LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ScalarEvolutionExpander.cpp
Go to the documentation of this file.
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/Support/Debug.h"
25 
26 using namespace llvm;
27 
28 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
29 /// reusing an existing cast if a suitable one exists, moving an existing
30 /// cast if a suitable one exists but isn't in the right place, or
31 /// creating a new one.
32 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
35  // This function must be called with the builder having a valid insertion
36  // point. It doesn't need to be the actual IP where the uses of the returned
37  // cast will be added, but it must dominate such IP.
38  // We use this precondition to produce a cast that will dominate all its
39  // uses. In particular, this is crucial for the case where the builder's
40  // insertion point *is* the point where we were asked to put the cast.
41  // Since we don't know the builder's insertion point is actually
42  // where the uses will be added (only that it dominates it), we are
43  // not allowed to move it.
44  BasicBlock::iterator BIP = Builder.GetInsertPoint();
45 
46  Instruction *Ret = NULL;
47 
48  // Check to see if there is already a cast!
49  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
50  UI != E; ++UI) {
51  User *U = *UI;
52  if (U->getType() == Ty)
53  if (CastInst *CI = dyn_cast<CastInst>(U))
54  if (CI->getOpcode() == Op) {
55  // If the cast isn't where we want it, create a new cast at IP.
56  // Likewise, do not reuse a cast at BIP because it must dominate
57  // instructions that might be inserted before BIP.
58  if (BasicBlock::iterator(CI) != IP || BIP == IP) {
59  // Create a new cast, and leave the old cast in place in case
60  // it is being used as an insert point. Clear its operand
61  // so that it doesn't hold anything live.
62  Ret = CastInst::Create(Op, V, Ty, "", IP);
63  Ret->takeName(CI);
64  CI->replaceAllUsesWith(Ret);
65  CI->setOperand(0, UndefValue::get(V->getType()));
66  break;
67  }
68  Ret = CI;
69  break;
70  }
71  }
72 
73  // Create a new cast.
74  if (!Ret)
75  Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
76 
77  // We assert at the end of the function since IP might point to an
78  // instruction with different dominance properties than a cast
79  // (an invoke for example) and not dominate BIP (but the cast does).
80  assert(SE.DT->dominates(Ret, BIP));
81 
82  rememberInstruction(Ret);
83  return Ret;
84 }
85 
86 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
87 /// which must be possible with a noop cast, doing what we can to share
88 /// the casts.
89 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
90  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
91  assert((Op == Instruction::BitCast ||
92  Op == Instruction::PtrToInt ||
93  Op == Instruction::IntToPtr) &&
94  "InsertNoopCastOfTo cannot perform non-noop casts!");
95  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
96  "InsertNoopCastOfTo cannot change sizes!");
97 
98  // Short-circuit unnecessary bitcasts.
99  if (Op == Instruction::BitCast) {
100  if (V->getType() == Ty)
101  return V;
102  if (CastInst *CI = dyn_cast<CastInst>(V)) {
103  if (CI->getOperand(0)->getType() == Ty)
104  return CI->getOperand(0);
105  }
106  }
107  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
108  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
109  SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
110  if (CastInst *CI = dyn_cast<CastInst>(V))
111  if ((CI->getOpcode() == Instruction::PtrToInt ||
112  CI->getOpcode() == Instruction::IntToPtr) &&
113  SE.getTypeSizeInBits(CI->getType()) ==
114  SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
115  return CI->getOperand(0);
116  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
117  if ((CE->getOpcode() == Instruction::PtrToInt ||
118  CE->getOpcode() == Instruction::IntToPtr) &&
119  SE.getTypeSizeInBits(CE->getType()) ==
120  SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
121  return CE->getOperand(0);
122  }
123 
124  // Fold a cast of a constant.
125  if (Constant *C = dyn_cast<Constant>(V))
126  return ConstantExpr::getCast(Op, C, Ty);
127 
128  // Cast the argument at the beginning of the entry block, after
129  // any bitcasts of other arguments.
130  if (Argument *A = dyn_cast<Argument>(V)) {
131  BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
132  while ((isa<BitCastInst>(IP) &&
133  isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
134  cast<BitCastInst>(IP)->getOperand(0) != A) ||
135  isa<DbgInfoIntrinsic>(IP) ||
136  isa<LandingPadInst>(IP))
137  ++IP;
138  return ReuseOrCreateCast(A, Ty, Op, IP);
139  }
140 
141  // Cast the instruction immediately after the instruction.
142  Instruction *I = cast<Instruction>(V);
143  BasicBlock::iterator IP = I; ++IP;
144  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
145  IP = II->getNormalDest()->begin();
146  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
147  ++IP;
148  return ReuseOrCreateCast(I, Ty, Op, IP);
149 }
150 
151 /// InsertBinop - Insert the specified binary operator, doing a small amount
152 /// of work to avoid inserting an obviously redundant operation.
153 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
154  Value *LHS, Value *RHS) {
155  // Fold a binop with constant operands.
156  if (Constant *CLHS = dyn_cast<Constant>(LHS))
157  if (Constant *CRHS = dyn_cast<Constant>(RHS))
158  return ConstantExpr::get(Opcode, CLHS, CRHS);
159 
160  // Do a quick scan to see if we have this binop nearby. If so, reuse it.
161  unsigned ScanLimit = 6;
162  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
163  // Scanning starts from the last instruction before the insertion point.
164  BasicBlock::iterator IP = Builder.GetInsertPoint();
165  if (IP != BlockBegin) {
166  --IP;
167  for (; ScanLimit; --IP, --ScanLimit) {
168  // Don't count dbg.value against the ScanLimit, to avoid perturbing the
169  // generated code.
170  if (isa<DbgInfoIntrinsic>(IP))
171  ScanLimit++;
172  if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
173  IP->getOperand(1) == RHS)
174  return IP;
175  if (IP == BlockBegin) break;
176  }
177  }
178 
179  // Save the original insertion point so we can restore it when we're done.
180  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
181  BuilderType::InsertPointGuard Guard(Builder);
182 
183  // Move the insertion point out of as many loops as we can.
184  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
185  if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
186  BasicBlock *Preheader = L->getLoopPreheader();
187  if (!Preheader) break;
188 
189  // Ok, move up a level.
190  Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
191  }
192 
193  // If we haven't found this binop, insert it.
194  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
195  BO->setDebugLoc(Loc);
196  rememberInstruction(BO);
197 
198  return BO;
199 }
200 
201 /// FactorOutConstant - Test if S is divisible by Factor, using signed
202 /// division. If so, update S with Factor divided out and return true.
203 /// S need not be evenly divisible if a reasonable remainder can be
204 /// computed.
205 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
206 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
207 /// check to see if the divide was folded.
208 static bool FactorOutConstant(const SCEV *&S,
209  const SCEV *&Remainder,
210  const SCEV *Factor,
211  ScalarEvolution &SE,
212  const DataLayout *TD) {
213  // Everything is divisible by one.
214  if (Factor->isOne())
215  return true;
216 
217  // x/x == 1.
218  if (S == Factor) {
219  S = SE.getConstant(S->getType(), 1);
220  return true;
221  }
222 
223  // For a Constant, check for a multiple of the given factor.
224  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
225  // 0/x == 0.
226  if (C->isZero())
227  return true;
228  // Check for divisibility.
229  if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
230  ConstantInt *CI =
232  C->getValue()->getValue().sdiv(
233  FC->getValue()->getValue()));
234  // If the quotient is zero and the remainder is non-zero, reject
235  // the value at this scale. It will be considered for subsequent
236  // smaller scales.
237  if (!CI->isZero()) {
238  const SCEV *Div = SE.getConstant(CI);
239  S = Div;
240  Remainder =
241  SE.getAddExpr(Remainder,
242  SE.getConstant(C->getValue()->getValue().srem(
243  FC->getValue()->getValue())));
244  return true;
245  }
246  }
247  }
248 
249  // In a Mul, check if there is a constant operand which is a multiple
250  // of the given factor.
251  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
252  if (TD) {
253  // With DataLayout, the size is known. Check if there is a constant
254  // operand which is a multiple of the given factor. If so, we can
255  // factor it.
256  const SCEVConstant *FC = cast<SCEVConstant>(Factor);
257  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
258  if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
259  SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
260  NewMulOps[0] =
261  SE.getConstant(C->getValue()->getValue().sdiv(
262  FC->getValue()->getValue()));
263  S = SE.getMulExpr(NewMulOps);
264  return true;
265  }
266  } else {
267  // Without DataLayout, check if Factor can be factored out of any of the
268  // Mul's operands. If so, we can just remove it.
269  for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
270  const SCEV *SOp = M->getOperand(i);
271  const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
272  if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
273  Remainder->isZero()) {
274  SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
275  NewMulOps[i] = SOp;
276  S = SE.getMulExpr(NewMulOps);
277  return true;
278  }
279  }
280  }
281  }
282 
283  // In an AddRec, check if both start and step are divisible.
284  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
285  const SCEV *Step = A->getStepRecurrence(SE);
286  const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
287  if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
288  return false;
289  if (!StepRem->isZero())
290  return false;
291  const SCEV *Start = A->getStart();
292  if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
293  return false;
294  S = SE.getAddRecExpr(Start, Step, A->getLoop(),
295  A->getNoWrapFlags(SCEV::FlagNW));
296  return true;
297  }
298 
299  return false;
300 }
301 
302 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
303 /// is the number of SCEVAddRecExprs present, which are kept at the end of
304 /// the list.
305 ///
307  Type *Ty,
308  ScalarEvolution &SE) {
309  unsigned NumAddRecs = 0;
310  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
311  ++NumAddRecs;
312  // Group Ops into non-addrecs and addrecs.
313  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
314  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
315  // Let ScalarEvolution sort and simplify the non-addrecs list.
316  const SCEV *Sum = NoAddRecs.empty() ?
317  SE.getConstant(Ty, 0) :
318  SE.getAddExpr(NoAddRecs);
319  // If it returned an add, use the operands. Otherwise it simplified
320  // the sum into a single value, so just use that.
321  Ops.clear();
322  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
323  Ops.append(Add->op_begin(), Add->op_end());
324  else if (!Sum->isZero())
325  Ops.push_back(Sum);
326  // Then append the addrecs.
327  Ops.append(AddRecs.begin(), AddRecs.end());
328 }
329 
330 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
331 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
332 /// This helps expose more opportunities for folding parts of the expressions
333 /// into GEP indices.
334 ///
336  Type *Ty,
337  ScalarEvolution &SE) {
338  // Find the addrecs.
340  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
341  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
342  const SCEV *Start = A->getStart();
343  if (Start->isZero()) break;
344  const SCEV *Zero = SE.getConstant(Ty, 0);
345  AddRecs.push_back(SE.getAddRecExpr(Zero,
346  A->getStepRecurrence(SE),
347  A->getLoop(),
348  A->getNoWrapFlags(SCEV::FlagNW)));
349  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
350  Ops[i] = Zero;
351  Ops.append(Add->op_begin(), Add->op_end());
352  e += Add->getNumOperands();
353  } else {
354  Ops[i] = Start;
355  }
356  }
357  if (!AddRecs.empty()) {
358  // Add the addrecs onto the end of the list.
359  Ops.append(AddRecs.begin(), AddRecs.end());
360  // Resort the operand list, moving any constants to the front.
361  SimplifyAddOperands(Ops, Ty, SE);
362  }
363 }
364 
365 /// expandAddToGEP - Expand an addition expression with a pointer type into
366 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
367 /// BasicAliasAnalysis and other passes analyze the result. See the rules
368 /// for getelementptr vs. inttoptr in
369 /// http://llvm.org/docs/LangRef.html#pointeraliasing
370 /// for details.
371 ///
372 /// Design note: The correctness of using getelementptr here depends on
373 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
374 /// they may introduce pointer arithmetic which may not be safely converted
375 /// into getelementptr.
376 ///
377 /// Design note: It might seem desirable for this function to be more
378 /// loop-aware. If some of the indices are loop-invariant while others
379 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
380 /// loop-invariant portions of the overall computation outside the loop.
381 /// However, there are a few reasons this is not done here. Hoisting simple
382 /// arithmetic is a low-level optimization that often isn't very
383 /// important until late in the optimization process. In fact, passes
384 /// like InstructionCombining will combine GEPs, even if it means
385 /// pushing loop-invariant computation down into loops, so even if the
386 /// GEPs were split here, the work would quickly be undone. The
387 /// LoopStrengthReduction pass, which is usually run quite late (and
388 /// after the last InstructionCombining pass), takes care of hoisting
389 /// loop-invariant portions of expressions, after considering what
390 /// can be folded using target addressing modes.
391 ///
392 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
393  const SCEV *const *op_end,
394  PointerType *PTy,
395  Type *Ty,
396  Value *V) {
397  Type *ElTy = PTy->getElementType();
398  SmallVector<Value *, 4> GepIndices;
399  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
400  bool AnyNonZeroIndices = false;
401 
402  // Split AddRecs up into parts as either of the parts may be usable
403  // without the other.
404  SplitAddRecs(Ops, Ty, SE);
405 
406  Type *IntPtrTy = SE.TD
407  ? SE.TD->getIntPtrType(PTy)
408  : Type::getInt64Ty(PTy->getContext());
409 
410  // Descend down the pointer's type and attempt to convert the other
411  // operands into GEP indices, at each level. The first index in a GEP
412  // indexes into the array implied by the pointer operand; the rest of
413  // the indices index into the element or field type selected by the
414  // preceding index.
415  for (;;) {
416  // If the scale size is not 0, attempt to factor out a scale for
417  // array indexing.
419  if (ElTy->isSized()) {
420  const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
421  if (!ElSize->isZero()) {
423  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
424  const SCEV *Op = Ops[i];
425  const SCEV *Remainder = SE.getConstant(Ty, 0);
426  if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
427  // Op now has ElSize factored out.
428  ScaledOps.push_back(Op);
429  if (!Remainder->isZero())
430  NewOps.push_back(Remainder);
431  AnyNonZeroIndices = true;
432  } else {
433  // The operand was not divisible, so add it to the list of operands
434  // we'll scan next iteration.
435  NewOps.push_back(Ops[i]);
436  }
437  }
438  // If we made any changes, update Ops.
439  if (!ScaledOps.empty()) {
440  Ops = NewOps;
441  SimplifyAddOperands(Ops, Ty, SE);
442  }
443  }
444  }
445 
446  // Record the scaled array index for this level of the type. If
447  // we didn't find any operands that could be factored, tentatively
448  // assume that element zero was selected (since the zero offset
449  // would obviously be folded away).
450  Value *Scaled = ScaledOps.empty() ?
452  expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
453  GepIndices.push_back(Scaled);
454 
455  // Collect struct field index operands.
456  while (StructType *STy = dyn_cast<StructType>(ElTy)) {
457  bool FoundFieldNo = false;
458  // An empty struct has no fields.
459  if (STy->getNumElements() == 0) break;
460  if (SE.TD) {
461  // With DataLayout, field offsets are known. See if a constant offset
462  // falls within any of the struct fields.
463  if (Ops.empty()) break;
464  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
465  if (SE.getTypeSizeInBits(C->getType()) <= 64) {
466  const StructLayout &SL = *SE.TD->getStructLayout(STy);
467  uint64_t FullOffset = C->getValue()->getZExtValue();
468  if (FullOffset < SL.getSizeInBytes()) {
469  unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
470  GepIndices.push_back(
472  ElTy = STy->getTypeAtIndex(ElIdx);
473  Ops[0] =
474  SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
475  AnyNonZeroIndices = true;
476  FoundFieldNo = true;
477  }
478  }
479  } else {
480  // Without DataLayout, just check for an offsetof expression of the
481  // appropriate struct type.
482  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
483  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
484  Type *CTy;
485  Constant *FieldNo;
486  if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
487  GepIndices.push_back(FieldNo);
488  ElTy =
489  STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
490  Ops[i] = SE.getConstant(Ty, 0);
491  AnyNonZeroIndices = true;
492  FoundFieldNo = true;
493  break;
494  }
495  }
496  }
497  // If no struct field offsets were found, tentatively assume that
498  // field zero was selected (since the zero offset would obviously
499  // be folded away).
500  if (!FoundFieldNo) {
501  ElTy = STy->getTypeAtIndex(0u);
502  GepIndices.push_back(
504  }
505  }
506 
507  if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
508  ElTy = ATy->getElementType();
509  else
510  break;
511  }
512 
513  // If none of the operands were convertible to proper GEP indices, cast
514  // the base to i8* and do an ugly getelementptr with that. It's still
515  // better than ptrtoint+arithmetic+inttoptr at least.
516  if (!AnyNonZeroIndices) {
517  // Cast the base to i8*.
518  V = InsertNoopCastOfTo(V,
520 
521  assert(!isa<Instruction>(V) ||
522  SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
523 
524  // Expand the operands for a plain byte offset.
525  Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
526 
527  // Fold a GEP with constant operands.
528  if (Constant *CLHS = dyn_cast<Constant>(V))
529  if (Constant *CRHS = dyn_cast<Constant>(Idx))
530  return ConstantExpr::getGetElementPtr(CLHS, CRHS);
531 
532  // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
533  unsigned ScanLimit = 6;
534  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
535  // Scanning starts from the last instruction before the insertion point.
536  BasicBlock::iterator IP = Builder.GetInsertPoint();
537  if (IP != BlockBegin) {
538  --IP;
539  for (; ScanLimit; --IP, --ScanLimit) {
540  // Don't count dbg.value against the ScanLimit, to avoid perturbing the
541  // generated code.
542  if (isa<DbgInfoIntrinsic>(IP))
543  ScanLimit++;
544  if (IP->getOpcode() == Instruction::GetElementPtr &&
545  IP->getOperand(0) == V && IP->getOperand(1) == Idx)
546  return IP;
547  if (IP == BlockBegin) break;
548  }
549  }
550 
551  // Save the original insertion point so we can restore it when we're done.
552  BuilderType::InsertPointGuard Guard(Builder);
553 
554  // Move the insertion point out of as many loops as we can.
555  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
556  if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
557  BasicBlock *Preheader = L->getLoopPreheader();
558  if (!Preheader) break;
559 
560  // Ok, move up a level.
561  Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
562  }
563 
564  // Emit a GEP.
565  Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
566  rememberInstruction(GEP);
567 
568  return GEP;
569  }
570 
571  // Save the original insertion point so we can restore it when we're done.
572  BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
573 
574  // Move the insertion point out of as many loops as we can.
575  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
576  if (!L->isLoopInvariant(V)) break;
577 
578  bool AnyIndexNotLoopInvariant = false;
579  for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
580  E = GepIndices.end(); I != E; ++I)
581  if (!L->isLoopInvariant(*I)) {
582  AnyIndexNotLoopInvariant = true;
583  break;
584  }
585  if (AnyIndexNotLoopInvariant)
586  break;
587 
588  BasicBlock *Preheader = L->getLoopPreheader();
589  if (!Preheader) break;
590 
591  // Ok, move up a level.
592  Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
593  }
594 
595  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
596  // because ScalarEvolution may have changed the address arithmetic to
597  // compute a value which is beyond the end of the allocated object.
598  Value *Casted = V;
599  if (V->getType() != PTy)
600  Casted = InsertNoopCastOfTo(Casted, PTy);
601  Value *GEP = Builder.CreateGEP(Casted,
602  GepIndices,
603  "scevgep");
604  Ops.push_back(SE.getUnknown(GEP));
605  rememberInstruction(GEP);
606 
607  // Restore the original insert point.
608  Builder.restoreIP(SaveInsertPt);
609 
610  return expand(SE.getAddExpr(Ops));
611 }
612 
613 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
614 /// SCEV expansion. If they are nested, this is the most nested. If they are
615 /// neighboring, pick the later.
616 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
617  DominatorTree &DT) {
618  if (!A) return B;
619  if (!B) return A;
620  if (A->contains(B)) return B;
621  if (B->contains(A)) return A;
622  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
623  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
624  return A; // Arbitrarily break the tie.
625 }
626 
627 /// getRelevantLoop - Get the most relevant loop associated with the given
628 /// expression, according to PickMostRelevantLoop.
629 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
630  // Test whether we've already computed the most relevant loop for this SCEV.
631  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
632  RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
633  if (!Pair.second)
634  return Pair.first->second;
635 
636  if (isa<SCEVConstant>(S))
637  // A constant has no relevant loops.
638  return 0;
639  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
640  if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
641  return Pair.first->second = SE.LI->getLoopFor(I->getParent());
642  // A non-instruction has no relevant loops.
643  return 0;
644  }
645  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
646  const Loop *L = 0;
647  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
648  L = AR->getLoop();
649  for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
650  I != E; ++I)
651  L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
652  return RelevantLoops[N] = L;
653  }
654  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
655  const Loop *Result = getRelevantLoop(C->getOperand());
656  return RelevantLoops[C] = Result;
657  }
658  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
659  const Loop *Result =
660  PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
661  getRelevantLoop(D->getRHS()),
662  *SE.DT);
663  return RelevantLoops[D] = Result;
664  }
665  llvm_unreachable("Unexpected SCEV type!");
666 }
667 
668 namespace {
669 
670 /// LoopCompare - Compare loops by PickMostRelevantLoop.
671 class LoopCompare {
672  DominatorTree &DT;
673 public:
674  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
675 
676  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
677  std::pair<const Loop *, const SCEV *> RHS) const {
678  // Keep pointer operands sorted at the end.
679  if (LHS.second->getType()->isPointerTy() !=
680  RHS.second->getType()->isPointerTy())
681  return LHS.second->getType()->isPointerTy();
682 
683  // Compare loops with PickMostRelevantLoop.
684  if (LHS.first != RHS.first)
685  return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
686 
687  // If one operand is a non-constant negative and the other is not,
688  // put the non-constant negative on the right so that a sub can
689  // be used instead of a negate and add.
690  if (LHS.second->isNonConstantNegative()) {
691  if (!RHS.second->isNonConstantNegative())
692  return false;
693  } else if (RHS.second->isNonConstantNegative())
694  return true;
695 
696  // Otherwise they are equivalent according to this comparison.
697  return false;
698  }
699 };
700 
701 }
702 
703 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
704  Type *Ty = SE.getEffectiveSCEVType(S->getType());
705 
706  // Collect all the add operands in a loop, along with their associated loops.
707  // Iterate in reverse so that constants are emitted last, all else equal, and
708  // so that pointer operands are inserted first, which the code below relies on
709  // to form more involved GEPs.
711  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
712  E(S->op_begin()); I != E; ++I)
713  OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
714 
715  // Sort by loop. Use a stable sort so that constants follow non-constants and
716  // pointer operands precede non-pointer operands.
717  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
718 
719  // Emit instructions to add all the operands. Hoist as much as possible
720  // out of loops, and form meaningful getelementptrs where possible.
721  Value *Sum = 0;
722  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
723  I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
724  const Loop *CurLoop = I->first;
725  const SCEV *Op = I->second;
726  if (!Sum) {
727  // This is the first operand. Just expand it.
728  Sum = expand(Op);
729  ++I;
730  } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
731  // The running sum expression is a pointer. Try to form a getelementptr
732  // at this level with that as the base.
734  for (; I != E && I->first == CurLoop; ++I) {
735  // If the operand is SCEVUnknown and not instructions, peek through
736  // it, to enable more of it to be folded into the GEP.
737  const SCEV *X = I->second;
738  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
739  if (!isa<Instruction>(U->getValue()))
740  X = SE.getSCEV(U->getValue());
741  NewOps.push_back(X);
742  }
743  Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
744  } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
745  // The running sum is an integer, and there's a pointer at this level.
746  // Try to form a getelementptr. If the running sum is instructions,
747  // use a SCEVUnknown to avoid re-analyzing them.
749  NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
750  SE.getSCEV(Sum));
751  for (++I; I != E && I->first == CurLoop; ++I)
752  NewOps.push_back(I->second);
753  Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
754  } else if (Op->isNonConstantNegative()) {
755  // Instead of doing a negate and add, just do a subtract.
756  Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
757  Sum = InsertNoopCastOfTo(Sum, Ty);
758  Sum = InsertBinop(Instruction::Sub, Sum, W);
759  ++I;
760  } else {
761  // A simple add.
762  Value *W = expandCodeFor(Op, Ty);
763  Sum = InsertNoopCastOfTo(Sum, Ty);
764  // Canonicalize a constant to the RHS.
765  if (isa<Constant>(Sum)) std::swap(Sum, W);
766  Sum = InsertBinop(Instruction::Add, Sum, W);
767  ++I;
768  }
769  }
770 
771  return Sum;
772 }
773 
774 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
775  Type *Ty = SE.getEffectiveSCEVType(S->getType());
776 
777  // Collect all the mul operands in a loop, along with their associated loops.
778  // Iterate in reverse so that constants are emitted last, all else equal.
780  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
781  E(S->op_begin()); I != E; ++I)
782  OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
783 
784  // Sort by loop. Use a stable sort so that constants follow non-constants.
785  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
786 
787  // Emit instructions to mul all the operands. Hoist as much as possible
788  // out of loops.
789  Value *Prod = 0;
790  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
791  I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
792  const SCEV *Op = I->second;
793  if (!Prod) {
794  // This is the first operand. Just expand it.
795  Prod = expand(Op);
796  ++I;
797  } else if (Op->isAllOnesValue()) {
798  // Instead of doing a multiply by negative one, just do a negate.
799  Prod = InsertNoopCastOfTo(Prod, Ty);
800  Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
801  ++I;
802  } else {
803  // A simple mul.
804  Value *W = expandCodeFor(Op, Ty);
805  Prod = InsertNoopCastOfTo(Prod, Ty);
806  // Canonicalize a constant to the RHS.
807  if (isa<Constant>(Prod)) std::swap(Prod, W);
808  Prod = InsertBinop(Instruction::Mul, Prod, W);
809  ++I;
810  }
811  }
812 
813  return Prod;
814 }
815 
816 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
817  Type *Ty = SE.getEffectiveSCEVType(S->getType());
818 
819  Value *LHS = expandCodeFor(S->getLHS(), Ty);
820  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
821  const APInt &RHS = SC->getValue()->getValue();
822  if (RHS.isPowerOf2())
823  return InsertBinop(Instruction::LShr, LHS,
824  ConstantInt::get(Ty, RHS.logBase2()));
825  }
826 
827  Value *RHS = expandCodeFor(S->getRHS(), Ty);
828  return InsertBinop(Instruction::UDiv, LHS, RHS);
829 }
830 
831 /// Move parts of Base into Rest to leave Base with the minimal
832 /// expression that provides a pointer operand suitable for a
833 /// GEP expansion.
834 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
835  ScalarEvolution &SE) {
836  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
837  Base = A->getStart();
838  Rest = SE.getAddExpr(Rest,
839  SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
840  A->getStepRecurrence(SE),
841  A->getLoop(),
842  A->getNoWrapFlags(SCEV::FlagNW)));
843  }
844  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
845  Base = A->getOperand(A->getNumOperands()-1);
846  SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
847  NewAddOps.back() = Rest;
848  Rest = SE.getAddExpr(NewAddOps);
849  ExposePointerBase(Base, Rest, SE);
850  }
851 }
852 
853 /// Determine if this is a well-behaved chain of instructions leading back to
854 /// the PHI. If so, it may be reused by expanded expressions.
855 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
856  const Loop *L) {
857  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
858  (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
859  return false;
860  // If any of the operands don't dominate the insert position, bail.
861  // Addrec operands are always loop-invariant, so this can only happen
862  // if there are instructions which haven't been hoisted.
863  if (L == IVIncInsertLoop) {
864  for (User::op_iterator OI = IncV->op_begin()+1,
865  OE = IncV->op_end(); OI != OE; ++OI)
866  if (Instruction *OInst = dyn_cast<Instruction>(OI))
867  if (!SE.DT->dominates(OInst, IVIncInsertPos))
868  return false;
869  }
870  // Advance to the next instruction.
871  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
872  if (!IncV)
873  return false;
874 
875  if (IncV->mayHaveSideEffects())
876  return false;
877 
878  if (IncV != PN)
879  return true;
880 
881  return isNormalAddRecExprPHI(PN, IncV, L);
882 }
883 
884 /// getIVIncOperand returns an induction variable increment's induction
885 /// variable operand.
886 ///
887 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
888 /// operands dominate InsertPos.
889 ///
890 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
891 /// simple patterns generated by getAddRecExprPHILiterally and
892 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
894  Instruction *InsertPos,
895  bool allowScale) {
896  if (IncV == InsertPos)
897  return NULL;
898 
899  switch (IncV->getOpcode()) {
900  default:
901  return NULL;
902  // Check for a simple Add/Sub or GEP of a loop invariant step.
903  case Instruction::Add:
904  case Instruction::Sub: {
905  Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
906  if (!OInst || SE.DT->dominates(OInst, InsertPos))
907  return dyn_cast<Instruction>(IncV->getOperand(0));
908  return NULL;
909  }
910  case Instruction::BitCast:
911  return dyn_cast<Instruction>(IncV->getOperand(0));
912  case Instruction::GetElementPtr:
913  for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
914  I != E; ++I) {
915  if (isa<Constant>(*I))
916  continue;
917  if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
918  if (!SE.DT->dominates(OInst, InsertPos))
919  return NULL;
920  }
921  if (allowScale) {
922  // allow any kind of GEP as long as it can be hoisted.
923  continue;
924  }
925  // This must be a pointer addition of constants (pretty), which is already
926  // handled, or some number of address-size elements (ugly). Ugly geps
927  // have 2 operands. i1* is used by the expander to represent an
928  // address-size element.
929  if (IncV->getNumOperands() != 2)
930  return NULL;
931  unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
932  if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
933  && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
934  return NULL;
935  break;
936  }
937  return dyn_cast<Instruction>(IncV->getOperand(0));
938  }
939 }
940 
941 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
942 /// it available to other uses in this loop. Recursively hoist any operands,
943 /// until we reach a value that dominates InsertPos.
945  if (SE.DT->dominates(IncV, InsertPos))
946  return true;
947 
948  // InsertPos must itself dominate IncV so that IncV's new position satisfies
949  // its existing users.
950  if (isa<PHINode>(InsertPos)
951  || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
952  return false;
953 
954  // Check that the chain of IV operands leading back to Phi can be hoisted.
956  for(;;) {
957  Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
958  if (!Oper)
959  return false;
960  // IncV is safe to hoist.
961  IVIncs.push_back(IncV);
962  IncV = Oper;
963  if (SE.DT->dominates(IncV, InsertPos))
964  break;
965  }
967  E = IVIncs.rend(); I != E; ++I) {
968  (*I)->moveBefore(InsertPos);
969  }
970  return true;
971 }
972 
973 /// Determine if this cyclic phi is in a form that would have been generated by
974 /// LSR. We don't care if the phi was actually expanded in this pass, as long
975 /// as it is in a low-cost form, for example, no implied multiplication. This
976 /// should match any patterns generated by getAddRecExprPHILiterally and
977 /// expandAddtoGEP.
978 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
979  const Loop *L) {
980  for(Instruction *IVOper = IncV;
981  (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
982  /*allowScale=*/false));) {
983  if (IVOper == PN)
984  return true;
985  }
986  return false;
987 }
988 
989 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
990 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
991 /// need to materialize IV increments elsewhere to handle difficult situations.
992 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
993  Type *ExpandTy, Type *IntTy,
994  bool useSubtract) {
995  Value *IncV;
996  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
997  if (ExpandTy->isPointerTy()) {
998  PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
999  // If the step isn't constant, don't use an implicitly scaled GEP, because
1000  // that would require a multiply inside the loop.
1001  if (!isa<ConstantInt>(StepV))
1002  GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1003  GEPPtrTy->getAddressSpace());
1004  const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1005  IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1006  if (IncV->getType() != PN->getType()) {
1007  IncV = Builder.CreateBitCast(IncV, PN->getType());
1008  rememberInstruction(IncV);
1009  }
1010  } else {
1011  IncV = useSubtract ?
1012  Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1013  Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1014  rememberInstruction(IncV);
1015  }
1016  return IncV;
1017 }
1018 
1019 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1020 /// the base addrec, which is the addrec without any non-loop-dominating
1021 /// values, and return the PHI.
1022 PHINode *
1023 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1024  const Loop *L,
1025  Type *ExpandTy,
1026  Type *IntTy) {
1027  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1028 
1029  // Reuse a previously-inserted PHI, if present.
1030  BasicBlock *LatchBlock = L->getLoopLatch();
1031  if (LatchBlock) {
1032  for (BasicBlock::iterator I = L->getHeader()->begin();
1033  PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1034  if (!SE.isSCEVable(PN->getType()) ||
1035  (SE.getEffectiveSCEVType(PN->getType()) !=
1036  SE.getEffectiveSCEVType(Normalized->getType())) ||
1037  SE.getSCEV(PN) != Normalized)
1038  continue;
1039 
1040  Instruction *IncV =
1041  cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1042 
1043  if (LSRMode) {
1044  if (!isExpandedAddRecExprPHI(PN, IncV, L))
1045  continue;
1046  if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
1047  continue;
1048  }
1049  else {
1050  if (!isNormalAddRecExprPHI(PN, IncV, L))
1051  continue;
1052  if (L == IVIncInsertLoop)
1053  do {
1054  if (SE.DT->dominates(IncV, IVIncInsertPos))
1055  break;
1056  // Make sure the increment is where we want it. But don't move it
1057  // down past a potential existing post-inc user.
1058  IncV->moveBefore(IVIncInsertPos);
1059  IVIncInsertPos = IncV;
1060  IncV = cast<Instruction>(IncV->getOperand(0));
1061  } while (IncV != PN);
1062  }
1063  // Ok, the add recurrence looks usable.
1064  // Remember this PHI, even in post-inc mode.
1065  InsertedValues.insert(PN);
1066  // Remember the increment.
1067  rememberInstruction(IncV);
1068  return PN;
1069  }
1070  }
1071 
1072  // Save the original insertion point so we can restore it when we're done.
1073  BuilderType::InsertPointGuard Guard(Builder);
1074 
1075  // Another AddRec may need to be recursively expanded below. For example, if
1076  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1077  // loop. Remove this loop from the PostIncLoops set before expanding such
1078  // AddRecs. Otherwise, we cannot find a valid position for the step
1079  // (i.e. StepV can never dominate its loop header). Ideally, we could do
1080  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1081  // so it's not worth implementing SmallPtrSet::swap.
1082  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1083  PostIncLoops.clear();
1084 
1085  // Expand code for the start value.
1086  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1087  L->getHeader()->begin());
1088 
1089  // StartV must be hoisted into L's preheader to dominate the new phi.
1090  assert(!isa<Instruction>(StartV) ||
1091  SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1092  L->getHeader()));
1093 
1094  // Expand code for the step value. Do this before creating the PHI so that PHI
1095  // reuse code doesn't see an incomplete PHI.
1096  const SCEV *Step = Normalized->getStepRecurrence(SE);
1097  // If the stride is negative, insert a sub instead of an add for the increment
1098  // (unless it's a constant, because subtracts of constants are canonicalized
1099  // to adds).
1100  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1101  if (useSubtract)
1102  Step = SE.getNegativeSCEV(Step);
1103  // Expand the step somewhere that dominates the loop header.
1104  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1105 
1106  // Create the PHI.
1107  BasicBlock *Header = L->getHeader();
1108  Builder.SetInsertPoint(Header, Header->begin());
1109  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1110  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1111  Twine(IVName) + ".iv");
1112  rememberInstruction(PN);
1113 
1114  // Create the step instructions and populate the PHI.
1115  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1116  BasicBlock *Pred = *HPI;
1117 
1118  // Add a start value.
1119  if (!L->contains(Pred)) {
1120  PN->addIncoming(StartV, Pred);
1121  continue;
1122  }
1123 
1124  // Create a step value and add it to the PHI.
1125  // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1126  // instructions at IVIncInsertPos.
1127  Instruction *InsertPos = L == IVIncInsertLoop ?
1128  IVIncInsertPos : Pred->getTerminator();
1129  Builder.SetInsertPoint(InsertPos);
1130  Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1131  if (isa<OverflowingBinaryOperator>(IncV)) {
1132  if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
1133  cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1134  if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
1135  cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1136  }
1137  PN->addIncoming(IncV, Pred);
1138  }
1139 
1140  // After expanding subexpressions, restore the PostIncLoops set so the caller
1141  // can ensure that IVIncrement dominates the current uses.
1142  PostIncLoops = SavedPostIncLoops;
1143 
1144  // Remember this PHI, even in post-inc mode.
1145  InsertedValues.insert(PN);
1146 
1147  return PN;
1148 }
1149 
1150 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1151  Type *STy = S->getType();
1152  Type *IntTy = SE.getEffectiveSCEVType(STy);
1153  const Loop *L = S->getLoop();
1154 
1155  // Determine a normalized form of this expression, which is the expression
1156  // before any post-inc adjustment is made.
1157  const SCEVAddRecExpr *Normalized = S;
1158  if (PostIncLoops.count(L)) {
1160  Loops.insert(L);
1161  Normalized =
1162  cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1163  Loops, SE, *SE.DT));
1164  }
1165 
1166  // Strip off any non-loop-dominating component from the addrec start.
1167  const SCEV *Start = Normalized->getStart();
1168  const SCEV *PostLoopOffset = 0;
1169  if (!SE.properlyDominates(Start, L->getHeader())) {
1170  PostLoopOffset = Start;
1171  Start = SE.getConstant(Normalized->getType(), 0);
1172  Normalized = cast<SCEVAddRecExpr>(
1173  SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1174  Normalized->getLoop(),
1175  Normalized->getNoWrapFlags(SCEV::FlagNW)));
1176  }
1177 
1178  // Strip off any non-loop-dominating component from the addrec step.
1179  const SCEV *Step = Normalized->getStepRecurrence(SE);
1180  const SCEV *PostLoopScale = 0;
1181  if (!SE.dominates(Step, L->getHeader())) {
1182  PostLoopScale = Step;
1183  Step = SE.getConstant(Normalized->getType(), 1);
1184  Normalized =
1185  cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1186  Start, Step, Normalized->getLoop(),
1187  Normalized->getNoWrapFlags(SCEV::FlagNW)));
1188  }
1189 
1190  // Expand the core addrec. If we need post-loop scaling, force it to
1191  // expand to an integer type to avoid the need for additional casting.
1192  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1193  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1194 
1195  // Accommodate post-inc mode, if necessary.
1196  Value *Result;
1197  if (!PostIncLoops.count(L))
1198  Result = PN;
1199  else {
1200  // In PostInc mode, use the post-incremented value.
1201  BasicBlock *LatchBlock = L->getLoopLatch();
1202  assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1203  Result = PN->getIncomingValueForBlock(LatchBlock);
1204 
1205  // For an expansion to use the postinc form, the client must call
1206  // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1207  // or dominated by IVIncInsertPos.
1208  if (isa<Instruction>(Result)
1209  && !SE.DT->dominates(cast<Instruction>(Result),
1210  Builder.GetInsertPoint())) {
1211  // The induction variable's postinc expansion does not dominate this use.
1212  // IVUsers tries to prevent this case, so it is rare. However, it can
1213  // happen when an IVUser outside the loop is not dominated by the latch
1214  // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1215  // all cases. Consider a phi outide whose operand is replaced during
1216  // expansion with the value of the postinc user. Without fundamentally
1217  // changing the way postinc users are tracked, the only remedy is
1218  // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1219  // but hopefully expandCodeFor handles that.
1220  bool useSubtract =
1221  !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1222  if (useSubtract)
1223  Step = SE.getNegativeSCEV(Step);
1224  Value *StepV;
1225  {
1226  // Expand the step somewhere that dominates the loop header.
1227  BuilderType::InsertPointGuard Guard(Builder);
1228  StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1229  }
1230  Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1231  }
1232  }
1233 
1234  // Re-apply any non-loop-dominating scale.
1235  if (PostLoopScale) {
1236  assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1237  Result = InsertNoopCastOfTo(Result, IntTy);
1238  Result = Builder.CreateMul(Result,
1239  expandCodeFor(PostLoopScale, IntTy));
1240  rememberInstruction(Result);
1241  }
1242 
1243  // Re-apply any non-loop-dominating offset.
1244  if (PostLoopOffset) {
1245  if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1246  const SCEV *const OffsetArray[1] = { PostLoopOffset };
1247  Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1248  } else {
1249  Result = InsertNoopCastOfTo(Result, IntTy);
1250  Result = Builder.CreateAdd(Result,
1251  expandCodeFor(PostLoopOffset, IntTy));
1252  rememberInstruction(Result);
1253  }
1254  }
1255 
1256  return Result;
1257 }
1258 
1259 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1260  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1261 
1262  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1263  const Loop *L = S->getLoop();
1264 
1265  // First check for an existing canonical IV in a suitable type.
1266  PHINode *CanonicalIV = 0;
1267  if (PHINode *PN = L->getCanonicalInductionVariable())
1268  if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1269  CanonicalIV = PN;
1270 
1271  // Rewrite an AddRec in terms of the canonical induction variable, if
1272  // its type is more narrow.
1273  if (CanonicalIV &&
1274  SE.getTypeSizeInBits(CanonicalIV->getType()) >
1275  SE.getTypeSizeInBits(Ty)) {
1277  for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1278  NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1279  Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1281  BasicBlock::iterator NewInsertPt =
1282  llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1283  BuilderType::InsertPointGuard Guard(Builder);
1284  while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1285  isa<LandingPadInst>(NewInsertPt))
1286  ++NewInsertPt;
1287  V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1288  NewInsertPt);
1289  return V;
1290  }
1291 
1292  // {X,+,F} --> X + {0,+,F}
1293  if (!S->getStart()->isZero()) {
1294  SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1295  NewOps[0] = SE.getConstant(Ty, 0);
1296  const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1298 
1299  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1300  // comments on expandAddToGEP for details.
1301  const SCEV *Base = S->getStart();
1302  const SCEV *RestArray[1] = { Rest };
1303  // Dig into the expression to find the pointer base for a GEP.
1304  ExposePointerBase(Base, RestArray[0], SE);
1305  // If we found a pointer, expand the AddRec with a GEP.
1306  if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1307  // Make sure the Base isn't something exotic, such as a multiplied
1308  // or divided pointer value. In those cases, the result type isn't
1309  // actually a pointer type.
1310  if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1311  Value *StartV = expand(Base);
1312  assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1313  return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1314  }
1315  }
1316 
1317  // Just do a normal add. Pre-expand the operands to suppress folding.
1318  return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1319  SE.getUnknown(expand(Rest))));
1320  }
1321 
1322  // If we don't yet have a canonical IV, create one.
1323  if (!CanonicalIV) {
1324  // Create and insert the PHI node for the induction variable in the
1325  // specified loop.
1326  BasicBlock *Header = L->getHeader();
1327  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1328  CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1329  Header->begin());
1330  rememberInstruction(CanonicalIV);
1331 
1332  SmallSet<BasicBlock *, 4> PredSeen;
1333  Constant *One = ConstantInt::get(Ty, 1);
1334  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1335  BasicBlock *HP = *HPI;
1336  if (!PredSeen.insert(HP))
1337  continue;
1338 
1339  if (L->contains(HP)) {
1340  // Insert a unit add instruction right before the terminator
1341  // corresponding to the back-edge.
1342  Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1343  "indvar.next",
1344  HP->getTerminator());
1345  Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1346  rememberInstruction(Add);
1347  CanonicalIV->addIncoming(Add, HP);
1348  } else {
1349  CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1350  }
1351  }
1352  }
1353 
1354  // {0,+,1} --> Insert a canonical induction variable into the loop!
1355  if (S->isAffine() && S->getOperand(1)->isOne()) {
1356  assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1357  "IVs with types different from the canonical IV should "
1358  "already have been handled!");
1359  return CanonicalIV;
1360  }
1361 
1362  // {0,+,F} --> {0,+,1} * F
1363 
1364  // If this is a simple linear addrec, emit it now as a special case.
1365  if (S->isAffine()) // {0,+,F} --> i*F
1366  return
1367  expand(SE.getTruncateOrNoop(
1368  SE.getMulExpr(SE.getUnknown(CanonicalIV),
1369  SE.getNoopOrAnyExtend(S->getOperand(1),
1370  CanonicalIV->getType())),
1371  Ty));
1372 
1373  // If this is a chain of recurrences, turn it into a closed form, using the
1374  // folders, then expandCodeFor the closed form. This allows the folders to
1375  // simplify the expression without having to build a bunch of special code
1376  // into this folder.
1377  const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1378 
1379  // Promote S up to the canonical IV type, if the cast is foldable.
1380  const SCEV *NewS = S;
1381  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1382  if (isa<SCEVAddRecExpr>(Ext))
1383  NewS = Ext;
1384 
1385  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1386  //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1387 
1388  // Truncate the result down to the original type, if needed.
1389  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1390  return expand(T);
1391 }
1392 
1393 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1394  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1395  Value *V = expandCodeFor(S->getOperand(),
1397  Value *I = Builder.CreateTrunc(V, Ty);
1398  rememberInstruction(I);
1399  return I;
1400 }
1401 
1402 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1403  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1404  Value *V = expandCodeFor(S->getOperand(),
1406  Value *I = Builder.CreateZExt(V, Ty);
1407  rememberInstruction(I);
1408  return I;
1409 }
1410 
1411 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1412  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1413  Value *V = expandCodeFor(S->getOperand(),
1415  Value *I = Builder.CreateSExt(V, Ty);
1416  rememberInstruction(I);
1417  return I;
1418 }
1419 
1420 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1421  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1422  Type *Ty = LHS->getType();
1423  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1424  // In the case of mixed integer and pointer types, do the
1425  // rest of the comparisons as integer.
1426  if (S->getOperand(i)->getType() != Ty) {
1427  Ty = SE.getEffectiveSCEVType(Ty);
1428  LHS = InsertNoopCastOfTo(LHS, Ty);
1429  }
1430  Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1431  Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1432  rememberInstruction(ICmp);
1433  Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1434  rememberInstruction(Sel);
1435  LHS = Sel;
1436  }
1437  // In the case of mixed integer and pointer types, cast the
1438  // final result back to the pointer type.
1439  if (LHS->getType() != S->getType())
1440  LHS = InsertNoopCastOfTo(LHS, S->getType());
1441  return LHS;
1442 }
1443 
1444 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1445  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1446  Type *Ty = LHS->getType();
1447  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1448  // In the case of mixed integer and pointer types, do the
1449  // rest of the comparisons as integer.
1450  if (S->getOperand(i)->getType() != Ty) {
1451  Ty = SE.getEffectiveSCEVType(Ty);
1452  LHS = InsertNoopCastOfTo(LHS, Ty);
1453  }
1454  Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1455  Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1456  rememberInstruction(ICmp);
1457  Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1458  rememberInstruction(Sel);
1459  LHS = Sel;
1460  }
1461  // In the case of mixed integer and pointer types, cast the
1462  // final result back to the pointer type.
1463  if (LHS->getType() != S->getType())
1464  LHS = InsertNoopCastOfTo(LHS, S->getType());
1465  return LHS;
1466 }
1467 
1469  Instruction *IP) {
1470  Builder.SetInsertPoint(IP->getParent(), IP);
1471  return expandCodeFor(SH, Ty);
1472 }
1473 
1474 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1475  // Expand the code for this SCEV.
1476  Value *V = expand(SH);
1477  if (Ty) {
1478  assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1479  "non-trivial casts should be done with the SCEVs directly!");
1480  V = InsertNoopCastOfTo(V, Ty);
1481  }
1482  return V;
1483 }
1484 
1485 Value *SCEVExpander::expand(const SCEV *S) {
1486  // Compute an insertion point for this SCEV object. Hoist the instructions
1487  // as far out in the loop nest as possible.
1488  Instruction *InsertPt = Builder.GetInsertPoint();
1489  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1490  L = L->getParentLoop())
1491  if (SE.isLoopInvariant(S, L)) {
1492  if (!L) break;
1493  if (BasicBlock *Preheader = L->getLoopPreheader())
1494  InsertPt = Preheader->getTerminator();
1495  else {
1496  // LSR sets the insertion point for AddRec start/step values to the
1497  // block start to simplify value reuse, even though it's an invalid
1498  // position. SCEVExpander must correct for this in all cases.
1499  InsertPt = L->getHeader()->getFirstInsertionPt();
1500  }
1501  } else {
1502  // If the SCEV is computable at this level, insert it into the header
1503  // after the PHIs (and after any other instructions that we've inserted
1504  // there) so that it is guaranteed to dominate any user inside the loop.
1505  if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1506  InsertPt = L->getHeader()->getFirstInsertionPt();
1507  while (InsertPt != Builder.GetInsertPoint()
1508  && (isInsertedInstruction(InsertPt)
1509  || isa<DbgInfoIntrinsic>(InsertPt))) {
1510  InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1511  }
1512  break;
1513  }
1514 
1515  // Check to see if we already expanded this here.
1516  std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
1517  I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1518  if (I != InsertedExpressions.end())
1519  return I->second;
1520 
1521  BuilderType::InsertPointGuard Guard(Builder);
1522  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1523 
1524  // Expand the expression into instructions.
1525  Value *V = visit(S);
1526 
1527  // Remember the expanded value for this SCEV at this location.
1528  //
1529  // This is independent of PostIncLoops. The mapped value simply materializes
1530  // the expression at this insertion point. If the mapped value happened to be
1531  // a postinc expansion, it could be reused by a non postinc user, but only if
1532  // its insertion point was already at the head of the loop.
1533  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1534  return V;
1535 }
1536 
1537 void SCEVExpander::rememberInstruction(Value *I) {
1538  if (!PostIncLoops.empty())
1539  InsertedPostIncValues.insert(I);
1540  else
1541  InsertedValues.insert(I);
1542 }
1543 
1544 /// getOrInsertCanonicalInductionVariable - This method returns the
1545 /// canonical induction variable of the specified type for the specified
1546 /// loop (inserting one if there is none). A canonical induction variable
1547 /// starts at zero and steps by one on each iteration.
1548 PHINode *
1550  Type *Ty) {
1551  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1552 
1553  // Build a SCEV for {0,+,1}<L>.
1554  // Conservatively use FlagAnyWrap for now.
1555  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1556  SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1557 
1558  // Emit code for it.
1559  BuilderType::InsertPointGuard Guard(Builder);
1560  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1561 
1562  return V;
1563 }
1564 
1565 /// Sort values by integer width for replaceCongruentIVs.
1566 static bool width_descending(Value *lhs, Value *rhs) {
1567  // Put pointers at the back and make sure pointer < pointer = false.
1568  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
1569  return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
1570  return rhs->getType()->getPrimitiveSizeInBits()
1571  < lhs->getType()->getPrimitiveSizeInBits();
1572 }
1573 
1574 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1575 /// replace them with their most canonical representative. Return the number of
1576 /// phis eliminated.
1577 ///
1578 /// This does not depend on any SCEVExpander state but should be used in
1579 /// the same context that SCEVExpander is used.
1581  SmallVectorImpl<WeakVH> &DeadInsts,
1582  const TargetTransformInfo *TTI) {
1583  // Find integer phis in order of increasing width.
1585  for (BasicBlock::iterator I = L->getHeader()->begin();
1586  PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1587  Phis.push_back(Phi);
1588  }
1589  if (TTI)
1590  std::sort(Phis.begin(), Phis.end(), width_descending);
1591 
1592  unsigned NumElim = 0;
1594  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1595  // so narrow phis can reuse them.
1597  PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1598  PHINode *Phi = *PIter;
1599 
1600  // Fold constant phis. They may be congruent to other constant phis and
1601  // would confuse the logic below that expects proper IVs.
1602  if (Value *V = Phi->hasConstantValue()) {
1603  Phi->replaceAllUsesWith(V);
1604  DeadInsts.push_back(Phi);
1605  ++NumElim;
1606  DEBUG_WITH_TYPE(DebugType, dbgs()
1607  << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1608  continue;
1609  }
1610 
1611  if (!SE.isSCEVable(Phi->getType()))
1612  continue;
1613 
1614  PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1615  if (!OrigPhiRef) {
1616  OrigPhiRef = Phi;
1617  if (Phi->getType()->isIntegerTy() && TTI
1618  && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1619  // This phi can be freely truncated to the narrowest phi type. Map the
1620  // truncated expression to it so it will be reused for narrow types.
1621  const SCEV *TruncExpr =
1622  SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1623  ExprToIVMap[TruncExpr] = Phi;
1624  }
1625  continue;
1626  }
1627 
1628  // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1629  // sense.
1630  if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1631  continue;
1632 
1633  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1634  Instruction *OrigInc =
1635  cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1636  Instruction *IsomorphicInc =
1637  cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1638 
1639  // If this phi has the same width but is more canonical, replace the
1640  // original with it. As part of the "more canonical" determination,
1641  // respect a prior decision to use an IV chain.
1642  if (OrigPhiRef->getType() == Phi->getType()
1643  && !(ChainedPhis.count(Phi)
1644  || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1645  && (ChainedPhis.count(Phi)
1646  || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1647  std::swap(OrigPhiRef, Phi);
1648  std::swap(OrigInc, IsomorphicInc);
1649  }
1650  // Replacing the congruent phi is sufficient because acyclic redundancy
1651  // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1652  // that a phi is congruent, it's often the head of an IV user cycle that
1653  // is isomorphic with the original phi. It's worth eagerly cleaning up the
1654  // common case of a single IV increment so that DeleteDeadPHIs can remove
1655  // cycles that had postinc uses.
1656  const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1657  IsomorphicInc->getType());
1658  if (OrigInc != IsomorphicInc
1659  && TruncExpr == SE.getSCEV(IsomorphicInc)
1660  && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1661  || hoistIVInc(OrigInc, IsomorphicInc))) {
1662  DEBUG_WITH_TYPE(DebugType, dbgs()
1663  << "INDVARS: Eliminated congruent iv.inc: "
1664  << *IsomorphicInc << '\n');
1665  Value *NewInc = OrigInc;
1666  if (OrigInc->getType() != IsomorphicInc->getType()) {
1667  Instruction *IP = isa<PHINode>(OrigInc)
1668  ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1669  : OrigInc->getNextNode();
1670  IRBuilder<> Builder(IP);
1671  Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1672  NewInc = Builder.
1673  CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1674  }
1675  IsomorphicInc->replaceAllUsesWith(NewInc);
1676  DeadInsts.push_back(IsomorphicInc);
1677  }
1678  }
1679  DEBUG_WITH_TYPE(DebugType, dbgs()
1680  << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1681  ++NumElim;
1682  Value *NewIV = OrigPhiRef;
1683  if (OrigPhiRef->getType() != Phi->getType()) {
1684  IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1685  Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1686  NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1687  }
1688  Phi->replaceAllUsesWith(NewIV);
1689  DeadInsts.push_back(Phi);
1690  }
1691  return NumElim;
1692 }
1693 
1694 namespace {
1695 // Search for a SCEV subexpression that is not safe to expand. Any expression
1696 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
1697 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
1698 // instruction, but the important thing is that we prove the denominator is
1699 // nonzero before expansion.
1700 //
1701 // IVUsers already checks that IV-derived expressions are safe. So this check is
1702 // only needed when the expression includes some subexpression that is not IV
1703 // derived.
1704 //
1705 // Currently, we only allow division by a nonzero constant here. If this is
1706 // inadequate, we could easily allow division by SCEVUnknown by using
1707 // ValueTracking to check isKnownNonZero().
1708 //
1709 // We cannot generally expand recurrences unless the step dominates the loop
1710 // header. The expander handles the special case of affine recurrences by
1711 // scaling the recurrence outside the loop, but this technique isn't generally
1712 // applicable. Expanding a nested recurrence outside a loop requires computing
1713 // binomial coefficients. This could be done, but the recurrence has to be in a
1714 // perfectly reduced form, which can't be guaranteed.
1715 struct SCEVFindUnsafe {
1716  ScalarEvolution &SE;
1717  bool IsUnsafe;
1718 
1719  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
1720 
1721  bool follow(const SCEV *S) {
1722  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1723  const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
1724  if (!SC || SC->getValue()->isZero()) {
1725  IsUnsafe = true;
1726  return false;
1727  }
1728  }
1729  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1730  const SCEV *Step = AR->getStepRecurrence(SE);
1731  if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
1732  IsUnsafe = true;
1733  return false;
1734  }
1735  }
1736  return true;
1737  }
1738  bool isDone() const { return IsUnsafe; }
1739 };
1740 }
1741 
1742 namespace llvm {
1743 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
1744  SCEVFindUnsafe Search(SE);
1745  visitAll(S, Search);
1746  return !Search.IsUnsafe;
1747 }
1748 }
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Value * CreateGEP(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:931
std::reverse_iterator< iterator > reverse_iterator
Definition: SmallVector.h:104
use_iterator use_end()
Definition: Value.h:152
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos)
hoistIVInc - Utility for hoisting an IV increment.
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:78
void addIncoming(Value *V, BasicBlock *BB)
LLVM Argument representation.
Definition: Argument.h:35
const SCEV * TransformForPostIncUse(TransformKind Kind, const SCEV *S, Instruction *User, Value *OperandValToReplace, PostIncLoopSet &Loops, ScalarEvolution &SE, DominatorTree &DT)
void SetCurrentDebugLocation(const DebugLoc &L)
Set location information used by debugging information.
Definition: IRBuilder.h:118
bool isOne() const
const SCEV * getConstant(ConstantInt *V)
LLVMContext & getContext() const
bool isZero() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, const SCEV *Factor, ScalarEvolution &SE, const DataLayout *TD)
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool mayHaveSideEffects() const
Definition: Instruction.h:324
bool properlyDominates(const SCEV *S, const BasicBlock *BB)
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:818
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
bool isLoopInvariant(const SCEV *S, const Loop *L)
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
BlockT * getHeader() const
Definition: LoopInfo.h:95
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:637
const SCEV * getStart() const
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
iterator begin()
Definition: BasicBlock.h:193
#define DEBUG_WITH_TYPE(TYPE, X)
Definition: Debug.h:67
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:1299
Hexagon Hardware Loops
static const Loop * PickMostRelevantLoop(const Loop *A, const Loop *B, DominatorTree &DT)
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
Base class of casting instructions.
Definition: InstrTypes.h:387
NodeTy * getNextNode()
Get the next node, or 0 for the list tail.
Definition: ilist_node.h:80
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
static bool width_descending(Value *lhs, Value *rhs)
Sort values by integer width for replaceCongruentIVs.
#define llvm_unreachable(msg)
Definition: Use.h:60
const SCEV *const * op_iterator
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
uint64_t getTypeSizeInBits(Type *Ty) const
op_iterator op_begin() const
#define false
Definition: ConvertUTF.c:64
Value * CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1224
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:157
const SCEV * getSizeOfExpr(Type *IntTy, Type *AllocTy)
Loop * getLoopFor(const BasicBlock *BB) const
Definition: LoopInfo.h:618
bool insert(const T &V)
Definition: SmallSet.h:59
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
Type * getEffectiveSCEVType(Type *Ty) const
void takeName(Value *V)
Definition: Value.cpp:239
Type * getElementType() const
Definition: DerivedTypes.h:319
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:83
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=0)
Construct any of the CastInst subclasses.
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:169
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:834
bool isSCEVable(Type *Ty) const
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
Value * hasConstantValue() const
Type * getType() const
static void SplitAddRecs(SmallVectorImpl< const SCEV * > &Ops, Type *Ty, ScalarEvolution &SE)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
LLVM Constant Representation.
Definition: Constant.h:41
const SCEV * getOperand(unsigned i) const
#define H(x, y, z)
Definition: MD5.cpp:53
Normalize - Normalize according to the given loops.
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
op_iterator op_end()
Definition: User.h:118
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
Value * expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I)
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
const SCEV * getLHS() const
static void SimplifyAddOperands(SmallVectorImpl< const SCEV * > &Ops, Type *Ty, ScalarEvolution &SE)
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
bool isNonConstantNegative() const
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:390
const SCEV * getRHS() const
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl< WeakVH > &DeadInsts, const TargetTransformInfo *TTI=NULL)
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, ScalarEvolution &SE)
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:280
Class for constant integers.
Definition: Constants.h:51
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1071
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty)
unsigned logBase2() const
Definition: APInt.h:1500
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1132
PHINode * getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty)
bool isAllOnesValue() const
Type * getType() const
Definition: Value.h:111
uint64_t getSizeInBytes() const
Definition: DataLayout.h:425
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:77
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:659
PHINode * getCanonicalInductionVariable() const
Definition: LoopInfo.cpp:142
unsigned getElementContainingOffset(uint64_t Offset) const
Definition: DataLayout.cpp:78
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
ConstantInt * getValue() const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Class for arbitrary precision integers.
Definition: APInt.h:75
Value * getIncomingValueForBlock(const BasicBlock *BB) const
bool isIntegerTy() const
Definition: Type.h:196
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="")
Definition: IRBuilder.h:1336
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
void visitAll(const SCEV *Root, SV &Visitor)
Use SCEVTraversal to visit all nodes in the givien expression tree.
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1156
use_iterator use_begin()
Definition: Value.h:150
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1074
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Infer the opcode for cast operand and type.
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
Instruction * getIVIncOperand(Instruction *IncV, Instruction *InsertPos, bool allowScale)
getIVIncOperand - Return the induction variable increment's IV operand.
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
const Loop * getLoop() const
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
const SCEV * getSCEV(Value *V)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const
bool isSized() const
Definition: Type.h:278
bool isInsertedInstruction(Instruction *I) const
const SCEV * getUnknown(Value *V)
bool dominates(const SCEV *S, const BasicBlock *BB)
op_iterator op_end() const
const SCEV * getNegativeSCEV(const SCEV *V)
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE)
Value * CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1212
const SCEV * getOperand() const
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)