LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstructionCombining.cpp
Go to the documentation of this file.
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "InstCombine.h"
39 #include "llvm-c/Initialization.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringSwitch.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/Support/CFG.h"
50 #include "llvm/Support/Debug.h"
56 #include <algorithm>
57 #include <climits>
58 using namespace llvm;
59 using namespace llvm::PatternMatch;
60 
61 STATISTIC(NumCombined , "Number of insts combined");
62 STATISTIC(NumConstProp, "Number of constant folds");
63 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64 STATISTIC(NumSunkInst , "Number of instructions sunk");
65 STATISTIC(NumExpand, "Number of expansions");
66 STATISTIC(NumFactor , "Number of factorizations");
67 STATISTIC(NumReassoc , "Number of reassociations");
68 
69 static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70  cl::init(false),
71  cl::desc("Enable unsafe double to float "
72  "shrinking for math lib calls"));
73 
74 // Initialization Routines
77 }
78 
81 }
82 
83 char InstCombiner::ID = 0;
84 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85  "Combine redundant instructions", false, false)
88  "Combine redundant instructions", false, false)
89 
90 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93 }
94 
95 
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98 }
99 
100 /// ShouldChangeType - Return true if it is desirable to convert a computation
101 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102 /// type for example, or from a smaller to a larger illegal type.
103 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105 
106  // If we don't have TD, we don't know if the source/dest are legal.
107  if (!TD) return false;
108 
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = TD->isLegalInteger(FromWidth);
112  bool ToLegal = TD->isLegalInteger(ToWidth);
113 
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117  return false;
118 
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122  return false;
123 
124  return true;
125 }
126 
127 // Return true, if No Signed Wrap should be maintained for I.
128 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129 // where both B and C should be ConstantInts, results in a constant that does
130 // not overflow. This function only handles the Add and Sub opcodes. For
131 // all other opcodes, the function conservatively returns false.
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135  return false;
136  }
137 
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141  Opcode != Instruction::Sub) {
142  return false;
143  }
144 
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
147 
148  if (!CB || !CC) {
149  return false;
150  }
151 
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155 
156  if (Opcode == Instruction::Add) {
157  BVal.sadd_ov(CVal, Overflow);
158  } else {
159  BVal.ssub_ov(CVal, Overflow);
160  }
161 
162  return !Overflow;
163 }
164 
165 /// Conservatively clears subclassOptionalData after a reassociation or
166 /// commutation. We preserve fast-math flags when applicable as they can be
167 /// preserved.
170  if (!FPMO) {
172  return;
173  }
174 
177  I.setFastMathFlags(FMF);
178 }
179 
180 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181 /// operators which are associative or commutative:
182 //
183 // Commutative operators:
184 //
185 // 1. Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 //
189 // Associative operators:
190 //
191 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193 //
194 // Associative and commutative operators:
195 //
196 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199 // if C1 and C2 are constants.
200 //
201 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
202  Instruction::BinaryOps Opcode = I.getOpcode();
203  bool Changed = false;
204 
205  do {
206  // Order operands such that they are listed from right (least complex) to
207  // left (most complex). This puts constants before unary operators before
208  // binary operators.
209  if (I.isCommutative() && getComplexity(I.getOperand(0)) <
211  Changed = !I.swapOperands();
212 
215 
216  if (I.isAssociative()) {
217  // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218  if (Op0 && Op0->getOpcode() == Opcode) {
219  Value *A = Op0->getOperand(0);
220  Value *B = Op0->getOperand(1);
221  Value *C = I.getOperand(1);
222 
223  // Does "B op C" simplify?
224  if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
225  // It simplifies to V. Form "A op V".
226  I.setOperand(0, A);
227  I.setOperand(1, V);
228  // Conservatively clear the optional flags, since they may not be
229  // preserved by the reassociation.
230  if (MaintainNoSignedWrap(I, B, C) &&
231  (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
232  // Note: this is only valid because SimplifyBinOp doesn't look at
233  // the operands to Op0.
235  I.setHasNoSignedWrap(true);
236  } else {
238  }
239 
240  Changed = true;
241  ++NumReassoc;
242  continue;
243  }
244  }
245 
246  // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247  if (Op1 && Op1->getOpcode() == Opcode) {
248  Value *A = I.getOperand(0);
249  Value *B = Op1->getOperand(0);
250  Value *C = Op1->getOperand(1);
251 
252  // Does "A op B" simplify?
253  if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
254  // It simplifies to V. Form "V op C".
255  I.setOperand(0, V);
256  I.setOperand(1, C);
257  // Conservatively clear the optional flags, since they may not be
258  // preserved by the reassociation.
260  Changed = true;
261  ++NumReassoc;
262  continue;
263  }
264  }
265  }
266 
267  if (I.isAssociative() && I.isCommutative()) {
268  // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269  if (Op0 && Op0->getOpcode() == Opcode) {
270  Value *A = Op0->getOperand(0);
271  Value *B = Op0->getOperand(1);
272  Value *C = I.getOperand(1);
273 
274  // Does "C op A" simplify?
275  if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
276  // It simplifies to V. Form "V op B".
277  I.setOperand(0, V);
278  I.setOperand(1, B);
279  // Conservatively clear the optional flags, since they may not be
280  // preserved by the reassociation.
282  Changed = true;
283  ++NumReassoc;
284  continue;
285  }
286  }
287 
288  // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289  if (Op1 && Op1->getOpcode() == Opcode) {
290  Value *A = I.getOperand(0);
291  Value *B = Op1->getOperand(0);
292  Value *C = Op1->getOperand(1);
293 
294  // Does "C op A" simplify?
295  if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
296  // It simplifies to V. Form "B op V".
297  I.setOperand(0, B);
298  I.setOperand(1, V);
299  // Conservatively clear the optional flags, since they may not be
300  // preserved by the reassociation.
302  Changed = true;
303  ++NumReassoc;
304  continue;
305  }
306  }
307 
308  // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309  // if C1 and C2 are constants.
310  if (Op0 && Op1 &&
311  Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312  isa<Constant>(Op0->getOperand(1)) &&
313  isa<Constant>(Op1->getOperand(1)) &&
314  Op0->hasOneUse() && Op1->hasOneUse()) {
315  Value *A = Op0->getOperand(0);
316  Constant *C1 = cast<Constant>(Op0->getOperand(1));
317  Value *B = Op1->getOperand(0);
318  Constant *C2 = cast<Constant>(Op1->getOperand(1));
319 
320  Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
321  BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
322  InsertNewInstWith(New, I);
323  New->takeName(Op1);
324  I.setOperand(0, New);
325  I.setOperand(1, Folded);
326  // Conservatively clear the optional flags, since they may not be
327  // preserved by the reassociation.
329 
330  Changed = true;
331  continue;
332  }
333  }
334 
335  // No further simplifications.
336  return Changed;
337  } while (1);
338 }
339 
340 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
341 /// "(X LOp Y) ROp (X LOp Z)".
344  switch (LOp) {
345  default:
346  return false;
347 
348  case Instruction::And:
349  // And distributes over Or and Xor.
350  switch (ROp) {
351  default:
352  return false;
353  case Instruction::Or:
354  case Instruction::Xor:
355  return true;
356  }
357 
358  case Instruction::Mul:
359  // Multiplication distributes over addition and subtraction.
360  switch (ROp) {
361  default:
362  return false;
363  case Instruction::Add:
364  case Instruction::Sub:
365  return true;
366  }
367 
368  case Instruction::Or:
369  // Or distributes over And.
370  switch (ROp) {
371  default:
372  return false;
373  case Instruction::And:
374  return true;
375  }
376  }
377 }
378 
379 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
380 /// "(X ROp Z) LOp (Y ROp Z)".
384  return LeftDistributesOverRight(ROp, LOp);
385  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
386  // but this requires knowing that the addition does not overflow and other
387  // such subtleties.
388  return false;
389 }
390 
391 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
392 /// which some other binary operation distributes over either by factorizing
393 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
394 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
395 /// a win). Returns the simplified value, or null if it didn't simplify.
396 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
397  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
400  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
401 
402  // Factorization.
403  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
404  // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
405  // a common term.
406  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
407  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
408  Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
409 
410  // Does "X op' Y" always equal "Y op' X"?
411  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
412 
413  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
414  if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
415  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
416  // commutative case, "(A op' B) op (C op' A)"?
417  if (A == C || (InnerCommutative && A == D)) {
418  if (A != C)
419  std::swap(C, D);
420  // Consider forming "A op' (B op D)".
421  // If "B op D" simplifies then it can be formed with no cost.
422  Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
423  // If "B op D" doesn't simplify then only go on if both of the existing
424  // operations "A op' B" and "C op' D" will be zapped as no longer used.
425  if (!V && Op0->hasOneUse() && Op1->hasOneUse())
426  V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
427  if (V) {
428  ++NumFactor;
429  V = Builder->CreateBinOp(InnerOpcode, A, V);
430  V->takeName(&I);
431  return V;
432  }
433  }
434 
435  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
436  if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
437  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
438  // commutative case, "(A op' B) op (B op' D)"?
439  if (B == D || (InnerCommutative && B == C)) {
440  if (B != D)
441  std::swap(C, D);
442  // Consider forming "(A op C) op' B".
443  // If "A op C" simplifies then it can be formed with no cost.
444  Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
445  // If "A op C" doesn't simplify then only go on if both of the existing
446  // operations "A op' B" and "C op' D" will be zapped as no longer used.
447  if (!V && Op0->hasOneUse() && Op1->hasOneUse())
448  V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
449  if (V) {
450  ++NumFactor;
451  V = Builder->CreateBinOp(InnerOpcode, V, B);
452  V->takeName(&I);
453  return V;
454  }
455  }
456  }
457 
458  // Expansion.
459  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
460  // The instruction has the form "(A op' B) op C". See if expanding it out
461  // to "(A op C) op' (B op C)" results in simplifications.
462  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
463  Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
464 
465  // Do "A op C" and "B op C" both simplify?
466  if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
467  if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
468  // They do! Return "L op' R".
469  ++NumExpand;
470  // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
471  if ((L == A && R == B) ||
472  (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
473  return Op0;
474  // Otherwise return "L op' R" if it simplifies.
475  if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476  return V;
477  // Otherwise, create a new instruction.
478  C = Builder->CreateBinOp(InnerOpcode, L, R);
479  C->takeName(&I);
480  return C;
481  }
482  }
483 
484  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
485  // The instruction has the form "A op (B op' C)". See if expanding it out
486  // to "(A op B) op' (A op C)" results in simplifications.
487  Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
488  Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
489 
490  // Do "A op B" and "A op C" both simplify?
491  if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
492  if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
493  // They do! Return "L op' R".
494  ++NumExpand;
495  // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
496  if ((L == B && R == C) ||
497  (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
498  return Op1;
499  // Otherwise return "L op' R" if it simplifies.
500  if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
501  return V;
502  // Otherwise, create a new instruction.
503  A = Builder->CreateBinOp(InnerOpcode, L, R);
504  A->takeName(&I);
505  return A;
506  }
507  }
508 
509  return 0;
510 }
511 
512 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
513 // if the LHS is a constant zero (which is the 'negate' form).
514 //
515 Value *InstCombiner::dyn_castNegVal(Value *V) const {
516  if (BinaryOperator::isNeg(V))
518 
519  // Constants can be considered to be negated values if they can be folded.
520  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
521  return ConstantExpr::getNeg(C);
522 
523  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
524  if (C->getType()->getElementType()->isIntegerTy())
525  return ConstantExpr::getNeg(C);
526 
527  return 0;
528 }
529 
530 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
531 // instruction if the LHS is a constant negative zero (which is the 'negate'
532 // form).
533 //
534 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
535  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
537 
538  // Constants can be considered to be negated values if they can be folded.
539  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
540  return ConstantExpr::getFNeg(C);
541 
542  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
543  if (C->getType()->getElementType()->isFloatingPointTy())
544  return ConstantExpr::getFNeg(C);
545 
546  return 0;
547 }
548 
550  InstCombiner *IC) {
551  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
552  return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
553  }
554 
555  // Figure out if the constant is the left or the right argument.
556  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
557  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
558 
559  if (Constant *SOC = dyn_cast<Constant>(SO)) {
560  if (ConstIsRHS)
561  return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
562  return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
563  }
564 
565  Value *Op0 = SO, *Op1 = ConstOperand;
566  if (!ConstIsRHS)
567  std::swap(Op0, Op1);
568 
569  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
570  return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
571  SO->getName()+".op");
572  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
573  return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
574  SO->getName()+".cmp");
575  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
576  return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
577  SO->getName()+".cmp");
578  llvm_unreachable("Unknown binary instruction type!");
579 }
580 
581 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
582 // constant as the other operand, try to fold the binary operator into the
583 // select arguments. This also works for Cast instructions, which obviously do
584 // not have a second operand.
585 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
586  // Don't modify shared select instructions
587  if (!SI->hasOneUse()) return 0;
588  Value *TV = SI->getOperand(1);
589  Value *FV = SI->getOperand(2);
590 
591  if (isa<Constant>(TV) || isa<Constant>(FV)) {
592  // Bool selects with constant operands can be folded to logical ops.
593  if (SI->getType()->isIntegerTy(1)) return 0;
594 
595  // If it's a bitcast involving vectors, make sure it has the same number of
596  // elements on both sides.
597  if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
598  VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
599  VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
600 
601  // Verify that either both or neither are vectors.
602  if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
603  // If vectors, verify that they have the same number of elements.
604  if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
605  return 0;
606  }
607 
608  Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
609  Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
610 
611  return SelectInst::Create(SI->getCondition(),
612  SelectTrueVal, SelectFalseVal);
613  }
614  return 0;
615 }
616 
617 
618 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
619 /// has a PHI node as operand #0, see if we can fold the instruction into the
620 /// PHI (which is only possible if all operands to the PHI are constants).
621 ///
622 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
623  PHINode *PN = cast<PHINode>(I.getOperand(0));
624  unsigned NumPHIValues = PN->getNumIncomingValues();
625  if (NumPHIValues == 0)
626  return 0;
627 
628  // We normally only transform phis with a single use. However, if a PHI has
629  // multiple uses and they are all the same operation, we can fold *all* of the
630  // uses into the PHI.
631  if (!PN->hasOneUse()) {
632  // Walk the use list for the instruction, comparing them to I.
633  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
634  UI != E; ++UI) {
635  Instruction *User = cast<Instruction>(*UI);
636  if (User != &I && !I.isIdenticalTo(User))
637  return 0;
638  }
639  // Otherwise, we can replace *all* users with the new PHI we form.
640  }
641 
642  // Check to see if all of the operands of the PHI are simple constants
643  // (constantint/constantfp/undef). If there is one non-constant value,
644  // remember the BB it is in. If there is more than one or if *it* is a PHI,
645  // bail out. We don't do arbitrary constant expressions here because moving
646  // their computation can be expensive without a cost model.
647  BasicBlock *NonConstBB = 0;
648  for (unsigned i = 0; i != NumPHIValues; ++i) {
649  Value *InVal = PN->getIncomingValue(i);
650  if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
651  continue;
652 
653  if (isa<PHINode>(InVal)) return 0; // Itself a phi.
654  if (NonConstBB) return 0; // More than one non-const value.
655 
656  NonConstBB = PN->getIncomingBlock(i);
657 
658  // If the InVal is an invoke at the end of the pred block, then we can't
659  // insert a computation after it without breaking the edge.
660  if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
661  if (II->getParent() == NonConstBB)
662  return 0;
663 
664  // If the incoming non-constant value is in I's block, we will remove one
665  // instruction, but insert another equivalent one, leading to infinite
666  // instcombine.
667  if (NonConstBB == I.getParent())
668  return 0;
669  }
670 
671  // If there is exactly one non-constant value, we can insert a copy of the
672  // operation in that block. However, if this is a critical edge, we would be
673  // inserting the computation one some other paths (e.g. inside a loop). Only
674  // do this if the pred block is unconditionally branching into the phi block.
675  if (NonConstBB != 0) {
676  BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
677  if (!BI || !BI->isUnconditional()) return 0;
678  }
679 
680  // Okay, we can do the transformation: create the new PHI node.
682  InsertNewInstBefore(NewPN, *PN);
683  NewPN->takeName(PN);
684 
685  // If we are going to have to insert a new computation, do so right before the
686  // predecessors terminator.
687  if (NonConstBB)
688  Builder->SetInsertPoint(NonConstBB->getTerminator());
689 
690  // Next, add all of the operands to the PHI.
691  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
692  // We only currently try to fold the condition of a select when it is a phi,
693  // not the true/false values.
694  Value *TrueV = SI->getTrueValue();
695  Value *FalseV = SI->getFalseValue();
696  BasicBlock *PhiTransBB = PN->getParent();
697  for (unsigned i = 0; i != NumPHIValues; ++i) {
698  BasicBlock *ThisBB = PN->getIncomingBlock(i);
699  Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
700  Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
701  Value *InV = 0;
702  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703  InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
704  else
705  InV = Builder->CreateSelect(PN->getIncomingValue(i),
706  TrueVInPred, FalseVInPred, "phitmp");
707  NewPN->addIncoming(InV, ThisBB);
708  }
709  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
710  Constant *C = cast<Constant>(I.getOperand(1));
711  for (unsigned i = 0; i != NumPHIValues; ++i) {
712  Value *InV = 0;
713  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
714  InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
715  else if (isa<ICmpInst>(CI))
716  InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
717  C, "phitmp");
718  else
719  InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
720  C, "phitmp");
721  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
722  }
723  } else if (I.getNumOperands() == 2) {
724  Constant *C = cast<Constant>(I.getOperand(1));
725  for (unsigned i = 0; i != NumPHIValues; ++i) {
726  Value *InV = 0;
727  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728  InV = ConstantExpr::get(I.getOpcode(), InC, C);
729  else
730  InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
731  PN->getIncomingValue(i), C, "phitmp");
732  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
733  }
734  } else {
735  CastInst *CI = cast<CastInst>(&I);
736  Type *RetTy = CI->getType();
737  for (unsigned i = 0; i != NumPHIValues; ++i) {
738  Value *InV;
739  if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
740  InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
741  else
742  InV = Builder->CreateCast(CI->getOpcode(),
743  PN->getIncomingValue(i), I.getType(), "phitmp");
744  NewPN->addIncoming(InV, PN->getIncomingBlock(i));
745  }
746  }
747 
748  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
749  UI != E; ) {
750  Instruction *User = cast<Instruction>(*UI++);
751  if (User == &I) continue;
752  ReplaceInstUsesWith(*User, NewPN);
753  EraseInstFromFunction(*User);
754  }
755  return ReplaceInstUsesWith(I, NewPN);
756 }
757 
758 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
759 /// whether or not there is a sequence of GEP indices into the pointed type that
760 /// will land us at the specified offset. If so, fill them into NewIndices and
761 /// return the resultant element type, otherwise return null.
762 Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
763  SmallVectorImpl<Value*> &NewIndices) {
764  assert(PtrTy->isPtrOrPtrVectorTy());
765 
766  if (!TD)
767  return 0;
768 
769  Type *Ty = PtrTy->getPointerElementType();
770  if (!Ty->isSized())
771  return 0;
772 
773  // Start with the index over the outer type. Note that the type size
774  // might be zero (even if the offset isn't zero) if the indexed type
775  // is something like [0 x {int, int}]
776  Type *IntPtrTy = TD->getIntPtrType(PtrTy);
777  int64_t FirstIdx = 0;
778  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
779  FirstIdx = Offset/TySize;
780  Offset -= FirstIdx*TySize;
781 
782  // Handle hosts where % returns negative instead of values [0..TySize).
783  if (Offset < 0) {
784  --FirstIdx;
785  Offset += TySize;
786  assert(Offset >= 0);
787  }
788  assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
789  }
790 
791  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
792 
793  // Index into the types. If we fail, set OrigBase to null.
794  while (Offset) {
795  // Indexing into tail padding between struct/array elements.
796  if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
797  return 0;
798 
799  if (StructType *STy = dyn_cast<StructType>(Ty)) {
800  const StructLayout *SL = TD->getStructLayout(STy);
801  assert(Offset < (int64_t)SL->getSizeInBytes() &&
802  "Offset must stay within the indexed type");
803 
804  unsigned Elt = SL->getElementContainingOffset(Offset);
806  Elt));
807 
808  Offset -= SL->getElementOffset(Elt);
809  Ty = STy->getElementType(Elt);
810  } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
811  uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
812  assert(EltSize && "Cannot index into a zero-sized array");
813  NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
814  Offset %= EltSize;
815  Ty = AT->getElementType();
816  } else {
817  // Otherwise, we can't index into the middle of this atomic type, bail.
818  return 0;
819  }
820  }
821 
822  return Ty;
823 }
824 
825 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
826  // If this GEP has only 0 indices, it is the same pointer as
827  // Src. If Src is not a trivial GEP too, don't combine
828  // the indices.
829  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
830  !Src.hasOneUse())
831  return false;
832  return true;
833 }
834 
835 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
836 /// the multiplication is known not to overflow then NoSignedWrap is set.
837 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
838  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
839  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
840  Scale.getBitWidth() && "Scale not compatible with value!");
841 
842  // If Val is zero or Scale is one then Val = Val * Scale.
843  if (match(Val, m_Zero()) || Scale == 1) {
844  NoSignedWrap = true;
845  return Val;
846  }
847 
848  // If Scale is zero then it does not divide Val.
849  if (Scale.isMinValue())
850  return 0;
851 
852  // Look through chains of multiplications, searching for a constant that is
853  // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
854  // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
855  // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
856  // down from Val:
857  //
858  // Val = M1 * X || Analysis starts here and works down
859  // M1 = M2 * Y || Doesn't descend into terms with more
860  // M2 = Z * 4 \/ than one use
861  //
862  // Then to modify a term at the bottom:
863  //
864  // Val = M1 * X
865  // M1 = Z * Y || Replaced M2 with Z
866  //
867  // Then to work back up correcting nsw flags.
868 
869  // Op - the term we are currently analyzing. Starts at Val then drills down.
870  // Replaced with its descaled value before exiting from the drill down loop.
871  Value *Op = Val;
872 
873  // Parent - initially null, but after drilling down notes where Op came from.
874  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
875  // 0'th operand of Val.
876  std::pair<Instruction*, unsigned> Parent;
877 
878  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
879  // levels that doesn't overflow.
880  bool RequireNoSignedWrap = false;
881 
882  // logScale - log base 2 of the scale. Negative if not a power of 2.
883  int32_t logScale = Scale.exactLogBase2();
884 
885  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
886 
887  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
888  // If Op is a constant divisible by Scale then descale to the quotient.
889  APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
890  APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
891  if (!Remainder.isMinValue())
892  // Not divisible by Scale.
893  return 0;
894  // Replace with the quotient in the parent.
895  Op = ConstantInt::get(CI->getType(), Quotient);
896  NoSignedWrap = true;
897  break;
898  }
899 
900  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
901 
902  if (BO->getOpcode() == Instruction::Mul) {
903  // Multiplication.
904  NoSignedWrap = BO->hasNoSignedWrap();
905  if (RequireNoSignedWrap && !NoSignedWrap)
906  return 0;
907 
908  // There are three cases for multiplication: multiplication by exactly
909  // the scale, multiplication by a constant different to the scale, and
910  // multiplication by something else.
911  Value *LHS = BO->getOperand(0);
912  Value *RHS = BO->getOperand(1);
913 
914  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
915  // Multiplication by a constant.
916  if (CI->getValue() == Scale) {
917  // Multiplication by exactly the scale, replace the multiplication
918  // by its left-hand side in the parent.
919  Op = LHS;
920  break;
921  }
922 
923  // Otherwise drill down into the constant.
924  if (!Op->hasOneUse())
925  return 0;
926 
927  Parent = std::make_pair(BO, 1);
928  continue;
929  }
930 
931  // Multiplication by something else. Drill down into the left-hand side
932  // since that's where the reassociate pass puts the good stuff.
933  if (!Op->hasOneUse())
934  return 0;
935 
936  Parent = std::make_pair(BO, 0);
937  continue;
938  }
939 
940  if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
941  isa<ConstantInt>(BO->getOperand(1))) {
942  // Multiplication by a power of 2.
943  NoSignedWrap = BO->hasNoSignedWrap();
944  if (RequireNoSignedWrap && !NoSignedWrap)
945  return 0;
946 
947  Value *LHS = BO->getOperand(0);
948  int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
949  getLimitedValue(Scale.getBitWidth());
950  // Op = LHS << Amt.
951 
952  if (Amt == logScale) {
953  // Multiplication by exactly the scale, replace the multiplication
954  // by its left-hand side in the parent.
955  Op = LHS;
956  break;
957  }
958  if (Amt < logScale || !Op->hasOneUse())
959  return 0;
960 
961  // Multiplication by more than the scale. Reduce the multiplying amount
962  // by the scale in the parent.
963  Parent = std::make_pair(BO, 1);
964  Op = ConstantInt::get(BO->getType(), Amt - logScale);
965  break;
966  }
967  }
968 
969  if (!Op->hasOneUse())
970  return 0;
971 
972  if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
973  if (Cast->getOpcode() == Instruction::SExt) {
974  // Op is sign-extended from a smaller type, descale in the smaller type.
975  unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
976  APInt SmallScale = Scale.trunc(SmallSize);
977  // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
978  // descale Op as (sext Y) * Scale. In order to have
979  // sext (Y * SmallScale) = (sext Y) * Scale
980  // some conditions need to hold however: SmallScale must sign-extend to
981  // Scale and the multiplication Y * SmallScale should not overflow.
982  if (SmallScale.sext(Scale.getBitWidth()) != Scale)
983  // SmallScale does not sign-extend to Scale.
984  return 0;
985  assert(SmallScale.exactLogBase2() == logScale);
986  // Require that Y * SmallScale must not overflow.
987  RequireNoSignedWrap = true;
988 
989  // Drill down through the cast.
990  Parent = std::make_pair(Cast, 0);
991  Scale = SmallScale;
992  continue;
993  }
994 
995  if (Cast->getOpcode() == Instruction::Trunc) {
996  // Op is truncated from a larger type, descale in the larger type.
997  // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
998  // trunc (Y * sext Scale) = (trunc Y) * Scale
999  // always holds. However (trunc Y) * Scale may overflow even if
1000  // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1001  // from this point up in the expression (see later).
1002  if (RequireNoSignedWrap)
1003  return 0;
1004 
1005  // Drill down through the cast.
1006  unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1007  Parent = std::make_pair(Cast, 0);
1008  Scale = Scale.sext(LargeSize);
1009  if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1010  logScale = -1;
1011  assert(Scale.exactLogBase2() == logScale);
1012  continue;
1013  }
1014  }
1015 
1016  // Unsupported expression, bail out.
1017  return 0;
1018  }
1019 
1020  // We know that we can successfully descale, so from here on we can safely
1021  // modify the IR. Op holds the descaled version of the deepest term in the
1022  // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1023  // not to overflow.
1024 
1025  if (!Parent.first)
1026  // The expression only had one term.
1027  return Op;
1028 
1029  // Rewrite the parent using the descaled version of its operand.
1030  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1031  assert(Op != Parent.first->getOperand(Parent.second) &&
1032  "Descaling was a no-op?");
1033  Parent.first->setOperand(Parent.second, Op);
1034  Worklist.Add(Parent.first);
1035 
1036  // Now work back up the expression correcting nsw flags. The logic is based
1037  // on the following observation: if X * Y is known not to overflow as a signed
1038  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1039  // then X * Z will not overflow as a signed multiplication either. As we work
1040  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1041  // current level has strictly smaller absolute value than the original.
1042  Instruction *Ancestor = Parent.first;
1043  do {
1044  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1045  // If the multiplication wasn't nsw then we can't say anything about the
1046  // value of the descaled multiplication, and we have to clear nsw flags
1047  // from this point on up.
1048  bool OpNoSignedWrap = BO->hasNoSignedWrap();
1049  NoSignedWrap &= OpNoSignedWrap;
1050  if (NoSignedWrap != OpNoSignedWrap) {
1051  BO->setHasNoSignedWrap(NoSignedWrap);
1052  Worklist.Add(Ancestor);
1053  }
1054  } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1055  // The fact that the descaled input to the trunc has smaller absolute
1056  // value than the original input doesn't tell us anything useful about
1057  // the absolute values of the truncations.
1058  NoSignedWrap = false;
1059  }
1060  assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1061  "Failed to keep proper track of nsw flags while drilling down?");
1062 
1063  if (Ancestor == Val)
1064  // Got to the top, all done!
1065  return Val;
1066 
1067  // Move up one level in the expression.
1068  assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1069  Ancestor = Ancestor->use_back();
1070  } while (1);
1071 }
1072 
1074  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1075 
1076  if (Value *V = SimplifyGEPInst(Ops, TD))
1077  return ReplaceInstUsesWith(GEP, V);
1078 
1079  Value *PtrOp = GEP.getOperand(0);
1080 
1081  // Eliminate unneeded casts for indices, and replace indices which displace
1082  // by multiples of a zero size type with zero.
1083  if (TD) {
1084  bool MadeChange = false;
1085  Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1086 
1087  gep_type_iterator GTI = gep_type_begin(GEP);
1088  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1089  I != E; ++I, ++GTI) {
1090  // Skip indices into struct types.
1091  SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1092  if (!SeqTy) continue;
1093 
1094  // If the element type has zero size then any index over it is equivalent
1095  // to an index of zero, so replace it with zero if it is not zero already.
1096  if (SeqTy->getElementType()->isSized() &&
1097  TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1098  if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1099  *I = Constant::getNullValue(IntPtrTy);
1100  MadeChange = true;
1101  }
1102 
1103  Type *IndexTy = (*I)->getType();
1104  if (IndexTy != IntPtrTy) {
1105  // If we are using a wider index than needed for this platform, shrink
1106  // it to what we need. If narrower, sign-extend it to what we need.
1107  // This explicit cast can make subsequent optimizations more obvious.
1108  *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1109  MadeChange = true;
1110  }
1111  }
1112  if (MadeChange) return &GEP;
1113  }
1114 
1115  // Combine Indices - If the source pointer to this getelementptr instruction
1116  // is a getelementptr instruction, combine the indices of the two
1117  // getelementptr instructions into a single instruction.
1118  //
1119  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1120  if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1121  return 0;
1122 
1123  // Note that if our source is a gep chain itself then we wait for that
1124  // chain to be resolved before we perform this transformation. This
1125  // avoids us creating a TON of code in some cases.
1126  if (GEPOperator *SrcGEP =
1127  dyn_cast<GEPOperator>(Src->getOperand(0)))
1128  if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1129  return 0; // Wait until our source is folded to completion.
1130 
1131  SmallVector<Value*, 8> Indices;
1132 
1133  // Find out whether the last index in the source GEP is a sequential idx.
1134  bool EndsWithSequential = false;
1135  for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1136  I != E; ++I)
1137  EndsWithSequential = !(*I)->isStructTy();
1138 
1139  // Can we combine the two pointer arithmetics offsets?
1140  if (EndsWithSequential) {
1141  // Replace: gep (gep %P, long B), long A, ...
1142  // With: T = long A+B; gep %P, T, ...
1143  //
1144  Value *Sum;
1145  Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1146  Value *GO1 = GEP.getOperand(1);
1147  if (SO1 == Constant::getNullValue(SO1->getType())) {
1148  Sum = GO1;
1149  } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1150  Sum = SO1;
1151  } else {
1152  // If they aren't the same type, then the input hasn't been processed
1153  // by the loop above yet (which canonicalizes sequential index types to
1154  // intptr_t). Just avoid transforming this until the input has been
1155  // normalized.
1156  if (SO1->getType() != GO1->getType())
1157  return 0;
1158  Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1159  }
1160 
1161  // Update the GEP in place if possible.
1162  if (Src->getNumOperands() == 2) {
1163  GEP.setOperand(0, Src->getOperand(0));
1164  GEP.setOperand(1, Sum);
1165  return &GEP;
1166  }
1167  Indices.append(Src->op_begin()+1, Src->op_end()-1);
1168  Indices.push_back(Sum);
1169  Indices.append(GEP.op_begin()+2, GEP.op_end());
1170  } else if (isa<Constant>(*GEP.idx_begin()) &&
1171  cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1172  Src->getNumOperands() != 1) {
1173  // Otherwise we can do the fold if the first index of the GEP is a zero
1174  Indices.append(Src->op_begin()+1, Src->op_end());
1175  Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1176  }
1177 
1178  if (!Indices.empty())
1179  return (GEP.isInBounds() && Src->isInBounds()) ?
1180  GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1181  GEP.getName()) :
1182  GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1183  }
1184 
1185  // Canonicalize (gep i8* X, -(ptrtoint Y)) to (sub (ptrtoint X), (ptrtoint Y))
1186  // The GEP pattern is emitted by the SCEV expander for certain kinds of
1187  // pointer arithmetic.
1188  if (TD && GEP.getNumIndices() == 1 &&
1189  match(GEP.getOperand(1), m_Neg(m_PtrToInt(m_Value())))) {
1190  unsigned AS = GEP.getPointerAddressSpace();
1191  if (GEP.getType() == Builder->getInt8PtrTy(AS) &&
1192  GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1193  TD->getPointerSizeInBits(AS)) {
1194  Operator *Index = cast<Operator>(GEP.getOperand(1));
1195  Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1196  Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1197  return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1198  }
1199  }
1200 
1201  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1202  Value *StrippedPtr = PtrOp->stripPointerCasts();
1203  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1204 
1205  // We do not handle pointer-vector geps here.
1206  if (!StrippedPtrTy)
1207  return 0;
1208 
1209  if (StrippedPtr != PtrOp &&
1210  StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1211 
1212  bool HasZeroPointerIndex = false;
1213  if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1214  HasZeroPointerIndex = C->isZero();
1215 
1216  // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1217  // into : GEP [10 x i8]* X, i32 0, ...
1218  //
1219  // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1220  // into : GEP i8* X, ...
1221  //
1222  // This occurs when the program declares an array extern like "int X[];"
1223  if (HasZeroPointerIndex) {
1224  PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1225  if (ArrayType *CATy =
1226  dyn_cast<ArrayType>(CPTy->getElementType())) {
1227  // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1228  if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1229  // -> GEP i8* X, ...
1230  SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1231  GetElementPtrInst *Res =
1232  GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1233  Res->setIsInBounds(GEP.isInBounds());
1234  return Res;
1235  }
1236 
1237  if (ArrayType *XATy =
1238  dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1239  // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1240  if (CATy->getElementType() == XATy->getElementType()) {
1241  // -> GEP [10 x i8]* X, i32 0, ...
1242  // At this point, we know that the cast source type is a pointer
1243  // to an array of the same type as the destination pointer
1244  // array. Because the array type is never stepped over (there
1245  // is a leading zero) we can fold the cast into this GEP.
1246  GEP.setOperand(0, StrippedPtr);
1247  return &GEP;
1248  }
1249  }
1250  }
1251  } else if (GEP.getNumOperands() == 2) {
1252  // Transform things like:
1253  // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1254  // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1255  Type *SrcElTy = StrippedPtrTy->getElementType();
1256  Type *ResElTy = PtrOp->getType()->getPointerElementType();
1257  if (TD && SrcElTy->isArrayTy() &&
1258  TD->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1259  TD->getTypeAllocSize(ResElTy)) {
1260  Type *IdxType = TD->getIntPtrType(GEP.getType());
1261  Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1262  Value *NewGEP = GEP.isInBounds() ?
1263  Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1264  Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1265  // V and GEP are both pointer types --> BitCast
1266  return new BitCastInst(NewGEP, GEP.getType());
1267  }
1268 
1269  // Transform things like:
1270  // %V = mul i64 %N, 4
1271  // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1272  // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1273  if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1274  // Check that changing the type amounts to dividing the index by a scale
1275  // factor.
1276  uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1277  uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1278  if (ResSize && SrcSize % ResSize == 0) {
1279  Value *Idx = GEP.getOperand(1);
1280  unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1281  uint64_t Scale = SrcSize / ResSize;
1282 
1283  // Earlier transforms ensure that the index has type IntPtrType, which
1284  // considerably simplifies the logic by eliminating implicit casts.
1285  assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
1286  "Index not cast to pointer width?");
1287 
1288  bool NSW;
1289  if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1290  // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1291  // If the multiplication NewIdx * Scale may overflow then the new
1292  // GEP may not be "inbounds".
1293  Value *NewGEP = GEP.isInBounds() && NSW ?
1294  Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1295  Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1296  // The NewGEP must be pointer typed, so must the old one -> BitCast
1297  return new BitCastInst(NewGEP, GEP.getType());
1298  }
1299  }
1300  }
1301 
1302  // Similarly, transform things like:
1303  // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1304  // (where tmp = 8*tmp2) into:
1305  // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1306  if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1307  SrcElTy->isArrayTy()) {
1308  // Check that changing to the array element type amounts to dividing the
1309  // index by a scale factor.
1310  uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1311  uint64_t ArrayEltSize
1312  = TD->getTypeAllocSize(SrcElTy->getArrayElementType());
1313  if (ResSize && ArrayEltSize % ResSize == 0) {
1314  Value *Idx = GEP.getOperand(1);
1315  unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1316  uint64_t Scale = ArrayEltSize / ResSize;
1317 
1318  // Earlier transforms ensure that the index has type IntPtrType, which
1319  // considerably simplifies the logic by eliminating implicit casts.
1320  assert(Idx->getType() == TD->getIntPtrType(GEP.getType()) &&
1321  "Index not cast to pointer width?");
1322 
1323  bool NSW;
1324  if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1325  // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1326  // If the multiplication NewIdx * Scale may overflow then the new
1327  // GEP may not be "inbounds".
1328  Value *Off[2] = {
1329  Constant::getNullValue(TD->getIntPtrType(GEP.getType())),
1330  NewIdx
1331  };
1332 
1333  Value *NewGEP = GEP.isInBounds() && NSW ?
1334  Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1335  Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1336  // The NewGEP must be pointer typed, so must the old one -> BitCast
1337  return new BitCastInst(NewGEP, GEP.getType());
1338  }
1339  }
1340  }
1341  }
1342  }
1343 
1344  if (!TD)
1345  return 0;
1346 
1347  /// See if we can simplify:
1348  /// X = bitcast A* to B*
1349  /// Y = gep X, <...constant indices...>
1350  /// into a gep of the original struct. This is important for SROA and alias
1351  /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1352  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1353  Value *Operand = BCI->getOperand(0);
1354  PointerType *OpType = cast<PointerType>(Operand->getType());
1355  unsigned OffsetBits = TD->getPointerTypeSizeInBits(OpType);
1356  APInt Offset(OffsetBits, 0);
1357  if (!isa<BitCastInst>(Operand) &&
1358  GEP.accumulateConstantOffset(*TD, Offset) &&
1359  StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1360 
1361  // If this GEP instruction doesn't move the pointer, just replace the GEP
1362  // with a bitcast of the real input to the dest type.
1363  if (!Offset) {
1364  // If the bitcast is of an allocation, and the allocation will be
1365  // converted to match the type of the cast, don't touch this.
1366  if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1367  // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1368  if (Instruction *I = visitBitCast(*BCI)) {
1369  if (I != BCI) {
1370  I->takeName(BCI);
1371  BCI->getParent()->getInstList().insert(BCI, I);
1372  ReplaceInstUsesWith(*BCI, I);
1373  }
1374  return &GEP;
1375  }
1376  }
1377  return new BitCastInst(Operand, GEP.getType());
1378  }
1379 
1380  // Otherwise, if the offset is non-zero, we need to find out if there is a
1381  // field at Offset in 'A's type. If so, we can pull the cast through the
1382  // GEP.
1383  SmallVector<Value*, 8> NewIndices;
1384  if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1385  Value *NGEP = GEP.isInBounds() ?
1386  Builder->CreateInBoundsGEP(Operand, NewIndices) :
1387  Builder->CreateGEP(Operand, NewIndices);
1388 
1389  if (NGEP->getType() == GEP.getType())
1390  return ReplaceInstUsesWith(GEP, NGEP);
1391  NGEP->takeName(&GEP);
1392  return new BitCastInst(NGEP, GEP.getType());
1393  }
1394  }
1395  }
1396 
1397  return 0;
1398 }
1399 
1400 static bool
1402  const TargetLibraryInfo *TLI) {
1404  Worklist.push_back(AI);
1405 
1406  do {
1407  Instruction *PI = Worklist.pop_back_val();
1408  for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1409  ++UI) {
1410  Instruction *I = cast<Instruction>(*UI);
1411  switch (I->getOpcode()) {
1412  default:
1413  // Give up the moment we see something we can't handle.
1414  return false;
1415 
1416  case Instruction::BitCast:
1417  case Instruction::GetElementPtr:
1418  Users.push_back(I);
1419  Worklist.push_back(I);
1420  continue;
1421 
1422  case Instruction::ICmp: {
1423  ICmpInst *ICI = cast<ICmpInst>(I);
1424  // We can fold eq/ne comparisons with null to false/true, respectively.
1425  if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1426  return false;
1427  Users.push_back(I);
1428  continue;
1429  }
1430 
1431  case Instruction::Call:
1432  // Ignore no-op and store intrinsics.
1433  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1434  switch (II->getIntrinsicID()) {
1435  default:
1436  return false;
1437 
1438  case Intrinsic::memmove:
1439  case Intrinsic::memcpy:
1440  case Intrinsic::memset: {
1441  MemIntrinsic *MI = cast<MemIntrinsic>(II);
1442  if (MI->isVolatile() || MI->getRawDest() != PI)
1443  return false;
1444  }
1445  // fall through
1447  case Intrinsic::dbg_value:
1452  case Intrinsic::objectsize:
1453  Users.push_back(I);
1454  continue;
1455  }
1456  }
1457 
1458  if (isFreeCall(I, TLI)) {
1459  Users.push_back(I);
1460  continue;
1461  }
1462  return false;
1463 
1464  case Instruction::Store: {
1465  StoreInst *SI = cast<StoreInst>(I);
1466  if (SI->isVolatile() || SI->getPointerOperand() != PI)
1467  return false;
1468  Users.push_back(I);
1469  continue;
1470  }
1471  }
1472  llvm_unreachable("missing a return?");
1473  }
1474  } while (!Worklist.empty());
1475  return true;
1476 }
1477 
1479  // If we have a malloc call which is only used in any amount of comparisons
1480  // to null and free calls, delete the calls and replace the comparisons with
1481  // true or false as appropriate.
1483  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1484  for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1485  Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1486  if (!I) continue;
1487 
1488  if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1489  ReplaceInstUsesWith(*C,
1491  C->isFalseWhenEqual()));
1492  } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1493  ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1494  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1495  if (II->getIntrinsicID() == Intrinsic::objectsize) {
1496  ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1497  uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1498  ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1499  }
1500  }
1501  EraseInstFromFunction(*I);
1502  }
1503 
1504  if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1505  // Replace invoke with a NOP intrinsic to maintain the original CFG
1506  Module *M = II->getParent()->getParent()->getParent();
1508  InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1509  None, "", II->getParent());
1510  }
1511  return EraseInstFromFunction(MI);
1512  }
1513  return 0;
1514 }
1515 
1516 /// \brief Move the call to free before a NULL test.
1517 ///
1518 /// Check if this free is accessed after its argument has been test
1519 /// against NULL (property 0).
1520 /// If yes, it is legal to move this call in its predecessor block.
1521 ///
1522 /// The move is performed only if the block containing the call to free
1523 /// will be removed, i.e.:
1524 /// 1. it has only one predecessor P, and P has two successors
1525 /// 2. it contains the call and an unconditional branch
1526 /// 3. its successor is the same as its predecessor's successor
1527 ///
1528 /// The profitability is out-of concern here and this function should
1529 /// be called only if the caller knows this transformation would be
1530 /// profitable (e.g., for code size).
1531 static Instruction *
1533  Value *Op = FI.getArgOperand(0);
1534  BasicBlock *FreeInstrBB = FI.getParent();
1535  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1536 
1537  // Validate part of constraint #1: Only one predecessor
1538  // FIXME: We can extend the number of predecessor, but in that case, we
1539  // would duplicate the call to free in each predecessor and it may
1540  // not be profitable even for code size.
1541  if (!PredBB)
1542  return 0;
1543 
1544  // Validate constraint #2: Does this block contains only the call to
1545  // free and an unconditional branch?
1546  // FIXME: We could check if we can speculate everything in the
1547  // predecessor block
1548  if (FreeInstrBB->size() != 2)
1549  return 0;
1550  BasicBlock *SuccBB;
1551  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1552  return 0;
1553 
1554  // Validate the rest of constraint #1 by matching on the pred branch.
1555  TerminatorInst *TI = PredBB->getTerminator();
1556  BasicBlock *TrueBB, *FalseBB;
1557  ICmpInst::Predicate Pred;
1558  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1559  return 0;
1560  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1561  return 0;
1562 
1563  // Validate constraint #3: Ensure the null case just falls through.
1564  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1565  return 0;
1566  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1567  "Broken CFG: missing edge from predecessor to successor");
1568 
1569  FI.moveBefore(TI);
1570  return &FI;
1571 }
1572 
1573 
1575  Value *Op = FI.getArgOperand(0);
1576 
1577  // free undef -> unreachable.
1578  if (isa<UndefValue>(Op)) {
1579  // Insert a new store to null because we cannot modify the CFG here.
1580  Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1582  return EraseInstFromFunction(FI);
1583  }
1584 
1585  // If we have 'free null' delete the instruction. This can happen in stl code
1586  // when lots of inlining happens.
1587  if (isa<ConstantPointerNull>(Op))
1588  return EraseInstFromFunction(FI);
1589 
1590  // If we optimize for code size, try to move the call to free before the null
1591  // test so that simplify cfg can remove the empty block and dead code
1592  // elimination the branch. I.e., helps to turn something like:
1593  // if (foo) free(foo);
1594  // into
1595  // free(foo);
1596  if (MinimizeSize)
1598  return I;
1599 
1600  return 0;
1601 }
1602 
1603 
1604 
1606  // Change br (not X), label True, label False to: br X, label False, True
1607  Value *X = 0;
1608  BasicBlock *TrueDest;
1609  BasicBlock *FalseDest;
1610  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1611  !isa<Constant>(X)) {
1612  // Swap Destinations and condition...
1613  BI.setCondition(X);
1614  BI.swapSuccessors();
1615  return &BI;
1616  }
1617 
1618  // Cannonicalize fcmp_one -> fcmp_oeq
1619  FCmpInst::Predicate FPred; Value *Y;
1620  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1621  TrueDest, FalseDest)) &&
1622  BI.getCondition()->hasOneUse())
1623  if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1624  FPred == FCmpInst::FCMP_OGE) {
1625  FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1627 
1628  // Swap Destinations and condition.
1629  BI.swapSuccessors();
1630  Worklist.Add(Cond);
1631  return &BI;
1632  }
1633 
1634  // Cannonicalize icmp_ne -> icmp_eq
1635  ICmpInst::Predicate IPred;
1636  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1637  TrueDest, FalseDest)) &&
1638  BI.getCondition()->hasOneUse())
1639  if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1640  IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1641  IPred == ICmpInst::ICMP_SGE) {
1642  ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1644  // Swap Destinations and condition.
1645  BI.swapSuccessors();
1646  Worklist.Add(Cond);
1647  return &BI;
1648  }
1649 
1650  return 0;
1651 }
1652 
1654  Value *Cond = SI.getCondition();
1655  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1656  if (I->getOpcode() == Instruction::Add)
1657  if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1658  // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1659  // Skip the first item since that's the default case.
1660  for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1661  i != e; ++i) {
1662  ConstantInt* CaseVal = i.getCaseValue();
1663  Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1664  AddRHS);
1665  assert(isa<ConstantInt>(NewCaseVal) &&
1666  "Result of expression should be constant");
1667  i.setValue(cast<ConstantInt>(NewCaseVal));
1668  }
1669  SI.setCondition(I->getOperand(0));
1670  Worklist.Add(I);
1671  return &SI;
1672  }
1673  }
1674  return 0;
1675 }
1676 
1678  Value *Agg = EV.getAggregateOperand();
1679 
1680  if (!EV.hasIndices())
1681  return ReplaceInstUsesWith(EV, Agg);
1682 
1683  if (Constant *C = dyn_cast<Constant>(Agg)) {
1684  if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1685  if (EV.getNumIndices() == 0)
1686  return ReplaceInstUsesWith(EV, C2);
1687  // Extract the remaining indices out of the constant indexed by the
1688  // first index
1689  return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1690  }
1691  return 0; // Can't handle other constants
1692  }
1693 
1694  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1695  // We're extracting from an insertvalue instruction, compare the indices
1696  const unsigned *exti, *exte, *insi, *inse;
1697  for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1698  exte = EV.idx_end(), inse = IV->idx_end();
1699  exti != exte && insi != inse;
1700  ++exti, ++insi) {
1701  if (*insi != *exti)
1702  // The insert and extract both reference distinctly different elements.
1703  // This means the extract is not influenced by the insert, and we can
1704  // replace the aggregate operand of the extract with the aggregate
1705  // operand of the insert. i.e., replace
1706  // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1707  // %E = extractvalue { i32, { i32 } } %I, 0
1708  // with
1709  // %E = extractvalue { i32, { i32 } } %A, 0
1710  return ExtractValueInst::Create(IV->getAggregateOperand(),
1711  EV.getIndices());
1712  }
1713  if (exti == exte && insi == inse)
1714  // Both iterators are at the end: Index lists are identical. Replace
1715  // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1716  // %C = extractvalue { i32, { i32 } } %B, 1, 0
1717  // with "i32 42"
1718  return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1719  if (exti == exte) {
1720  // The extract list is a prefix of the insert list. i.e. replace
1721  // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1722  // %E = extractvalue { i32, { i32 } } %I, 1
1723  // with
1724  // %X = extractvalue { i32, { i32 } } %A, 1
1725  // %E = insertvalue { i32 } %X, i32 42, 0
1726  // by switching the order of the insert and extract (though the
1727  // insertvalue should be left in, since it may have other uses).
1728  Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1729  EV.getIndices());
1730  return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1731  makeArrayRef(insi, inse));
1732  }
1733  if (insi == inse)
1734  // The insert list is a prefix of the extract list
1735  // We can simply remove the common indices from the extract and make it
1736  // operate on the inserted value instead of the insertvalue result.
1737  // i.e., replace
1738  // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1739  // %E = extractvalue { i32, { i32 } } %I, 1, 0
1740  // with
1741  // %E extractvalue { i32 } { i32 42 }, 0
1742  return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1743  makeArrayRef(exti, exte));
1744  }
1745  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1746  // We're extracting from an intrinsic, see if we're the only user, which
1747  // allows us to simplify multiple result intrinsics to simpler things that
1748  // just get one value.
1749  if (II->hasOneUse()) {
1750  // Check if we're grabbing the overflow bit or the result of a 'with
1751  // overflow' intrinsic. If it's the latter we can remove the intrinsic
1752  // and replace it with a traditional binary instruction.
1753  switch (II->getIntrinsicID()) {
1756  if (*EV.idx_begin() == 0) { // Normal result.
1757  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1758  ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1759  EraseInstFromFunction(*II);
1760  return BinaryOperator::CreateAdd(LHS, RHS);
1761  }
1762 
1763  // If the normal result of the add is dead, and the RHS is a constant,
1764  // we can transform this into a range comparison.
1765  // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
1766  if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1767  if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1768  return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1769  ConstantExpr::getNot(CI));
1770  break;
1773  if (*EV.idx_begin() == 0) { // Normal result.
1774  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1775  ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1776  EraseInstFromFunction(*II);
1777  return BinaryOperator::CreateSub(LHS, RHS);
1778  }
1779  break;
1782  if (*EV.idx_begin() == 0) { // Normal result.
1783  Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1784  ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1785  EraseInstFromFunction(*II);
1786  return BinaryOperator::CreateMul(LHS, RHS);
1787  }
1788  break;
1789  default:
1790  break;
1791  }
1792  }
1793  }
1794  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1795  // If the (non-volatile) load only has one use, we can rewrite this to a
1796  // load from a GEP. This reduces the size of the load.
1797  // FIXME: If a load is used only by extractvalue instructions then this
1798  // could be done regardless of having multiple uses.
1799  if (L->isSimple() && L->hasOneUse()) {
1800  // extractvalue has integer indices, getelementptr has Value*s. Convert.
1801  SmallVector<Value*, 4> Indices;
1802  // Prefix an i32 0 since we need the first element.
1803  Indices.push_back(Builder->getInt32(0));
1804  for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1805  I != E; ++I)
1806  Indices.push_back(Builder->getInt32(*I));
1807 
1808  // We need to insert these at the location of the old load, not at that of
1809  // the extractvalue.
1810  Builder->SetInsertPoint(L->getParent(), L);
1811  Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1812  // Returning the load directly will cause the main loop to insert it in
1813  // the wrong spot, so use ReplaceInstUsesWith().
1814  return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1815  }
1816  // We could simplify extracts from other values. Note that nested extracts may
1817  // already be simplified implicitly by the above: extract (extract (insert) )
1818  // will be translated into extract ( insert ( extract ) ) first and then just
1819  // the value inserted, if appropriate. Similarly for extracts from single-use
1820  // loads: extract (extract (load)) will be translated to extract (load (gep))
1821  // and if again single-use then via load (gep (gep)) to load (gep).
1822  // However, double extracts from e.g. function arguments or return values
1823  // aren't handled yet.
1824  return 0;
1825 }
1826 
1832 };
1833 
1834 /// RecognizePersonality - See if the given exception handling personality
1835 /// function is one that we understand. If so, return a description of it;
1836 /// otherwise return Unknown_Personality.
1839  if (!F)
1840  return Unknown_Personality;
1842  .Case("__gnat_eh_personality", GNU_Ada_Personality)
1843  .Case("__gxx_personality_v0", GNU_CXX_Personality)
1844  .Case("__objc_personality_v0", GNU_ObjC_Personality)
1846 }
1847 
1848 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
1849 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1850  switch (Personality) {
1851  case Unknown_Personality:
1852  return false;
1853  case GNU_Ada_Personality:
1854  // While __gnat_all_others_value will match any Ada exception, it doesn't
1855  // match foreign exceptions (or didn't, before gcc-4.7).
1856  return false;
1857  case GNU_CXX_Personality:
1858  case GNU_ObjC_Personality:
1859  return TypeInfo->isNullValue();
1860  }
1861  llvm_unreachable("Unknown personality!");
1862 }
1863 
1864 static bool shorter_filter(const Value *LHS, const Value *RHS) {
1865  return
1866  cast<ArrayType>(LHS->getType())->getNumElements()
1867  <
1868  cast<ArrayType>(RHS->getType())->getNumElements();
1869 }
1870 
1872  // The logic here should be correct for any real-world personality function.
1873  // However if that turns out not to be true, the offending logic can always
1874  // be conditioned on the personality function, like the catch-all logic is.
1876 
1877  // Simplify the list of clauses, eg by removing repeated catch clauses
1878  // (these are often created by inlining).
1879  bool MakeNewInstruction = false; // If true, recreate using the following:
1880  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1881  bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1882 
1883  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1884  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1885  bool isLastClause = i + 1 == e;
1886  if (LI.isCatch(i)) {
1887  // A catch clause.
1888  Value *CatchClause = LI.getClause(i);
1889  Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1890 
1891  // If we already saw this clause, there is no point in having a second
1892  // copy of it.
1893  if (AlreadyCaught.insert(TypeInfo)) {
1894  // This catch clause was not already seen.
1895  NewClauses.push_back(CatchClause);
1896  } else {
1897  // Repeated catch clause - drop the redundant copy.
1898  MakeNewInstruction = true;
1899  }
1900 
1901  // If this is a catch-all then there is no point in keeping any following
1902  // clauses or marking the landingpad as having a cleanup.
1903  if (isCatchAll(Personality, TypeInfo)) {
1904  if (!isLastClause)
1905  MakeNewInstruction = true;
1906  CleanupFlag = false;
1907  break;
1908  }
1909  } else {
1910  // A filter clause. If any of the filter elements were already caught
1911  // then they can be dropped from the filter. It is tempting to try to
1912  // exploit the filter further by saying that any typeinfo that does not
1913  // occur in the filter can't be caught later (and thus can be dropped).
1914  // However this would be wrong, since typeinfos can match without being
1915  // equal (for example if one represents a C++ class, and the other some
1916  // class derived from it).
1917  assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1918  Value *FilterClause = LI.getClause(i);
1919  ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1920  unsigned NumTypeInfos = FilterType->getNumElements();
1921 
1922  // An empty filter catches everything, so there is no point in keeping any
1923  // following clauses or marking the landingpad as having a cleanup. By
1924  // dealing with this case here the following code is made a bit simpler.
1925  if (!NumTypeInfos) {
1926  NewClauses.push_back(FilterClause);
1927  if (!isLastClause)
1928  MakeNewInstruction = true;
1929  CleanupFlag = false;
1930  break;
1931  }
1932 
1933  bool MakeNewFilter = false; // If true, make a new filter.
1934  SmallVector<Constant *, 16> NewFilterElts; // New elements.
1935  if (isa<ConstantAggregateZero>(FilterClause)) {
1936  // Not an empty filter - it contains at least one null typeinfo.
1937  assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1938  Constant *TypeInfo =
1939  Constant::getNullValue(FilterType->getElementType());
1940  // If this typeinfo is a catch-all then the filter can never match.
1941  if (isCatchAll(Personality, TypeInfo)) {
1942  // Throw the filter away.
1943  MakeNewInstruction = true;
1944  continue;
1945  }
1946 
1947  // There is no point in having multiple copies of this typeinfo, so
1948  // discard all but the first copy if there is more than one.
1949  NewFilterElts.push_back(TypeInfo);
1950  if (NumTypeInfos > 1)
1951  MakeNewFilter = true;
1952  } else {
1953  ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1954  SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1955  NewFilterElts.reserve(NumTypeInfos);
1956 
1957  // Remove any filter elements that were already caught or that already
1958  // occurred in the filter. While there, see if any of the elements are
1959  // catch-alls. If so, the filter can be discarded.
1960  bool SawCatchAll = false;
1961  for (unsigned j = 0; j != NumTypeInfos; ++j) {
1962  Value *Elt = Filter->getOperand(j);
1963  Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1964  if (isCatchAll(Personality, TypeInfo)) {
1965  // This element is a catch-all. Bail out, noting this fact.
1966  SawCatchAll = true;
1967  break;
1968  }
1969  if (AlreadyCaught.count(TypeInfo))
1970  // Already caught by an earlier clause, so having it in the filter
1971  // is pointless.
1972  continue;
1973  // There is no point in having multiple copies of the same typeinfo in
1974  // a filter, so only add it if we didn't already.
1975  if (SeenInFilter.insert(TypeInfo))
1976  NewFilterElts.push_back(cast<Constant>(Elt));
1977  }
1978  // A filter containing a catch-all cannot match anything by definition.
1979  if (SawCatchAll) {
1980  // Throw the filter away.
1981  MakeNewInstruction = true;
1982  continue;
1983  }
1984 
1985  // If we dropped something from the filter, make a new one.
1986  if (NewFilterElts.size() < NumTypeInfos)
1987  MakeNewFilter = true;
1988  }
1989  if (MakeNewFilter) {
1990  FilterType = ArrayType::get(FilterType->getElementType(),
1991  NewFilterElts.size());
1992  FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1993  MakeNewInstruction = true;
1994  }
1995 
1996  NewClauses.push_back(FilterClause);
1997 
1998  // If the new filter is empty then it will catch everything so there is
1999  // no point in keeping any following clauses or marking the landingpad
2000  // as having a cleanup. The case of the original filter being empty was
2001  // already handled above.
2002  if (MakeNewFilter && !NewFilterElts.size()) {
2003  assert(MakeNewInstruction && "New filter but not a new instruction!");
2004  CleanupFlag = false;
2005  break;
2006  }
2007  }
2008  }
2009 
2010  // If several filters occur in a row then reorder them so that the shortest
2011  // filters come first (those with the smallest number of elements). This is
2012  // advantageous because shorter filters are more likely to match, speeding up
2013  // unwinding, but mostly because it increases the effectiveness of the other
2014  // filter optimizations below.
2015  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2016  unsigned j;
2017  // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2018  for (j = i; j != e; ++j)
2019  if (!isa<ArrayType>(NewClauses[j]->getType()))
2020  break;
2021 
2022  // Check whether the filters are already sorted by length. We need to know
2023  // if sorting them is actually going to do anything so that we only make a
2024  // new landingpad instruction if it does.
2025  for (unsigned k = i; k + 1 < j; ++k)
2026  if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2027  // Not sorted, so sort the filters now. Doing an unstable sort would be
2028  // correct too but reordering filters pointlessly might confuse users.
2029  std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2030  shorter_filter);
2031  MakeNewInstruction = true;
2032  break;
2033  }
2034 
2035  // Look for the next batch of filters.
2036  i = j + 1;
2037  }
2038 
2039  // If typeinfos matched if and only if equal, then the elements of a filter L
2040  // that occurs later than a filter F could be replaced by the intersection of
2041  // the elements of F and L. In reality two typeinfos can match without being
2042  // equal (for example if one represents a C++ class, and the other some class
2043  // derived from it) so it would be wrong to perform this transform in general.
2044  // However the transform is correct and useful if F is a subset of L. In that
2045  // case L can be replaced by F, and thus removed altogether since repeating a
2046  // filter is pointless. So here we look at all pairs of filters F and L where
2047  // L follows F in the list of clauses, and remove L if every element of F is
2048  // an element of L. This can occur when inlining C++ functions with exception
2049  // specifications.
2050  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2051  // Examine each filter in turn.
2052  Value *Filter = NewClauses[i];
2053  ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2054  if (!FTy)
2055  // Not a filter - skip it.
2056  continue;
2057  unsigned FElts = FTy->getNumElements();
2058  // Examine each filter following this one. Doing this backwards means that
2059  // we don't have to worry about filters disappearing under us when removed.
2060  for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2061  Value *LFilter = NewClauses[j];
2062  ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2063  if (!LTy)
2064  // Not a filter - skip it.
2065  continue;
2066  // If Filter is a subset of LFilter, i.e. every element of Filter is also
2067  // an element of LFilter, then discard LFilter.
2068  SmallVectorImpl<Value *>::iterator J = NewClauses.begin() + j;
2069  // If Filter is empty then it is a subset of LFilter.
2070  if (!FElts) {
2071  // Discard LFilter.
2072  NewClauses.erase(J);
2073  MakeNewInstruction = true;
2074  // Move on to the next filter.
2075  continue;
2076  }
2077  unsigned LElts = LTy->getNumElements();
2078  // If Filter is longer than LFilter then it cannot be a subset of it.
2079  if (FElts > LElts)
2080  // Move on to the next filter.
2081  continue;
2082  // At this point we know that LFilter has at least one element.
2083  if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2084  // Filter is a subset of LFilter iff Filter contains only zeros (as we
2085  // already know that Filter is not longer than LFilter).
2086  if (isa<ConstantAggregateZero>(Filter)) {
2087  assert(FElts <= LElts && "Should have handled this case earlier!");
2088  // Discard LFilter.
2089  NewClauses.erase(J);
2090  MakeNewInstruction = true;
2091  }
2092  // Move on to the next filter.
2093  continue;
2094  }
2095  ConstantArray *LArray = cast<ConstantArray>(LFilter);
2096  if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2097  // Since Filter is non-empty and contains only zeros, it is a subset of
2098  // LFilter iff LFilter contains a zero.
2099  assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2100  for (unsigned l = 0; l != LElts; ++l)
2101  if (LArray->getOperand(l)->isNullValue()) {
2102  // LFilter contains a zero - discard it.
2103  NewClauses.erase(J);
2104  MakeNewInstruction = true;
2105  break;
2106  }
2107  // Move on to the next filter.
2108  continue;
2109  }
2110  // At this point we know that both filters are ConstantArrays. Loop over
2111  // operands to see whether every element of Filter is also an element of
2112  // LFilter. Since filters tend to be short this is probably faster than
2113  // using a method that scales nicely.
2114  ConstantArray *FArray = cast<ConstantArray>(Filter);
2115  bool AllFound = true;
2116  for (unsigned f = 0; f != FElts; ++f) {
2117  Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2118  AllFound = false;
2119  for (unsigned l = 0; l != LElts; ++l) {
2120  Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2121  if (LTypeInfo == FTypeInfo) {
2122  AllFound = true;
2123  break;
2124  }
2125  }
2126  if (!AllFound)
2127  break;
2128  }
2129  if (AllFound) {
2130  // Discard LFilter.
2131  NewClauses.erase(J);
2132  MakeNewInstruction = true;
2133  }
2134  // Move on to the next filter.
2135  }
2136  }
2137 
2138  // If we changed any of the clauses, replace the old landingpad instruction
2139  // with a new one.
2140  if (MakeNewInstruction) {
2142  LI.getPersonalityFn(),
2143  NewClauses.size());
2144  for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2145  NLI->addClause(NewClauses[i]);
2146  // A landing pad with no clauses must have the cleanup flag set. It is
2147  // theoretically possible, though highly unlikely, that we eliminated all
2148  // clauses. If so, force the cleanup flag to true.
2149  if (NewClauses.empty())
2150  CleanupFlag = true;
2151  NLI->setCleanup(CleanupFlag);
2152  return NLI;
2153  }
2154 
2155  // Even if none of the clauses changed, we may nonetheless have understood
2156  // that the cleanup flag is pointless. Clear it if so.
2157  if (LI.isCleanup() != CleanupFlag) {
2158  assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2159  LI.setCleanup(CleanupFlag);
2160  return &LI;
2161  }
2162 
2163  return 0;
2164 }
2165 
2166 
2167 
2168 
2169 /// TryToSinkInstruction - Try to move the specified instruction from its
2170 /// current block into the beginning of DestBlock, which can only happen if it's
2171 /// safe to move the instruction past all of the instructions between it and the
2172 /// end of its block.
2173 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2174  assert(I->hasOneUse() && "Invariants didn't hold!");
2175 
2176  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2177  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2178  isa<TerminatorInst>(I))
2179  return false;
2180 
2181  // Do not sink alloca instructions out of the entry block.
2182  if (isa<AllocaInst>(I) && I->getParent() ==
2183  &DestBlock->getParent()->getEntryBlock())
2184  return false;
2185 
2186  // We can only sink load instructions if there is nothing between the load and
2187  // the end of block that could change the value.
2188  if (I->mayReadFromMemory()) {
2189  for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2190  Scan != E; ++Scan)
2191  if (Scan->mayWriteToMemory())
2192  return false;
2193  }
2194 
2195  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2196  I->moveBefore(InsertPos);
2197  ++NumSunkInst;
2198  return true;
2199 }
2200 
2201 
2202 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2203 /// all reachable code to the worklist.
2204 ///
2205 /// This has a couple of tricks to make the code faster and more powerful. In
2206 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2207 /// them to the worklist (this significantly speeds up instcombine on code where
2208 /// many instructions are dead or constant). Additionally, if we find a branch
2209 /// whose condition is a known constant, we only visit the reachable successors.
2210 ///
2213  InstCombiner &IC,
2214  const DataLayout *TD,
2215  const TargetLibraryInfo *TLI) {
2216  bool MadeIRChange = false;
2218  Worklist.push_back(BB);
2219 
2220  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2221  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2222 
2223  do {
2224  BB = Worklist.pop_back_val();
2225 
2226  // We have now visited this block! If we've already been here, ignore it.
2227  if (!Visited.insert(BB)) continue;
2228 
2229  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2230  Instruction *Inst = BBI++;
2231 
2232  // DCE instruction if trivially dead.
2233  if (isInstructionTriviallyDead(Inst, TLI)) {
2234  ++NumDeadInst;
2235  DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2236  Inst->eraseFromParent();
2237  continue;
2238  }
2239 
2240  // ConstantProp instruction if trivially constant.
2241  if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2242  if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2243  DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2244  << *Inst << '\n');
2245  Inst->replaceAllUsesWith(C);
2246  ++NumConstProp;
2247  Inst->eraseFromParent();
2248  continue;
2249  }
2250 
2251  if (TD) {
2252  // See if we can constant fold its operands.
2253  for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2254  i != e; ++i) {
2256  if (CE == 0) continue;
2257 
2258  Constant*& FoldRes = FoldedConstants[CE];
2259  if (!FoldRes)
2260  FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2261  if (!FoldRes)
2262  FoldRes = CE;
2263 
2264  if (FoldRes != CE) {
2265  *i = FoldRes;
2266  MadeIRChange = true;
2267  }
2268  }
2269  }
2270 
2271  InstrsForInstCombineWorklist.push_back(Inst);
2272  }
2273 
2274  // Recursively visit successors. If this is a branch or switch on a
2275  // constant, only visit the reachable successor.
2276  TerminatorInst *TI = BB->getTerminator();
2277  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2278  if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2279  bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2280  BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2281  Worklist.push_back(ReachableBB);
2282  continue;
2283  }
2284  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2285  if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2286  // See if this is an explicit destination.
2287  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2288  i != e; ++i)
2289  if (i.getCaseValue() == Cond) {
2290  BasicBlock *ReachableBB = i.getCaseSuccessor();
2291  Worklist.push_back(ReachableBB);
2292  continue;
2293  }
2294 
2295  // Otherwise it is the default destination.
2296  Worklist.push_back(SI->getDefaultDest());
2297  continue;
2298  }
2299  }
2300 
2301  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2302  Worklist.push_back(TI->getSuccessor(i));
2303  } while (!Worklist.empty());
2304 
2305  // Once we've found all of the instructions to add to instcombine's worklist,
2306  // add them in reverse order. This way instcombine will visit from the top
2307  // of the function down. This jives well with the way that it adds all uses
2308  // of instructions to the worklist after doing a transformation, thus avoiding
2309  // some N^2 behavior in pathological cases.
2310  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2311  InstrsForInstCombineWorklist.size());
2312 
2313  return MadeIRChange;
2314 }
2315 
2316 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2317  MadeIRChange = false;
2318 
2319  DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2320  << F.getName() << "\n");
2321 
2322  {
2323  // Do a depth-first traversal of the function, populate the worklist with
2324  // the reachable instructions. Ignore blocks that are not reachable. Keep
2325  // track of which blocks we visit.
2327  MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2328  TLI);
2329 
2330  // Do a quick scan over the function. If we find any blocks that are
2331  // unreachable, remove any instructions inside of them. This prevents
2332  // the instcombine code from having to deal with some bad special cases.
2333  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2334  if (Visited.count(BB)) continue;
2335 
2336  // Delete the instructions backwards, as it has a reduced likelihood of
2337  // having to update as many def-use and use-def chains.
2338  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2339  while (EndInst != BB->begin()) {
2340  // Delete the next to last instruction.
2341  BasicBlock::iterator I = EndInst;
2342  Instruction *Inst = --I;
2343  if (!Inst->use_empty())
2344  Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2345  if (isa<LandingPadInst>(Inst)) {
2346  EndInst = Inst;
2347  continue;
2348  }
2349  if (!isa<DbgInfoIntrinsic>(Inst)) {
2350  ++NumDeadInst;
2351  MadeIRChange = true;
2352  }
2353  Inst->eraseFromParent();
2354  }
2355  }
2356  }
2357 
2358  while (!Worklist.isEmpty()) {
2359  Instruction *I = Worklist.RemoveOne();
2360  if (I == 0) continue; // skip null values.
2361 
2362  // Check to see if we can DCE the instruction.
2363  if (isInstructionTriviallyDead(I, TLI)) {
2364  DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2365  EraseInstFromFunction(*I);
2366  ++NumDeadInst;
2367  MadeIRChange = true;
2368  continue;
2369  }
2370 
2371  // Instruction isn't dead, see if we can constant propagate it.
2372  if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2373  if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2374  DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2375 
2376  // Add operands to the worklist.
2377  ReplaceInstUsesWith(*I, C);
2378  ++NumConstProp;
2379  EraseInstFromFunction(*I);
2380  MadeIRChange = true;
2381  continue;
2382  }
2383 
2384  // See if we can trivially sink this instruction to a successor basic block.
2385  if (I->hasOneUse()) {
2386  BasicBlock *BB = I->getParent();
2387  Instruction *UserInst = cast<Instruction>(I->use_back());
2388  BasicBlock *UserParent;
2389 
2390  // Get the block the use occurs in.
2391  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2392  UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2393  else
2394  UserParent = UserInst->getParent();
2395 
2396  if (UserParent != BB) {
2397  bool UserIsSuccessor = false;
2398  // See if the user is one of our successors.
2399  for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2400  if (*SI == UserParent) {
2401  UserIsSuccessor = true;
2402  break;
2403  }
2404 
2405  // If the user is one of our immediate successors, and if that successor
2406  // only has us as a predecessors (we'd have to split the critical edge
2407  // otherwise), we can keep going.
2408  if (UserIsSuccessor && UserParent->getSinglePredecessor())
2409  // Okay, the CFG is simple enough, try to sink this instruction.
2410  MadeIRChange |= TryToSinkInstruction(I, UserParent);
2411  }
2412  }
2413 
2414  // Now that we have an instruction, try combining it to simplify it.
2415  Builder->SetInsertPoint(I->getParent(), I);
2416  Builder->SetCurrentDebugLocation(I->getDebugLoc());
2417 
2418 #ifndef NDEBUG
2419  std::string OrigI;
2420 #endif
2421  DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2422  DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2423 
2424  if (Instruction *Result = visit(*I)) {
2425  ++NumCombined;
2426  // Should we replace the old instruction with a new one?
2427  if (Result != I) {
2428  DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2429  << " New = " << *Result << '\n');
2430 
2431  if (!I->getDebugLoc().isUnknown())
2432  Result->setDebugLoc(I->getDebugLoc());
2433  // Everything uses the new instruction now.
2434  I->replaceAllUsesWith(Result);
2435 
2436  // Move the name to the new instruction first.
2437  Result->takeName(I);
2438 
2439  // Push the new instruction and any users onto the worklist.
2440  Worklist.Add(Result);
2441  Worklist.AddUsersToWorkList(*Result);
2442 
2443  // Insert the new instruction into the basic block...
2444  BasicBlock *InstParent = I->getParent();
2445  BasicBlock::iterator InsertPos = I;
2446 
2447  // If we replace a PHI with something that isn't a PHI, fix up the
2448  // insertion point.
2449  if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2450  InsertPos = InstParent->getFirstInsertionPt();
2451 
2452  InstParent->getInstList().insert(InsertPos, Result);
2453 
2454  EraseInstFromFunction(*I);
2455  } else {
2456 #ifndef NDEBUG
2457  DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2458  << " New = " << *I << '\n');
2459 #endif
2460 
2461  // If the instruction was modified, it's possible that it is now dead.
2462  // if so, remove it.
2463  if (isInstructionTriviallyDead(I, TLI)) {
2464  EraseInstFromFunction(*I);
2465  } else {
2466  Worklist.Add(I);
2467  Worklist.AddUsersToWorkList(*I);
2468  }
2469  }
2470  MadeIRChange = true;
2471  }
2472  }
2473 
2474  Worklist.Zap();
2475  return MadeIRChange;
2476 }
2477 
2478 namespace {
2479 class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2480  InstCombiner *IC;
2481 public:
2482  InstCombinerLibCallSimplifier(const DataLayout *TD,
2483  const TargetLibraryInfo *TLI,
2484  InstCombiner *IC)
2485  : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2486  this->IC = IC;
2487  }
2488 
2489  /// replaceAllUsesWith - override so that instruction replacement
2490  /// can be defined in terms of the instruction combiner framework.
2491  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2492  IC->ReplaceInstUsesWith(*I, With);
2493  }
2494 };
2495 }
2496 
2498  TD = getAnalysisIfAvailable<DataLayout>();
2499  TLI = &getAnalysis<TargetLibraryInfo>();
2500  // Minimizing size?
2501  MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2503 
2504  /// Builder - This is an IRBuilder that automatically inserts new
2505  /// instructions into the worklist when they are created.
2507  TheBuilder(F.getContext(), TargetFolder(TD),
2508  InstCombineIRInserter(Worklist));
2509  Builder = &TheBuilder;
2510 
2511  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2512  Simplifier = &TheSimplifier;
2513 
2514  bool EverMadeChange = false;
2515 
2516  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2517  // by instcombiner.
2518  EverMadeChange = LowerDbgDeclare(F);
2519 
2520  // Iterate while there is work to do.
2521  unsigned Iteration = 0;
2522  while (DoOneIteration(F, Iteration++))
2523  EverMadeChange = true;
2524 
2525  Builder = 0;
2526  return EverMadeChange;
2527 }
2528 
2530  return new InstCombiner();
2531 }
use_iterator use_end()
Definition: Value.h:152
bool isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates or reallocates memory (eith...
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
void setHasNoSignedWrap(bool b=true)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1164
void initializeInstCombinerPass(PassRegistry &)
void setFastMathFlags(FastMathFlags FMF)
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
void reserve(unsigned N)
Definition: SmallVector.h:425
void addIncoming(Value *V, BasicBlock *BB)
LLVMContext & getContext() const
Definition: Function.cpp:167
static const Value * getFNegArgument(const Value *BinOp)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1280
void LLVMInitializeInstCombine(LLVMPassRegistryRef R)
bool isVolatile() const
Definition: Instructions.h:287
void swapSuccessors()
Swap the successors of this branch instruction.
bool isVolatile() const
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
iterator end()
Definition: Function.h:397
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
match_zero m_Zero()
Definition: PatternMatch.h:137
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=0)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:807
INITIALIZE_PASS_BEGIN(InstCombiner,"instcombine","Combine redundant instructions", false, false) INITIALIZE_PASS_END(InstCombiner
br_match m_UnconditionalBr(BasicBlock *&Succ)
Definition: PatternMatch.h:814
Predicate getInversePredicate() const
Return the inverse of the instruction's predicate.
Definition: InstrTypes.h:737
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP, bool NoAssumptions=false)
Definition: Local.h:187
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:677
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool mayHaveSideEffects() const
Definition: Instruction.h:324
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition: APInt.cpp:1978
bool isPtrOrPtrVectorTy() const
Definition: Type.h:225
static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
static bool isEquality(Predicate P)
Definition: Instructions.h:997
FastMathFlags getFastMathFlags() const
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
virtual bool runOnFunction(Function &F)
F(f)
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=0)
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
LLVMContext ** unwrap(LLVMContextRef *Tys)
Definition: LLVMContext.h:119
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2040
iv Induction Variable Users
Definition: IVUsers.cpp:39
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return true if the attribute exists at the given index.
Definition: Attributes.cpp:818
StringSwitch & Case(const char(&S)[N], const T &Value)
Definition: StringSwitch.h:55
Value * getPersonalityFn() const
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
unsigned getNumIndices() const
Definition: Instructions.h:827
op_iterator op_begin()
Definition: User.h:116
APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:2009
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
Type * getPointerElementType() const
Definition: Type.h:373
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
bool hasIndices() const
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
ArrayRef< unsigned > getIndices() const
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
bool isUnknown() const
isUnknown - Return true if this is an unknown location.
Definition: DebugLoc.h:70
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static const Value * getNegArgument(const Value *BinOp)
CmpClass_match< LHS, RHS, FCmpInst, FCmpInst::Predicate > m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Definition: PatternMatch.h:599
bool isUnconditional() const
static unsigned getComplexity(Value *V)
Definition: InstCombine.h:42
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
bool isIdenticalTo(const Instruction *I) const
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
Base class of casting instructions.
Definition: InstrTypes.h:387
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Type * getArrayElementType() const
Definition: Type.h:368
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
InstCombiner - The -instcombine pass.
Definition: InstCombine.h:72
unsigned getNumIndices() const
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
static bool shorter_filter(const Value *LHS, const Value *RHS)
Type * getPointerOperandType() const
Definition: Instructions.h:802
not_match< LHS > m_Not(const LHS &L)
Definition: PatternMatch.h:738
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
Instruction * visitBranchInst(BranchInst &BI)
void setCleanup(bool V)
setCleanup - Indicate that this landingpad instruction is a cleanup.
bool mayReadFromMemory() const
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
bool isAssociative() const
Constant * ConstantFoldConstantExpression(const ConstantExpr *CE, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Represents a floating point comparison operator.
BasicBlock * getSuccessor(unsigned i) const
static LandingPadInst * Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr="", Instruction *InsertBefore=0)
This class represents a no-op cast from one type to another.
op_iterator idx_begin()
Definition: Instructions.h:785
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
bool isFloatingPointTy() const
Definition: Type.h:162
TargetFolder - Create constants with target dependent folding.
Definition: TargetFolder.h:32
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
unsigned getNumClauses() const
getNumClauses - Get the number of clauses for this landing pad.
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
bool isArrayTy() const
Definition: Type.h:216
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
FunctionPass * createInstructionCombiningPass()
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
void addClause(Value *ClauseVal)
addClause - Add a catch or filter clause to the landing pad.
Type * getElementType() const
Definition: DerivedTypes.h:319
Value * SimplifyGEPInst(ArrayRef< Value * > Ops, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool isInBounds() const
isInBounds - Determine whether the GEP has the inbounds flag.
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumIncomingValues() const
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=0)
Construct any of the CastInst subclasses.
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
Value * getClause(unsigned Idx) const
bool isFilter(unsigned Idx) const
isFilter - Return 'true' if the clause and index Idx is a filter clause.
static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo)
isCatchAll - Return 'true' if the given typeinfo will match anything.
static Constant * getFNeg(Constant *C)
Definition: Constants.cpp:2017
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:42
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:834
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
LLVM Constant Representation.
Definition: Constant.h:41
static cl::opt< bool > UnsafeFPShrink("enable-double-float-shrink", cl::Hidden, cl::init(false), cl::desc("Enable unsafe double to float ""shrinking for math lib calls"))
const Value * getCondition() const
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Instruction * ReplaceInstUsesWith(Instruction &I, Value *V)
Definition: InstCombine.h:267
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:745
static InvokeInst * Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr="", Instruction *InsertBefore=0)
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
Value * getRawDest() const
specificval_ty m_Specific(const Value *V)
m_Specific - Match if we have a specific specified value.
Definition: PatternMatch.h:323
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:942
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
Definition: PatternMatch.h:837
op_iterator op_end()
Definition: User.h:118
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
uint64_t getNumElements() const
Definition: DerivedTypes.h:348
Represent an integer comparison operator.
Definition: Instructions.h:911
iterator insert(iterator where, NodeTy *New)
Definition: ilist.h:412
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
Value * getOperand(unsigned i) const
Definition: User.h:88
bool isCommutative() const
Definition: Instruction.h:269
InstCombineWorklist Worklist
Worklist - All of the instructions that need to be simplified.
Definition: InstCombine.h:82
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2023
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
BuilderTy * Builder
Definition: InstCombine.h:87
static Value * FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC)
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
iterator erase(iterator I)
Definition: SmallVector.h:478
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
bool LowerDbgDeclare(Function &F)
Definition: Local.cpp:1034
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
const Value * getTrueValue() const
Value * SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
neg_match< LHS > m_Neg(const LHS &L)
m_Neg - Match an integer negate.
Definition: PatternMatch.h:764
bool isConditional() const
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:280
Class for constant integers.
Definition: Constants.h:51
struct LLVMOpaquePassRegistry * LLVMPassRegistryRef
Definition: Core.h:128
bool DoOneIteration(Function &F, unsigned ItNum)
Value * getIncomingValue(unsigned i) const
Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB)
Definition: Value.cpp:509
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
bool hasAllZeroIndices() const
Definition: Operator.h:415
uint64_t getSizeInBytes() const
Definition: DataLayout.h:425
SequentialType * getType() const
Definition: Instructions.h:764
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
unsigned getElementContainingOffset(uint64_t Offset) const
Definition: DataLayout.cpp:78
Instruction * visitFree(CallInst &FI)
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
static GetElementPtrInst * Create(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:726
int32_t exactLogBase2() const
Definition: APInt.h:1509
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool isNullValue() const
Definition: Constants.cpp:75
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:719
R Default(const T &Value) const
Definition: StringSwitch.h:111
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Value * getArgOperand(unsigned i) const
signed less or equal
Definition: InstrTypes.h:681
static bool isNeg(const Value *V)
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
m_PtrToInt
Definition: PatternMatch.h:671
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
Instruction * visitSwitchInst(SwitchInst &SI)
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
static char ID
Definition: InstCombine.h:89
idx_iterator idx_end() const
Value * getCondition() const
Use & getUse() const
Definition: Use.h:210
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:365
void AddInitialGroup(Instruction *const *List, unsigned NumEntries)
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
Instruction * visitLandingPadInst(LandingPadInst &LI)
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=0)
use_iterator use_begin()
Definition: Value.h:150
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2010
Value * getCondition() const
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
void setCondition(Value *V)
Combine redundant instructions
unsigned greater or equal
Definition: InstrTypes.h:675
static bool isFNeg(const Value *V, bool IgnoreZeroSign=false)
bool isCatch(unsigned Idx) const
isCatch - Return 'true' if the clause and index Idx is a catch clause.
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
static bool AddReachableCodeToWorklist(BasicBlock *BB, SmallPtrSet< BasicBlock *, 64 > &Visited, InstCombiner &IC, const DataLayout *TD, const TargetLibraryInfo *TLI)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
static ArrayType * get(Type *ElementType, uint64_t NumElements)
Definition: Type.cpp:679
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=0)
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1996
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
size_t size() const
Definition: BasicBlock.h:203
void setCondition(Value *V)
bool use_empty() const
Definition: Value.h:149
static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakVH > &Users, const TargetLibraryInfo *TLI)
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
void clearSubclassOptionalData()
Definition: Value.h:246
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
bool isSized() const
Definition: Type.h:278
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI)
Move the call to free before a NULL test.
void print(raw_ostream &O, AssemblyAnnotationWriter *AAW=0) const
Definition: AsmWriter.cpp:2162
#define DEBUG(X)
Definition: Debug.h:97
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
bool isCleanup() const
Combine redundant false
const Value * getFalseValue() const
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:170
unsigned greater than
Definition: InstrTypes.h:674
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1798
STATISTIC(NumCombined,"Number of insts combined")
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
idx_iterator idx_begin() const
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:743
iterator getFirstInsertionPt()
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:170
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
void initializeInstCombine(PassRegistry &)
Value * getPointerOperand()
Definition: Instructions.h:346
Instruction * visitAllocSite(Instruction &FI)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static Personality_Type RecognizePersonality(Value *Pers)
signed greater or equal
Definition: InstrTypes.h:679
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Definition: PatternMatch.h:592
gep_type_iterator gep_type_begin(const User *GEP)
Function must be optimized for size first.
Definition: Attributes.h:77