MCID.Opcode != ARM::USAT16)) &&
1453  "saturate bit position out of range");
1454  Binary |= Pos << 16;
1455 
1456  // Encode Rm
1457  Binary |= getMachineOpValue(MI, 2);
1458 
1459  // Encode shift_imm.
1460  if (MCID.getNumOperands() == 4) {
1461  unsigned ShiftOp = MI.getOperand(3).getImm();
1462  ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1463  if (Opc == ARM_AM::asr)
1464  Binary |= (1 << 6);
1465  unsigned ShiftAmt = MI.getOperand(3).getImm();
1466  if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1467  ShiftAmt = 0;
1468  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1469  Binary |= ShiftAmt << ARMII::ShiftShift;
1470  }
1471 
1472  emitWordLE(Binary);
1473 }
1474 
1475 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1476  const MCInstrDesc &MCID = MI.getDesc();
1477 
1478  if (MCID.Opcode == ARM::TPsoft) {
1479  llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1480  }
1481 
1482  // Part of binary is determined by TableGn.
1483  unsigned Binary = getBinaryCodeForInstr(MI);
1484 
1485  // Set the conditional execution predicate
1486  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1487 
1488  // Set signed_immed_24 field
1489  Binary |= getMachineOpValue(MI, 0);
1490 
1491  emitWordLE(Binary);
1492 }
1493 
1494 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1495  // Remember the base address of the inline jump table.
1496  uintptr_t JTBase = MCE.getCurrentPCValue();
1497  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1498  DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1499  << '\n');
1500 
1501  // Now emit the jump table entries.
1502  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1503  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1504  if (IsPIC)
1505  // DestBB address - JT base.
1506  emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1507  else
1508  // Absolute DestBB address.
1509  emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1510  emitWordLE(0);
1511  }
1512 }
1513 
1514 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1515  const MCInstrDesc &MCID = MI.getDesc();
1516 
1517  // Handle jump tables.
1518  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1519  // First emit a ldr pc, [] instruction.
1520  emitDataProcessingInstruction(MI, ARM::PC);
1521 
1522  // Then emit the inline jump table.
1523  unsigned JTIndex =
1524  (MCID.Opcode == ARM::BR_JTr)
1525  ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1526  emitInlineJumpTable(JTIndex);
1527  return;
1528  } else if (MCID.Opcode == ARM::BR_JTm) {
1529  // First emit a ldr pc, [] instruction.
1530  emitLoadStoreInstruction(MI, ARM::PC);
1531 
1532  // Then emit the inline jump table.
1533  emitInlineJumpTable(MI.getOperand(3).getIndex());
1534  return;
1535  }
1536 
1537  // Part of binary is determined by TableGn.
1538  unsigned Binary = getBinaryCodeForInstr(MI);
1539 
1540  // Set the conditional execution predicate
1541  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1542 
1543  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1544  // The return register is LR.
1545  Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
1546  else
1547  // otherwise, set the return register
1548  Binary |= getMachineOpValue(MI, 0);
1549 
1550  emitWordLE(Binary);
1551 }
1552 
1553 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
1554  unsigned OpIdx) const {
1555  unsigned RegD = MI.getOperand(OpIdx).getReg();
1556  unsigned Binary = 0;
1557  bool isSPVFP = ARM::SPRRegClass.contains(RegD);
1558  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1559  if (!isSPVFP)
1560  Binary |= RegD << ARMII::RegRdShift;
1561  else {
1562  Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1563  Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1564  }
1565  return Binary;
1566 }
1567 
1568 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
1569  unsigned OpIdx) const {
1570  unsigned RegN = MI.getOperand(OpIdx).getReg();
1571  unsigned Binary = 0;
1572  bool isSPVFP = ARM::SPRRegClass.contains(RegN);
1573  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1574  if (!isSPVFP)
1575  Binary |= RegN << ARMII::RegRnShift;
1576  else {
1577  Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1578  Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1579  }
1580  return Binary;
1581 }
1582 
1583 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
1584  unsigned OpIdx) const {
1585  unsigned RegM = MI.getOperand(OpIdx).getReg();
1586  unsigned Binary = 0;
1587  bool isSPVFP = ARM::SPRRegClass.contains(RegM);
1588  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1589  if (!isSPVFP)
1590  Binary |= RegM;
1591  else {
1592  Binary |= ((RegM & 0x1E) >> 1);
1593  Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1594  }
1595  return Binary;
1596 }
1597 
1598 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1599  const MCInstrDesc &MCID = MI.getDesc();
1600 
1601  // Part of binary is determined by TableGn.
1602  unsigned Binary = getBinaryCodeForInstr(MI);
1603 
1604  // Set the conditional execution predicate
1605  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1606 
1607  unsigned OpIdx = 0;
1608  assert((Binary & ARMII::D_BitShift) == 0 &&
1609  (Binary & ARMII::N_BitShift) == 0 &&
1610  (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1611 
1612  // Encode Dd / Sd.
1613  Binary |= encodeVFPRd(MI, OpIdx++);
1614 
1615  // If this is a two-address operand, skip it, e.g. FMACD.
1616  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1617  ++OpIdx;
1618 
1619  // Encode Dn / Sn.
1621  Binary |= encodeVFPRn(MI, OpIdx++);
1622 
1623  if (OpIdx == MCID.getNumOperands() ||
1624  MCID.OpInfo[OpIdx].isPredicate() ||
1625  MCID.OpInfo[OpIdx].isOptionalDef()) {
1626  // FCMPEZD etc. has only one operand.
1627  emitWordLE(Binary);
1628  return;
1629  }
1630 
1631  // Encode Dm / Sm.
1632  Binary |= encodeVFPRm(MI, OpIdx);
1633 
1634  emitWordLE(Binary);
1635 }
1636 
1637 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1638  const MCInstrDesc &MCID = MI.getDesc();
1639  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1640 
1641  // Part of binary is determined by TableGn.
1642  unsigned Binary = getBinaryCodeForInstr(MI);
1643 
1644  // Set the conditional execution predicate
1645  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1646 
1647  switch (Form) {
1648  default: break;
1649  case ARMII::VFPConv1Frm:
1650  case ARMII::VFPConv2Frm:
1651  case ARMII::VFPConv3Frm:
1652  // Encode Dd / Sd.
1653  Binary |= encodeVFPRd(MI, 0);
1654  break;
1655  case ARMII::VFPConv4Frm:
1656  // Encode Dn / Sn.
1657  Binary |= encodeVFPRn(MI, 0);
1658  break;
1659  case ARMII::VFPConv5Frm:
1660  // Encode Dm / Sm.
1661  Binary |= encodeVFPRm(MI, 0);
1662  break;
1663  }
1664 
1665  switch (Form) {
1666  default: break;
1667  case ARMII::VFPConv1Frm:
1668  // Encode Dm / Sm.
1669  Binary |= encodeVFPRm(MI, 1);
1670  break;
1671  case ARMII::VFPConv2Frm:
1672  case ARMII::VFPConv3Frm:
1673  // Encode Dn / Sn.
1674  Binary |= encodeVFPRn(MI, 1);
1675  break;
1676  case ARMII::VFPConv4Frm:
1677  case ARMII::VFPConv5Frm:
1678  // Encode Dd / Sd.
1679  Binary |= encodeVFPRd(MI, 1);
1680  break;
1681  }
1682 
1683  if (Form == ARMII::VFPConv5Frm)
1684  // Encode Dn / Sn.
1685  Binary |= encodeVFPRn(MI, 2);
1686  else if (Form == ARMII::VFPConv3Frm)
1687  // Encode Dm / Sm.
1688  Binary |= encodeVFPRm(MI, 2);
1689 
1690  emitWordLE(Binary);
1691 }
1692 
1693 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1694  // Part of binary is determined by TableGn.
1695  unsigned Binary = getBinaryCodeForInstr(MI);
1696 
1697  // Set the conditional execution predicate
1698  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1699 
1700  unsigned OpIdx = 0;
1701 
1702  // Encode Dd / Sd.
1703  Binary |= encodeVFPRd(MI, OpIdx++);
1704 
1705  // Encode address base.
1706  const MachineOperand &Base = MI.getOperand(OpIdx++);
1707  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1708 
1709  // If there is a non-zero immediate offset, encode it.
1710  if (Base.isReg()) {
1711  const MachineOperand &Offset = MI.getOperand(OpIdx);
1712  if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1713  if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1714  Binary |= 1 << ARMII::U_BitShift;
1715  Binary |= ImmOffs;
1716  emitWordLE(Binary);
1717  return;
1718  }
1719  }
1720 
1721  // If immediate offset is omitted, default to +0.
1722  Binary |= 1 << ARMII::U_BitShift;
1723 
1724  emitWordLE(Binary);
1725 }
1726 
1727 void
1728 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1729  const MCInstrDesc &MCID = MI.getDesc();
1730  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1731 
1732  // Part of binary is determined by TableGn.
1733  unsigned Binary = getBinaryCodeForInstr(MI);
1734 
1735  // Set the conditional execution predicate
1736  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1737 
1738  // Skip operand 0 of an instruction with base register update.
1739  unsigned OpIdx = 0;
1740  if (IsUpdating)
1741  ++OpIdx;
1742 
1743  // Set base address operand
1744  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1745 
1746  // Set addressing mode by modifying bits U(23) and P(24)
1748  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1749 
1750  // Set bit W(21)
1751  if (IsUpdating)
1752  Binary |= 0x1 << ARMII::W_BitShift;
1753 
1754  // First register is encoded in Dd.
1755  Binary |= encodeVFPRd(MI, OpIdx+2);
1756 
1757  // Count the number of registers.
1758  unsigned NumRegs = 1;
1759  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1760  const MachineOperand &MO = MI.getOperand(i);
1761  if (!MO.isReg() || MO.isImplicit())
1762  break;
1763  ++NumRegs;
1764  }
1765  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1766  // Otherwise, it will be 0, in the case of 32-bit registers.
1767  if(Binary & 0x100)
1768  Binary |= NumRegs * 2;
1769  else
1770  Binary |= NumRegs;
1771 
1772  emitWordLE(Binary);
1773 }
1774 
1775 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
1776  unsigned OpIdx) const {
1777  unsigned RegD = MI.getOperand(OpIdx).getReg();
1778  unsigned Binary = 0;
1779  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1780  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1781  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1782  return Binary;
1783 }
1784 
1785 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
1786  unsigned OpIdx) const {
1787  unsigned RegN = MI.getOperand(OpIdx).getReg();
1788  unsigned Binary = 0;
1789  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1790  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1791  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1792  return Binary;
1793 }
1794 
1795 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
1796  unsigned OpIdx) const {
1797  unsigned RegM = MI.getOperand(OpIdx).getReg();
1798  unsigned Binary = 0;
1799  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1800  Binary |= (RegM & 0xf);
1801  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1802  return Binary;
1803 }
1804 
1805 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1806 /// data-processing instruction to the corresponding Thumb encoding.
1807 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1808  assert((Binary & 0xfe000000) == 0xf2000000 &&
1809  "not an ARM NEON data-processing instruction");
1810  unsigned UBit = (Binary >> 24) & 1;
1811  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1812 }
1813 
1814 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1815  unsigned Binary = getBinaryCodeForInstr(MI);
1816 
1817  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1818  const MCInstrDesc &MCID = MI.getDesc();
1819  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1820  RegTOpIdx = 0;
1821  RegNOpIdx = 1;
1822  LnOpIdx = 2;
1823  } else { // ARMII::NSetLnFrm
1824  RegTOpIdx = 2;
1825  RegNOpIdx = 0;
1826  LnOpIdx = 3;
1827  }
1828 
1829  // Set the conditional execution predicate
1830  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1831 
1832  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1833  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1834  Binary |= (RegT << ARMII::RegRdShift);
1835  Binary |= encodeNEONRn(MI, RegNOpIdx);
1836 
1837  unsigned LaneShift;
1838  if ((Binary & (1 << 22)) != 0)
1839  LaneShift = 0; // 8-bit elements
1840  else if ((Binary & (1 << 5)) != 0)
1841  LaneShift = 1; // 16-bit elements
1842  else
1843  LaneShift = 2; // 32-bit elements
1844 
1845  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1846  unsigned Opc1 = Lane >> 2;
1847  unsigned Opc2 = Lane & 3;
1848  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1849  Binary |= (Opc1 << 21);
1850  Binary |= (Opc2 << 5);
1851 
1852  emitWordLE(Binary);
1853 }
1854 
1855 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1856  unsigned Binary = getBinaryCodeForInstr(MI);
1857 
1858  // Set the conditional execution predicate
1859  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1860 
1861  unsigned RegT = MI.getOperand(1).getReg();
1862  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1863  Binary |= (RegT << ARMII::RegRdShift);
1864  Binary |= encodeNEONRn(MI, 0);
1865  emitWordLE(Binary);
1866 }
1867 
1868 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1869  unsigned Binary = getBinaryCodeForInstr(MI);
1870  // Destination register is encoded in Dd.
1871  Binary |= encodeNEONRd(MI, 0);
1872  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1873  unsigned Imm = MI.getOperand(1).getImm();
1874  unsigned Op = (Imm >> 12) & 1;
1875  unsigned Cmode = (Imm >> 8) & 0xf;
1876  unsigned I = (Imm >> 7) & 1;
1877  unsigned Imm3 = (Imm >> 4) & 0x7;
1878  unsigned Imm4 = Imm & 0xf;
1879  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1880  if (IsThumb)
1881  Binary = convertNEONDataProcToThumb(Binary);
1882  emitWordLE(Binary);
1883 }
1884 
1885 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1886  const MCInstrDesc &MCID = MI.getDesc();
1887  unsigned Binary = getBinaryCodeForInstr(MI);
1888  // Destination register is encoded in Dd; source register in Dm.
1889  unsigned OpIdx = 0;
1890  Binary |= encodeNEONRd(MI, OpIdx++);
1891  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1892  ++OpIdx;
1893  Binary |= encodeNEONRm(MI, OpIdx);
1894  if (IsThumb)
1895  Binary = convertNEONDataProcToThumb(Binary);
1896  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1897  emitWordLE(Binary);
1898 }
1899 
1900 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1901  const MCInstrDesc &MCID = MI.getDesc();
1902  unsigned Binary = getBinaryCodeForInstr(MI);
1903  // Destination register is encoded in Dd; source registers in Dn and Dm.
1904  unsigned OpIdx = 0;
1905  Binary |= encodeNEONRd(MI, OpIdx++);
1906  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1907  ++OpIdx;
1908  Binary |= encodeNEONRn(MI, OpIdx++);
1909  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1910  ++OpIdx;
1911  Binary |= encodeNEONRm(MI, OpIdx);
1912  if (IsThumb)
1913  Binary = convertNEONDataProcToThumb(Binary);
1914  // FIXME: This does not handle VMOVDneon or VMOVQ.
1915  emitWordLE(Binary);
1916 }
1917 
1918 #include "ARMGenCodeEmitter.inc"
MachineConstantPoolValue * MachineCPVal
bool isImplicit() const
AMSubMode getLoadStoreMultipleSubMode(int Opcode)
raw_ostream & errs()
const GlobalValue * getGlobal() const
bool isPredicate() const
Definition: MCInstrDesc.h:83
static unsigned char getAM3Offset(unsigned AM3Opc)
Reloc::Model getRelocationModel() const
MachineBasicBlock * getMBB() const
STATISTIC(NumEmitted,"Number of machine instructions emitted")
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
const char * getSymbolName() const
F(f)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
const std::vector< MachineJumpTableEntry > & getJumpTables() const
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
AnalysisUsage & addRequired()
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
#define llvm_unreachable(msg)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
static MachineRelocation getIndirectSymbol(uintptr_t offset, unsigned RelocationType, GlobalValue *GV, intptr_t cst=0, bool MayNeedFarStub=0, bool GOTrelative=0)
static AMSubMode getAM4SubMode(unsigned Mode)
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:120
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, unsigned FixupKind, SmallVectorImpl< MCFixup > &Fixups)
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
FunctionPass * createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM, JITCodeEmitter &JCE)
int getOpcode() const
Definition: MachineInstr.h:261
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
raw_ostream & write_hex(unsigned long long N)
write_hex - Output N in hexadecimal, without any prefix or padding.
const MachineJumpTableInfo * getJumpTableInfo() const
An entry in a MachineConstantPool.
int64_t getImm() const
static MachineRelocation getBB(uintptr_t offset, unsigned RelocationType, MachineBasicBlock *MBB, intptr_t cst=0)
static unsigned getSOImmValRot(unsigned Imm)
bundle_iterator< MachineInstr, instr_iterator > iterator
static unsigned convertNEONDataProcToThumb(unsigned Binary)
bool isOptionalDef() const
Definition: MCInstrDesc.h:87
LLVM Constant Representation.
Definition: Constant.h:41
static unsigned char getAM5Offset(unsigned AM5Opc)
static unsigned getSOImmTwoPartSecond(unsigned V)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
static unsigned getSOImmValImm(unsigned Imm)
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
static unsigned getAddrModeUPBits(unsigned Mode)
MachineConstantPool * getConstantPool()
union llvm::MachineConstantPoolEntry::@29 Val
The constant itself.
virtual TargetJITInfo * getJITInfo()
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specific constraint if it is set. Returns -1 if it is not set...
Definition: MCInstrDesc.h:156
static AddrOpc getAM2Op(unsigned AM2Opc)
virtual const TargetInstrInfo * getInstrInfo() const
Class for constant integers.
Definition: Constants.h:51
static unsigned getAM2Offset(unsigned AM2Opc)
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
static bool isSOImmTwoPartVal(unsigned V)
unsigned short Opcode
Definition: MCInstrDesc.h:139
static AddrOpc getAM3Op(unsigned AM3Opc)
static int getSOImmVal(unsigned Arg)
static bool isPhysicalRegister(unsigned Reg)
virtual void getAnalysisUsage(AnalysisUsage &AU) const
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
virtual const DataLayout * getDataLayout() const
#define I(x, y, z)
Definition: MD5.cpp:54
MCSymbol * getMCSymbol() const
const TargetMachine & getTarget() const
static AddrOpc getAM5Op(unsigned AM5Opc)
static MachineRelocation getJumpTable(uintptr_t offset, unsigned RelocationType, unsigned JTI, intptr_t cst=0, bool letTargetResolve=false)
unsigned getReg() const
getReg - Returns the register number.
static MachineRelocation getConstPool(uintptr_t offset, unsigned RelocationType, unsigned CPI, intptr_t cst=0, bool letTargetResolve=false)
static ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
static unsigned getSORegOffset(unsigned Op)
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
BasicBlockListType::iterator iterator
#define DEBUG(X)
Definition: Debug.h:97
const std::vector< MachineConstantPoolEntry > & getConstants() const
StringRef getName() const
static unsigned getSOImmTwoPartFirst(unsigned V)
static MachineRelocation getExtSym(uintptr_t offset, unsigned RelocationType, const char *ES, intptr_t cst=0, bool GOTrelative=0, bool NeedStub=true)
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
static ShiftOpc getSORegShOp(unsigned Op)