LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopRerollPass.cpp
Go to the documentation of this file.
1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop reroller.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "loop-reroll"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Support/Debug.h"
35 
36 using namespace llvm;
37 
38 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
39 
40 static cl::opt<unsigned>
41 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
42  cl::desc("The maximum increment for loop rerolling"));
43 
44 // This loop re-rolling transformation aims to transform loops like this:
45 //
46 // int foo(int a);
47 // void bar(int *x) {
48 // for (int i = 0; i < 500; i += 3) {
49 // foo(i);
50 // foo(i+1);
51 // foo(i+2);
52 // }
53 // }
54 //
55 // into a loop like this:
56 //
57 // void bar(int *x) {
58 // for (int i = 0; i < 500; ++i)
59 // foo(i);
60 // }
61 //
62 // It does this by looking for loops that, besides the latch code, are composed
63 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
64 // to the induction variable, and where each DAG is isomorphic to the DAG
65 // rooted at the induction variable (excepting the sub-DAGs which root the
66 // other induction-variable increments). In other words, we're looking for loop
67 // bodies of the form:
68 //
69 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
70 // f(%iv)
71 // %iv.1 = add %iv, 1 <-- a root increment
72 // f(%iv.1)
73 // %iv.2 = add %iv, 2 <-- a root increment
74 // f(%iv.2)
75 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
76 // f(%iv.scale_m_1)
77 // ...
78 // %iv.next = add %iv, scale
79 // %cmp = icmp(%iv, ...)
80 // br %cmp, header, exit
81 //
82 // where each f(i) is a set of instructions that, collectively, are a function
83 // only of i (and other loop-invariant values).
84 //
85 // As a special case, we can also reroll loops like this:
86 //
87 // int foo(int);
88 // void bar(int *x) {
89 // for (int i = 0; i < 500; ++i) {
90 // x[3*i] = foo(0);
91 // x[3*i+1] = foo(0);
92 // x[3*i+2] = foo(0);
93 // }
94 // }
95 //
96 // into this:
97 //
98 // void bar(int *x) {
99 // for (int i = 0; i < 1500; ++i)
100 // x[i] = foo(0);
101 // }
102 //
103 // in which case, we're looking for inputs like this:
104 //
105 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
106 // %scaled.iv = mul %iv, scale
107 // f(%scaled.iv)
108 // %scaled.iv.1 = add %scaled.iv, 1
109 // f(%scaled.iv.1)
110 // %scaled.iv.2 = add %scaled.iv, 2
111 // f(%scaled.iv.2)
112 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
113 // f(%scaled.iv.scale_m_1)
114 // ...
115 // %iv.next = add %iv, 1
116 // %cmp = icmp(%iv, ...)
117 // br %cmp, header, exit
118 
119 namespace {
120  class LoopReroll : public LoopPass {
121  public:
122  static char ID; // Pass ID, replacement for typeid
123  LoopReroll() : LoopPass(ID) {
125  }
126 
127  bool runOnLoop(Loop *L, LPPassManager &LPM);
128 
129  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131  AU.addRequired<LoopInfo>();
132  AU.addPreserved<LoopInfo>();
137  }
138 
139 protected:
140  AliasAnalysis *AA;
141  LoopInfo *LI;
142  ScalarEvolution *SE;
143  DataLayout *DL;
144  TargetLibraryInfo *TLI;
145  DominatorTree *DT;
146 
147  typedef SmallVector<Instruction *, 16> SmallInstructionVector;
148  typedef SmallSet<Instruction *, 16> SmallInstructionSet;
149 
150  // A chain of isomorphic instructions, indentified by a single-use PHI,
151  // representing a reduction. Only the last value may be used outside the
152  // loop.
153  struct SimpleLoopReduction {
154  SimpleLoopReduction(Instruction *P, Loop *L)
155  : Valid(false), Instructions(1, P) {
156  assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
157  add(L);
158  }
159 
160  bool valid() const {
161  return Valid;
162  }
163 
164  Instruction *getPHI() const {
165  assert(Valid && "Using invalid reduction");
166  return Instructions.front();
167  }
168 
169  Instruction *getReducedValue() const {
170  assert(Valid && "Using invalid reduction");
171  return Instructions.back();
172  }
173 
174  Instruction *get(size_t i) const {
175  assert(Valid && "Using invalid reduction");
176  return Instructions[i+1];
177  }
178 
179  Instruction *operator [] (size_t i) const { return get(i); }
180 
181  // The size, ignoring the initial PHI.
182  size_t size() const {
183  assert(Valid && "Using invalid reduction");
184  return Instructions.size()-1;
185  }
186 
187  typedef SmallInstructionVector::iterator iterator;
188  typedef SmallInstructionVector::const_iterator const_iterator;
189 
190  iterator begin() {
191  assert(Valid && "Using invalid reduction");
192  return llvm::next(Instructions.begin());
193  }
194 
195  const_iterator begin() const {
196  assert(Valid && "Using invalid reduction");
197  return llvm::next(Instructions.begin());
198  }
199 
200  iterator end() { return Instructions.end(); }
201  const_iterator end() const { return Instructions.end(); }
202 
203  protected:
204  bool Valid;
205  SmallInstructionVector Instructions;
206 
207  void add(Loop *L);
208  };
209 
210  // The set of all reductions, and state tracking of possible reductions
211  // during loop instruction processing.
212  struct ReductionTracker {
213  typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
214 
215  // Add a new possible reduction.
216  void addSLR(SimpleLoopReduction &SLR) {
217  PossibleReds.push_back(SLR);
218  }
219 
220  // Setup to track possible reductions corresponding to the provided
221  // rerolling scale. Only reductions with a number of non-PHI instructions
222  // that is divisible by the scale are considered. Three instructions sets
223  // are filled in:
224  // - A set of all possible instructions in eligible reductions.
225  // - A set of all PHIs in eligible reductions
226  // - A set of all reduced values (last instructions) in eligible reductions.
227  void restrictToScale(uint64_t Scale,
228  SmallInstructionSet &PossibleRedSet,
229  SmallInstructionSet &PossibleRedPHISet,
230  SmallInstructionSet &PossibleRedLastSet) {
231  PossibleRedIdx.clear();
232  PossibleRedIter.clear();
233  Reds.clear();
234 
235  for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
236  if (PossibleReds[i].size() % Scale == 0) {
237  PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
238  PossibleRedPHISet.insert(PossibleReds[i].getPHI());
239 
240  PossibleRedSet.insert(PossibleReds[i].getPHI());
241  PossibleRedIdx[PossibleReds[i].getPHI()] = i;
242  for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
243  JE = PossibleReds[i].end(); J != JE; ++J) {
244  PossibleRedSet.insert(*J);
245  PossibleRedIdx[*J] = i;
246  }
247  }
248  }
249 
250  // The functions below are used while processing the loop instructions.
251 
252  // Are the two instructions both from reductions, and furthermore, from
253  // the same reduction?
254  bool isPairInSame(Instruction *J1, Instruction *J2) {
255  DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
256  if (J1I != PossibleRedIdx.end()) {
257  DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
258  if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
259  return true;
260  }
261 
262  return false;
263  }
264 
265  // The two provided instructions, the first from the base iteration, and
266  // the second from iteration i, form a matched pair. If these are part of
267  // a reduction, record that fact.
268  void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
269  if (PossibleRedIdx.count(J1)) {
270  assert(PossibleRedIdx.count(J2) &&
271  "Recording reduction vs. non-reduction instruction?");
272 
273  PossibleRedIter[J1] = 0;
274  PossibleRedIter[J2] = i;
275 
276  int Idx = PossibleRedIdx[J1];
277  assert(Idx == PossibleRedIdx[J2] &&
278  "Recording pair from different reductions?");
279  Reds.insert(Idx);
280  }
281  }
282 
283  // The functions below can be called after we've finished processing all
284  // instructions in the loop, and we know which reductions were selected.
285 
286  // Is the provided instruction the PHI of a reduction selected for
287  // rerolling?
288  bool isSelectedPHI(Instruction *J) {
289  if (!isa<PHINode>(J))
290  return false;
291 
292  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
293  RI != RIE; ++RI) {
294  int i = *RI;
295  if (cast<Instruction>(J) == PossibleReds[i].getPHI())
296  return true;
297  }
298 
299  return false;
300  }
301 
302  bool validateSelected();
303  void replaceSelected();
304 
305  protected:
306  // The vector of all possible reductions (for any scale).
307  SmallReductionVector PossibleReds;
308 
309  DenseMap<Instruction *, int> PossibleRedIdx;
310  DenseMap<Instruction *, int> PossibleRedIter;
311  DenseSet<int> Reds;
312  };
313 
314  void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
315  void collectPossibleReductions(Loop *L,
316  ReductionTracker &Reductions);
317  void collectInLoopUserSet(Loop *L,
318  const SmallInstructionVector &Roots,
319  const SmallInstructionSet &Exclude,
320  const SmallInstructionSet &Final,
322  void collectInLoopUserSet(Loop *L,
323  Instruction * Root,
324  const SmallInstructionSet &Exclude,
325  const SmallInstructionSet &Final,
327  bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
328  Instruction *&IV,
329  SmallInstructionVector &LoopIncs);
330  bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
332  SmallInstructionSet &AllRoots,
333  SmallInstructionVector &LoopIncs);
334  bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
335  ReductionTracker &Reductions);
336  };
337 }
338 
339 char LoopReroll::ID = 0;
340 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
346 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
347 
349  return new LoopReroll;
350 }
351 
352 // Returns true if the provided instruction is used outside the given loop.
353 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
354 // non-loop blocks to be outside the loop.
356  for (Value::use_iterator UI = I->use_begin(),
357  UIE = I->use_end(); UI != UIE; ++UI) {
358  Instruction *User = cast<Instruction>(*UI);
359  if (!L->contains(User))
360  return true;
361  }
362 
363  return false;
364 }
365 
366 // Collect the list of loop induction variables with respect to which it might
367 // be possible to reroll the loop.
368 void LoopReroll::collectPossibleIVs(Loop *L,
369  SmallInstructionVector &PossibleIVs) {
370  BasicBlock *Header = L->getHeader();
371  for (BasicBlock::iterator I = Header->begin(),
372  IE = Header->getFirstInsertionPt(); I != IE; ++I) {
373  if (!isa<PHINode>(I))
374  continue;
375  if (!I->getType()->isIntegerTy())
376  continue;
377 
378  if (const SCEVAddRecExpr *PHISCEV =
379  dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
380  if (PHISCEV->getLoop() != L)
381  continue;
382  if (!PHISCEV->isAffine())
383  continue;
384  if (const SCEVConstant *IncSCEV =
385  dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
386  if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
387  continue;
388  if (IncSCEV->getValue()->uge(MaxInc))
389  continue;
390 
391  DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
392  *PHISCEV << "\n");
393  PossibleIVs.push_back(I);
394  }
395  }
396  }
397 }
398 
399 // Add the remainder of the reduction-variable chain to the instruction vector
400 // (the initial PHINode has already been added). If successful, the object is
401 // marked as valid.
403  assert(!Valid && "Cannot add to an already-valid chain");
404 
405  // The reduction variable must be a chain of single-use instructions
406  // (including the PHI), except for the last value (which is used by the PHI
407  // and also outside the loop).
408  Instruction *C = Instructions.front();
409 
410  do {
411  C = cast<Instruction>(*C->use_begin());
412  if (C->hasOneUse()) {
413  if (!C->isBinaryOp())
414  return;
415 
416  if (!(isa<PHINode>(Instructions.back()) ||
417  C->isSameOperationAs(Instructions.back())))
418  return;
419 
420  Instructions.push_back(C);
421  }
422  } while (C->hasOneUse());
423 
424  if (Instructions.size() < 2 ||
425  !C->isSameOperationAs(Instructions.back()) ||
426  C->use_begin() == C->use_end())
427  return;
428 
429  // C is now the (potential) last instruction in the reduction chain.
430  for (Value::use_iterator UI = C->use_begin(), UIE = C->use_end();
431  UI != UIE; ++UI) {
432  // The only in-loop user can be the initial PHI.
433  if (L->contains(cast<Instruction>(*UI)))
434  if (cast<Instruction>(*UI ) != Instructions.front())
435  return;
436  }
437 
438  Instructions.push_back(C);
439  Valid = true;
440 }
441 
442 // Collect the vector of possible reduction variables.
443 void LoopReroll::collectPossibleReductions(Loop *L,
444  ReductionTracker &Reductions) {
445  BasicBlock *Header = L->getHeader();
446  for (BasicBlock::iterator I = Header->begin(),
447  IE = Header->getFirstInsertionPt(); I != IE; ++I) {
448  if (!isa<PHINode>(I))
449  continue;
450  if (!I->getType()->isSingleValueType())
451  continue;
452 
453  SimpleLoopReduction SLR(I, L);
454  if (!SLR.valid())
455  continue;
456 
457  DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
458  SLR.size() << " chained instructions)\n");
459  Reductions.addSLR(SLR);
460  }
461 }
462 
463 // Collect the set of all users of the provided root instruction. This set of
464 // users contains not only the direct users of the root instruction, but also
465 // all users of those users, and so on. There are two exceptions:
466 //
467 // 1. Instructions in the set of excluded instructions are never added to the
468 // use set (even if they are users). This is used, for example, to exclude
469 // including root increments in the use set of the primary IV.
470 //
471 // 2. Instructions in the set of final instructions are added to the use set
472 // if they are users, but their users are not added. This is used, for
473 // example, to prevent a reduction update from forcing all later reduction
474 // updates into the use set.
475 void LoopReroll::collectInLoopUserSet(Loop *L,
476  Instruction *Root, const SmallInstructionSet &Exclude,
477  const SmallInstructionSet &Final,
479  SmallInstructionVector Queue(1, Root);
480  while (!Queue.empty()) {
481  Instruction *I = Queue.pop_back_val();
482  if (!Users.insert(I).second)
483  continue;
484 
485  if (!Final.count(I))
486  for (Value::use_iterator UI = I->use_begin(),
487  UIE = I->use_end(); UI != UIE; ++UI) {
488  Instruction *User = cast<Instruction>(*UI);
489  if (PHINode *PN = dyn_cast<PHINode>(User)) {
490  // Ignore "wrap-around" uses to PHIs of this loop's header.
491  if (PN->getIncomingBlock(UI) == L->getHeader())
492  continue;
493  }
494 
495  if (L->contains(User) && !Exclude.count(User)) {
496  Queue.push_back(User);
497  }
498  }
499 
500  // We also want to collect single-user "feeder" values.
501  for (User::op_iterator OI = I->op_begin(),
502  OIE = I->op_end(); OI != OIE; ++OI) {
503  if (Instruction *Op = dyn_cast<Instruction>(*OI))
504  if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
505  !Final.count(Op))
506  Queue.push_back(Op);
507  }
508  }
509 }
510 
511 // Collect all of the users of all of the provided root instructions (combined
512 // into a single set).
513 void LoopReroll::collectInLoopUserSet(Loop *L,
514  const SmallInstructionVector &Roots,
515  const SmallInstructionSet &Exclude,
516  const SmallInstructionSet &Final,
517  DenseSet<Instruction *> &Users) {
518  for (SmallInstructionVector::const_iterator I = Roots.begin(),
519  IE = Roots.end(); I != IE; ++I)
520  collectInLoopUserSet(L, *I, Exclude, Final, Users);
521 }
522 
524  if (LoadInst *LI = dyn_cast<LoadInst>(I))
525  return LI->isSimple();
526  if (StoreInst *SI = dyn_cast<StoreInst>(I))
527  return SI->isSimple();
528  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
529  return !MI->isVolatile();
530  return false;
531 }
532 
533 // Recognize loops that are setup like this:
534 //
535 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
536 // %scaled.iv = mul %iv, scale
537 // f(%scaled.iv)
538 // %scaled.iv.1 = add %scaled.iv, 1
539 // f(%scaled.iv.1)
540 // %scaled.iv.2 = add %scaled.iv, 2
541 // f(%scaled.iv.2)
542 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
543 // f(%scaled.iv.scale_m_1)
544 // ...
545 // %iv.next = add %iv, 1
546 // %cmp = icmp(%iv, ...)
547 // br %cmp, header, exit
548 //
549 // and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
550 bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
551  Instruction *&IV,
552  SmallInstructionVector &LoopIncs) {
553  // This is a special case: here we're looking for all uses (except for
554  // the increment) to be multiplied by a common factor. The increment must
555  // be by one. This is to capture loops like:
556  // for (int i = 0; i < 500; ++i) {
557  // foo(3*i); foo(3*i+1); foo(3*i+2);
558  // }
559  if (RealIV->getNumUses() != 2)
560  return false;
561  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
562  Instruction *User1 = cast<Instruction>(*RealIV->use_begin()),
563  *User2 = cast<Instruction>(*llvm::next(RealIV->use_begin()));
564  if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
565  return false;
566  const SCEVAddRecExpr *User1SCEV =
567  dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
568  *User2SCEV =
569  dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
570  if (!User1SCEV || !User1SCEV->isAffine() ||
571  !User2SCEV || !User2SCEV->isAffine())
572  return false;
573 
574  // We assume below that User1 is the scale multiply and User2 is the
575  // increment. If this can't be true, then swap them.
576  if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
577  std::swap(User1, User2);
578  std::swap(User1SCEV, User2SCEV);
579  }
580 
581  if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
582  return false;
583  assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
584  "Invalid non-unit step for multiplicative scaling");
585  LoopIncs.push_back(User2);
586 
587  if (const SCEVConstant *MulScale =
588  dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
589  // Make sure that both the start and step have the same multiplier.
590  if (RealIVSCEV->getStart()->getType() != MulScale->getType())
591  return false;
592  if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
593  User1SCEV->getStart())
594  return false;
595 
596  ConstantInt *MulScaleCI = MulScale->getValue();
597  if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
598  return false;
599  Scale = MulScaleCI->getZExtValue();
600  IV = User1;
601  } else
602  return false;
603 
604  DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
605  return true;
606 }
607 
608 // Collect all root increments with respect to the provided induction variable
609 // (normally the PHI, but sometimes a multiply). A root increment is an
610 // instruction, normally an add, with a positive constant less than Scale. In a
611 // rerollable loop, each of these increments is the root of an instruction
612 // graph isomorphic to the others. Also, we collect the final induction
613 // increment (the increment equal to the Scale), and its users in LoopIncs.
614 bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
615  Instruction *IV,
617  SmallInstructionSet &AllRoots,
618  SmallInstructionVector &LoopIncs) {
619  for (Value::use_iterator UI = IV->use_begin(),
620  UIE = IV->use_end(); UI != UIE; ++UI) {
621  Instruction *User = cast<Instruction>(*UI);
622  if (!SE->isSCEVable(User->getType()))
623  continue;
624  if (User->getType() != IV->getType())
625  continue;
626  if (!L->contains(User))
627  continue;
628  if (hasUsesOutsideLoop(User, L))
629  continue;
630 
631  if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
632  SE->getSCEV(User), SE->getSCEV(IV)))) {
633  uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
634  if (Idx > 0 && Idx < Scale) {
635  Roots[Idx-1].push_back(User);
636  AllRoots.insert(User);
637  } else if (Idx == Scale && Inc > 1) {
638  LoopIncs.push_back(User);
639  }
640  }
641  }
642 
643  if (Roots[0].empty())
644  return false;
645  bool AllSame = true;
646  for (unsigned i = 1; i < Scale-1; ++i)
647  if (Roots[i].size() != Roots[0].size()) {
648  AllSame = false;
649  break;
650  }
651 
652  if (!AllSame)
653  return false;
654 
655  return true;
656 }
657 
658 // Validate the selected reductions. All iterations must have an isomorphic
659 // part of the reduction chain and, for non-associative reductions, the chain
660 // entries must appear in order.
661 bool LoopReroll::ReductionTracker::validateSelected() {
662  // For a non-associative reduction, the chain entries must appear in order.
663  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
664  RI != RIE; ++RI) {
665  int i = *RI;
666  int PrevIter = 0, BaseCount = 0, Count = 0;
667  for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
668  JE = PossibleReds[i].end(); J != JE; ++J) {
669  // Note that all instructions in the chain must have been found because
670  // all instructions in the function must have been assigned to some
671  // iteration.
672  int Iter = PossibleRedIter[*J];
673  if (Iter != PrevIter && Iter != PrevIter + 1 &&
674  !PossibleReds[i].getReducedValue()->isAssociative()) {
675  DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
676  *J << "\n");
677  return false;
678  }
679 
680  if (Iter != PrevIter) {
681  if (Count != BaseCount) {
682  DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
683  " reduction use count " << Count <<
684  " is not equal to the base use count " <<
685  BaseCount << "\n");
686  return false;
687  }
688 
689  Count = 0;
690  }
691 
692  ++Count;
693  if (Iter == 0)
694  ++BaseCount;
695 
696  PrevIter = Iter;
697  }
698  }
699 
700  return true;
701 }
702 
703 // For all selected reductions, remove all parts except those in the first
704 // iteration (and the PHI). Replace outside uses of the reduced value with uses
705 // of the first-iteration reduced value (in other words, reroll the selected
706 // reductions).
707 void LoopReroll::ReductionTracker::replaceSelected() {
708  // Fixup reductions to refer to the last instruction associated with the
709  // first iteration (not the last).
710  for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
711  RI != RIE; ++RI) {
712  int i = *RI;
713  int j = 0;
714  for (int e = PossibleReds[i].size(); j != e; ++j)
715  if (PossibleRedIter[PossibleReds[i][j]] != 0) {
716  --j;
717  break;
718  }
719 
720  // Replace users with the new end-of-chain value.
721  SmallInstructionVector Users;
722  for (Value::use_iterator UI =
723  PossibleReds[i].getReducedValue()->use_begin(),
724  UIE = PossibleReds[i].getReducedValue()->use_end(); UI != UIE; ++UI)
725  Users.push_back(cast<Instruction>(*UI));
726 
727  for (SmallInstructionVector::iterator J = Users.begin(),
728  JE = Users.end(); J != JE; ++J)
729  (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
730  PossibleReds[i][j]);
731  }
732 }
733 
734 // Reroll the provided loop with respect to the provided induction variable.
735 // Generally, we're looking for a loop like this:
736 //
737 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
738 // f(%iv)
739 // %iv.1 = add %iv, 1 <-- a root increment
740 // f(%iv.1)
741 // %iv.2 = add %iv, 2 <-- a root increment
742 // f(%iv.2)
743 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
744 // f(%iv.scale_m_1)
745 // ...
746 // %iv.next = add %iv, scale
747 // %cmp = icmp(%iv, ...)
748 // br %cmp, header, exit
749 //
750 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
751 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
752 // be intermixed with eachother. The restriction imposed by this algorithm is
753 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
754 // etc. be the same.
755 //
756 // First, we collect the use set of %iv, excluding the other increment roots.
757 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
758 // times, having collected the use set of f(%iv.(i+1)), during which we:
759 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
760 // the next unmatched instruction in f(%iv.(i+1)).
761 // - Ensure that both matched instructions don't have any external users
762 // (with the exception of last-in-chain reduction instructions).
763 // - Track the (aliasing) write set, and other side effects, of all
764 // instructions that belong to future iterations that come before the matched
765 // instructions. If the matched instructions read from that write set, then
766 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
767 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
768 // if any of these future instructions had side effects (could not be
769 // speculatively executed), and so do the matched instructions, when we
770 // cannot reorder those side-effect-producing instructions, and rerolling
771 // fails.
772 //
773 // Finally, we make sure that all loop instructions are either loop increment
774 // roots, belong to simple latch code, parts of validated reductions, part of
775 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
776 // have been validated), then we reroll the loop.
777 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
778  const SCEV *IterCount,
779  ReductionTracker &Reductions) {
780  const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
781  uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
782  getValue()->getZExtValue();
783  // The collection of loop increment instructions.
784  SmallInstructionVector LoopIncs;
785  uint64_t Scale = Inc;
786 
787  // The effective induction variable, IV, is normally also the real induction
788  // variable. When we're dealing with a loop like:
789  // for (int i = 0; i < 500; ++i)
790  // x[3*i] = ...;
791  // x[3*i+1] = ...;
792  // x[3*i+2] = ...;
793  // then the real IV is still i, but the effective IV is (3*i).
794  Instruction *RealIV = IV;
795  if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
796  return false;
797 
798  assert(Scale <= MaxInc && "Scale is too large");
799  assert(Scale > 1 && "Scale must be at least 2");
800 
801  // The set of increment instructions for each increment value.
803  SmallInstructionSet AllRoots;
804  if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
805  return false;
806 
807  DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
808  *RealIV << "\n");
809 
810  // An array of just the possible reductions for this scale factor. When we
811  // collect the set of all users of some root instructions, these reduction
812  // instructions are treated as 'final' (their uses are not considered).
813  // This is important because we don't want the root use set to search down
814  // the reduction chain.
815  SmallInstructionSet PossibleRedSet;
816  SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
817  Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
818  PossibleRedLastSet);
819 
820  // We now need to check for equivalence of the use graph of each root with
821  // that of the primary induction variable (excluding the roots). Our goal
822  // here is not to solve the full graph isomorphism problem, but rather to
823  // catch common cases without a lot of work. As a result, we will assume
824  // that the relative order of the instructions in each unrolled iteration
825  // is the same (although we will not make an assumption about how the
826  // different iterations are intermixed). Note that while the order must be
827  // the same, the instructions may not be in the same basic block.
828  SmallInstructionSet Exclude(AllRoots);
829  Exclude.insert(LoopIncs.begin(), LoopIncs.end());
830 
831  DenseSet<Instruction *> BaseUseSet;
832  collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
833 
834  DenseSet<Instruction *> AllRootUses;
835  std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
836 
837  bool MatchFailed = false;
838  for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
839  DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
840  collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
841  PossibleRedSet, RootUseSet);
842 
843  DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
844  " vs. iteration increment " << (i+1) <<
845  " use set size: " << RootUseSet.size() << "\n");
846 
847  if (BaseUseSet.size() != RootUseSet.size()) {
848  MatchFailed = true;
849  break;
850  }
851 
852  // In addition to regular aliasing information, we need to look for
853  // instructions from later (future) iterations that have side effects
854  // preventing us from reordering them past other instructions with side
855  // effects.
856  bool FutureSideEffects = false;
857  AliasSetTracker AST(*AA);
858 
859  // The map between instructions in f(%iv.(i+1)) and f(%iv).
861 
862  assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
863  for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
864  JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
865  if (cast<Instruction>(J1) == RealIV)
866  continue;
867  if (cast<Instruction>(J1) == IV)
868  continue;
869  if (!BaseUseSet.count(J1))
870  continue;
871  if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
872  continue;
873 
874  while (J2 != JE && (!RootUseSet.count(J2) ||
875  std::find(Roots[i].begin(), Roots[i].end(), J2) !=
876  Roots[i].end())) {
877  // As we iterate through the instructions, instructions that don't
878  // belong to previous iterations (or the base case), must belong to
879  // future iterations. We want to track the alias set of writes from
880  // previous iterations.
881  if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
882  !AllRootUses.count(J2)) {
883  if (J2->mayWriteToMemory())
884  AST.add(J2);
885 
886  // Note: This is specifically guarded by a check on isa<PHINode>,
887  // which while a valid (somewhat arbitrary) micro-optimization, is
888  // needed because otherwise isSafeToSpeculativelyExecute returns
889  // false on PHI nodes.
890  if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
891  FutureSideEffects = true;
892  }
893 
894  ++J2;
895  }
896 
897  if (!J1->isSameOperationAs(J2)) {
898  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
899  " vs. " << *J2 << "\n");
900  MatchFailed = true;
901  break;
902  }
903 
904  // Make sure that this instruction, which is in the use set of this
905  // root instruction, does not also belong to the base set or the set of
906  // some previous root instruction.
907  if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
908  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
909  " vs. " << *J2 << " (prev. case overlap)\n");
910  MatchFailed = true;
911  break;
912  }
913 
914  // Make sure that we don't alias with any instruction in the alias set
915  // tracker. If we do, then we depend on a future iteration, and we
916  // can't reroll.
917  if (J2->mayReadFromMemory()) {
918  for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
919  K != KE && !MatchFailed; ++K) {
920  if (K->aliasesUnknownInst(J2, *AA)) {
921  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
922  " vs. " << *J2 << " (depends on future store)\n");
923  MatchFailed = true;
924  break;
925  }
926  }
927  }
928 
929  // If we've past an instruction from a future iteration that may have
930  // side effects, and this instruction might also, then we can't reorder
931  // them, and this matching fails. As an exception, we allow the alias
932  // set tracker to handle regular (simple) load/store dependencies.
933  if (FutureSideEffects &&
936  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
937  " vs. " << *J2 <<
938  " (side effects prevent reordering)\n");
939  MatchFailed = true;
940  break;
941  }
942 
943  // For instructions that are part of a reduction, if the operation is
944  // associative, then don't bother matching the operands (because we
945  // already know that the instructions are isomorphic, and the order
946  // within the iteration does not matter). For non-associative reductions,
947  // we do need to match the operands, because we need to reject
948  // out-of-order instructions within an iteration!
949  // For example (assume floating-point addition), we need to reject this:
950  // x += a[i]; x += b[i];
951  // x += a[i+1]; x += b[i+1];
952  // x += b[i+2]; x += a[i+2];
953  bool InReduction = Reductions.isPairInSame(J1, J2);
954 
955  if (!(InReduction && J1->isAssociative())) {
956  bool Swapped = false, SomeOpMatched = false;;
957  for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
958  Value *Op2 = J2->getOperand(j);
959 
960  // If this is part of a reduction (and the operation is not
961  // associatve), then we match all operands, but not those that are
962  // part of the reduction.
963  if (InReduction)
964  if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
965  if (Reductions.isPairInSame(J2, Op2I))
966  continue;
967 
968  DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
969  if (BMI != BaseMap.end())
970  Op2 = BMI->second;
971  else if (std::find(Roots[i].begin(), Roots[i].end(),
972  (Instruction*) Op2) != Roots[i].end())
973  Op2 = IV;
974 
975  if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
976  // If we've not already decided to swap the matched operands, and
977  // we've not already matched our first operand (note that we could
978  // have skipped matching the first operand because it is part of a
979  // reduction above), and the instruction is commutative, then try
980  // the swapped match.
981  if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
982  J1->getOperand(!j) == Op2) {
983  Swapped = true;
984  } else {
985  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
986  " vs. " << *J2 << " (operand " << j << ")\n");
987  MatchFailed = true;
988  break;
989  }
990  }
991 
992  SomeOpMatched = true;
993  }
994  }
995 
996  if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
997  (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
998  DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
999  " vs. " << *J2 << " (uses outside loop)\n");
1000  MatchFailed = true;
1001  break;
1002  }
1003 
1004  if (!MatchFailed)
1005  BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
1006 
1007  AllRootUses.insert(J2);
1008  Reductions.recordPair(J1, J2, i+1);
1009 
1010  ++J2;
1011  }
1012  }
1013 
1014  if (MatchFailed)
1015  return false;
1016 
1017  DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
1018  *RealIV << "\n");
1019 
1020  DenseSet<Instruction *> LoopIncUseSet;
1021  collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
1022  SmallInstructionSet(), LoopIncUseSet);
1023  DEBUG(dbgs() << "LRR: Loop increment set size: " <<
1024  LoopIncUseSet.size() << "\n");
1025 
1026  // Make sure that all instructions in the loop have been included in some
1027  // use set.
1028  for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
1029  J != JE; ++J) {
1030  if (isa<DbgInfoIntrinsic>(J))
1031  continue;
1032  if (cast<Instruction>(J) == RealIV)
1033  continue;
1034  if (cast<Instruction>(J) == IV)
1035  continue;
1036  if (BaseUseSet.count(J) || AllRootUses.count(J) ||
1037  (LoopIncUseSet.count(J) && (J->isTerminator() ||
1039  continue;
1040 
1041  if (AllRoots.count(J))
1042  continue;
1043 
1044  if (Reductions.isSelectedPHI(J))
1045  continue;
1046 
1047  DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
1048  " unprocessed instruction found: " << *J << "\n");
1049  MatchFailed = true;
1050  break;
1051  }
1052 
1053  if (MatchFailed)
1054  return false;
1055 
1056  DEBUG(dbgs() << "LRR: all instructions processed from " <<
1057  *RealIV << "\n");
1058 
1059  if (!Reductions.validateSelected())
1060  return false;
1061 
1062  // At this point, we've validated the rerolling, and we're committed to
1063  // making changes!
1064 
1065  Reductions.replaceSelected();
1066 
1067  // Remove instructions associated with non-base iterations.
1068  for (BasicBlock::reverse_iterator J = Header->rbegin();
1069  J != Header->rend();) {
1070  if (AllRootUses.count(&*J)) {
1071  Instruction *D = &*J;
1072  DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
1073  D->eraseFromParent();
1074  continue;
1075  }
1076 
1077  ++J;
1078  }
1079 
1080  // Insert the new induction variable.
1081  const SCEV *Start = RealIVSCEV->getStart();
1082  if (Inc == 1)
1083  Start = SE->getMulExpr(Start,
1084  SE->getConstant(Start->getType(), Scale));
1085  const SCEVAddRecExpr *H =
1086  cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
1087  SE->getConstant(RealIVSCEV->getType(), 1),
1088  L, SCEV::FlagAnyWrap));
1089  { // Limit the lifetime of SCEVExpander.
1090  SCEVExpander Expander(*SE, "reroll");
1091  PHINode *NewIV =
1092  cast<PHINode>(Expander.expandCodeFor(H, IV->getType(),
1093  Header->begin()));
1094  for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
1095  JE = BaseUseSet.end(); J != JE; ++J)
1096  (*J)->replaceUsesOfWith(IV, NewIV);
1097 
1098  if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
1099  if (LoopIncUseSet.count(BI)) {
1100  const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
1101  if (Inc == 1)
1102  ICSCEV =
1103  SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
1104  Value *IC;
1105  if (isa<SCEVConstant>(ICSCEV)) {
1106  IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(), BI);
1107  } else {
1108  BasicBlock *Preheader = L->getLoopPreheader();
1109  if (!Preheader)
1110  Preheader = InsertPreheaderForLoop(L, this);
1111 
1112  IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(),
1113  Preheader->getTerminator());
1114  }
1115 
1116  Value *NewIVNext = NewIV->getIncomingValueForBlock(Header);
1117  Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIVNext, IC,
1118  "exitcond");
1119  BI->setCondition(Cond);
1120 
1121  if (BI->getSuccessor(1) != Header)
1122  BI->swapSuccessors();
1123  }
1124  }
1125  }
1126 
1127  SimplifyInstructionsInBlock(Header, DL, TLI);
1128  DeleteDeadPHIs(Header, TLI);
1129  ++NumRerolledLoops;
1130  return true;
1131 }
1132 
1133 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
1134  AA = &getAnalysis<AliasAnalysis>();
1135  LI = &getAnalysis<LoopInfo>();
1136  SE = &getAnalysis<ScalarEvolution>();
1137  TLI = &getAnalysis<TargetLibraryInfo>();
1138  DL = getAnalysisIfAvailable<DataLayout>();
1139  DT = &getAnalysis<DominatorTree>();
1140 
1141  BasicBlock *Header = L->getHeader();
1142  DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
1143  "] Loop %" << Header->getName() << " (" <<
1144  L->getNumBlocks() << " block(s))\n");
1145 
1146  bool Changed = false;
1147 
1148  // For now, we'll handle only single BB loops.
1149  if (L->getNumBlocks() > 1)
1150  return Changed;
1151 
1152  if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1153  return Changed;
1154 
1155  const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
1156  const SCEV *IterCount =
1157  SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
1158  DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
1159 
1160  // First, we need to find the induction variable with respect to which we can
1161  // reroll (there may be several possible options).
1162  SmallInstructionVector PossibleIVs;
1163  collectPossibleIVs(L, PossibleIVs);
1164 
1165  if (PossibleIVs.empty()) {
1166  DEBUG(dbgs() << "LRR: No possible IVs found\n");
1167  return Changed;
1168  }
1169 
1170  ReductionTracker Reductions;
1171  collectPossibleReductions(L, Reductions);
1172 
1173  // For each possible IV, collect the associated possible set of 'root' nodes
1174  // (i+1, i+2, etc.).
1175  for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
1176  IE = PossibleIVs.end(); I != IE; ++I)
1177  if (reroll(*I, L, Header, IterCount, Reductions)) {
1178  Changed = true;
1179  break;
1180  }
1181 
1182  return Changed;
1183 }
1184 
const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
void push_back(const T &Elt)
Definition: SmallVector.h:236
use_iterator use_end()
Definition: Value.h:152
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
Pass * createLoopRerollPass()
static bool isSimpleLoadStore(Instruction *I)
AnalysisUsage & addPreserved()
static PassRegistry * getPassRegistry()
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
void initializeLoopRerollPass(PassRegistry &)
reverse_iterator rend()
Definition: BasicBlock.h:200
reverse_iterator rbegin()
Definition: BasicBlock.h:198
iv Induction Variable Users
Definition: IVUsers.cpp:39
op_iterator op_begin()
Definition: User.h:116
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const SCEV * getStart() const
iterator begin()
Definition: BasicBlock.h:193
bool uge(uint64_t Num) const
Determine if the value is greater or equal to the given number.
Definition: Constants.h:209
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static cl::opt< unsigned > MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, cl::desc("The maximum increment for loop rerolling"))
BasicBlock * InsertPreheaderForLoop(Loop *L, Pass *P)
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
static bool hasUsesOutsideLoop(Instruction *I, Loop *L)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
bool mayReadFromMemory() const
bool isAssociative() const
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, unsigned len)
General addition of 64-bit integer arrays.
Definition: APInt.cpp:237
bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:398
InstListType::reverse_iterator reverse_iterator
Definition: BasicBlock.h:101
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
* if(!EatIfPresent(lltok::kw_thread_local)) return false
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
Type * getType() const
const SCEV * getOperand(unsigned i) const
#define H(x, y, z)
Definition: MD5.cpp:53
op_iterator op_end()
Definition: User.h:118
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
Represent an integer comparison operator.
Definition: Instructions.h:911
const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Value * getOperand(unsigned i) const
Definition: User.h:88
bool isCommutative() const
Definition: Instruction.h:269
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
bool mayWriteToMemory() const
bool isTerminator() const
Definition: Instruction.h:86
bool isSafeToSpeculativelyExecute(const Value *V, const DataLayout *TD=0)
iterator begin()
Definition: DenseSet.h:107
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
bool count(const ValueT &V) const
Definition: DenseSet.h:45
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:117
Class for constant integers.
Definition: Constants.h:51
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
machine loops
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Value * getIncomingValueForBlock(const BasicBlock *BB) const
use_iterator use_begin()
Definition: Value.h:150
unsigned getNumBlocks() const
getNumBlocks - Get the number of blocks in this loop in constant time.
Definition: LoopInfo.h:144
bool isBinaryOp() const
Definition: Instruction.h:87
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
unsigned size() const
Definition: DenseSet.h:34
LLVM Value Representation.
Definition: Value.h:66
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=0)
STATISTIC(NumRerolledLoops,"Number of rerolled loops")
#define DEBUG(X)
Definition: Debug.h:97
bool isSameOperationAs(const Instruction *I, unsigned flags=0) const
Determine if one instruction is the same operation as another.
iterator end()
Definition: DenseSet.h:108
iterator getFirstInsertionPt()
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:170
unsigned getNumUses() const
Definition: Value.cpp:139
iterator find(const KeyT &Val)
Definition: DenseMap.h:108