LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TargetSchedule.cpp
Go to the documentation of this file.
1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14 
22 
23 using namespace llvm;
24 
25 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
26  cl::desc("Use TargetSchedModel for latency lookup"));
27 
28 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
29  cl::desc("Use InstrItineraryData for latency lookup"));
30 
32  return EnableSchedModel && SchedModel.hasInstrSchedModel();
33 }
34 
36  return EnableSchedItins && !InstrItins.isEmpty();
37 }
38 
39 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
40  // Dividend and Divisor will be naturally swapped as needed.
41  while(Divisor) {
42  unsigned Rem = Dividend % Divisor;
43  Dividend = Divisor;
44  Divisor = Rem;
45  };
46  return Dividend;
47 }
48 static unsigned lcm(unsigned A, unsigned B) {
49  unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
50  assert((LCM >= A && LCM >= B) && "LCM overflow");
51  return LCM;
52 }
53 
55  const TargetSubtargetInfo *sti,
56  const TargetInstrInfo *tii) {
57  SchedModel = sm;
58  STI = sti;
59  TII = tii;
60  STI->initInstrItins(InstrItins);
61 
62  unsigned NumRes = SchedModel.getNumProcResourceKinds();
63  ResourceFactors.resize(NumRes);
64  ResourceLCM = SchedModel.IssueWidth;
65  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
66  unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
67  if (NumUnits > 0)
68  ResourceLCM = lcm(ResourceLCM, NumUnits);
69  }
70  MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
71  for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
72  unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
73  ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
74  }
75 }
76 
78  const MCSchedClassDesc *SC) const {
79  if (hasInstrItineraries()) {
80  int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
81  return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
82  }
83  if (hasInstrSchedModel()) {
84  if (!SC)
85  SC = resolveSchedClass(MI);
86  if (SC->isValid())
87  return SC->NumMicroOps;
88  }
89  return MI->isTransient() ? 0 : 1;
90 }
91 
92 // The machine model may explicitly specify an invalid latency, which
93 // effectively means infinite latency. Since users of the TargetSchedule API
94 // don't know how to handle this, we convert it to a very large latency that is
95 // easy to distinguish when debugging the DAG but won't induce overflow.
96 static unsigned capLatency(int Cycles) {
97  return Cycles >= 0 ? Cycles : 1000;
98 }
99 
100 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
101 /// evaluation of predicates that depend on instruction operands or flags.
104 
105  // Get the definition's scheduling class descriptor from this machine model.
106  unsigned SchedClass = MI->getDesc().getSchedClass();
107  const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
108  if (!SCDesc->isValid())
109  return SCDesc;
110 
111 #ifndef NDEBUG
112  unsigned NIter = 0;
113 #endif
114  while (SCDesc->isVariant()) {
115  assert(++NIter < 6 && "Variants are nested deeper than the magic number");
116 
117  SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
118  SCDesc = SchedModel.getSchedClassDesc(SchedClass);
119  }
120  return SCDesc;
121 }
122 
123 /// Find the def index of this operand. This index maps to the machine model and
124 /// is independent of use operands. Def operands may be reordered with uses or
125 /// merged with uses without affecting the def index (e.g. before/after
126 /// regalloc). However, an instruction's def operands must never be reordered
127 /// with respect to each other.
128 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
129  unsigned DefIdx = 0;
130  for (unsigned i = 0; i != DefOperIdx; ++i) {
131  const MachineOperand &MO = MI->getOperand(i);
132  if (MO.isReg() && MO.isDef())
133  ++DefIdx;
134  }
135  return DefIdx;
136 }
137 
138 /// Find the use index of this operand. This is independent of the instruction's
139 /// def operands.
140 ///
141 /// Note that uses are not determined by the operand's isUse property, which
142 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
143 /// a "use". The machine model allows an operand to be both a Def and Use.
144 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
145  unsigned UseIdx = 0;
146  for (unsigned i = 0; i != UseOperIdx; ++i) {
147  const MachineOperand &MO = MI->getOperand(i);
148  if (MO.isReg() && MO.readsReg())
149  ++UseIdx;
150  }
151  return UseIdx;
152 }
153 
154 // Top-level API for clients that know the operand indices.
156  const MachineInstr *DefMI, unsigned DefOperIdx,
157  const MachineInstr *UseMI, unsigned UseOperIdx) const {
158 
160  return TII->defaultDefLatency(&SchedModel, DefMI);
161 
162  if (hasInstrItineraries()) {
163  int OperLatency = 0;
164  if (UseMI) {
165  OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx,
166  UseMI, UseOperIdx);
167  }
168  else {
169  unsigned DefClass = DefMI->getDesc().getSchedClass();
170  OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
171  }
172  if (OperLatency >= 0)
173  return OperLatency;
174 
175  // No operand latency was found.
176  unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
177 
178  // Expected latency is the max of the stage latency and itinerary props.
179  // Rather than directly querying InstrItins stage latency, we call a TII
180  // hook to allow subtargets to specialize latency. This hook is only
181  // applicable to the InstrItins model. InstrSchedModel should model all
182  // special cases without TII hooks.
183  InstrLatency = std::max(InstrLatency,
184  TII->defaultDefLatency(&SchedModel, DefMI));
185  return InstrLatency;
186  }
187  // hasInstrSchedModel()
188  const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
189  unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
190  if (DefIdx < SCDesc->NumWriteLatencyEntries) {
191  // Lookup the definition's write latency in SubtargetInfo.
192  const MCWriteLatencyEntry *WLEntry =
193  STI->getWriteLatencyEntry(SCDesc, DefIdx);
194  unsigned WriteID = WLEntry->WriteResourceID;
195  unsigned Latency = capLatency(WLEntry->Cycles);
196  if (!UseMI)
197  return Latency;
198 
199  // Lookup the use's latency adjustment in SubtargetInfo.
200  const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
201  if (UseDesc->NumReadAdvanceEntries == 0)
202  return Latency;
203  unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
204  int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
205  if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
206  return 0;
207  return Latency - Advance;
208  }
209  // If DefIdx does not exist in the model (e.g. implicit defs), then return
210  // unit latency (defaultDefLatency may be too conservative).
211 #ifndef NDEBUG
212  if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
213  && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
214  && SchedModel.isComplete()) {
215  std::string Err;
216  raw_string_ostream ss(Err);
217  ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
218  << *DefMI;
219  report_fatal_error(ss.str());
220  }
221 #endif
222  // FIXME: Automatically giving all implicit defs defaultDefLatency is
223  // undesirable. We should only do it for defs that are known to the MC
224  // desc like flags. Truly implicit defs should get 1 cycle latency.
225  return DefMI->isTransient() ? 0 : TII->defaultDefLatency(&SchedModel, DefMI);
226 }
227 
228 unsigned
230  bool UseDefaultDefLatency) const {
231  // For the itinerary model, fall back to the old subtarget hook.
232  // Allow subtargets to compute Bundle latencies outside the machine model.
233  if (hasInstrItineraries() || MI->isBundle() ||
234  (!hasInstrSchedModel() && !UseDefaultDefLatency))
235  return TII->getInstrLatency(&InstrItins, MI);
236 
237  if (hasInstrSchedModel()) {
238  const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
239  if (SCDesc->isValid()) {
240  unsigned Latency = 0;
241  for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
242  DefIdx != DefEnd; ++DefIdx) {
243  // Lookup the definition's write latency in SubtargetInfo.
244  const MCWriteLatencyEntry *WLEntry =
245  STI->getWriteLatencyEntry(SCDesc, DefIdx);
246  Latency = std::max(Latency, capLatency(WLEntry->Cycles));
247  }
248  return Latency;
249  }
250  }
251  return TII->defaultDefLatency(&SchedModel, MI);
252 }
253 
254 unsigned TargetSchedModel::
255 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
256  const MachineInstr *DepMI) const {
257  if (SchedModel.MicroOpBufferSize <= 1)
258  return 1;
259 
260  // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch
261  // WAW dependencies in the same cycle.
262 
263  // Treat predication as a data dependency for out-of-order cpus. In-order
264  // cpus do not need to treat predicated writes specially.
265  //
266  // TODO: The following hack exists because predication passes do not
267  // correctly append imp-use operands, and readsReg() strangely returns false
268  // for predicated defs.
269  unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
270  const MachineFunction &MF = *DefMI->getParent()->getParent();
271  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
272  if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
273  return computeInstrLatency(DefMI);
274 
275  // If we have a per operand scheduling model, check if this def is writing
276  // an unbuffered resource. If so, it treated like an in-order cpu.
277  if (hasInstrSchedModel()) {
278  const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
279  if (SCDesc->isValid()) {
280  for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
281  *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
282  if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
283  return 1;
284  }
285  }
286  }
287  return 0;
288 }
bool isImplicit() const
const MachineFunction * getParent() const
const MCSchedClassDesc * resolveSchedClass(const MachineInstr *MI) const
Return the MCSchedClassDesc for this instruction.
bool hasInstrItineraries() const
Return true if this machine model includes cycle-to-cycle itinerary data.
static unsigned lcm(unsigned A, unsigned B)
int getNumMicroOps(unsigned ItinClassIndx) const
const MCWriteProcResEntry * getWriteProcResBegin(const MCSchedClassDesc *SC) const
unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *DepMI) const
Output dependency latency of a pair of defs of the same register.
unsigned getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC=0) const
Return the number of issue slots required for this MI.
unsigned short NumMicroOps
Definition: MCSchedule.h:103
void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti, const TargetInstrInfo *tii)
Initialize the machine model for instruction scheduling.
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
static unsigned gcd(unsigned Dividend, unsigned Divisor)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
void initInstrItins(InstrItineraryData &InstrItins) const
Initialize an InstrItineraryData instance.
const MCWriteProcResEntry * getWriteProcResEnd(const MCSchedClassDesc *SC) const
static cl::opt< bool > EnableSchedItins("scheditins", cl::Hidden, cl::init(true), cl::desc("Use InstrItineraryData for latency lookup"))
bool isReg() const
isReg - Tests if this is a MO_Register operand.
int getReadAdvanceCycles(const MCSchedClassDesc *SC, unsigned UseIdx, unsigned WriteResID) const
bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const
Definition: MachineInstr.h:724
bool isValid() const
Definition: MCSchedule.h:113
unsigned NumReadAdvanceEntries
Definition: MCSchedule.h:111
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bool isBundle() const
Definition: MachineInstr.h:666
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
unsigned NumWriteLatencyEntries
Definition: MCSchedule.h:109
bool isOptionalDef() const
Definition: MCInstrDesc.h:87
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
const MCWriteLatencyEntry * getWriteLatencyEntry(const MCSchedClassDesc *SC, unsigned DefIdx) const
const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const
Definition: MCSchedule.h:230
unsigned getNumProcResourceKinds() const
Definition: MCSchedule.h:226
std::string & str()
Definition: raw_ostream.h:441
bool isVariant() const
Definition: MCSchedule.h:116
bool hasInstrSchedModel() const
Return true if this machine model includes an instruction-level scheduling model. ...
unsigned IssueWidth
Definition: MCSchedule.h:137
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr *MI) const
virtual unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *MI, const TargetSchedModel *SchedModel) const
unsigned MicroOpBufferSize
Definition: MCSchedule.h:154
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
Definition: MCSchedule.h:220
bool isTransient() const
Definition: MachineInstr.h:692
unsigned defaultDefLatency(const MCSchedModel *SchedModel, const MachineInstr *DefMI) const
Return the default expected latency for a def based on it's opcode.
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
Definition: MCSchedule.h:237
static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx)
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr *MI, unsigned *PredCost=0) const
unsigned getSchedClass() const
Return the scheduling class for this instruction. The scheduling class is an index into the InstrItin...
Definition: MCInstrDesc.h:570
static cl::opt< bool > EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), cl::desc("Use TargetSchedModel for latency lookup"))
void resize(unsigned N)
Definition: SmallVector.h:401
const TargetMachine & getTarget() const
virtual int getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual const TargetRegisterInfo * getRegisterInfo() const
unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *UseMI, unsigned UseOperIdx) const
Compute operand latency based on the available machine model.
bool isComplete() const
Definition: MCSchedule.h:224
unsigned computeInstrLatency(const MachineInstr *MI, bool UseDefaultDefLatency=true) const
Compute the instruction latency based on the available machine model.
unsigned getReg() const
getReg - Returns the register number.
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
virtual bool isPredicated(const MachineInstr *MI) const
bool readsReg() const
static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx)
static unsigned capLatency(int Cycles)