LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstCombineLoadStoreAlloca.cpp
Go to the documentation of this file.
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/Loads.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/IntrinsicInst.h"
21 using namespace llvm;
22 
23 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
24 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25 
26 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27 /// some part of a constant global variable. This intentionally only accepts
28 /// constant expressions because we can't rewrite arbitrary instructions.
29 static bool pointsToConstantGlobal(Value *V) {
30  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31  return GV->isConstant();
32  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33  if (CE->getOpcode() == Instruction::BitCast ||
34  CE->getOpcode() == Instruction::GetElementPtr)
35  return pointsToConstantGlobal(CE->getOperand(0));
36  return false;
37 }
38 
39 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
41 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
42 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
44 /// the alloca, and if the source pointer is a pointer to a constant global, we
45 /// can optimize this.
46 static bool
49  bool IsOffset = false) {
50  // We track lifetime intrinsics as we encounter them. If we decide to go
51  // ahead and replace the value with the global, this lets the caller quickly
52  // eliminate the markers.
53 
54  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
55  User *U = cast<Instruction>(*UI);
56 
57  if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
58  // Ignore non-volatile loads, they are always ok.
59  if (!LI->isSimple()) return false;
60  continue;
61  }
62 
63  if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
64  // If uses of the bitcast are ok, we are ok.
65  if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66  return false;
67  continue;
68  }
69  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
70  // If the GEP has all zero indices, it doesn't offset the pointer. If it
71  // doesn't, it does.
73  GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
74  return false;
75  continue;
76  }
77 
78  if (CallSite CS = U) {
79  // If this is the function being called then we treat it like a load and
80  // ignore it.
81  if (CS.isCallee(UI))
82  continue;
83 
84  // If this is a readonly/readnone call site, then we know it is just a
85  // load (but one that potentially returns the value itself), so we can
86  // ignore it if we know that the value isn't captured.
87  unsigned ArgNo = CS.getArgumentNo(UI);
88  if (CS.onlyReadsMemory() &&
89  (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
90  continue;
91 
92  // If this is being passed as a byval argument, the caller is making a
93  // copy, so it is only a read of the alloca.
94  if (CS.isByValArgument(ArgNo))
95  continue;
96  }
97 
98  // Lifetime intrinsics can be handled by the caller.
99  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
100  if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
101  II->getIntrinsicID() == Intrinsic::lifetime_end) {
102  assert(II->use_empty() && "Lifetime markers have no result to use!");
103  ToDelete.push_back(II);
104  continue;
105  }
106  }
107 
108  // If this is isn't our memcpy/memmove, reject it as something we can't
109  // handle.
111  if (MI == 0)
112  return false;
113 
114  // If the transfer is using the alloca as a source of the transfer, then
115  // ignore it since it is a load (unless the transfer is volatile).
116  if (UI.getOperandNo() == 1) {
117  if (MI->isVolatile()) return false;
118  continue;
119  }
120 
121  // If we already have seen a copy, reject the second one.
122  if (TheCopy) return false;
123 
124  // If the pointer has been offset from the start of the alloca, we can't
125  // safely handle this.
126  if (IsOffset) return false;
127 
128  // If the memintrinsic isn't using the alloca as the dest, reject it.
129  if (UI.getOperandNo() != 0) return false;
130 
131  // If the source of the memcpy/move is not a constant global, reject it.
132  if (!pointsToConstantGlobal(MI->getSource()))
133  return false;
134 
135  // Otherwise, the transform is safe. Remember the copy instruction.
136  TheCopy = MI;
137  }
138  return true;
139 }
140 
141 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
142 /// modified by a copy from a constant global. If we can prove this, we can
143 /// replace any uses of the alloca with uses of the global directly.
144 static MemTransferInst *
146  SmallVectorImpl<Instruction *> &ToDelete) {
147  MemTransferInst *TheCopy = 0;
148  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
149  return TheCopy;
150  return 0;
151 }
152 
154  // Ensure that the alloca array size argument has type intptr_t, so that
155  // any casting is exposed early.
156  if (TD) {
157  Type *IntPtrTy = TD->getIntPtrType(AI.getType());
158  if (AI.getArraySize()->getType() != IntPtrTy) {
160  IntPtrTy, false);
161  AI.setOperand(0, V);
162  return &AI;
163  }
164  }
165 
166  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
167  if (AI.isArrayAllocation()) { // Check C != 1
168  if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
169  Type *NewTy =
170  ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
171  AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
172  New->setAlignment(AI.getAlignment());
173 
174  // Scan to the end of the allocation instructions, to skip over a block of
175  // allocas if possible...also skip interleaved debug info
176  //
177  BasicBlock::iterator It = New;
178  while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
179 
180  // Now that I is pointing to the first non-allocation-inst in the block,
181  // insert our getelementptr instruction...
182  //
183  Type *IdxTy = TD
184  ? TD->getIntPtrType(AI.getType())
186  Value *NullIdx = Constant::getNullValue(IdxTy);
187  Value *Idx[2] = { NullIdx, NullIdx };
188  Instruction *GEP =
189  GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
190  InsertNewInstBefore(GEP, *It);
191 
192  // Now make everything use the getelementptr instead of the original
193  // allocation.
194  return ReplaceInstUsesWith(AI, GEP);
195  } else if (isa<UndefValue>(AI.getArraySize())) {
197  }
198  }
199 
200  if (TD && AI.getAllocatedType()->isSized()) {
201  // If the alignment is 0 (unspecified), assign it the preferred alignment.
202  if (AI.getAlignment() == 0)
204 
205  // Move all alloca's of zero byte objects to the entry block and merge them
206  // together. Note that we only do this for alloca's, because malloc should
207  // allocate and return a unique pointer, even for a zero byte allocation.
208  if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
209  // For a zero sized alloca there is no point in doing an array allocation.
210  // This is helpful if the array size is a complicated expression not used
211  // elsewhere.
212  if (AI.isArrayAllocation()) {
213  AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
214  return &AI;
215  }
216 
217  // Get the first instruction in the entry block.
218  BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
219  Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
220  if (FirstInst != &AI) {
221  // If the entry block doesn't start with a zero-size alloca then move
222  // this one to the start of the entry block. There is no problem with
223  // dominance as the array size was forced to a constant earlier already.
224  AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
225  if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
226  TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
227  AI.moveBefore(FirstInst);
228  return &AI;
229  }
230 
231  // If the alignment of the entry block alloca is 0 (unspecified),
232  // assign it the preferred alignment.
233  if (EntryAI->getAlignment() == 0)
234  EntryAI->setAlignment(
235  TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
236  // Replace this zero-sized alloca with the one at the start of the entry
237  // block after ensuring that the address will be aligned enough for both
238  // types.
239  unsigned MaxAlign = std::max(EntryAI->getAlignment(),
240  AI.getAlignment());
241  EntryAI->setAlignment(MaxAlign);
242  if (AI.getType() != EntryAI->getType())
243  return new BitCastInst(EntryAI, AI.getType());
244  return ReplaceInstUsesWith(AI, EntryAI);
245  }
246  }
247  }
248 
249  if (AI.getAlignment()) {
250  // Check to see if this allocation is only modified by a memcpy/memmove from
251  // a constant global whose alignment is equal to or exceeds that of the
252  // allocation. If this is the case, we can change all users to use
253  // the constant global instead. This is commonly produced by the CFE by
254  // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
255  // is only subsequently read.
257  if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
258  unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
259  AI.getAlignment(), TD);
260  if (AI.getAlignment() <= SourceAlign) {
261  DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
262  DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
263  for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
264  EraseInstFromFunction(*ToDelete[i]);
265  Constant *TheSrc = cast<Constant>(Copy->getSource());
266  Instruction *NewI
268  AI.getType()));
269  EraseInstFromFunction(*Copy);
270  ++NumGlobalCopies;
271  return NewI;
272  }
273  }
274  }
275 
276  // At last, use the generic allocation site handler to aggressively remove
277  // unused allocas.
278  return visitAllocSite(AI);
279 }
280 
281 
282 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
284  const DataLayout *TD) {
285  User *CI = cast<User>(LI.getOperand(0));
286  Value *CastOp = CI->getOperand(0);
287 
288  PointerType *DestTy = cast<PointerType>(CI->getType());
289  Type *DestPTy = DestTy->getElementType();
290  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
291 
292  // If the address spaces don't match, don't eliminate the cast.
293  if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
294  return 0;
295 
296  Type *SrcPTy = SrcTy->getElementType();
297 
298  if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
299  DestPTy->isVectorTy()) {
300  // If the source is an array, the code below will not succeed. Check to
301  // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
302  // constants.
303  if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
304  if (Constant *CSrc = dyn_cast<Constant>(CastOp))
305  if (ASrcTy->getNumElements() != 0) {
306  Type *IdxTy = TD
307  ? TD->getIntPtrType(SrcTy)
308  : Type::getInt64Ty(SrcTy->getContext());
309  Value *Idx = Constant::getNullValue(IdxTy);
310  Value *Idxs[2] = { Idx, Idx };
311  CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
312  SrcTy = cast<PointerType>(CastOp->getType());
313  SrcPTy = SrcTy->getElementType();
314  }
315 
316  if (IC.getDataLayout() &&
317  (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
318  SrcPTy->isVectorTy()) &&
319  // Do not allow turning this into a load of an integer, which is then
320  // casted to a pointer, this pessimizes pointer analysis a lot.
321  (SrcPTy->isPtrOrPtrVectorTy() ==
322  LI.getType()->isPtrOrPtrVectorTy()) &&
323  IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
324  IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
325 
326  // Okay, we are casting from one integer or pointer type to another of
327  // the same size. Instead of casting the pointer before the load, cast
328  // the result of the loaded value.
329  LoadInst *NewLoad =
330  IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
331  NewLoad->setAlignment(LI.getAlignment());
332  NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
333  // Now cast the result of the load.
334  return new BitCastInst(NewLoad, LI.getType());
335  }
336  }
337  }
338  return 0;
339 }
340 
342  Value *Op = LI.getOperand(0);
343 
344  // Attempt to improve the alignment.
345  if (TD) {
346  unsigned KnownAlign =
348  unsigned LoadAlign = LI.getAlignment();
349  unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
350  TD->getABITypeAlignment(LI.getType());
351 
352  if (KnownAlign > EffectiveLoadAlign)
353  LI.setAlignment(KnownAlign);
354  else if (LoadAlign == 0)
355  LI.setAlignment(EffectiveLoadAlign);
356  }
357 
358  // load (cast X) --> cast (load X) iff safe.
359  if (isa<CastInst>(Op))
360  if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
361  return Res;
362 
363  // None of the following transforms are legal for volatile/atomic loads.
364  // FIXME: Some of it is okay for atomic loads; needs refactoring.
365  if (!LI.isSimple()) return 0;
366 
367  // Do really simple store-to-load forwarding and load CSE, to catch cases
368  // where there are several consecutive memory accesses to the same location,
369  // separated by a few arithmetic operations.
370  BasicBlock::iterator BBI = &LI;
371  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
372  return ReplaceInstUsesWith(LI, AvailableVal);
373 
374  // load(gep null, ...) -> unreachable
375  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
376  const Value *GEPI0 = GEPI->getOperand(0);
377  // TODO: Consider a target hook for valid address spaces for this xform.
378  if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
379  // Insert a new store to null instruction before the load to indicate
380  // that this code is not reachable. We do this instead of inserting
381  // an unreachable instruction directly because we cannot modify the
382  // CFG.
384  Constant::getNullValue(Op->getType()), &LI);
385  return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
386  }
387  }
388 
389  // load null/undef -> unreachable
390  // TODO: Consider a target hook for valid address spaces for this xform.
391  if (isa<UndefValue>(Op) ||
392  (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
393  // Insert a new store to null instruction before the load to indicate that
394  // this code is not reachable. We do this instead of inserting an
395  // unreachable instruction directly because we cannot modify the CFG.
397  Constant::getNullValue(Op->getType()), &LI);
398  return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
399  }
400 
401  // Instcombine load (constantexpr_cast global) -> cast (load global)
402  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
403  if (CE->isCast())
404  if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
405  return Res;
406 
407  if (Op->hasOneUse()) {
408  // Change select and PHI nodes to select values instead of addresses: this
409  // helps alias analysis out a lot, allows many others simplifications, and
410  // exposes redundancy in the code.
411  //
412  // Note that we cannot do the transformation unless we know that the
413  // introduced loads cannot trap! Something like this is valid as long as
414  // the condition is always false: load (select bool %C, int* null, int* %G),
415  // but it would not be valid if we transformed it to load from null
416  // unconditionally.
417  //
418  if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
419  // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
420  unsigned Align = LI.getAlignment();
421  if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
422  isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
423  LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
424  SI->getOperand(1)->getName()+".val");
425  LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
426  SI->getOperand(2)->getName()+".val");
427  V1->setAlignment(Align);
428  V2->setAlignment(Align);
429  return SelectInst::Create(SI->getCondition(), V1, V2);
430  }
431 
432  // load (select (cond, null, P)) -> load P
433  if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
434  if (C->isNullValue()) {
435  LI.setOperand(0, SI->getOperand(2));
436  return &LI;
437  }
438 
439  // load (select (cond, P, null)) -> load P
440  if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
441  if (C->isNullValue()) {
442  LI.setOperand(0, SI->getOperand(1));
443  return &LI;
444  }
445  }
446  }
447  return 0;
448 }
449 
450 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
451 /// when possible. This makes it generally easy to do alias analysis and/or
452 /// SROA/mem2reg of the memory object.
454  User *CI = cast<User>(SI.getOperand(1));
455  Value *CastOp = CI->getOperand(0);
456 
457  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
458  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
459  if (SrcTy == 0) return 0;
460 
461  Type *SrcPTy = SrcTy->getElementType();
462 
463  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
464  return 0;
465 
466  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
467  /// to its first element. This allows us to handle things like:
468  /// store i32 xxx, (bitcast {foo*, float}* %P to i32*)
469  /// on 32-bit hosts.
470  SmallVector<Value*, 4> NewGEPIndices;
471 
472  // If the source is an array, the code below will not succeed. Check to
473  // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
474  // constants.
475  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
476  // Index through pointer.
478  NewGEPIndices.push_back(Zero);
479 
480  while (1) {
481  if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
482  if (!STy->getNumElements()) /* Struct can be empty {} */
483  break;
484  NewGEPIndices.push_back(Zero);
485  SrcPTy = STy->getElementType(0);
486  } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
487  NewGEPIndices.push_back(Zero);
488  SrcPTy = ATy->getElementType();
489  } else {
490  break;
491  }
492  }
493 
494  SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
495  }
496 
497  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
498  return 0;
499 
500  // If the pointers point into different address spaces or if they point to
501  // values with different sizes, we can't do the transformation.
502  if (!IC.getDataLayout() ||
503  SrcTy->getAddressSpace() !=
504  cast<PointerType>(CI->getType())->getAddressSpace() ||
505  IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
506  IC.getDataLayout()->getTypeSizeInBits(DestPTy))
507  return 0;
508 
509  // Okay, we are casting from one integer or pointer type to another of
510  // the same size. Instead of casting the pointer before
511  // the store, cast the value to be stored.
512  Value *NewCast;
513  Value *SIOp0 = SI.getOperand(0);
514  Instruction::CastOps opcode = Instruction::BitCast;
515  Type* CastSrcTy = SIOp0->getType();
516  Type* CastDstTy = SrcPTy;
517  if (CastDstTy->isPointerTy()) {
518  if (CastSrcTy->isIntegerTy())
519  opcode = Instruction::IntToPtr;
520  } else if (CastDstTy->isIntegerTy()) {
521  if (SIOp0->getType()->isPointerTy())
522  opcode = Instruction::PtrToInt;
523  }
524 
525  // SIOp0 is a pointer to aggregate and this is a store to the first field,
526  // emit a GEP to index into its first field.
527  if (!NewGEPIndices.empty())
528  CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
529 
530  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
531  SIOp0->getName()+".c");
532  SI.setOperand(0, NewCast);
533  SI.setOperand(1, CastOp);
534  return &SI;
535 }
536 
537 /// equivalentAddressValues - Test if A and B will obviously have the same
538 /// value. This includes recognizing that %t0 and %t1 will have the same
539 /// value in code like this:
540 /// %t0 = getelementptr \@a, 0, 3
541 /// store i32 0, i32* %t0
542 /// %t1 = getelementptr \@a, 0, 3
543 /// %t2 = load i32* %t1
544 ///
546  // Test if the values are trivially equivalent.
547  if (A == B) return true;
548 
549  // Test if the values come form identical arithmetic instructions.
550  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
551  // its only used to compare two uses within the same basic block, which
552  // means that they'll always either have the same value or one of them
553  // will have an undefined value.
554  if (isa<BinaryOperator>(A) ||
555  isa<CastInst>(A) ||
556  isa<PHINode>(A) ||
557  isa<GetElementPtrInst>(A))
558  if (Instruction *BI = dyn_cast<Instruction>(B))
559  if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
560  return true;
561 
562  // Otherwise they may not be equivalent.
563  return false;
564 }
565 
567  Value *Val = SI.getOperand(0);
568  Value *Ptr = SI.getOperand(1);
569 
570  // Attempt to improve the alignment.
571  if (TD) {
572  unsigned KnownAlign =
574  TD);
575  unsigned StoreAlign = SI.getAlignment();
576  unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
577  TD->getABITypeAlignment(Val->getType());
578 
579  if (KnownAlign > EffectiveStoreAlign)
580  SI.setAlignment(KnownAlign);
581  else if (StoreAlign == 0)
582  SI.setAlignment(EffectiveStoreAlign);
583  }
584 
585  // Don't hack volatile/atomic stores.
586  // FIXME: Some bits are legal for atomic stores; needs refactoring.
587  if (!SI.isSimple()) return 0;
588 
589  // If the RHS is an alloca with a single use, zapify the store, making the
590  // alloca dead.
591  if (Ptr->hasOneUse()) {
592  if (isa<AllocaInst>(Ptr))
593  return EraseInstFromFunction(SI);
594  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
595  if (isa<AllocaInst>(GEP->getOperand(0))) {
596  if (GEP->getOperand(0)->hasOneUse())
597  return EraseInstFromFunction(SI);
598  }
599  }
600  }
601 
602  // Do really simple DSE, to catch cases where there are several consecutive
603  // stores to the same location, separated by a few arithmetic operations. This
604  // situation often occurs with bitfield accesses.
605  BasicBlock::iterator BBI = &SI;
606  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
607  --ScanInsts) {
608  --BBI;
609  // Don't count debug info directives, lest they affect codegen,
610  // and we skip pointer-to-pointer bitcasts, which are NOPs.
611  if (isa<DbgInfoIntrinsic>(BBI) ||
612  (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
613  ScanInsts++;
614  continue;
615  }
616 
617  if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
618  // Prev store isn't volatile, and stores to the same location?
619  if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
620  SI.getOperand(1))) {
621  ++NumDeadStore;
622  ++BBI;
623  EraseInstFromFunction(*PrevSI);
624  continue;
625  }
626  break;
627  }
628 
629  // If this is a load, we have to stop. However, if the loaded value is from
630  // the pointer we're loading and is producing the pointer we're storing,
631  // then *this* store is dead (X = load P; store X -> P).
632  if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
633  if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
634  LI->isSimple())
635  return EraseInstFromFunction(SI);
636 
637  // Otherwise, this is a load from some other location. Stores before it
638  // may not be dead.
639  break;
640  }
641 
642  // Don't skip over loads or things that can modify memory.
643  if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
644  break;
645  }
646 
647  // store X, null -> turns into 'unreachable' in SimplifyCFG
648  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
649  if (!isa<UndefValue>(Val)) {
650  SI.setOperand(0, UndefValue::get(Val->getType()));
651  if (Instruction *U = dyn_cast<Instruction>(Val))
652  Worklist.Add(U); // Dropped a use.
653  }
654  return 0; // Do not modify these!
655  }
656 
657  // store undef, Ptr -> noop
658  if (isa<UndefValue>(Val))
659  return EraseInstFromFunction(SI);
660 
661  // If the pointer destination is a cast, see if we can fold the cast into the
662  // source instead.
663  if (isa<CastInst>(Ptr))
664  if (Instruction *Res = InstCombineStoreToCast(*this, SI))
665  return Res;
666  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
667  if (CE->isCast())
668  if (Instruction *Res = InstCombineStoreToCast(*this, SI))
669  return Res;
670 
671 
672  // If this store is the last instruction in the basic block (possibly
673  // excepting debug info instructions), and if the block ends with an
674  // unconditional branch, try to move it to the successor block.
675  BBI = &SI;
676  do {
677  ++BBI;
678  } while (isa<DbgInfoIntrinsic>(BBI) ||
679  (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
680  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
681  if (BI->isUnconditional())
682  if (SimplifyStoreAtEndOfBlock(SI))
683  return 0; // xform done!
684 
685  return 0;
686 }
687 
688 /// SimplifyStoreAtEndOfBlock - Turn things like:
689 /// if () { *P = v1; } else { *P = v2 }
690 /// into a phi node with a store in the successor.
691 ///
692 /// Simplify things like:
693 /// *P = v1; if () { *P = v2; }
694 /// into a phi node with a store in the successor.
695 ///
696 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
697  BasicBlock *StoreBB = SI.getParent();
698 
699  // Check to see if the successor block has exactly two incoming edges. If
700  // so, see if the other predecessor contains a store to the same location.
701  // if so, insert a PHI node (if needed) and move the stores down.
702  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
703 
704  // Determine whether Dest has exactly two predecessors and, if so, compute
705  // the other predecessor.
706  pred_iterator PI = pred_begin(DestBB);
707  BasicBlock *P = *PI;
708  BasicBlock *OtherBB = 0;
709 
710  if (P != StoreBB)
711  OtherBB = P;
712 
713  if (++PI == pred_end(DestBB))
714  return false;
715 
716  P = *PI;
717  if (P != StoreBB) {
718  if (OtherBB)
719  return false;
720  OtherBB = P;
721  }
722  if (++PI != pred_end(DestBB))
723  return false;
724 
725  // Bail out if all the relevant blocks aren't distinct (this can happen,
726  // for example, if SI is in an infinite loop)
727  if (StoreBB == DestBB || OtherBB == DestBB)
728  return false;
729 
730  // Verify that the other block ends in a branch and is not otherwise empty.
731  BasicBlock::iterator BBI = OtherBB->getTerminator();
732  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
733  if (!OtherBr || BBI == OtherBB->begin())
734  return false;
735 
736  // If the other block ends in an unconditional branch, check for the 'if then
737  // else' case. there is an instruction before the branch.
738  StoreInst *OtherStore = 0;
739  if (OtherBr->isUnconditional()) {
740  --BBI;
741  // Skip over debugging info.
742  while (isa<DbgInfoIntrinsic>(BBI) ||
743  (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
744  if (BBI==OtherBB->begin())
745  return false;
746  --BBI;
747  }
748  // If this isn't a store, isn't a store to the same location, or is not the
749  // right kind of store, bail out.
750  OtherStore = dyn_cast<StoreInst>(BBI);
751  if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
752  !SI.isSameOperationAs(OtherStore))
753  return false;
754  } else {
755  // Otherwise, the other block ended with a conditional branch. If one of the
756  // destinations is StoreBB, then we have the if/then case.
757  if (OtherBr->getSuccessor(0) != StoreBB &&
758  OtherBr->getSuccessor(1) != StoreBB)
759  return false;
760 
761  // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
762  // if/then triangle. See if there is a store to the same ptr as SI that
763  // lives in OtherBB.
764  for (;; --BBI) {
765  // Check to see if we find the matching store.
766  if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
767  if (OtherStore->getOperand(1) != SI.getOperand(1) ||
768  !SI.isSameOperationAs(OtherStore))
769  return false;
770  break;
771  }
772  // If we find something that may be using or overwriting the stored
773  // value, or if we run out of instructions, we can't do the xform.
774  if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
775  BBI == OtherBB->begin())
776  return false;
777  }
778 
779  // In order to eliminate the store in OtherBr, we have to
780  // make sure nothing reads or overwrites the stored value in
781  // StoreBB.
782  for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
783  // FIXME: This should really be AA driven.
784  if (I->mayReadFromMemory() || I->mayWriteToMemory())
785  return false;
786  }
787  }
788 
789  // Insert a PHI node now if we need it.
790  Value *MergedVal = OtherStore->getOperand(0);
791  if (MergedVal != SI.getOperand(0)) {
792  PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
793  PN->addIncoming(SI.getOperand(0), SI.getParent());
794  PN->addIncoming(OtherStore->getOperand(0), OtherBB);
795  MergedVal = InsertNewInstBefore(PN, DestBB->front());
796  }
797 
798  // Advance to a place where it is safe to insert the new store and
799  // insert it.
800  BBI = DestBB->getFirstInsertionPt();
801  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
802  SI.isVolatile(),
803  SI.getAlignment(),
804  SI.getOrdering(),
805  SI.getSynchScope());
806  InsertNewInstBefore(NewSI, *BBI);
807  NewSI->setDebugLoc(OtherStore->getDebugLoc());
808 
809  // If the two stores had the same TBAA tag, preserve it.
810  if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
811  if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
812  OtherStore->getMetadata(LLVMContext::MD_tbaa))))
813  NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
814 
815 
816  // Nuke the old stores.
818  EraseInstFromFunction(*OtherStore);
819  return true;
820 }
use_iterator use_end()
Definition: Value.h:152
STATISTIC(NumDeadStore,"Number of dead stores eliminated")
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1164
LoadInst * CreateLoad(Value *Ptr, const char *Name)
Definition: IRBuilder.h:879
void addIncoming(Value *V, BasicBlock *BB)
bool isVolatile() const
Definition: Instructions.h:287
SynchronizationScope getSynchScope() const
Definition: Instructions.h:319
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:1180
bool isVolatile() const
void setAlignment(unsigned Align)
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=0)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getPrefTypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:600
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
bool isSimple() const
Definition: Instructions.h:338
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
void Add(Instruction *I)
bool isPtrOrPtrVectorTy() const
Definition: Type.h:225
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
MDNode - a tuple of other values.
Definition: Metadata.h:69
const Instruction & front() const
Definition: BasicBlock.h:205
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align, const DataLayout *TD=0)
Definition: Loads.cpp:56
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
static bool pointsToConstantGlobal(Value *V)
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
bool isSimple() const
Definition: Instructions.h:218
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
bool isArrayAllocation() const
Instruction * getFirstNonPHIOrDbg()
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic...
Definition: BasicBlock.cpp:140
bool isUnconditional() const
DataLayout * getDataLayout() const
Definition: InstCombine.h:102
InstCombiner - The -instcombine pass.
Definition: InstCombine.h:72
Type * getAllocatedType() const
AllocaInst * CreateAlloca(Type *Ty, Value *ArraySize=0, const Twine &Name="")
Definition: IRBuilder.h:873
SynchronizationScope getSynchScope() const
Definition: Instructions.h:199
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:351
void setAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope=CrossThread)
Definition: Instructions.h:212
static Instruction * InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI)
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
BasicBlock * getSuccessor(unsigned i) const
This class represents a no-op cast from one type to another.
bool isArrayTy() const
Definition: Type.h:216
Type * getElementType() const
Definition: DerivedTypes.h:319
#define P(N)
static bool equivalentAddressValues(Value *A, Value *B)
unsigned getAlignment() const
Definition: Instructions.h:301
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
bool isVectorTy() const
Definition: Type.h:229
LLVM Constant Representation.
Definition: Constant.h:41
PointerType * getType() const
Definition: Instructions.h:91
Instruction * ReplaceInstUsesWith(Instruction &I, Value *V)
Definition: InstCombine.h:267
unsigned getAlignment() const
Definition: Instructions.h:103
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
Instruction * visitAllocaInst(AllocaInst &AI)
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
InstCombineWorklist Worklist
Worklist - All of the instructions that need to be simplified.
Definition: InstCombine.h:82
void setAlignment(unsigned Align)
BuilderTy * Builder
Definition: InstCombine.h:87
static MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
Methods for metadata merging.
bool isPointerTy() const
Definition: Type.h:220
Value * CreateInBoundsGEP(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:944
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
static Instruction * InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, const DataLayout *TD)
InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
unsigned getABITypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:582
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
AtomicOrdering getOrdering() const
Returns the ordering effect of this store.
Definition: Instructions.h:308
Class for constant integers.
Definition: Constants.h:51
Value * FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=6, AliasAnalysis *AA=0, MDNode **TBAATag=0)
Definition: Loads.cpp:139
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
Type * getType() const
Definition: Value.h:111
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
bool isVolatile() const
Definition: Instructions.h:170
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
AtomicOrdering getOrdering() const
Returns the ordering effect of this fence.
Definition: Instructions.h:188
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:228
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isIntegerTy() const
Definition: Type.h:196
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
bool isStructTy() const
Definition: Type.h:212
use_iterator use_begin()
Definition: Value.h:150
Value * getSource() const
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout *TD=0)
Definition: Local.cpp:922
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, SmallVectorImpl< Instruction * > &ToDelete, bool IsOffset=false)
static ArrayType * get(Type *ElementType, uint64_t NumElements)
Definition: Type.cpp:679
Instruction * InsertNewInstBefore(Instruction *New, Instruction &Old)
Definition: InstCombine.h:244
Instruction * visitLoadInst(LoadInst &LI)
LLVM Value Representation.
Definition: Value.h:66
void setAlignment(unsigned Align)
Instruction * visitStoreInst(StoreInst &SI)
const Value * getArraySize() const
Definition: Instructions.h:86
Instruction * EraseInstFromFunction(Instruction &I)
Definition: InstCombine.h:286
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
bool isSized() const
Definition: Type.h:278
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
#define DEBUG(X)
Definition: Debug.h:97
bool isSameOperationAs(const Instruction *I, unsigned flags=0) const
Determine if one instruction is the same operation as another.
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:743
iterator getFirstInsertionPt()
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:170
Instruction * visitAllocSite(Instruction &FI)
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD