LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MachineBlockPlacement.cpp
Go to the documentation of this file.
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "block-placement2"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Support/Allocator.h"
43 #include "llvm/Support/Debug.h"
46 #include <algorithm>
47 using namespace llvm;
48 
49 STATISTIC(NumCondBranches, "Number of conditional branches");
50 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
51 STATISTIC(CondBranchTakenFreq,
52  "Potential frequency of taking conditional branches");
53 STATISTIC(UncondBranchTakenFreq,
54  "Potential frequency of taking unconditional branches");
55 
56 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
57  cl::desc("Force the alignment of all "
58  "blocks in the function."),
59  cl::init(0), cl::Hidden);
60 
61 namespace {
62 class BlockChain;
63 /// \brief Type for our function-wide basic block -> block chain mapping.
64 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
65 }
66 
67 namespace {
68 /// \brief A chain of blocks which will be laid out contiguously.
69 ///
70 /// This is the datastructure representing a chain of consecutive blocks that
71 /// are profitable to layout together in order to maximize fallthrough
72 /// probabilities and code locality. We also can use a block chain to represent
73 /// a sequence of basic blocks which have some external (correctness)
74 /// requirement for sequential layout.
75 ///
76 /// Chains can be built around a single basic block and can be merged to grow
77 /// them. They participate in a block-to-chain mapping, which is updated
78 /// automatically as chains are merged together.
79 class BlockChain {
80  /// \brief The sequence of blocks belonging to this chain.
81  ///
82  /// This is the sequence of blocks for a particular chain. These will be laid
83  /// out in-order within the function.
85 
86  /// \brief A handle to the function-wide basic block to block chain mapping.
87  ///
88  /// This is retained in each block chain to simplify the computation of child
89  /// block chains for SCC-formation and iteration. We store the edges to child
90  /// basic blocks, and map them back to their associated chains using this
91  /// structure.
92  BlockToChainMapType &BlockToChain;
93 
94 public:
95  /// \brief Construct a new BlockChain.
96  ///
97  /// This builds a new block chain representing a single basic block in the
98  /// function. It also registers itself as the chain that block participates
99  /// in with the BlockToChain mapping.
100  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
101  : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
102  assert(BB && "Cannot create a chain with a null basic block");
103  BlockToChain[BB] = this;
104  }
105 
106  /// \brief Iterator over blocks within the chain.
108 
109  /// \brief Beginning of blocks within the chain.
110  iterator begin() { return Blocks.begin(); }
111 
112  /// \brief End of blocks within the chain.
113  iterator end() { return Blocks.end(); }
114 
115  /// \brief Merge a block chain into this one.
116  ///
117  /// This routine merges a block chain into this one. It takes care of forming
118  /// a contiguous sequence of basic blocks, updating the edge list, and
119  /// updating the block -> chain mapping. It does not free or tear down the
120  /// old chain, but the old chain's block list is no longer valid.
121  void merge(MachineBasicBlock *BB, BlockChain *Chain) {
122  assert(BB);
123  assert(!Blocks.empty());
124 
125  // Fast path in case we don't have a chain already.
126  if (!Chain) {
127  assert(!BlockToChain[BB]);
128  Blocks.push_back(BB);
129  BlockToChain[BB] = this;
130  return;
131  }
132 
133  assert(BB == *Chain->begin());
134  assert(Chain->begin() != Chain->end());
135 
136  // Update the incoming blocks to point to this chain, and add them to the
137  // chain structure.
138  for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
139  BI != BE; ++BI) {
140  Blocks.push_back(*BI);
141  assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
142  BlockToChain[*BI] = this;
143  }
144  }
145 
146 #ifndef NDEBUG
147  /// \brief Dump the blocks in this chain.
148  void dump() LLVM_ATTRIBUTE_USED {
149  for (iterator I = begin(), E = end(); I != E; ++I)
150  (*I)->dump();
151  }
152 #endif // NDEBUG
153 
154  /// \brief Count of predecessors within the loop currently being processed.
155  ///
156  /// This count is updated at each loop we process to represent the number of
157  /// in-loop predecessors of this chain.
158  unsigned LoopPredecessors;
159 };
160 }
161 
162 namespace {
163 class MachineBlockPlacement : public MachineFunctionPass {
164  /// \brief A typedef for a block filter set.
165  typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
166 
167  /// \brief A handle to the branch probability pass.
168  const MachineBranchProbabilityInfo *MBPI;
169 
170  /// \brief A handle to the function-wide block frequency pass.
171  const MachineBlockFrequencyInfo *MBFI;
172 
173  /// \brief A handle to the loop info.
174  const MachineLoopInfo *MLI;
175 
176  /// \brief A handle to the target's instruction info.
177  const TargetInstrInfo *TII;
178 
179  /// \brief A handle to the target's lowering info.
180  const TargetLoweringBase *TLI;
181 
182  /// \brief Allocator and owner of BlockChain structures.
183  ///
184  /// We build BlockChains lazily while processing the loop structure of
185  /// a function. To reduce malloc traffic, we allocate them using this
186  /// slab-like allocator, and destroy them after the pass completes. An
187  /// important guarantee is that this allocator produces stable pointers to
188  /// the chains.
190 
191  /// \brief Function wide BasicBlock to BlockChain mapping.
192  ///
193  /// This mapping allows efficiently moving from any given basic block to the
194  /// BlockChain it participates in, if any. We use it to, among other things,
195  /// allow implicitly defining edges between chains as the existing edges
196  /// between basic blocks.
198 
199  void markChainSuccessors(BlockChain &Chain,
200  MachineBasicBlock *LoopHeaderBB,
202  const BlockFilterSet *BlockFilter = 0);
203  MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
204  BlockChain &Chain,
205  const BlockFilterSet *BlockFilter);
206  MachineBasicBlock *selectBestCandidateBlock(
207  BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
208  const BlockFilterSet *BlockFilter);
209  MachineBasicBlock *getFirstUnplacedBlock(
211  const BlockChain &PlacedChain,
212  MachineFunction::iterator &PrevUnplacedBlockIt,
213  const BlockFilterSet *BlockFilter);
214  void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
216  const BlockFilterSet *BlockFilter = 0);
217  MachineBasicBlock *findBestLoopTop(MachineLoop &L,
218  const BlockFilterSet &LoopBlockSet);
219  MachineBasicBlock *findBestLoopExit(MachineFunction &F,
220  MachineLoop &L,
221  const BlockFilterSet &LoopBlockSet);
222  void buildLoopChains(MachineFunction &F, MachineLoop &L);
223  void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
224  const BlockFilterSet &LoopBlockSet);
225  void buildCFGChains(MachineFunction &F);
226 
227 public:
228  static char ID; // Pass identification, replacement for typeid
229  MachineBlockPlacement() : MachineFunctionPass(ID) {
231  }
232 
233  bool runOnMachineFunction(MachineFunction &F);
234 
235  void getAnalysisUsage(AnalysisUsage &AU) const {
240  }
241 };
242 }
243 
246 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
247  "Branch Probability Basic Block Placement", false, false)
251 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
252  "Branch Probability Basic Block Placement", false, false)
253 
254 #ifndef NDEBUG
255 /// \brief Helper to print the name of a MBB.
256 ///
257 /// Only used by debug logging.
258 static std::string getBlockName(MachineBasicBlock *BB) {
259  std::string Result;
260  raw_string_ostream OS(Result);
261  OS << "BB#" << BB->getNumber()
262  << " (derived from LLVM BB '" << BB->getName() << "')";
263  OS.flush();
264  return Result;
265 }
266 
267 /// \brief Helper to print the number of a MBB.
268 ///
269 /// Only used by debug logging.
270 static std::string getBlockNum(MachineBasicBlock *BB) {
271  std::string Result;
272  raw_string_ostream OS(Result);
273  OS << "BB#" << BB->getNumber();
274  OS.flush();
275  return Result;
276 }
277 #endif
278 
279 /// \brief Mark a chain's successors as having one fewer preds.
280 ///
281 /// When a chain is being merged into the "placed" chain, this routine will
282 /// quickly walk the successors of each block in the chain and mark them as
283 /// having one fewer active predecessor. It also adds any successors of this
284 /// chain which reach the zero-predecessor state to the worklist passed in.
285 void MachineBlockPlacement::markChainSuccessors(
286  BlockChain &Chain,
287  MachineBasicBlock *LoopHeaderBB,
289  const BlockFilterSet *BlockFilter) {
290  // Walk all the blocks in this chain, marking their successors as having
291  // a predecessor placed.
292  for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
293  CBI != CBE; ++CBI) {
294  // Add any successors for which this is the only un-placed in-loop
295  // predecessor to the worklist as a viable candidate for CFG-neutral
296  // placement. No subsequent placement of this block will violate the CFG
297  // shape, so we get to use heuristics to choose a favorable placement.
298  for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
299  SE = (*CBI)->succ_end();
300  SI != SE; ++SI) {
301  if (BlockFilter && !BlockFilter->count(*SI))
302  continue;
303  BlockChain &SuccChain = *BlockToChain[*SI];
304  // Disregard edges within a fixed chain, or edges to the loop header.
305  if (&Chain == &SuccChain || *SI == LoopHeaderBB)
306  continue;
307 
308  // This is a cross-chain edge that is within the loop, so decrement the
309  // loop predecessor count of the destination chain.
310  if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
311  BlockWorkList.push_back(*SuccChain.begin());
312  }
313  }
314 }
315 
316 /// \brief Select the best successor for a block.
317 ///
318 /// This looks across all successors of a particular block and attempts to
319 /// select the "best" one to be the layout successor. It only considers direct
320 /// successors which also pass the block filter. It will attempt to avoid
321 /// breaking CFG structure, but cave and break such structures in the case of
322 /// very hot successor edges.
323 ///
324 /// \returns The best successor block found, or null if none are viable.
325 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
326  MachineBasicBlock *BB, BlockChain &Chain,
327  const BlockFilterSet *BlockFilter) {
328  const BranchProbability HotProb(4, 5); // 80%
329 
330  MachineBasicBlock *BestSucc = 0;
331  // FIXME: Due to the performance of the probability and weight routines in
332  // the MBPI analysis, we manually compute probabilities using the edge
333  // weights. This is suboptimal as it means that the somewhat subtle
334  // definition of edge weight semantics is encoded here as well. We should
335  // improve the MBPI interface to efficiently support query patterns such as
336  // this.
337  uint32_t BestWeight = 0;
338  uint32_t WeightScale = 0;
339  uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
340  DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
342  SE = BB->succ_end();
343  SI != SE; ++SI) {
344  if (BlockFilter && !BlockFilter->count(*SI))
345  continue;
346  BlockChain &SuccChain = *BlockToChain[*SI];
347  if (&SuccChain == &Chain) {
348  DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n");
349  continue;
350  }
351  if (*SI != *SuccChain.begin()) {
352  DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n");
353  continue;
354  }
355 
356  uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
357  BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
358 
359  // Only consider successors which are either "hot", or wouldn't violate
360  // any CFG constraints.
361  if (SuccChain.LoopPredecessors != 0) {
362  if (SuccProb < HotProb) {
363  DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n");
364  continue;
365  }
366 
367  // Make sure that a hot successor doesn't have a globally more important
368  // predecessor.
369  BlockFrequency CandidateEdgeFreq
370  = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
371  bool BadCFGConflict = false;
372  for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
373  PE = (*SI)->pred_end();
374  PI != PE; ++PI) {
375  if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
376  BlockToChain[*PI] == &Chain)
377  continue;
378  BlockFrequency PredEdgeFreq
379  = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
380  if (PredEdgeFreq >= CandidateEdgeFreq) {
381  BadCFGConflict = true;
382  break;
383  }
384  }
385  if (BadCFGConflict) {
386  DEBUG(dbgs() << " " << getBlockName(*SI)
387  << " -> non-cold CFG conflict\n");
388  continue;
389  }
390  }
391 
392  DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb
393  << " (prob)"
394  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
395  << "\n");
396  if (BestSucc && BestWeight >= SuccWeight)
397  continue;
398  BestSucc = *SI;
399  BestWeight = SuccWeight;
400  }
401  return BestSucc;
402 }
403 
404 namespace {
405 /// \brief Predicate struct to detect blocks already placed.
406 class IsBlockPlaced {
407  const BlockChain &PlacedChain;
408  const BlockToChainMapType &BlockToChain;
409 
410 public:
411  IsBlockPlaced(const BlockChain &PlacedChain,
412  const BlockToChainMapType &BlockToChain)
413  : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
414 
415  bool operator()(MachineBasicBlock *BB) const {
416  return BlockToChain.lookup(BB) == &PlacedChain;
417  }
418 };
419 }
420 
421 /// \brief Select the best block from a worklist.
422 ///
423 /// This looks through the provided worklist as a list of candidate basic
424 /// blocks and select the most profitable one to place. The definition of
425 /// profitable only really makes sense in the context of a loop. This returns
426 /// the most frequently visited block in the worklist, which in the case of
427 /// a loop, is the one most desirable to be physically close to the rest of the
428 /// loop body in order to improve icache behavior.
429 ///
430 /// \returns The best block found, or null if none are viable.
431 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
432  BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
433  const BlockFilterSet *BlockFilter) {
434  // Once we need to walk the worklist looking for a candidate, cleanup the
435  // worklist of already placed entries.
436  // FIXME: If this shows up on profiles, it could be folded (at the cost of
437  // some code complexity) into the loop below.
438  WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
439  IsBlockPlaced(Chain, BlockToChain)),
440  WorkList.end());
441 
442  MachineBasicBlock *BestBlock = 0;
443  BlockFrequency BestFreq;
445  WBE = WorkList.end();
446  WBI != WBE; ++WBI) {
447  BlockChain &SuccChain = *BlockToChain[*WBI];
448  if (&SuccChain == &Chain) {
449  DEBUG(dbgs() << " " << getBlockName(*WBI)
450  << " -> Already merged!\n");
451  continue;
452  }
453  assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
454 
455  BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
456  DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq
457  << " (freq)\n");
458  if (BestBlock && BestFreq >= CandidateFreq)
459  continue;
460  BestBlock = *WBI;
461  BestFreq = CandidateFreq;
462  }
463  return BestBlock;
464 }
465 
466 /// \brief Retrieve the first unplaced basic block.
467 ///
468 /// This routine is called when we are unable to use the CFG to walk through
469 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
470 /// We walk through the function's blocks in order, starting from the
471 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
472 /// re-scanning the entire sequence on repeated calls to this routine.
473 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
474  MachineFunction &F, const BlockChain &PlacedChain,
475  MachineFunction::iterator &PrevUnplacedBlockIt,
476  const BlockFilterSet *BlockFilter) {
477  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
478  ++I) {
479  if (BlockFilter && !BlockFilter->count(I))
480  continue;
481  if (BlockToChain[I] != &PlacedChain) {
482  PrevUnplacedBlockIt = I;
483  // Now select the head of the chain to which the unplaced block belongs
484  // as the block to place. This will force the entire chain to be placed,
485  // and satisfies the requirements of merging chains.
486  return *BlockToChain[I]->begin();
487  }
488  }
489  return 0;
490 }
491 
492 void MachineBlockPlacement::buildChain(
493  MachineBasicBlock *BB,
494  BlockChain &Chain,
496  const BlockFilterSet *BlockFilter) {
497  assert(BB);
498  assert(BlockToChain[BB] == &Chain);
499  MachineFunction &F = *BB->getParent();
500  MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
501 
502  MachineBasicBlock *LoopHeaderBB = BB;
503  markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
504  BB = *llvm::prior(Chain.end());
505  for (;;) {
506  assert(BB);
507  assert(BlockToChain[BB] == &Chain);
508  assert(*llvm::prior(Chain.end()) == BB);
509 
510  // Look for the best viable successor if there is one to place immediately
511  // after this block.
512  MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
513 
514  // If an immediate successor isn't available, look for the best viable
515  // block among those we've identified as not violating the loop's CFG at
516  // this point. This won't be a fallthrough, but it will increase locality.
517  if (!BestSucc)
518  BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
519 
520  if (!BestSucc) {
521  BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
522  BlockFilter);
523  if (!BestSucc)
524  break;
525 
526  DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
527  "layout successor until the CFG reduces\n");
528  }
529 
530  // Place this block, updating the datastructures to reflect its placement.
531  BlockChain &SuccChain = *BlockToChain[BestSucc];
532  // Zero out LoopPredecessors for the successor we're about to merge in case
533  // we selected a successor that didn't fit naturally into the CFG.
534  SuccChain.LoopPredecessors = 0;
535  DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
536  << " to " << getBlockNum(BestSucc) << "\n");
537  markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
538  Chain.merge(BestSucc, &SuccChain);
539  BB = *llvm::prior(Chain.end());
540  }
541 
542  DEBUG(dbgs() << "Finished forming chain for header block "
543  << getBlockNum(*Chain.begin()) << "\n");
544 }
545 
546 /// \brief Find the best loop top block for layout.
547 ///
548 /// Look for a block which is strictly better than the loop header for laying
549 /// out at the top of the loop. This looks for one and only one pattern:
550 /// a latch block with no conditional exit. This block will cause a conditional
551 /// jump around it or will be the bottom of the loop if we lay it out in place,
552 /// but if it it doesn't end up at the bottom of the loop for any reason,
553 /// rotation alone won't fix it. Because such a block will always result in an
554 /// unconditional jump (for the backedge) rotating it in front of the loop
555 /// header is always profitable.
557 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
558  const BlockFilterSet &LoopBlockSet) {
559  // Check that the header hasn't been fused with a preheader block due to
560  // crazy branches. If it has, we need to start with the header at the top to
561  // prevent pulling the preheader into the loop body.
562  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
563  if (!LoopBlockSet.count(*HeaderChain.begin()))
564  return L.getHeader();
565 
566  DEBUG(dbgs() << "Finding best loop top for: "
567  << getBlockName(L.getHeader()) << "\n");
568 
569  BlockFrequency BestPredFreq;
570  MachineBasicBlock *BestPred = 0;
571  for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
572  PE = L.getHeader()->pred_end();
573  PI != PE; ++PI) {
574  MachineBasicBlock *Pred = *PI;
575  if (!LoopBlockSet.count(Pred))
576  continue;
577  DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
578  << Pred->succ_size() << " successors, "
579  << MBFI->getBlockFreq(Pred) << " freq\n");
580  if (Pred->succ_size() > 1)
581  continue;
582 
583  BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
584  if (!BestPred || PredFreq > BestPredFreq ||
585  (!(PredFreq < BestPredFreq) &&
586  Pred->isLayoutSuccessor(L.getHeader()))) {
587  BestPred = Pred;
588  BestPredFreq = PredFreq;
589  }
590  }
591 
592  // If no direct predecessor is fine, just use the loop header.
593  if (!BestPred)
594  return L.getHeader();
595 
596  // Walk backwards through any straight line of predecessors.
597  while (BestPred->pred_size() == 1 &&
598  (*BestPred->pred_begin())->succ_size() == 1 &&
599  *BestPred->pred_begin() != L.getHeader())
600  BestPred = *BestPred->pred_begin();
601 
602  DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
603  return BestPred;
604 }
605 
606 
607 /// \brief Find the best loop exiting block for layout.
608 ///
609 /// This routine implements the logic to analyze the loop looking for the best
610 /// block to layout at the top of the loop. Typically this is done to maximize
611 /// fallthrough opportunities.
613 MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
614  MachineLoop &L,
615  const BlockFilterSet &LoopBlockSet) {
616  // We don't want to layout the loop linearly in all cases. If the loop header
617  // is just a normal basic block in the loop, we want to look for what block
618  // within the loop is the best one to layout at the top. However, if the loop
619  // header has be pre-merged into a chain due to predecessors not having
620  // analyzable branches, *and* the predecessor it is merged with is *not* part
621  // of the loop, rotating the header into the middle of the loop will create
622  // a non-contiguous range of blocks which is Very Bad. So start with the
623  // header and only rotate if safe.
624  BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
625  if (!LoopBlockSet.count(*HeaderChain.begin()))
626  return 0;
627 
628  BlockFrequency BestExitEdgeFreq;
629  unsigned BestExitLoopDepth = 0;
630  MachineBasicBlock *ExitingBB = 0;
631  // If there are exits to outer loops, loop rotation can severely limit
632  // fallthrough opportunites unless it selects such an exit. Keep a set of
633  // blocks where rotating to exit with that block will reach an outer loop.
634  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
635 
636  DEBUG(dbgs() << "Finding best loop exit for: "
637  << getBlockName(L.getHeader()) << "\n");
639  E = L.block_end();
640  I != E; ++I) {
641  BlockChain &Chain = *BlockToChain[*I];
642  // Ensure that this block is at the end of a chain; otherwise it could be
643  // mid-way through an inner loop or a successor of an analyzable branch.
644  if (*I != *llvm::prior(Chain.end()))
645  continue;
646 
647  // Now walk the successors. We need to establish whether this has a viable
648  // exiting successor and whether it has a viable non-exiting successor.
649  // We store the old exiting state and restore it if a viable looping
650  // successor isn't found.
651  MachineBasicBlock *OldExitingBB = ExitingBB;
652  BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
653  bool HasLoopingSucc = false;
654  // FIXME: Due to the performance of the probability and weight routines in
655  // the MBPI analysis, we use the internal weights and manually compute the
656  // probabilities to avoid quadratic behavior.
657  uint32_t WeightScale = 0;
658  uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
659  for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
660  SE = (*I)->succ_end();
661  SI != SE; ++SI) {
662  if ((*SI)->isLandingPad())
663  continue;
664  if (*SI == *I)
665  continue;
666  BlockChain &SuccChain = *BlockToChain[*SI];
667  // Don't split chains, either this chain or the successor's chain.
668  if (&Chain == &SuccChain) {
669  DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
670  << getBlockName(*SI) << " (chain conflict)\n");
671  continue;
672  }
673 
674  uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
675  if (LoopBlockSet.count(*SI)) {
676  DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> "
677  << getBlockName(*SI) << " (" << SuccWeight << ")\n");
678  HasLoopingSucc = true;
679  continue;
680  }
681 
682  unsigned SuccLoopDepth = 0;
683  if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
684  SuccLoopDepth = ExitLoop->getLoopDepth();
685  if (ExitLoop->contains(&L))
686  BlocksExitingToOuterLoop.insert(*I);
687  }
688 
689  BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
690  BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
691  DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
692  << getBlockName(*SI) << " [L:" << SuccLoopDepth
693  << "] (" << ExitEdgeFreq << ")\n");
694  // Note that we slightly bias this toward an existing layout successor to
695  // retain incoming order in the absence of better information.
696  // FIXME: Should we bias this more strongly? It's pretty weak.
697  if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
698  ExitEdgeFreq > BestExitEdgeFreq ||
699  ((*I)->isLayoutSuccessor(*SI) &&
700  !(ExitEdgeFreq < BestExitEdgeFreq))) {
701  BestExitEdgeFreq = ExitEdgeFreq;
702  ExitingBB = *I;
703  }
704  }
705 
706  // Restore the old exiting state, no viable looping successor was found.
707  if (!HasLoopingSucc) {
708  ExitingBB = OldExitingBB;
709  BestExitEdgeFreq = OldBestExitEdgeFreq;
710  continue;
711  }
712  }
713  // Without a candidate exiting block or with only a single block in the
714  // loop, just use the loop header to layout the loop.
715  if (!ExitingBB || L.getNumBlocks() == 1)
716  return 0;
717 
718  // Also, if we have exit blocks which lead to outer loops but didn't select
719  // one of them as the exiting block we are rotating toward, disable loop
720  // rotation altogether.
721  if (!BlocksExitingToOuterLoop.empty() &&
722  !BlocksExitingToOuterLoop.count(ExitingBB))
723  return 0;
724 
725  DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
726  return ExitingBB;
727 }
728 
729 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
730 ///
731 /// Once we have built a chain, try to rotate it to line up the hot exit block
732 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
733 /// branches. For example, if the loop has fallthrough into its header and out
734 /// of its bottom already, don't rotate it.
735 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
736  MachineBasicBlock *ExitingBB,
737  const BlockFilterSet &LoopBlockSet) {
738  if (!ExitingBB)
739  return;
740 
741  MachineBasicBlock *Top = *LoopChain.begin();
742  bool ViableTopFallthrough = false;
744  PE = Top->pred_end();
745  PI != PE; ++PI) {
746  BlockChain *PredChain = BlockToChain[*PI];
747  if (!LoopBlockSet.count(*PI) &&
748  (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
749  ViableTopFallthrough = true;
750  break;
751  }
752  }
753 
754  // If the header has viable fallthrough, check whether the current loop
755  // bottom is a viable exiting block. If so, bail out as rotating will
756  // introduce an unnecessary branch.
757  if (ViableTopFallthrough) {
758  MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
759  for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
760  SE = Bottom->succ_end();
761  SI != SE; ++SI) {
762  BlockChain *SuccChain = BlockToChain[*SI];
763  if (!LoopBlockSet.count(*SI) &&
764  (!SuccChain || *SI == *SuccChain->begin()))
765  return;
766  }
767  }
768 
769  BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
770  ExitingBB);
771  if (ExitIt == LoopChain.end())
772  return;
773 
774  std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
775 }
776 
777 /// \brief Forms basic block chains from the natural loop structures.
778 ///
779 /// These chains are designed to preserve the existing *structure* of the code
780 /// as much as possible. We can then stitch the chains together in a way which
781 /// both preserves the topological structure and minimizes taken conditional
782 /// branches.
783 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
784  MachineLoop &L) {
785  // First recurse through any nested loops, building chains for those inner
786  // loops.
787  for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
788  buildLoopChains(F, **LI);
789 
791  BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
792 
793  // First check to see if there is an obviously preferable top block for the
794  // loop. This will default to the header, but may end up as one of the
795  // predecessors to the header if there is one which will result in strictly
796  // fewer branches in the loop body.
797  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
798 
799  // If we selected just the header for the loop top, look for a potentially
800  // profitable exit block in the event that rotating the loop can eliminate
801  // branches by placing an exit edge at the bottom.
802  MachineBasicBlock *ExitingBB = 0;
803  if (LoopTop == L.getHeader())
804  ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
805 
806  BlockChain &LoopChain = *BlockToChain[LoopTop];
807 
808  // FIXME: This is a really lame way of walking the chains in the loop: we
809  // walk the blocks, and use a set to prevent visiting a particular chain
810  // twice.
811  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
812  assert(LoopChain.LoopPredecessors == 0);
813  UpdatedPreds.insert(&LoopChain);
815  BE = L.block_end();
816  BI != BE; ++BI) {
817  BlockChain &Chain = *BlockToChain[*BI];
818  if (!UpdatedPreds.insert(&Chain))
819  continue;
820 
821  assert(Chain.LoopPredecessors == 0);
822  for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
823  BCI != BCE; ++BCI) {
824  assert(BlockToChain[*BCI] == &Chain);
825  for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
826  PE = (*BCI)->pred_end();
827  PI != PE; ++PI) {
828  if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
829  continue;
830  ++Chain.LoopPredecessors;
831  }
832  }
833 
834  if (Chain.LoopPredecessors == 0)
835  BlockWorkList.push_back(*Chain.begin());
836  }
837 
838  buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
839  rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
840 
841  DEBUG({
842  // Crash at the end so we get all of the debugging output first.
843  bool BadLoop = false;
844  if (LoopChain.LoopPredecessors) {
845  BadLoop = true;
846  dbgs() << "Loop chain contains a block without its preds placed!\n"
847  << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
848  << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
849  }
850  for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
851  BCI != BCE; ++BCI) {
852  dbgs() << " ... " << getBlockName(*BCI) << "\n";
853  if (!LoopBlockSet.erase(*BCI)) {
854  // We don't mark the loop as bad here because there are real situations
855  // where this can occur. For example, with an unanalyzable fallthrough
856  // from a loop block to a non-loop block or vice versa.
857  dbgs() << "Loop chain contains a block not contained by the loop!\n"
858  << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
859  << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
860  << " Bad block: " << getBlockName(*BCI) << "\n";
861  }
862  }
863 
864  if (!LoopBlockSet.empty()) {
865  BadLoop = true;
866  for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
867  LBE = LoopBlockSet.end();
868  LBI != LBE; ++LBI)
869  dbgs() << "Loop contains blocks never placed into a chain!\n"
870  << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
871  << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
872  << " Bad block: " << getBlockName(*LBI) << "\n";
873  }
874  assert(!BadLoop && "Detected problems with the placement of this loop.");
875  });
876 }
877 
878 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
879  // Ensure that every BB in the function has an associated chain to simplify
880  // the assumptions of the remaining algorithm.
881  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
882  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
883  MachineBasicBlock *BB = FI;
884  BlockChain *Chain
885  = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
886  // Also, merge any blocks which we cannot reason about and must preserve
887  // the exact fallthrough behavior for.
888  for (;;) {
889  Cond.clear();
890  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
891  if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
892  break;
893 
895  MachineBasicBlock *NextBB = NextFI;
896  // Ensure that the layout successor is a viable block, as we know that
897  // fallthrough is a possibility.
898  assert(NextFI != FE && "Can't fallthrough past the last block.");
899  DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
900  << getBlockName(BB) << " -> " << getBlockName(NextBB)
901  << "\n");
902  Chain->merge(NextBB, 0);
903  FI = NextFI;
904  BB = NextBB;
905  }
906  }
907 
908  // Build any loop-based chains.
909  for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
910  ++LI)
911  buildLoopChains(F, **LI);
912 
914 
915  SmallPtrSet<BlockChain *, 4> UpdatedPreds;
916  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
917  MachineBasicBlock *BB = &*FI;
918  BlockChain &Chain = *BlockToChain[BB];
919  if (!UpdatedPreds.insert(&Chain))
920  continue;
921 
922  assert(Chain.LoopPredecessors == 0);
923  for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
924  BCI != BCE; ++BCI) {
925  assert(BlockToChain[*BCI] == &Chain);
926  for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
927  PE = (*BCI)->pred_end();
928  PI != PE; ++PI) {
929  if (BlockToChain[*PI] == &Chain)
930  continue;
931  ++Chain.LoopPredecessors;
932  }
933  }
934 
935  if (Chain.LoopPredecessors == 0)
936  BlockWorkList.push_back(*Chain.begin());
937  }
938 
939  BlockChain &FunctionChain = *BlockToChain[&F.front()];
940  buildChain(&F.front(), FunctionChain, BlockWorkList);
941 
942  typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
943  DEBUG({
944  // Crash at the end so we get all of the debugging output first.
945  bool BadFunc = false;
946  FunctionBlockSetType FunctionBlockSet;
947  for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
948  FunctionBlockSet.insert(FI);
949 
950  for (BlockChain::iterator BCI = FunctionChain.begin(),
951  BCE = FunctionChain.end();
952  BCI != BCE; ++BCI)
953  if (!FunctionBlockSet.erase(*BCI)) {
954  BadFunc = true;
955  dbgs() << "Function chain contains a block not in the function!\n"
956  << " Bad block: " << getBlockName(*BCI) << "\n";
957  }
958 
959  if (!FunctionBlockSet.empty()) {
960  BadFunc = true;
961  for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
962  FBE = FunctionBlockSet.end();
963  FBI != FBE; ++FBI)
964  dbgs() << "Function contains blocks never placed into a chain!\n"
965  << " Bad block: " << getBlockName(*FBI) << "\n";
966  }
967  assert(!BadFunc && "Detected problems with the block placement.");
968  });
969 
970  // Splice the blocks into place.
971  MachineFunction::iterator InsertPos = F.begin();
972  for (BlockChain::iterator BI = FunctionChain.begin(),
973  BE = FunctionChain.end();
974  BI != BE; ++BI) {
975  DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
976  : " ... ")
977  << getBlockName(*BI) << "\n");
978  if (InsertPos != MachineFunction::iterator(*BI))
979  F.splice(InsertPos, *BI);
980  else
981  ++InsertPos;
982 
983  // Update the terminator of the previous block.
984  if (BI == FunctionChain.begin())
985  continue;
987 
988  // FIXME: It would be awesome of updateTerminator would just return rather
989  // than assert when the branch cannot be analyzed in order to remove this
990  // boiler plate.
991  Cond.clear();
992  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
993  if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
994  // The "PrevBB" is not yet updated to reflect current code layout, so,
995  // o. it may fall-through to a block without explict "goto" instruction
996  // before layout, and no longer fall-through it after layout; or
997  // o. just opposite.
998  //
999  // AnalyzeBranch() may return erroneous value for FBB when these two
1000  // situations take place. For the first scenario FBB is mistakenly set
1001  // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1002  // is mistakenly pointing to "*BI".
1003  //
1004  bool needUpdateBr = true;
1005  if (!Cond.empty() && (!FBB || FBB == *BI)) {
1006  PrevBB->updateTerminator();
1007  needUpdateBr = false;
1008  Cond.clear();
1009  TBB = FBB = 0;
1010  if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1011  // FIXME: This should never take place.
1012  TBB = FBB = 0;
1013  }
1014  }
1015 
1016  // If PrevBB has a two-way branch, try to re-order the branches
1017  // such that we branch to the successor with higher weight first.
1018  if (TBB && !Cond.empty() && FBB &&
1019  MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1020  !TII->ReverseBranchCondition(Cond)) {
1021  DEBUG(dbgs() << "Reverse order of the two branches: "
1022  << getBlockName(PrevBB) << "\n");
1023  DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1024  << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1025  DebugLoc dl; // FIXME: this is nowhere
1026  TII->RemoveBranch(*PrevBB);
1027  TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1028  needUpdateBr = true;
1029  }
1030  if (needUpdateBr)
1031  PrevBB->updateTerminator();
1032  }
1033  }
1034 
1035  // Fixup the last block.
1036  Cond.clear();
1037  MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
1038  if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1039  F.back().updateTerminator();
1040 
1041  // Walk through the backedges of the function now that we have fully laid out
1042  // the basic blocks and align the destination of each backedge. We don't rely
1043  // exclusively on the loop info here so that we can align backedges in
1044  // unnatural CFGs and backedges that were introduced purely because of the
1045  // loop rotations done during this layout pass.
1046  if (F.getFunction()->getAttributes().
1047  hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
1048  return;
1049  unsigned Align = TLI->getPrefLoopAlignment();
1050  if (!Align)
1051  return; // Don't care about loop alignment.
1052  if (FunctionChain.begin() == FunctionChain.end())
1053  return; // Empty chain.
1054 
1055  const BranchProbability ColdProb(1, 5); // 20%
1056  BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1057  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1058  for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
1059  BE = FunctionChain.end();
1060  BI != BE; ++BI) {
1061  // Don't align non-looping basic blocks. These are unlikely to execute
1062  // enough times to matter in practice. Note that we'll still handle
1063  // unnatural CFGs inside of a natural outer loop (the common case) and
1064  // rotated loops.
1065  MachineLoop *L = MLI->getLoopFor(*BI);
1066  if (!L)
1067  continue;
1068 
1069  // If the block is cold relative to the function entry don't waste space
1070  // aligning it.
1071  BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1072  if (Freq < WeightedEntryFreq)
1073  continue;
1074 
1075  // If the block is cold relative to its loop header, don't align it
1076  // regardless of what edges into the block exist.
1077  MachineBasicBlock *LoopHeader = L->getHeader();
1078  BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1079  if (Freq < (LoopHeaderFreq * ColdProb))
1080  continue;
1081 
1082  // Check for the existence of a non-layout predecessor which would benefit
1083  // from aligning this block.
1084  MachineBasicBlock *LayoutPred = *llvm::prior(BI);
1085 
1086  // Force alignment if all the predecessors are jumps. We already checked
1087  // that the block isn't cold above.
1088  if (!LayoutPred->isSuccessor(*BI)) {
1089  (*BI)->setAlignment(Align);
1090  continue;
1091  }
1092 
1093  // Align this block if the layout predecessor's edge into this block is
1094  // cold relative to the block. When this is true, other predecessors make up
1095  // all of the hot entries into the block and thus alignment is likely to be
1096  // important.
1097  BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1098  BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1099  if (LayoutEdgeFreq <= (Freq * ColdProb))
1100  (*BI)->setAlignment(Align);
1101  }
1102 }
1103 
1104 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1105  // Check for single-block functions and skip them.
1106  if (llvm::next(F.begin()) == F.end())
1107  return false;
1108 
1109  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1110  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1111  MLI = &getAnalysis<MachineLoopInfo>();
1112  TII = F.getTarget().getInstrInfo();
1113  TLI = F.getTarget().getTargetLowering();
1114  assert(BlockToChain.empty());
1115 
1116  buildCFGChains(F);
1117 
1118  BlockToChain.clear();
1119  ChainAllocator.DestroyAll();
1120 
1121  if (AlignAllBlock)
1122  // Align all of the blocks in the function to a specific alignment.
1123  for (MachineFunction::iterator FI = F.begin(), FE = F.end();
1124  FI != FE; ++FI)
1125  FI->setAlignment(AlignAllBlock);
1126 
1127  // We always return true as we have no way to track whether the final order
1128  // differs from the original order.
1129  return true;
1130 }
1131 
1132 namespace {
1133 /// \brief A pass to compute block placement statistics.
1134 ///
1135 /// A separate pass to compute interesting statistics for evaluating block
1136 /// placement. This is separate from the actual placement pass so that they can
1137 /// be computed in the absence of any placement transformations or when using
1138 /// alternative placement strategies.
1139 class MachineBlockPlacementStats : public MachineFunctionPass {
1140  /// \brief A handle to the branch probability pass.
1141  const MachineBranchProbabilityInfo *MBPI;
1142 
1143  /// \brief A handle to the function-wide block frequency pass.
1144  const MachineBlockFrequencyInfo *MBFI;
1145 
1146 public:
1147  static char ID; // Pass identification, replacement for typeid
1148  MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1149  initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1150  }
1151 
1153 
1154  void getAnalysisUsage(AnalysisUsage &AU) const {
1157  AU.setPreservesAll();
1159  }
1160 };
1161 }
1162 
1165 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1166  "Basic Block Placement Stats", false, false)
1169 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1170  "Basic Block Placement Stats", false, false)
1171 
1172 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1173  // Check for single-block functions and skip them.
1174  if (llvm::next(F.begin()) == F.end())
1175  return false;
1176 
1177  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1178  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1179 
1180  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1181  BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1182  Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1183  : NumUncondBranches;
1184  Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1185  : UncondBranchTakenFreq;
1186  for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1187  SE = I->succ_end();
1188  SI != SE; ++SI) {
1189  // Skip if this successor is a fallthrough.
1190  if (I->isLayoutSuccessor(*SI))
1191  continue;
1192 
1193  BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1194  ++NumBranches;
1195  BranchTakenFreq += EdgeFreq.getFrequency();
1196  }
1197  }
1198 
1199  return false;
1200 }
1201 
virtual bool ReverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
unsigned succ_size() const
static cl::opt< unsigned > AlignAllBlock("align-all-blocks", cl::desc("Force the alignment of all ""blocks in the function."), cl::init(0), cl::Hidden)
const MachineFunction * getParent() const
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const
virtual const TargetLowering * getTargetLowering() const
STATISTIC(NumCondBranches,"Number of conditional branches")
static PassRegistry * getPassRegistry()
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
void initializeMachineBlockPlacementStatsPass(PassRegistry &)
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
F(f)
const Function * getFunction() const
static std::string getBlockNum(MachineBasicBlock *BB)
Helper to print the number of a MBB.
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
char & MachineBlockPlacementStatsID
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
const HexagonInstrInfo * TII
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
std::vector< MachineBasicBlock * >::iterator succ_iterator
block placement Basic Block Placement Stats
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
const MachineBasicBlock & front() const
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
uint64_t rotate(uint64_t val, size_t shift)
Bitwise right rotate. Normally this will compile to a single instruction, especially if the shift is ...
Definition: Hashing.h:176
std::vector< MachineBasicBlock * >::iterator pred_iterator
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
iterator begin() const
Definition: LoopInfo.h:130
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
iterator end() const
Definition: LoopInfo.h:131
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl< MachineOperand > &Cond, DebugLoc DL) const
spill code placement
block placement2
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
INITIALIZE_PASS_BEGIN(MachineBlockPlacement,"block-placement2","Branch Probability Basic Block Placement", false, false) INITIALIZE_PASS_END(MachineBlockPlacement
iterator erase(iterator I)
Definition: SmallVector.h:478
void initializeMachineBlockPlacementPass(PassRegistry &)
virtual const TargetInstrInfo * getInstrInfo() const
block Branch Probability Basic Block Placement
virtual bool runOnMachineFunction(MachineFunction &MF)=0
void splice(iterator InsertPt, iterator MBBI)
friend const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
block placement stats
bool isSuccessor(const MachineBasicBlock *MBB) const
block Branch Probability Basic Block static false std::string getBlockName(MachineBasicBlock *BB)
Helper to print the name of a MBB.
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
StringRef getName() const
std::vector< BlockT * >::const_iterator block_iterator
Definition: LoopInfo.h:139
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
block_iterator block_end() const
Definition: LoopInfo.h:141
unsigned getNumBlocks() const
getNumBlocks - Get the number of blocks in this loop in constant time.
Definition: LoopInfo.h:144
virtual void getAnalysisUsage(AnalysisUsage &AU) const
#define I(x, y, z)
Definition: MD5.cpp:54
char & MachineBlockPlacementID
const TargetMachine & getTarget() const
block Branch Probability Basic Block false
BasicBlockListType::iterator iterator
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
const MachineBasicBlock & back() const
block_iterator block_begin() const
Definition: LoopInfo.h:140
std::vector< LoopT * >::const_iterator iterator
Definition: LoopInfo.h:127
LoopInfoBase< MachineBasicBlock, MachineLoop >::iterator iterator
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
unsigned pred_size() const
#define LLVM_ATTRIBUTE_USED
Definition: Compiler.h:179