LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DataFlowSanitizer.cpp
Go to the documentation of this file.
1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation. Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label. On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// | |
27 /// | unused |
28 /// | |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// | union table |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// | shadow memory |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range. See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/DenseSet.h"
51 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/IR/InlineAsm.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InstVisitor.h"
60 #include "llvm/Pass.h"
65 #include <iterator>
66 
67 using namespace llvm;
68 
69 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
70 // alignment requirements provided by the input IR are correct. For example,
71 // if the input IR contains a load with alignment 8, this flag will cause
72 // the shadow load to have alignment 16. This flag is disabled by default as
73 // we have unfortunately encountered too much code (including Clang itself;
74 // see PR14291) which performs misaligned access.
76  "dfsan-preserve-alignment",
77  cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
78  cl::init(false));
79 
80 // The ABI list file controls how shadow parameters are passed. The pass treats
81 // every function labelled "uninstrumented" in the ABI list file as conforming
82 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
83 // additional annotations for those functions, a call to one of those functions
84 // will produce a warning message, as the labelling behaviour of the function is
85 // unknown. The other supported annotations are "functional" and "discard",
86 // which are described below under DataFlowSanitizer::WrapperKind.
88  "dfsan-abilist",
89  cl::desc("File listing native ABI functions and how the pass treats them"),
90  cl::Hidden);
91 
92 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
93 // functions (see DataFlowSanitizer::InstrumentedABI below).
95  "dfsan-args-abi",
96  cl::desc("Use the argument ABI rather than the TLS ABI"),
97  cl::Hidden);
98 
100  "dfsan-debug-nonzero-labels",
101  cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
102  "load or return with a nonzero label"),
103  cl::Hidden);
104 
105 namespace {
106 
107 class DataFlowSanitizer : public ModulePass {
108  friend struct DFSanFunction;
109  friend class DFSanVisitor;
110 
111  enum {
112  ShadowWidth = 16
113  };
114 
115  /// Which ABI should be used for instrumented functions?
116  enum InstrumentedABI {
117  /// Argument and return value labels are passed through additional
118  /// arguments and by modifying the return type.
119  IA_Args,
120 
121  /// Argument and return value labels are passed through TLS variables
122  /// __dfsan_arg_tls and __dfsan_retval_tls.
123  IA_TLS
124  };
125 
126  /// How should calls to uninstrumented functions be handled?
127  enum WrapperKind {
128  /// This function is present in an uninstrumented form but we don't know
129  /// how it should be handled. Print a warning and call the function anyway.
130  /// Don't label the return value.
131  WK_Warning,
132 
133  /// This function does not write to (user-accessible) memory, and its return
134  /// value is unlabelled.
135  WK_Discard,
136 
137  /// This function does not write to (user-accessible) memory, and the label
138  /// of its return value is the union of the label of its arguments.
139  WK_Functional,
140 
141  /// Instead of calling the function, a custom wrapper __dfsw_F is called,
142  /// where F is the name of the function. This function may wrap the
143  /// original function or provide its own implementation. This is similar to
144  /// the IA_Args ABI, except that IA_Args uses a struct return type to
145  /// pass the return value shadow in a register, while WK_Custom uses an
146  /// extra pointer argument to return the shadow. This allows the wrapped
147  /// form of the function type to be expressed in C.
148  WK_Custom
149  };
150 
151  DataLayout *DL;
152  Module *Mod;
153  LLVMContext *Ctx;
154  IntegerType *ShadowTy;
155  PointerType *ShadowPtrTy;
156  IntegerType *IntptrTy;
157  ConstantInt *ZeroShadow;
158  ConstantInt *ShadowPtrMask;
159  ConstantInt *ShadowPtrMul;
160  Constant *ArgTLS;
161  Constant *RetvalTLS;
162  void *(*GetArgTLSPtr)();
163  void *(*GetRetvalTLSPtr)();
164  Constant *GetArgTLS;
165  Constant *GetRetvalTLS;
166  FunctionType *DFSanUnionFnTy;
167  FunctionType *DFSanUnionLoadFnTy;
168  FunctionType *DFSanUnimplementedFnTy;
169  FunctionType *DFSanSetLabelFnTy;
170  FunctionType *DFSanNonzeroLabelFnTy;
171  Constant *DFSanUnionFn;
172  Constant *DFSanUnionLoadFn;
173  Constant *DFSanUnimplementedFn;
174  Constant *DFSanSetLabelFn;
175  Constant *DFSanNonzeroLabelFn;
176  MDNode *ColdCallWeights;
178  DenseMap<Value *, Function *> UnwrappedFnMap;
179  AttributeSet ReadOnlyNoneAttrs;
180 
181  Value *getShadowAddress(Value *Addr, Instruction *Pos);
182  Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
183  bool isInstrumented(const Function *F);
184  bool isInstrumented(const GlobalAlias *GA);
185  FunctionType *getArgsFunctionType(FunctionType *T);
186  FunctionType *getTrampolineFunctionType(FunctionType *T);
187  FunctionType *getCustomFunctionType(FunctionType *T);
188  InstrumentedABI getInstrumentedABI();
189  WrapperKind getWrapperKind(Function *F);
190  void addGlobalNamePrefix(GlobalValue *GV);
191  Function *buildWrapperFunction(Function *F, StringRef NewFName,
192  GlobalValue::LinkageTypes NewFLink,
193  FunctionType *NewFT);
194  Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
195 
196  public:
197  DataFlowSanitizer(StringRef ABIListFile = StringRef(),
198  void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0);
199  static char ID;
200  bool doInitialization(Module &M);
201  bool runOnModule(Module &M);
202 };
203 
204 struct DFSanFunction {
205  DataFlowSanitizer &DFS;
206  Function *F;
207  DataFlowSanitizer::InstrumentedABI IA;
208  bool IsNativeABI;
209  Value *ArgTLSPtr;
210  Value *RetvalTLSPtr;
211  AllocaInst *LabelReturnAlloca;
212  DenseMap<Value *, Value *> ValShadowMap;
213  DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
214  std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
215  DenseSet<Instruction *> SkipInsts;
216  DenseSet<Value *> NonZeroChecks;
217 
218  DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
219  : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
220  IsNativeABI(IsNativeABI), ArgTLSPtr(0), RetvalTLSPtr(0),
221  LabelReturnAlloca(0) {}
222  Value *getArgTLSPtr();
223  Value *getArgTLS(unsigned Index, Instruction *Pos);
224  Value *getRetvalTLS();
225  Value *getShadow(Value *V);
226  void setShadow(Instruction *I, Value *Shadow);
227  Value *combineOperandShadows(Instruction *Inst);
228  Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
229  Instruction *Pos);
230  void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
231  Instruction *Pos);
232 };
233 
234 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
235  public:
236  DFSanFunction &DFSF;
237  DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
238 
239  void visitOperandShadowInst(Instruction &I);
240 
241  void visitBinaryOperator(BinaryOperator &BO);
242  void visitCastInst(CastInst &CI);
243  void visitCmpInst(CmpInst &CI);
244  void visitGetElementPtrInst(GetElementPtrInst &GEPI);
245  void visitLoadInst(LoadInst &LI);
246  void visitStoreInst(StoreInst &SI);
247  void visitReturnInst(ReturnInst &RI);
248  void visitCallSite(CallSite CS);
249  void visitPHINode(PHINode &PN);
250  void visitExtractElementInst(ExtractElementInst &I);
251  void visitInsertElementInst(InsertElementInst &I);
252  void visitShuffleVectorInst(ShuffleVectorInst &I);
253  void visitExtractValueInst(ExtractValueInst &I);
254  void visitInsertValueInst(InsertValueInst &I);
255  void visitAllocaInst(AllocaInst &I);
256  void visitSelectInst(SelectInst &I);
257  void visitMemSetInst(MemSetInst &I);
258  void visitMemTransferInst(MemTransferInst &I);
259 };
260 
261 }
262 
264 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
265  "DataFlowSanitizer: dynamic data flow analysis.", false, false)
266 
268  void *(*getArgTLS)(),
269  void *(*getRetValTLS)()) {
270  return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS);
271 }
272 
273 DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile,
274  void *(*getArgTLS)(),
275  void *(*getRetValTLS)())
276  : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
277  ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile
278  : ABIListFile)) {
279 }
280 
281 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
283  std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
284  for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
285  ArgTypes.push_back(ShadowTy);
286  if (T->isVarArg())
287  ArgTypes.push_back(ShadowPtrTy);
288  Type *RetType = T->getReturnType();
289  if (!RetType->isVoidTy())
290  RetType = StructType::get(RetType, ShadowTy, (Type *)0);
291  return FunctionType::get(RetType, ArgTypes, T->isVarArg());
292 }
293 
294 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
295  assert(!T->isVarArg());
297  ArgTypes.push_back(T->getPointerTo());
298  std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
299  for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
300  ArgTypes.push_back(ShadowTy);
301  Type *RetType = T->getReturnType();
302  if (!RetType->isVoidTy())
303  ArgTypes.push_back(ShadowPtrTy);
304  return FunctionType::get(T->getReturnType(), ArgTypes, false);
305 }
306 
307 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
308  assert(!T->isVarArg());
310  for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
311  i != e; ++i) {
312  FunctionType *FT;
313  if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
314  *i)->getElementType()))) {
315  ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
316  ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
317  } else {
318  ArgTypes.push_back(*i);
319  }
320  }
321  for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
322  ArgTypes.push_back(ShadowTy);
323  Type *RetType = T->getReturnType();
324  if (!RetType->isVoidTy())
325  ArgTypes.push_back(ShadowPtrTy);
326  return FunctionType::get(T->getReturnType(), ArgTypes, false);
327 }
328 
329 bool DataFlowSanitizer::doInitialization(Module &M) {
330  DL = getAnalysisIfAvailable<DataLayout>();
331  if (!DL)
332  return false;
333 
334  Mod = &M;
335  Ctx = &M.getContext();
336  ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
337  ShadowPtrTy = PointerType::getUnqual(ShadowTy);
338  IntptrTy = DL->getIntPtrType(*Ctx);
339  ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
340  ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
341  ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
342 
343  Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
344  DFSanUnionFnTy =
345  FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
346  Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
347  DFSanUnionLoadFnTy =
348  FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
349  DFSanUnimplementedFnTy = FunctionType::get(
350  Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
351  Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
352  DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
353  DFSanSetLabelArgs, /*isVarArg=*/false);
354  DFSanNonzeroLabelFnTy = FunctionType::get(
355  Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false);
356 
357  if (GetArgTLSPtr) {
358  Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
359  ArgTLS = 0;
360  GetArgTLS = ConstantExpr::getIntToPtr(
361  ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
362  PointerType::getUnqual(
363  FunctionType::get(PointerType::getUnqual(ArgTLSTy), (Type *)0)));
364  }
365  if (GetRetvalTLSPtr) {
366  RetvalTLS = 0;
367  GetRetvalTLS = ConstantExpr::getIntToPtr(
368  ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
369  PointerType::getUnqual(
370  FunctionType::get(PointerType::getUnqual(ShadowTy), (Type *)0)));
371  }
372 
373  ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
374  return true;
375 }
376 
377 bool DataFlowSanitizer::isInstrumented(const Function *F) {
378  return !ABIList->isIn(*F, "uninstrumented");
379 }
380 
381 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
382  return !ABIList->isIn(*GA, "uninstrumented");
383 }
384 
385 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
386  return ClArgsABI ? IA_Args : IA_TLS;
387 }
388 
389 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
390  if (ABIList->isIn(*F, "functional"))
391  return WK_Functional;
392  if (ABIList->isIn(*F, "discard"))
393  return WK_Discard;
394  if (ABIList->isIn(*F, "custom"))
395  return WK_Custom;
396 
397  return WK_Warning;
398 }
399 
400 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
401  std::string GVName = GV->getName(), Prefix = "dfs$";
402  GV->setName(Prefix + GVName);
403 
404  // Try to change the name of the function in module inline asm. We only do
405  // this for specific asm directives, currently only ".symver", to try to avoid
406  // corrupting asm which happens to contain the symbol name as a substring.
407  // Note that the substitution for .symver assumes that the versioned symbol
408  // also has an instrumented name.
409  std::string Asm = GV->getParent()->getModuleInlineAsm();
410  std::string SearchStr = ".symver " + GVName + ",";
411  size_t Pos = Asm.find(SearchStr);
412  if (Pos != std::string::npos) {
413  Asm.replace(Pos, SearchStr.size(),
414  ".symver " + Prefix + GVName + "," + Prefix);
415  GV->getParent()->setModuleInlineAsm(Asm);
416  }
417 }
418 
419 Function *
420 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
421  GlobalValue::LinkageTypes NewFLink,
422  FunctionType *NewFT) {
423  FunctionType *FT = F->getFunctionType();
424  Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
425  F->getParent());
426  NewF->copyAttributesFrom(F);
427  NewF->removeAttributes(
428  AttributeSet::ReturnIndex,
430  AttributeSet::ReturnIndex));
431 
432  BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
433  std::vector<Value *> Args;
434  unsigned n = FT->getNumParams();
435  for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
436  Args.push_back(&*ai);
437  CallInst *CI = CallInst::Create(F, Args, "", BB);
438  if (FT->getReturnType()->isVoidTy())
439  ReturnInst::Create(*Ctx, BB);
440  else
441  ReturnInst::Create(*Ctx, CI, BB);
442 
443  return NewF;
444 }
445 
446 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
447  StringRef FName) {
448  FunctionType *FTT = getTrampolineFunctionType(FT);
449  Constant *C = Mod->getOrInsertFunction(FName, FTT);
450  Function *F = dyn_cast<Function>(C);
451  if (F && F->isDeclaration()) {
452  F->setLinkage(GlobalValue::LinkOnceODRLinkage);
453  BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
454  std::vector<Value *> Args;
455  Function::arg_iterator AI = F->arg_begin(); ++AI;
456  for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
457  Args.push_back(&*AI);
458  CallInst *CI =
459  CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
460  ReturnInst *RI;
461  if (FT->getReturnType()->isVoidTy())
462  RI = ReturnInst::Create(*Ctx, BB);
463  else
464  RI = ReturnInst::Create(*Ctx, CI, BB);
465 
466  DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
467  Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
468  for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
469  DFSF.ValShadowMap[ValAI] = ShadowAI;
470  DFSanVisitor(DFSF).visitCallInst(*CI);
471  if (!FT->getReturnType()->isVoidTy())
472  new StoreInst(DFSF.getShadow(RI->getReturnValue()),
473  &F->getArgumentList().back(), RI);
474  }
475 
476  return C;
477 }
478 
479 bool DataFlowSanitizer::runOnModule(Module &M) {
480  if (!DL)
481  return false;
482 
483  if (ABIList->isIn(M, "skip"))
484  return false;
485 
486  if (!GetArgTLSPtr) {
487  Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
488  ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
489  if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
490  G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
491  }
492  if (!GetRetvalTLSPtr) {
493  RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
494  if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
495  G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
496  }
497 
498  DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
499  if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
500  F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
501  F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
502  F->addAttribute(1, Attribute::ZExt);
503  F->addAttribute(2, Attribute::ZExt);
504  }
505  DFSanUnionLoadFn =
506  Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
507  if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
508  F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
509  }
510  DFSanUnimplementedFn =
511  Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
512  DFSanSetLabelFn =
513  Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
514  if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
515  F->addAttribute(1, Attribute::ZExt);
516  }
517  DFSanNonzeroLabelFn =
518  Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
519 
520  std::vector<Function *> FnsToInstrument;
521  llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
522  for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
523  if (!i->isIntrinsic() &&
524  i != DFSanUnionFn &&
525  i != DFSanUnionLoadFn &&
526  i != DFSanUnimplementedFn &&
527  i != DFSanSetLabelFn &&
528  i != DFSanNonzeroLabelFn)
529  FnsToInstrument.push_back(&*i);
530  }
531 
532  // Give function aliases prefixes when necessary, and build wrappers where the
533  // instrumentedness is inconsistent.
534  for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
535  GlobalAlias *GA = &*i;
536  ++i;
537  // Don't stop on weak. We assume people aren't playing games with the
538  // instrumentedness of overridden weak aliases.
539  if (Function *F = dyn_cast<Function>(
540  GA->resolveAliasedGlobal(/*stopOnWeak=*/false))) {
541  bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
542  if (GAInst && FInst) {
543  addGlobalNamePrefix(GA);
544  } else if (GAInst != FInst) {
545  // Non-instrumented alias of an instrumented function, or vice versa.
546  // Replace the alias with a native-ABI wrapper of the aliasee. The pass
547  // below will take care of instrumenting it.
548  Function *NewF =
549  buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
550  GA->replaceAllUsesWith(NewF);
551  NewF->takeName(GA);
552  GA->eraseFromParent();
553  FnsToInstrument.push_back(NewF);
554  }
555  }
556  }
557 
558  AttrBuilder B;
559  B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
560  ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
561 
562  // First, change the ABI of every function in the module. ABI-listed
563  // functions keep their original ABI and get a wrapper function.
564  for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
565  e = FnsToInstrument.end();
566  i != e; ++i) {
567  Function &F = **i;
568  FunctionType *FT = F.getFunctionType();
569 
570  bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
571  FT->getReturnType()->isVoidTy());
572 
573  if (isInstrumented(&F)) {
574  // Instrumented functions get a 'dfs$' prefix. This allows us to more
575  // easily identify cases of mismatching ABIs.
576  if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
577  FunctionType *NewFT = getArgsFunctionType(FT);
578  Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
579  NewF->copyAttributesFrom(&F);
580  NewF->removeAttributes(
581  AttributeSet::ReturnIndex,
583  AttributeSet::ReturnIndex));
584  for (Function::arg_iterator FArg = F.arg_begin(),
585  NewFArg = NewF->arg_begin(),
586  FArgEnd = F.arg_end();
587  FArg != FArgEnd; ++FArg, ++NewFArg) {
588  FArg->replaceAllUsesWith(NewFArg);
589  }
590  NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
591 
592  for (Function::use_iterator ui = F.use_begin(), ue = F.use_end();
593  ui != ue;) {
594  BlockAddress *BA = dyn_cast<BlockAddress>(ui.getUse().getUser());
595  ++ui;
596  if (BA) {
597  BA->replaceAllUsesWith(
598  BlockAddress::get(NewF, BA->getBasicBlock()));
599  delete BA;
600  }
601  }
603  ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
604  NewF->takeName(&F);
605  F.eraseFromParent();
606  *i = NewF;
607  addGlobalNamePrefix(NewF);
608  } else {
609  addGlobalNamePrefix(&F);
610  }
611  // Hopefully, nobody will try to indirectly call a vararg
612  // function... yet.
613  } else if (FT->isVarArg()) {
614  UnwrappedFnMap[&F] = &F;
615  *i = 0;
616  } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
617  // Build a wrapper function for F. The wrapper simply calls F, and is
618  // added to FnsToInstrument so that any instrumentation according to its
619  // WrapperKind is done in the second pass below.
620  FunctionType *NewFT = getInstrumentedABI() == IA_Args
621  ? getArgsFunctionType(FT)
622  : FT;
623  Function *NewF = buildWrapperFunction(
624  &F, std::string("dfsw$") + std::string(F.getName()),
625  GlobalValue::LinkOnceODRLinkage, NewFT);
626  if (getInstrumentedABI() == IA_TLS)
627  NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
628 
629  Value *WrappedFnCst =
630  ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
631  F.replaceAllUsesWith(WrappedFnCst);
632  UnwrappedFnMap[WrappedFnCst] = &F;
633  *i = NewF;
634 
635  if (!F.isDeclaration()) {
636  // This function is probably defining an interposition of an
637  // uninstrumented function and hence needs to keep the original ABI.
638  // But any functions it may call need to use the instrumented ABI, so
639  // we instrument it in a mode which preserves the original ABI.
640  FnsWithNativeABI.insert(&F);
641 
642  // This code needs to rebuild the iterators, as they may be invalidated
643  // by the push_back, taking care that the new range does not include
644  // any functions added by this code.
645  size_t N = i - FnsToInstrument.begin(),
646  Count = e - FnsToInstrument.begin();
647  FnsToInstrument.push_back(&F);
648  i = FnsToInstrument.begin() + N;
649  e = FnsToInstrument.begin() + Count;
650  }
651  }
652  }
653 
654  for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
655  e = FnsToInstrument.end();
656  i != e; ++i) {
657  if (!*i || (*i)->isDeclaration())
658  continue;
659 
661 
662  DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
663 
664  // DFSanVisitor may create new basic blocks, which confuses df_iterator.
665  // Build a copy of the list before iterating over it.
667  std::copy(df_begin(&(*i)->getEntryBlock()), df_end(&(*i)->getEntryBlock()),
668  std::back_inserter(BBList));
669 
670  for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
671  e = BBList.end();
672  i != e; ++i) {
673  Instruction *Inst = &(*i)->front();
674  while (1) {
675  // DFSanVisitor may split the current basic block, changing the current
676  // instruction's next pointer and moving the next instruction to the
677  // tail block from which we should continue.
678  Instruction *Next = Inst->getNextNode();
679  // DFSanVisitor may delete Inst, so keep track of whether it was a
680  // terminator.
681  bool IsTerminator = isa<TerminatorInst>(Inst);
682  if (!DFSF.SkipInsts.count(Inst))
683  DFSanVisitor(DFSF).visit(Inst);
684  if (IsTerminator)
685  break;
686  Inst = Next;
687  }
688  }
689 
690  // We will not necessarily be able to compute the shadow for every phi node
691  // until we have visited every block. Therefore, the code that handles phi
692  // nodes adds them to the PHIFixups list so that they can be properly
693  // handled here.
694  for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
695  i = DFSF.PHIFixups.begin(),
696  e = DFSF.PHIFixups.end();
697  i != e; ++i) {
698  for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
699  ++val) {
700  i->second->setIncomingValue(
701  val, DFSF.getShadow(i->first->getIncomingValue(val)));
702  }
703  }
704 
705  // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
706  // places (i.e. instructions in basic blocks we haven't even begun visiting
707  // yet). To make our life easier, do this work in a pass after the main
708  // instrumentation.
709  if (ClDebugNonzeroLabels) {
710  for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(),
711  e = DFSF.NonZeroChecks.end();
712  i != e; ++i) {
713  Instruction *Pos;
714  if (Instruction *I = dyn_cast<Instruction>(*i))
715  Pos = I->getNextNode();
716  else
717  Pos = DFSF.F->getEntryBlock().begin();
718  while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
719  Pos = Pos->getNextNode();
720  IRBuilder<> IRB(Pos);
721  Instruction *NeInst = cast<Instruction>(
722  IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow));
723  BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
724  NeInst, /*Unreachable=*/ false, ColdCallWeights));
725  IRBuilder<> ThenIRB(BI);
726  ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
727  }
728  }
729  }
730 
731  return false;
732 }
733 
734 Value *DFSanFunction::getArgTLSPtr() {
735  if (ArgTLSPtr)
736  return ArgTLSPtr;
737  if (DFS.ArgTLS)
738  return ArgTLSPtr = DFS.ArgTLS;
739 
740  IRBuilder<> IRB(F->getEntryBlock().begin());
741  return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
742 }
743 
744 Value *DFSanFunction::getRetvalTLS() {
745  if (RetvalTLSPtr)
746  return RetvalTLSPtr;
747  if (DFS.RetvalTLS)
748  return RetvalTLSPtr = DFS.RetvalTLS;
749 
750  IRBuilder<> IRB(F->getEntryBlock().begin());
751  return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
752 }
753 
754 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
755  IRBuilder<> IRB(Pos);
756  return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
757 }
758 
759 Value *DFSanFunction::getShadow(Value *V) {
760  if (!isa<Argument>(V) && !isa<Instruction>(V))
761  return DFS.ZeroShadow;
762  Value *&Shadow = ValShadowMap[V];
763  if (!Shadow) {
764  if (Argument *A = dyn_cast<Argument>(V)) {
765  if (IsNativeABI)
766  return DFS.ZeroShadow;
767  switch (IA) {
768  case DataFlowSanitizer::IA_TLS: {
769  Value *ArgTLSPtr = getArgTLSPtr();
770  Instruction *ArgTLSPos =
771  DFS.ArgTLS ? &*F->getEntryBlock().begin()
772  : cast<Instruction>(ArgTLSPtr)->getNextNode();
773  IRBuilder<> IRB(ArgTLSPos);
774  Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
775  break;
776  }
777  case DataFlowSanitizer::IA_Args: {
778  unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
780  while (ArgIdx--)
781  ++i;
782  Shadow = i;
783  assert(Shadow->getType() == DFS.ShadowTy);
784  break;
785  }
786  }
787  NonZeroChecks.insert(Shadow);
788  } else {
789  Shadow = DFS.ZeroShadow;
790  }
791  }
792  return Shadow;
793 }
794 
795 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
796  assert(!ValShadowMap.count(I));
797  assert(Shadow->getType() == DFS.ShadowTy);
798  ValShadowMap[I] = Shadow;
799 }
800 
801 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
802  assert(Addr != RetvalTLS && "Reinstrumenting?");
803  IRBuilder<> IRB(Pos);
804  return IRB.CreateIntToPtr(
805  IRB.CreateMul(
806  IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
807  ShadowPtrMul),
808  ShadowPtrTy);
809 }
810 
811 // Generates IR to compute the union of the two given shadows, inserting it
812 // before Pos. Returns the computed union Value.
813 Value *DataFlowSanitizer::combineShadows(Value *V1, Value *V2,
814  Instruction *Pos) {
815  if (V1 == ZeroShadow)
816  return V2;
817  if (V2 == ZeroShadow)
818  return V1;
819  if (V1 == V2)
820  return V1;
821  IRBuilder<> IRB(Pos);
822  BasicBlock *Head = Pos->getParent();
823  Value *Ne = IRB.CreateICmpNE(V1, V2);
824  Instruction *NeInst = dyn_cast<Instruction>(Ne);
825  if (NeInst) {
826  BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
827  NeInst, /*Unreachable=*/ false, ColdCallWeights));
828  IRBuilder<> ThenIRB(BI);
829  CallInst *Call = ThenIRB.CreateCall2(DFSanUnionFn, V1, V2);
830  Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
831  Call->addAttribute(1, Attribute::ZExt);
832  Call->addAttribute(2, Attribute::ZExt);
833 
834  BasicBlock *Tail = BI->getSuccessor(0);
835  PHINode *Phi = PHINode::Create(ShadowTy, 2, "", Tail->begin());
836  Phi->addIncoming(Call, Call->getParent());
837  Phi->addIncoming(V1, Head);
838  Pos = Phi;
839  return Phi;
840  } else {
841  assert(0 && "todo");
842  return 0;
843  }
844 }
845 
846 // A convenience function which folds the shadows of each of the operands
847 // of the provided instruction Inst, inserting the IR before Inst. Returns
848 // the computed union Value.
849 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
850  if (Inst->getNumOperands() == 0)
851  return DFS.ZeroShadow;
852 
853  Value *Shadow = getShadow(Inst->getOperand(0));
854  for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
855  Shadow = DFS.combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
856  }
857  return Shadow;
858 }
859 
860 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
861  Value *CombinedShadow = DFSF.combineOperandShadows(&I);
862  DFSF.setShadow(&I, CombinedShadow);
863 }
864 
865 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
866 // Addr has alignment Align, and take the union of each of those shadows.
867 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
868  Instruction *Pos) {
869  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
871  AllocaShadowMap.find(AI);
872  if (i != AllocaShadowMap.end()) {
873  IRBuilder<> IRB(Pos);
874  return IRB.CreateLoad(i->second);
875  }
876  }
877 
878  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
880  GetUnderlyingObjects(Addr, Objs, DFS.DL);
881  bool AllConstants = true;
882  for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
883  i != e; ++i) {
884  if (isa<Function>(*i) || isa<BlockAddress>(*i))
885  continue;
886  if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
887  continue;
888 
889  AllConstants = false;
890  break;
891  }
892  if (AllConstants)
893  return DFS.ZeroShadow;
894 
895  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
896  switch (Size) {
897  case 0:
898  return DFS.ZeroShadow;
899  case 1: {
900  LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
901  LI->setAlignment(ShadowAlign);
902  return LI;
903  }
904  case 2: {
905  IRBuilder<> IRB(Pos);
906  Value *ShadowAddr1 =
907  IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1));
908  return DFS.combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
909  IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign),
910  Pos);
911  }
912  }
913  if (Size % (64 / DFS.ShadowWidth) == 0) {
914  // Fast path for the common case where each byte has identical shadow: load
915  // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
916  // shadow is non-equal.
917  BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
918  IRBuilder<> FallbackIRB(FallbackBB);
919  CallInst *FallbackCall = FallbackIRB.CreateCall2(
920  DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
921  FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
922 
923  // Compare each of the shadows stored in the loaded 64 bits to each other,
924  // by computing (WideShadow rotl ShadowWidth) == WideShadow.
925  IRBuilder<> IRB(Pos);
926  Value *WideAddr =
927  IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
928  Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
929  Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
930  Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
931  Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
932  Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
933  Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
934 
935  BasicBlock *Head = Pos->getParent();
936  BasicBlock *Tail = Head->splitBasicBlock(Pos);
937  // In the following code LastBr will refer to the previous basic block's
938  // conditional branch instruction, whose true successor is fixed up to point
939  // to the next block during the loop below or to the tail after the final
940  // iteration.
941  BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
942  ReplaceInstWithInst(Head->getTerminator(), LastBr);
943 
944  for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
945  Ofs += 64 / DFS.ShadowWidth) {
946  BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
947  IRBuilder<> NextIRB(NextBB);
948  WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1));
949  Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
950  ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
951  LastBr->setSuccessor(0, NextBB);
952  LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
953  }
954 
955  LastBr->setSuccessor(0, Tail);
956  FallbackIRB.CreateBr(Tail);
957  PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
958  Shadow->addIncoming(FallbackCall, FallbackBB);
959  Shadow->addIncoming(TruncShadow, LastBr->getParent());
960  return Shadow;
961  }
962 
963  IRBuilder<> IRB(Pos);
964  CallInst *FallbackCall = IRB.CreateCall2(
965  DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
966  FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
967  return FallbackCall;
968 }
969 
970 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
971  uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
972  uint64_t Align;
973  if (ClPreserveAlignment) {
974  Align = LI.getAlignment();
975  if (Align == 0)
976  Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType());
977  } else {
978  Align = 1;
979  }
980  IRBuilder<> IRB(&LI);
981  Value *LoadedShadow =
982  DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
983  Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
984  Value *CombinedShadow = DFSF.DFS.combineShadows(LoadedShadow, PtrShadow, &LI);
985  if (CombinedShadow != DFSF.DFS.ZeroShadow)
986  DFSF.NonZeroChecks.insert(CombinedShadow);
987 
988  DFSF.setShadow(&LI, CombinedShadow);
989 }
990 
991 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
992  Value *Shadow, Instruction *Pos) {
993  if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
995  AllocaShadowMap.find(AI);
996  if (i != AllocaShadowMap.end()) {
997  IRBuilder<> IRB(Pos);
998  IRB.CreateStore(Shadow, i->second);
999  return;
1000  }
1001  }
1002 
1003  uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1004  IRBuilder<> IRB(Pos);
1005  Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1006  if (Shadow == DFS.ZeroShadow) {
1007  IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1008  Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1009  Value *ExtShadowAddr =
1010  IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1011  IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1012  return;
1013  }
1014 
1015  const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1016  uint64_t Offset = 0;
1017  if (Size >= ShadowVecSize) {
1018  VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1019  Value *ShadowVec = UndefValue::get(ShadowVecTy);
1020  for (unsigned i = 0; i != ShadowVecSize; ++i) {
1021  ShadowVec = IRB.CreateInsertElement(
1022  ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1023  }
1024  Value *ShadowVecAddr =
1025  IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1026  do {
1027  Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset);
1028  IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1029  Size -= ShadowVecSize;
1030  ++Offset;
1031  } while (Size >= ShadowVecSize);
1032  Offset *= ShadowVecSize;
1033  }
1034  while (Size > 0) {
1035  Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset);
1036  IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1037  --Size;
1038  ++Offset;
1039  }
1040 }
1041 
1042 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1043  uint64_t Size =
1044  DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
1045  uint64_t Align;
1046  if (ClPreserveAlignment) {
1047  Align = SI.getAlignment();
1048  if (Align == 0)
1049  Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType());
1050  } else {
1051  Align = 1;
1052  }
1053  DFSF.storeShadow(SI.getPointerOperand(), Size, Align,
1054  DFSF.getShadow(SI.getValueOperand()), &SI);
1055 }
1056 
1057 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1058  visitOperandShadowInst(BO);
1059 }
1060 
1061 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1062 
1063 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1064 
1065 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1066  visitOperandShadowInst(GEPI);
1067 }
1068 
1069 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1070  visitOperandShadowInst(I);
1071 }
1072 
1073 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1074  visitOperandShadowInst(I);
1075 }
1076 
1077 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1078  visitOperandShadowInst(I);
1079 }
1080 
1081 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1082  visitOperandShadowInst(I);
1083 }
1084 
1085 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1086  visitOperandShadowInst(I);
1087 }
1088 
1089 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1090  bool AllLoadsStores = true;
1091  for (Instruction::use_iterator i = I.use_begin(), e = I.use_end(); i != e;
1092  ++i) {
1093  if (isa<LoadInst>(*i))
1094  continue;
1095 
1096  if (StoreInst *SI = dyn_cast<StoreInst>(*i)) {
1097  if (SI->getPointerOperand() == &I)
1098  continue;
1099  }
1100 
1101  AllLoadsStores = false;
1102  break;
1103  }
1104  if (AllLoadsStores) {
1105  IRBuilder<> IRB(&I);
1106  DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1107  }
1108  DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1109 }
1110 
1111 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1112  Value *CondShadow = DFSF.getShadow(I.getCondition());
1113  Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1114  Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1115 
1116  if (isa<VectorType>(I.getCondition()->getType())) {
1117  DFSF.setShadow(
1118  &I, DFSF.DFS.combineShadows(
1119  CondShadow,
1120  DFSF.DFS.combineShadows(TrueShadow, FalseShadow, &I), &I));
1121  } else {
1122  Value *ShadowSel;
1123  if (TrueShadow == FalseShadow) {
1124  ShadowSel = TrueShadow;
1125  } else {
1126  ShadowSel =
1127  SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1128  }
1129  DFSF.setShadow(&I, DFSF.DFS.combineShadows(CondShadow, ShadowSel, &I));
1130  }
1131 }
1132 
1133 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1134  IRBuilder<> IRB(&I);
1135  Value *ValShadow = DFSF.getShadow(I.getValue());
1136  IRB.CreateCall3(
1137  DFSF.DFS.DFSanSetLabelFn, ValShadow,
1138  IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1139  IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1140 }
1141 
1142 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1143  IRBuilder<> IRB(&I);
1144  Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1145  Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1146  Value *LenShadow = IRB.CreateMul(
1147  I.getLength(),
1148  ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1149  Value *AlignShadow;
1150  if (ClPreserveAlignment) {
1151  AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1152  ConstantInt::get(I.getAlignmentCst()->getType(),
1153  DFSF.DFS.ShadowWidth / 8));
1154  } else {
1155  AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1156  DFSF.DFS.ShadowWidth / 8);
1157  }
1158  Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1159  DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1160  SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1161  IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1162  AlignShadow, I.getVolatileCst());
1163 }
1164 
1165 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1166  if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1167  switch (DFSF.IA) {
1168  case DataFlowSanitizer::IA_TLS: {
1169  Value *S = DFSF.getShadow(RI.getReturnValue());
1170  IRBuilder<> IRB(&RI);
1171  IRB.CreateStore(S, DFSF.getRetvalTLS());
1172  break;
1173  }
1174  case DataFlowSanitizer::IA_Args: {
1175  IRBuilder<> IRB(&RI);
1176  Type *RT = DFSF.F->getFunctionType()->getReturnType();
1177  Value *InsVal =
1178  IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1179  Value *InsShadow =
1180  IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1181  RI.setOperand(0, InsShadow);
1182  break;
1183  }
1184  }
1185  }
1186 }
1187 
1188 void DFSanVisitor::visitCallSite(CallSite CS) {
1189  Function *F = CS.getCalledFunction();
1190  if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1191  visitOperandShadowInst(*CS.getInstruction());
1192  return;
1193  }
1194 
1195  IRBuilder<> IRB(CS.getInstruction());
1196 
1198  DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1199  if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1200  Function *F = i->second;
1201  switch (DFSF.DFS.getWrapperKind(F)) {
1202  case DataFlowSanitizer::WK_Warning: {
1203  CS.setCalledFunction(F);
1204  IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1205  IRB.CreateGlobalStringPtr(F->getName()));
1206  DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1207  return;
1208  }
1209  case DataFlowSanitizer::WK_Discard: {
1210  CS.setCalledFunction(F);
1211  DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1212  return;
1213  }
1214  case DataFlowSanitizer::WK_Functional: {
1215  CS.setCalledFunction(F);
1216  visitOperandShadowInst(*CS.getInstruction());
1217  return;
1218  }
1219  case DataFlowSanitizer::WK_Custom: {
1220  // Don't try to handle invokes of custom functions, it's too complicated.
1221  // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1222  // wrapper.
1223  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1224  FunctionType *FT = F->getFunctionType();
1225  FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1226  std::string CustomFName = "__dfsw_";
1227  CustomFName += F->getName();
1228  Constant *CustomF =
1229  DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1230  if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1231  CustomFn->copyAttributesFrom(F);
1232 
1233  // Custom functions returning non-void will write to the return label.
1234  if (!FT->getReturnType()->isVoidTy()) {
1235  CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1236  DFSF.DFS.ReadOnlyNoneAttrs);
1237  }
1238  }
1239 
1240  std::vector<Value *> Args;
1241 
1242  CallSite::arg_iterator i = CS.arg_begin();
1243  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1244  Type *T = (*i)->getType();
1245  FunctionType *ParamFT;
1246  if (isa<PointerType>(T) &&
1247  (ParamFT = dyn_cast<FunctionType>(
1248  cast<PointerType>(T)->getElementType()))) {
1249  std::string TName = "dfst";
1250  TName += utostr(FT->getNumParams() - n);
1251  TName += "$";
1252  TName += F->getName();
1253  Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1254  Args.push_back(T);
1255  Args.push_back(
1256  IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1257  } else {
1258  Args.push_back(*i);
1259  }
1260  }
1261 
1262  i = CS.arg_begin();
1263  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1264  Args.push_back(DFSF.getShadow(*i));
1265 
1266  if (!FT->getReturnType()->isVoidTy()) {
1267  if (!DFSF.LabelReturnAlloca) {
1268  DFSF.LabelReturnAlloca =
1269  new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1270  DFSF.F->getEntryBlock().begin());
1271  }
1272  Args.push_back(DFSF.LabelReturnAlloca);
1273  }
1274 
1275  CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1276  CustomCI->setCallingConv(CI->getCallingConv());
1277  CustomCI->setAttributes(CI->getAttributes());
1278 
1279  if (!FT->getReturnType()->isVoidTy()) {
1280  LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1281  DFSF.setShadow(CustomCI, LabelLoad);
1282  }
1283 
1284  CI->replaceAllUsesWith(CustomCI);
1285  CI->eraseFromParent();
1286  return;
1287  }
1288  break;
1289  }
1290  }
1291  }
1292 
1293  FunctionType *FT = cast<FunctionType>(
1295  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1296  for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1297  IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1298  DFSF.getArgTLS(i, CS.getInstruction()));
1299  }
1300  }
1301 
1302  Instruction *Next = 0;
1303  if (!CS.getType()->isVoidTy()) {
1304  if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1305  if (II->getNormalDest()->getSinglePredecessor()) {
1306  Next = II->getNormalDest()->begin();
1307  } else {
1308  BasicBlock *NewBB =
1309  SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS);
1310  Next = NewBB->begin();
1311  }
1312  } else {
1313  Next = CS->getNextNode();
1314  }
1315 
1316  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1317  IRBuilder<> NextIRB(Next);
1318  LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1319  DFSF.SkipInsts.insert(LI);
1320  DFSF.setShadow(CS.getInstruction(), LI);
1321  DFSF.NonZeroChecks.insert(LI);
1322  }
1323  }
1324 
1325  // Do all instrumentation for IA_Args down here to defer tampering with the
1326  // CFG in a way that SplitEdge may be able to detect.
1327  if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1328  FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1329  Value *Func =
1330  IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1331  std::vector<Value *> Args;
1332 
1333  CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1334  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1335  Args.push_back(*i);
1336 
1337  i = CS.arg_begin();
1338  for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1339  Args.push_back(DFSF.getShadow(*i));
1340 
1341  if (FT->isVarArg()) {
1342  unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1343  ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1344  AllocaInst *VarArgShadow =
1345  new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1346  Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0));
1347  for (unsigned n = 0; i != e; ++i, ++n) {
1348  IRB.CreateStore(DFSF.getShadow(*i),
1349  IRB.CreateConstGEP2_32(VarArgShadow, 0, n));
1350  Args.push_back(*i);
1351  }
1352  }
1353 
1354  CallSite NewCS;
1355  if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1356  NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1357  Args);
1358  } else {
1359  NewCS = IRB.CreateCall(Func, Args);
1360  }
1361  NewCS.setCallingConv(CS.getCallingConv());
1363  *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1365  AttributeSet::ReturnIndex)));
1366 
1367  if (Next) {
1368  ExtractValueInst *ExVal =
1369  ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1370  DFSF.SkipInsts.insert(ExVal);
1371  ExtractValueInst *ExShadow =
1372  ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1373  DFSF.SkipInsts.insert(ExShadow);
1374  DFSF.setShadow(ExVal, ExShadow);
1375  DFSF.NonZeroChecks.insert(ExShadow);
1376 
1377  CS.getInstruction()->replaceAllUsesWith(ExVal);
1378  }
1379 
1381  }
1382 }
1383 
1384 void DFSanVisitor::visitPHINode(PHINode &PN) {
1385  PHINode *ShadowPN =
1386  PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1387 
1388  // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1389  Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1390  for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1391  ++i) {
1392  ShadowPN->addIncoming(UndefShadow, *i);
1393  }
1394 
1395  DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1396  DFSF.setShadow(&PN, ShadowPN);
1397 }
Value * getValueOperand()
Definition: Instructions.h:343
const Value * getCalledValue() const
use_iterator use_end()
Definition: Value.h:152
LinkageTypes getLinkage() const
Definition: GlobalValue.h:218
IntegerType * getType() const
Definition: Constants.h:139
void ReplaceInstWithInst(BasicBlock::InstListType &BIL, BasicBlock::iterator &BI, Instruction *I)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, Pass *P)
void addIncoming(Value *V, BasicBlock *BB)
const AttributeSet & getAttributes() const
Definition: CallSite.h:179
LLVM Argument representation.
Definition: Argument.h:35
Base class for instruction visitors.
Definition: InstVisitor.h:81
void GetUnderlyingObjects(Value *V, SmallVectorImpl< Value * > &Objects, const DataLayout *TD=0, unsigned MaxLookup=6)
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
unsigned getNumParams() const
Definition: DerivedTypes.h:133
IterTy arg_end() const
Definition: CallSite.h:143
ConstantInt * getAlignmentCst() const
unsigned arg_size() const
Definition: CallSite.h:145
Value * getValue() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:123
bool isIntrinsic() const
Definition: Function.h:156
void setCalledFunction(Value *V)
Definition: CallSite.h:99
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
arg_iterator arg_end()
Definition: Function.h:418
const Instruction & front() const
Definition: BasicBlock.h:205
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
AttrBuilder & addAttribute(Attribute::AttrKind Val)
Add an attribute to the builder.
Definition: Attributes.cpp:968
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight)
Return metadata containing two branch weights.
Definition: MDBuilder.h:58
Type * getType() const
Definition: CallSite.h:149
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:111
Type * getPointerElementType() const
Definition: Type.h:373
virtual void eraseFromParent()
Definition: Globals.cpp:221
StringRef getName() const
Definition: Value.cpp:167
block_iterator block_end()
iterator begin()
Definition: BasicBlock.h:193
void setCallingConv(CallingConv::ID CC)
static cl::opt< std::string > ClABIListFile("dfsan-abilist", cl::desc("File listing native ABI functions and how the pass treats them"), cl::Hidden)
static cl::opt< bool > ClArgsABI("dfsan-args-abi", cl::desc("Use the argument ABI rather than the TLS ABI"), cl::Hidden)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
Base class of casting instructions.
Definition: InstrTypes.h:387
NodeTy * getNextNode()
Get the next node, or 0 for the list tail.
Definition: ilist_node.h:80
param_iterator param_end() const
Definition: DerivedTypes.h:125
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
void setModuleInlineAsm(StringRef Asm)
Set the module-scope inline assembly blocks.
Definition: Module.h:269
void setName(const Twine &Name)
Definition: Value.cpp:175
void copyAttributesFrom(const GlobalValue *Src)
Definition: Function.cpp:347
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
AttributeSet typeIncompatible(Type *Ty, uint64_t Index)
Which attributes cannot be applied to a type.
block_iterator block_begin()
#define G(x, y, z)
Definition: MD5.cpp:52
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
CallingConv::ID getCallingConv() const
Definition: CallSite.h:170
BasicBlock * getSuccessor(unsigned i) const
static std::string utostr(uint64_t X, bool isNeg=false)
Definition: StringExtras.h:88
GlobalValue * resolveAliasedGlobal(bool stopOnWeak=true)
Definition: Globals.cpp:247
ValTy * getCalledValue() const
Definition: CallSite.h:85
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void removeAttributes(unsigned i, AttributeSet attr)
removes the attributes from the list of attributes.
Definition: Function.cpp:296
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
void addAttribute(unsigned i, Attribute::AttrKind attr)
addAttribute - adds the attribute to the list of attributes.
unsigned getNumIncomingValues() const
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
unsigned getAlignment() const
Definition: Instructions.h:301
alias_iterator alias_end()
Definition: Module.h:544
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
TerminatorInst * SplitBlockAndInsertIfThen(Instruction *Cmp, bool Unreachable, MDNode *BranchWeights=0)
InstrTy * getInstruction() const
Definition: CallSite.h:79
df_iterator< T > df_end(const T &G)
size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const
Definition: ilist.h:539
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
param_iterator param_begin() const
Definition: DerivedTypes.h:124
ConstantInt * getVolatileCst() const
Value * getOperand(unsigned i) const
Definition: User.h:88
Value * getPointerOperand()
Definition: Instructions.h:223
arg_iterator arg_begin()
Definition: Function.h:410
Integer representation type.
Definition: DerivedTypes.h:37
void setAlignment(unsigned Align)
PointerType * getPointerTo(unsigned AddrSpace=0)
Definition: Type.cpp:756
const Value * getTrueValue() const
ModulePass * createDataFlowSanitizerPass(StringRef ABIListFile=StringRef(), void *(*getArgTLS)()=0, void *(*getRetValTLS)()=0)
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
const std::string & getModuleInlineAsm() const
Definition: Module.h:253
iterator begin()
Definition: DenseSet.h:107
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
Class for constant integers.
Definition: Constants.h:51
Value * getDest() const
Type * getType() const
Definition: Value.h:111
static cl::opt< bool > ClDebugNonzeroLabels("dfsan-debug-nonzero-labels", cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, ""load or return with a nonzero label"), cl::Hidden)
Value * getLength() const
alias_iterator alias_begin()
Definition: Module.h:542
BasicBlock * getBasicBlock() const
Definition: Constants.h:764
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:217
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
df_iterator< T > df_begin(const T &G)
static cl::opt< bool > ClPreserveAlignment("dfsan-preserve-alignment", cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, cl::init(false))
AttributeSet removeAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const
Remove the specified attributes at the specified index from this attribute list. Since attribute list...
Definition: Attributes.cpp:739
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:33
INITIALIZE_PASS(DataFlowSanitizer,"dfsan","DataFlowSanitizer: dynamic data flow analysis.", false, false) ModulePass *llvm
void addAttribute(unsigned i, Attribute::AttrKind attr)
adds the attribute to the list of attributes.
Definition: Function.cpp:284
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
const AttributeSet & getAttributes() const
reference front()
Definition: ilist.h:390
void setCallingConv(CallingConv::ID CC)
Definition: CallSite.h:173
use_iterator use_begin()
Definition: Value.h:150
Value * getSource() const
iterator end()
Definition: Module.h:533
bool isDeclaration() const
Definition: Globals.cpp:66
unsigned getAlignment() const
Definition: Instructions.h:181
void setAttributes(const AttributeSet &PAL)
Definition: CallSite.h:182
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
FunctionType * getFunctionType() const
Definition: Function.cpp:171
iterator begin()
Definition: Module.h:531
virtual void eraseFromParent()
Definition: Function.cpp:187
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:298
IterTy arg_begin() const
Definition: CallSite.h:137
reference back()
Definition: ilist.h:398
bool isVarArg() const
Definition: DerivedTypes.h:120
void setAttributes(const AttributeSet &Attrs)
Type * getReturnType() const
Definition: DerivedTypes.h:121
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
const ArgumentListType & getArgumentList() const
Definition: Function.h:362
CallInst * CreateCall(Value *Callee, const Twine &Name="")
Definition: IRBuilder.h:1304
const Value * getFalseValue() const
bool removeUnreachableBlocks(Function &F)
Remove all blocks that can not be reached from the function's entry.
Definition: Local.cpp:1243
CallingConv::ID getCallingConv() const
Value * getPointerOperand()
Definition: Instructions.h:346
const BasicBlock * getParent() const
Definition: Instruction.h:52
LLVMContext & getContext() const
Definition: Module.h:249
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
FunTy * getCalledFunction() const
Definition: CallSite.h:93