LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ARMConstantIslandPass.cpp
Go to the documentation of this file.
1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "arm-cp-islands"
17 #include "ARM.h"
18 #include "ARMMachineFunctionInfo.h"
20 #include "Thumb2InstrInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/DataLayout.h"
31 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
36 #include <algorithm>
37 using namespace llvm;
38 
39 STATISTIC(NumCPEs, "Number of constpool entries");
40 STATISTIC(NumSplit, "Number of uncond branches inserted");
41 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
42 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
43 STATISTIC(NumTBs, "Number of table branches generated");
44 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
45 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
46 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
47 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
48 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
49 
50 
51 static cl::opt<bool>
52 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
53  cl::desc("Adjust basic block layout to better use TB[BH]"));
54 
55 // FIXME: This option should be removed once it has received sufficient testing.
56 static cl::opt<bool>
57 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
58  cl::desc("Align constant islands in code"));
59 
60 /// UnknownPadding - Return the worst case padding that could result from
61 /// unknown offset bits. This does not include alignment padding caused by
62 /// known offset bits.
63 ///
64 /// @param LogAlign log2(alignment)
65 /// @param KnownBits Number of known low offset bits.
66 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
67  if (KnownBits < LogAlign)
68  return (1u << LogAlign) - (1u << KnownBits);
69  return 0;
70 }
71 
72 namespace {
73  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
74  /// requires constant pool entries to be scattered among the instructions
75  /// inside a function. To do this, it completely ignores the normal LLVM
76  /// constant pool; instead, it places constants wherever it feels like with
77  /// special instructions.
78  ///
79  /// The terminology used in this pass includes:
80  /// Islands - Clumps of constants placed in the function.
81  /// Water - Potential places where an island could be formed.
82  /// CPE - A constant pool entry that has been placed somewhere, which
83  /// tracks a list of users.
84  class ARMConstantIslands : public MachineFunctionPass {
85  /// BasicBlockInfo - Information about the offset and size of a single
86  /// basic block.
87  struct BasicBlockInfo {
88  /// Offset - Distance from the beginning of the function to the beginning
89  /// of this basic block.
90  ///
91  /// Offsets are computed assuming worst case padding before an aligned
92  /// block. This means that subtracting basic block offsets always gives a
93  /// conservative estimate of the real distance which may be smaller.
94  ///
95  /// Because worst case padding is used, the computed offset of an aligned
96  /// block may not actually be aligned.
97  unsigned Offset;
98 
99  /// Size - Size of the basic block in bytes. If the block contains
100  /// inline assembly, this is a worst case estimate.
101  ///
102  /// The size does not include any alignment padding whether from the
103  /// beginning of the block, or from an aligned jump table at the end.
104  unsigned Size;
105 
106  /// KnownBits - The number of low bits in Offset that are known to be
107  /// exact. The remaining bits of Offset are an upper bound.
108  uint8_t KnownBits;
109 
110  /// Unalign - When non-zero, the block contains instructions (inline asm)
111  /// of unknown size. The real size may be smaller than Size bytes by a
112  /// multiple of 1 << Unalign.
113  uint8_t Unalign;
114 
115  /// PostAlign - When non-zero, the block terminator contains a .align
116  /// directive, so the end of the block is aligned to 1 << PostAlign
117  /// bytes.
118  uint8_t PostAlign;
119 
120  BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
121  PostAlign(0) {}
122 
123  /// Compute the number of known offset bits internally to this block.
124  /// This number should be used to predict worst case padding when
125  /// splitting the block.
126  unsigned internalKnownBits() const {
127  unsigned Bits = Unalign ? Unalign : KnownBits;
128  // If the block size isn't a multiple of the known bits, assume the
129  // worst case padding.
130  if (Size & ((1u << Bits) - 1))
131  Bits = countTrailingZeros(Size);
132  return Bits;
133  }
134 
135  /// Compute the offset immediately following this block. If LogAlign is
136  /// specified, return the offset the successor block will get if it has
137  /// this alignment.
138  unsigned postOffset(unsigned LogAlign = 0) const {
139  unsigned PO = Offset + Size;
140  unsigned LA = std::max(unsigned(PostAlign), LogAlign);
141  if (!LA)
142  return PO;
143  // Add alignment padding from the terminator.
144  return PO + UnknownPadding(LA, internalKnownBits());
145  }
146 
147  /// Compute the number of known low bits of postOffset. If this block
148  /// contains inline asm, the number of known bits drops to the
149  /// instruction alignment. An aligned terminator may increase the number
150  /// of know bits.
151  /// If LogAlign is given, also consider the alignment of the next block.
152  unsigned postKnownBits(unsigned LogAlign = 0) const {
153  return std::max(std::max(unsigned(PostAlign), LogAlign),
154  internalKnownBits());
155  }
156  };
157 
158  std::vector<BasicBlockInfo> BBInfo;
159 
160  /// WaterList - A sorted list of basic blocks where islands could be placed
161  /// (i.e. blocks that don't fall through to the following block, due
162  /// to a return, unreachable, or unconditional branch).
163  std::vector<MachineBasicBlock*> WaterList;
164 
165  /// NewWaterList - The subset of WaterList that was created since the
166  /// previous iteration by inserting unconditional branches.
167  SmallSet<MachineBasicBlock*, 4> NewWaterList;
168 
169  typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
170 
171  /// CPUser - One user of a constant pool, keeping the machine instruction
172  /// pointer, the constant pool being referenced, and the max displacement
173  /// allowed from the instruction to the CP. The HighWaterMark records the
174  /// highest basic block where a new CPEntry can be placed. To ensure this
175  /// pass terminates, the CP entries are initially placed at the end of the
176  /// function and then move monotonically to lower addresses. The
177  /// exception to this rule is when the current CP entry for a particular
178  /// CPUser is out of range, but there is another CP entry for the same
179  /// constant value in range. We want to use the existing in-range CP
180  /// entry, but if it later moves out of range, the search for new water
181  /// should resume where it left off. The HighWaterMark is used to record
182  /// that point.
183  struct CPUser {
184  MachineInstr *MI;
185  MachineInstr *CPEMI;
186  MachineBasicBlock *HighWaterMark;
187  private:
188  unsigned MaxDisp;
189  public:
190  bool NegOk;
191  bool IsSoImm;
192  bool KnownAlignment;
193  CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
194  bool neg, bool soimm)
195  : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
196  KnownAlignment(false) {
197  HighWaterMark = CPEMI->getParent();
198  }
199  /// getMaxDisp - Returns the maximum displacement supported by MI.
200  /// Correct for unknown alignment.
201  /// Conservatively subtract 2 bytes to handle weird alignment effects.
202  unsigned getMaxDisp() const {
203  return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
204  }
205  };
206 
207  /// CPUsers - Keep track of all of the machine instructions that use various
208  /// constant pools and their max displacement.
209  std::vector<CPUser> CPUsers;
210 
211  /// CPEntry - One per constant pool entry, keeping the machine instruction
212  /// pointer, the constpool index, and the number of CPUser's which
213  /// reference this entry.
214  struct CPEntry {
215  MachineInstr *CPEMI;
216  unsigned CPI;
217  unsigned RefCount;
218  CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
219  : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
220  };
221 
222  /// CPEntries - Keep track of all of the constant pool entry machine
223  /// instructions. For each original constpool index (i.e. those that
224  /// existed upon entry to this pass), it keeps a vector of entries.
225  /// Original elements are cloned as we go along; the clones are
226  /// put in the vector of the original element, but have distinct CPIs.
227  std::vector<std::vector<CPEntry> > CPEntries;
228 
229  /// ImmBranch - One per immediate branch, keeping the machine instruction
230  /// pointer, conditional or unconditional, the max displacement,
231  /// and (if isCond is true) the corresponding unconditional branch
232  /// opcode.
233  struct ImmBranch {
234  MachineInstr *MI;
235  unsigned MaxDisp : 31;
236  bool isCond : 1;
237  int UncondBr;
238  ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
239  : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
240  };
241 
242  /// ImmBranches - Keep track of all the immediate branch instructions.
243  ///
244  std::vector<ImmBranch> ImmBranches;
245 
246  /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
247  ///
249 
250  /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
251  SmallVector<MachineInstr*, 4> T2JumpTables;
252 
253  /// HasFarJump - True if any far jump instruction has been emitted during
254  /// the branch fix up pass.
255  bool HasFarJump;
256 
257  MachineFunction *MF;
258  MachineConstantPool *MCP;
259  const ARMBaseInstrInfo *TII;
260  const ARMSubtarget *STI;
261  ARMFunctionInfo *AFI;
262  bool isThumb;
263  bool isThumb1;
264  bool isThumb2;
265  public:
266  static char ID;
267  ARMConstantIslands() : MachineFunctionPass(ID) {}
268 
269  virtual bool runOnMachineFunction(MachineFunction &MF);
270 
271  virtual const char *getPassName() const {
272  return "ARM constant island placement and branch shortening pass";
273  }
274 
275  private:
276  void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
277  CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
278  unsigned getCPELogAlign(const MachineInstr *CPEMI);
279  void scanFunctionJumpTables();
280  void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
281  MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
282  void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
283  void adjustBBOffsetsAfter(MachineBasicBlock *BB);
284  bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
285  int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
286  bool findAvailableWater(CPUser&U, unsigned UserOffset,
287  water_iterator &WaterIter);
288  void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
289  MachineBasicBlock *&NewMBB);
290  bool handleConstantPoolUser(unsigned CPUserIndex);
291  void removeDeadCPEMI(MachineInstr *CPEMI);
292  bool removeUnusedCPEntries();
293  bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
294  MachineInstr *CPEMI, unsigned Disp, bool NegOk,
295  bool DoDump = false);
296  bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
297  CPUser &U, unsigned &Growth);
298  bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
299  bool fixupImmediateBr(ImmBranch &Br);
300  bool fixupConditionalBr(ImmBranch &Br);
301  bool fixupUnconditionalBr(ImmBranch &Br);
302  bool undoLRSpillRestore();
303  bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
304  bool optimizeThumb2Instructions();
305  bool optimizeThumb2Branches();
306  bool reorderThumb2JumpTables();
307  bool optimizeThumb2JumpTables();
308  MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
309  MachineBasicBlock *JTBB);
310 
311  void computeBlockSize(MachineBasicBlock *MBB);
312  unsigned getOffsetOf(MachineInstr *MI) const;
313  unsigned getUserOffset(CPUser&) const;
314  void dumpBBs();
315  void verify();
316 
317  bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
318  unsigned Disp, bool NegativeOK, bool IsSoImm = false);
319  bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
320  const CPUser &U) {
321  return isOffsetInRange(UserOffset, TrialOffset,
322  U.getMaxDisp(), U.NegOk, U.IsSoImm);
323  }
324  };
325  char ARMConstantIslands::ID = 0;
326 }
327 
328 /// verify - check BBOffsets, BBSizes, alignment of islands
330 #ifndef NDEBUG
331  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
332  MBBI != E; ++MBBI) {
333  MachineBasicBlock *MBB = MBBI;
334  unsigned MBBId = MBB->getNumber();
335  assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
336  }
337  DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
338  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
339  CPUser &U = CPUsers[i];
340  unsigned UserOffset = getUserOffset(U);
341  // Verify offset using the real max displacement without the safety
342  // adjustment.
343  if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
344  /* DoDump = */ true)) {
345  DEBUG(dbgs() << "OK\n");
346  continue;
347  }
348  DEBUG(dbgs() << "Out of range.\n");
349  dumpBBs();
350  DEBUG(MF->dump());
351  llvm_unreachable("Constant pool entry out of range!");
352  }
353 #endif
354 }
355 
356 /// print block size and offset information - debugging
357 void ARMConstantIslands::dumpBBs() {
358  DEBUG({
359  for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
360  const BasicBlockInfo &BBI = BBInfo[J];
361  dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
362  << " kb=" << unsigned(BBI.KnownBits)
363  << " ua=" << unsigned(BBI.Unalign)
364  << " pa=" << unsigned(BBI.PostAlign)
365  << format(" size=%#x\n", BBInfo[J].Size);
366  }
367  });
368 }
369 
370 /// createARMConstantIslandPass - returns an instance of the constpool
371 /// island pass.
373  return new ARMConstantIslands();
374 }
375 
376 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
377  MF = &mf;
378  MCP = mf.getConstantPool();
379 
380  DEBUG(dbgs() << "***** ARMConstantIslands: "
381  << MCP->getConstants().size() << " CP entries, aligned to "
382  << MCP->getConstantPoolAlignment() << " bytes *****\n");
383 
384  TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
385  AFI = MF->getInfo<ARMFunctionInfo>();
386  STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
387 
388  isThumb = AFI->isThumbFunction();
389  isThumb1 = AFI->isThumb1OnlyFunction();
390  isThumb2 = AFI->isThumb2Function();
391 
392  HasFarJump = false;
393 
394  // This pass invalidates liveness information when it splits basic blocks.
395  MF->getRegInfo().invalidateLiveness();
396 
397  // Renumber all of the machine basic blocks in the function, guaranteeing that
398  // the numbers agree with the position of the block in the function.
399  MF->RenumberBlocks();
400 
401  // Try to reorder and otherwise adjust the block layout to make good use
402  // of the TB[BH] instructions.
403  bool MadeChange = false;
404  if (isThumb2 && AdjustJumpTableBlocks) {
405  scanFunctionJumpTables();
406  MadeChange |= reorderThumb2JumpTables();
407  // Data is out of date, so clear it. It'll be re-computed later.
408  T2JumpTables.clear();
409  // Blocks may have shifted around. Keep the numbering up to date.
410  MF->RenumberBlocks();
411  }
412 
413  // Thumb1 functions containing constant pools get 4-byte alignment.
414  // This is so we can keep exact track of where the alignment padding goes.
415 
416  // ARM and Thumb2 functions need to be 4-byte aligned.
417  if (!isThumb1)
418  MF->ensureAlignment(2); // 2 = log2(4)
419 
420  // Perform the initial placement of the constant pool entries. To start with,
421  // we put them all at the end of the function.
422  std::vector<MachineInstr*> CPEMIs;
423  if (!MCP->isEmpty())
424  doInitialPlacement(CPEMIs);
425 
426  /// The next UID to take is the first unused one.
427  AFI->initPICLabelUId(CPEMIs.size());
428 
429  // Do the initial scan of the function, building up information about the
430  // sizes of each block, the location of all the water, and finding all of the
431  // constant pool users.
432  initializeFunctionInfo(CPEMIs);
433  CPEMIs.clear();
434  DEBUG(dumpBBs());
435 
436 
437  /// Remove dead constant pool entries.
438  MadeChange |= removeUnusedCPEntries();
439 
440  // Iteratively place constant pool entries and fix up branches until there
441  // is no change.
442  unsigned NoCPIters = 0, NoBRIters = 0;
443  while (true) {
444  DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
445  bool CPChange = false;
446  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
447  CPChange |= handleConstantPoolUser(i);
448  if (CPChange && ++NoCPIters > 30)
449  report_fatal_error("Constant Island pass failed to converge!");
450  DEBUG(dumpBBs());
451 
452  // Clear NewWaterList now. If we split a block for branches, it should
453  // appear as "new water" for the next iteration of constant pool placement.
454  NewWaterList.clear();
455 
456  DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
457  bool BRChange = false;
458  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
459  BRChange |= fixupImmediateBr(ImmBranches[i]);
460  if (BRChange && ++NoBRIters > 30)
461  report_fatal_error("Branch Fix Up pass failed to converge!");
462  DEBUG(dumpBBs());
463 
464  if (!CPChange && !BRChange)
465  break;
466  MadeChange = true;
467  }
468 
469  // Shrink 32-bit Thumb2 branch, load, and store instructions.
470  if (isThumb2 && !STI->prefers32BitThumb())
471  MadeChange |= optimizeThumb2Instructions();
472 
473  // After a while, this might be made debug-only, but it is not expensive.
474  verify();
475 
476  // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
477  // undo the spill / restore of LR if possible.
478  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
479  MadeChange |= undoLRSpillRestore();
480 
481  // Save the mapping between original and cloned constpool entries.
482  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
483  for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
484  const CPEntry & CPE = CPEntries[i][j];
485  AFI->recordCPEClone(i, CPE.CPI);
486  }
487  }
488 
489  DEBUG(dbgs() << '\n'; dumpBBs());
490 
491  BBInfo.clear();
492  WaterList.clear();
493  CPUsers.clear();
494  CPEntries.clear();
495  ImmBranches.clear();
496  PushPopMIs.clear();
497  T2JumpTables.clear();
498 
499  return MadeChange;
500 }
501 
502 /// doInitialPlacement - Perform the initial placement of the constant pool
503 /// entries. To start with, we put them all at the end of the function.
504 void
505 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
506  // Create the basic block to hold the CPE's.
507  MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
508  MF->push_back(BB);
509 
510  // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
511  unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
512 
513  // Mark the basic block as required by the const-pool.
514  // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
515  BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
516 
517  // The function needs to be as aligned as the basic blocks. The linker may
518  // move functions around based on their alignment.
519  MF->ensureAlignment(BB->getAlignment());
520 
521  // Order the entries in BB by descending alignment. That ensures correct
522  // alignment of all entries as long as BB is sufficiently aligned. Keep
523  // track of the insertion point for each alignment. We are going to bucket
524  // sort the entries as they are created.
525  SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
526 
527  // Add all of the constants from the constant pool to the end block, use an
528  // identity mapping of CPI's to CPE's.
529  const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
530 
531  const DataLayout &TD = *MF->getTarget().getDataLayout();
532  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
533  unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
534  assert(Size >= 4 && "Too small constant pool entry");
535  unsigned Align = CPs[i].getAlignment();
536  assert(isPowerOf2_32(Align) && "Invalid alignment");
537  // Verify that all constant pool entries are a multiple of their alignment.
538  // If not, we would have to pad them out so that instructions stay aligned.
539  assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
540 
541  // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
542  unsigned LogAlign = Log2_32(Align);
543  MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
544  MachineInstr *CPEMI =
545  BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
546  .addImm(i).addConstantPoolIndex(i).addImm(Size);
547  CPEMIs.push_back(CPEMI);
548 
549  // Ensure that future entries with higher alignment get inserted before
550  // CPEMI. This is bucket sort with iterators.
551  for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
552  if (InsPoint[a] == InsAt)
553  InsPoint[a] = CPEMI;
554 
555  // Add a new CPEntry, but no corresponding CPUser yet.
556  std::vector<CPEntry> CPEs;
557  CPEs.push_back(CPEntry(CPEMI, i));
558  CPEntries.push_back(CPEs);
559  ++NumCPEs;
560  DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
561  << Size << ", align = " << Align <<'\n');
562  }
563  DEBUG(BB->dump());
564 }
565 
566 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
567 /// into the block immediately after it.
569  // Get the next machine basic block in the function.
570  MachineFunction::iterator MBBI = MBB;
571  // Can't fall off end of function.
572  if (llvm::next(MBBI) == MBB->getParent()->end())
573  return false;
574 
575  MachineBasicBlock *NextBB = llvm::next(MBBI);
577  E = MBB->succ_end(); I != E; ++I)
578  if (*I == NextBB)
579  return true;
580 
581  return false;
582 }
583 
584 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
585 /// look up the corresponding CPEntry.
586 ARMConstantIslands::CPEntry
587 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
588  const MachineInstr *CPEMI) {
589  std::vector<CPEntry> &CPEs = CPEntries[CPI];
590  // Number of entries per constpool index should be small, just do a
591  // linear search.
592  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
593  if (CPEs[i].CPEMI == CPEMI)
594  return &CPEs[i];
595  }
596  return NULL;
597 }
598 
599 /// getCPELogAlign - Returns the required alignment of the constant pool entry
600 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
601 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
602  assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
603 
604  // Everything is 4-byte aligned unless AlignConstantIslands is set.
606  return 2;
607 
608  unsigned CPI = CPEMI->getOperand(1).getIndex();
609  assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
610  unsigned Align = MCP->getConstants()[CPI].getAlignment();
611  assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
612  return Log2_32(Align);
613 }
614 
615 /// scanFunctionJumpTables - Do a scan of the function, building up
616 /// information about the sizes of each block and the locations of all
617 /// the jump tables.
618 void ARMConstantIslands::scanFunctionJumpTables() {
619  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
620  MBBI != E; ++MBBI) {
621  MachineBasicBlock &MBB = *MBBI;
622 
623  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
624  I != E; ++I)
625  if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
626  T2JumpTables.push_back(I);
627  }
628 }
629 
630 /// initializeFunctionInfo - Do the initial scan of the function, building up
631 /// information about the sizes of each block, the location of all the water,
632 /// and finding all of the constant pool users.
633 void ARMConstantIslands::
634 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
635  BBInfo.clear();
636  BBInfo.resize(MF->getNumBlockIDs());
637 
638  // First thing, compute the size of all basic blocks, and see if the function
639  // has any inline assembly in it. If so, we have to be conservative about
640  // alignment assumptions, as we don't know for sure the size of any
641  // instructions in the inline assembly.
642  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
643  computeBlockSize(I);
644 
645  // The known bits of the entry block offset are determined by the function
646  // alignment.
647  BBInfo.front().KnownBits = MF->getAlignment();
648 
649  // Compute block offsets and known bits.
650  adjustBBOffsetsAfter(MF->begin());
651 
652  // Now go back through the instructions and build up our data structures.
653  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
654  MBBI != E; ++MBBI) {
655  MachineBasicBlock &MBB = *MBBI;
656 
657  // If this block doesn't fall through into the next MBB, then this is
658  // 'water' that a constant pool island could be placed.
659  if (!BBHasFallthrough(&MBB))
660  WaterList.push_back(&MBB);
661 
662  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
663  I != E; ++I) {
664  if (I->isDebugValue())
665  continue;
666 
667  int Opc = I->getOpcode();
668  if (I->isBranch()) {
669  bool isCond = false;
670  unsigned Bits = 0;
671  unsigned Scale = 1;
672  int UOpc = Opc;
673  switch (Opc) {
674  default:
675  continue; // Ignore other JT branches
676  case ARM::t2BR_JT:
677  T2JumpTables.push_back(I);
678  continue; // Does not get an entry in ImmBranches
679  case ARM::Bcc:
680  isCond = true;
681  UOpc = ARM::B;
682  // Fallthrough
683  case ARM::B:
684  Bits = 24;
685  Scale = 4;
686  break;
687  case ARM::tBcc:
688  isCond = true;
689  UOpc = ARM::tB;
690  Bits = 8;
691  Scale = 2;
692  break;
693  case ARM::tB:
694  Bits = 11;
695  Scale = 2;
696  break;
697  case ARM::t2Bcc:
698  isCond = true;
699  UOpc = ARM::t2B;
700  Bits = 20;
701  Scale = 2;
702  break;
703  case ARM::t2B:
704  Bits = 24;
705  Scale = 2;
706  break;
707  }
708 
709  // Record this immediate branch.
710  unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
711  ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
712  }
713 
714  if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
715  PushPopMIs.push_back(I);
716 
717  if (Opc == ARM::CONSTPOOL_ENTRY)
718  continue;
719 
720  // Scan the instructions for constant pool operands.
721  for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
722  if (I->getOperand(op).isCPI()) {
723  // We found one. The addressing mode tells us the max displacement
724  // from the PC that this instruction permits.
725 
726  // Basic size info comes from the TSFlags field.
727  unsigned Bits = 0;
728  unsigned Scale = 1;
729  bool NegOk = false;
730  bool IsSoImm = false;
731 
732  switch (Opc) {
733  default:
734  llvm_unreachable("Unknown addressing mode for CP reference!");
735 
736  // Taking the address of a CP entry.
737  case ARM::LEApcrel:
738  // This takes a SoImm, which is 8 bit immediate rotated. We'll
739  // pretend the maximum offset is 255 * 4. Since each instruction
740  // 4 byte wide, this is always correct. We'll check for other
741  // displacements that fits in a SoImm as well.
742  Bits = 8;
743  Scale = 4;
744  NegOk = true;
745  IsSoImm = true;
746  break;
747  case ARM::t2LEApcrel:
748  Bits = 12;
749  NegOk = true;
750  break;
751  case ARM::tLEApcrel:
752  Bits = 8;
753  Scale = 4;
754  break;
755 
756  case ARM::LDRBi12:
757  case ARM::LDRi12:
758  case ARM::LDRcp:
759  case ARM::t2LDRpci:
760  Bits = 12; // +-offset_12
761  NegOk = true;
762  break;
763 
764  case ARM::tLDRpci:
765  Bits = 8;
766  Scale = 4; // +(offset_8*4)
767  break;
768 
769  case ARM::VLDRD:
770  case ARM::VLDRS:
771  Bits = 8;
772  Scale = 4; // +-(offset_8*4)
773  NegOk = true;
774  break;
775  }
776 
777  // Remember that this is a user of a CP entry.
778  unsigned CPI = I->getOperand(op).getIndex();
779  MachineInstr *CPEMI = CPEMIs[CPI];
780  unsigned MaxOffs = ((1 << Bits)-1) * Scale;
781  CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
782 
783  // Increment corresponding CPEntry reference count.
784  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
785  assert(CPE && "Cannot find a corresponding CPEntry!");
786  CPE->RefCount++;
787 
788  // Instructions can only use one CP entry, don't bother scanning the
789  // rest of the operands.
790  break;
791  }
792  }
793  }
794 }
795 
796 /// computeBlockSize - Compute the size and some alignment information for MBB.
797 /// This function updates BBInfo directly.
798 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
799  BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
800  BBI.Size = 0;
801  BBI.Unalign = 0;
802  BBI.PostAlign = 0;
803 
804  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
805  ++I) {
806  BBI.Size += TII->GetInstSizeInBytes(I);
807  // For inline asm, GetInstSizeInBytes returns a conservative estimate.
808  // The actual size may be smaller, but still a multiple of the instr size.
809  if (I->isInlineAsm())
810  BBI.Unalign = isThumb ? 1 : 2;
811  // Also consider instructions that may be shrunk later.
812  else if (isThumb && mayOptimizeThumb2Instruction(I))
813  BBI.Unalign = 1;
814  }
815 
816  // tBR_JTr contains a .align 2 directive.
817  if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
818  BBI.PostAlign = 2;
819  MBB->getParent()->ensureAlignment(2);
820  }
821 }
822 
823 /// getOffsetOf - Return the current offset of the specified machine instruction
824 /// from the start of the function. This offset changes as stuff is moved
825 /// around inside the function.
826 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
827  MachineBasicBlock *MBB = MI->getParent();
828 
829  // The offset is composed of two things: the sum of the sizes of all MBB's
830  // before this instruction's block, and the offset from the start of the block
831  // it is in.
832  unsigned Offset = BBInfo[MBB->getNumber()].Offset;
833 
834  // Sum instructions before MI in MBB.
835  for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
836  assert(I != MBB->end() && "Didn't find MI in its own basic block?");
837  Offset += TII->GetInstSizeInBytes(I);
838  }
839  return Offset;
840 }
841 
842 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
843 /// ID.
844 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
845  const MachineBasicBlock *RHS) {
846  return LHS->getNumber() < RHS->getNumber();
847 }
848 
849 /// updateForInsertedWaterBlock - When a block is newly inserted into the
850 /// machine function, it upsets all of the block numbers. Renumber the blocks
851 /// and update the arrays that parallel this numbering.
852 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
853  // Renumber the MBB's to keep them consecutive.
854  NewBB->getParent()->RenumberBlocks(NewBB);
855 
856  // Insert an entry into BBInfo to align it properly with the (newly
857  // renumbered) block numbers.
858  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
859 
860  // Next, update WaterList. Specifically, we need to add NewMBB as having
861  // available water after it.
862  water_iterator IP =
863  std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
865  WaterList.insert(IP, NewBB);
866 }
867 
868 
869 /// Split the basic block containing MI into two blocks, which are joined by
870 /// an unconditional branch. Update data structures and renumber blocks to
871 /// account for this change and returns the newly created block.
872 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
873  MachineBasicBlock *OrigBB = MI->getParent();
874 
875  // Create a new MBB for the code after the OrigBB.
876  MachineBasicBlock *NewBB =
877  MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
878  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
879  MF->insert(MBBI, NewBB);
880 
881  // Splice the instructions starting with MI over to NewBB.
882  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
883 
884  // Add an unconditional branch from OrigBB to NewBB.
885  // Note the new unconditional branch is not being recorded.
886  // There doesn't seem to be meaningful DebugInfo available; this doesn't
887  // correspond to anything in the source.
888  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
889  if (!isThumb)
890  BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
891  else
892  BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
893  .addImm(ARMCC::AL).addReg(0);
894  ++NumSplit;
895 
896  // Update the CFG. All succs of OrigBB are now succs of NewBB.
897  NewBB->transferSuccessors(OrigBB);
898 
899  // OrigBB branches to NewBB.
900  OrigBB->addSuccessor(NewBB);
901 
902  // Update internal data structures to account for the newly inserted MBB.
903  // This is almost the same as updateForInsertedWaterBlock, except that
904  // the Water goes after OrigBB, not NewBB.
905  MF->RenumberBlocks(NewBB);
906 
907  // Insert an entry into BBInfo to align it properly with the (newly
908  // renumbered) block numbers.
909  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
910 
911  // Next, update WaterList. Specifically, we need to add OrigMBB as having
912  // available water after it (but not if it's already there, which happens
913  // when splitting before a conditional branch that is followed by an
914  // unconditional branch - in that case we want to insert NewBB).
915  water_iterator IP =
916  std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
918  MachineBasicBlock* WaterBB = *IP;
919  if (WaterBB == OrigBB)
920  WaterList.insert(llvm::next(IP), NewBB);
921  else
922  WaterList.insert(IP, OrigBB);
923  NewWaterList.insert(OrigBB);
924 
925  // Figure out how large the OrigBB is. As the first half of the original
926  // block, it cannot contain a tablejump. The size includes
927  // the new jump we added. (It should be possible to do this without
928  // recounting everything, but it's very confusing, and this is rarely
929  // executed.)
930  computeBlockSize(OrigBB);
931 
932  // Figure out how large the NewMBB is. As the second half of the original
933  // block, it may contain a tablejump.
934  computeBlockSize(NewBB);
935 
936  // All BBOffsets following these blocks must be modified.
937  adjustBBOffsetsAfter(OrigBB);
938 
939  return NewBB;
940 }
941 
942 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
943 /// displacement computation. Update U.KnownAlignment to match its current
944 /// basic block location.
945 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
946  unsigned UserOffset = getOffsetOf(U.MI);
947  const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
948  unsigned KnownBits = BBI.internalKnownBits();
949 
950  // The value read from PC is offset from the actual instruction address.
951  UserOffset += (isThumb ? 4 : 8);
952 
953  // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
954  // Make sure U.getMaxDisp() returns a constrained range.
955  U.KnownAlignment = (KnownBits >= 2);
956 
957  // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
958  // purposes of the displacement computation; compensate for that here.
959  // For unknown alignments, getMaxDisp() constrains the range instead.
960  if (isThumb && U.KnownAlignment)
961  UserOffset &= ~3u;
962 
963  return UserOffset;
964 }
965 
966 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
967 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
968 /// constant pool entry).
969 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
970 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
971 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
972 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
973  unsigned TrialOffset, unsigned MaxDisp,
974  bool NegativeOK, bool IsSoImm) {
975  if (UserOffset <= TrialOffset) {
976  // User before the Trial.
977  if (TrialOffset - UserOffset <= MaxDisp)
978  return true;
979  // FIXME: Make use full range of soimm values.
980  } else if (NegativeOK) {
981  if (UserOffset - TrialOffset <= MaxDisp)
982  return true;
983  // FIXME: Make use full range of soimm values.
984  }
985  return false;
986 }
987 
988 /// isWaterInRange - Returns true if a CPE placed after the specified
989 /// Water (a basic block) will be in range for the specific MI.
990 ///
991 /// Compute how much the function will grow by inserting a CPE after Water.
992 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
993  MachineBasicBlock* Water, CPUser &U,
994  unsigned &Growth) {
995  unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
996  unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
997  unsigned NextBlockOffset, NextBlockAlignment;
998  MachineFunction::const_iterator NextBlock = Water;
999  if (++NextBlock == MF->end()) {
1000  NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1001  NextBlockAlignment = 0;
1002  } else {
1003  NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1004  NextBlockAlignment = NextBlock->getAlignment();
1005  }
1006  unsigned Size = U.CPEMI->getOperand(2).getImm();
1007  unsigned CPEEnd = CPEOffset + Size;
1008 
1009  // The CPE may be able to hide in the alignment padding before the next
1010  // block. It may also cause more padding to be required if it is more aligned
1011  // that the next block.
1012  if (CPEEnd > NextBlockOffset) {
1013  Growth = CPEEnd - NextBlockOffset;
1014  // Compute the padding that would go at the end of the CPE to align the next
1015  // block.
1016  Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
1017 
1018  // If the CPE is to be inserted before the instruction, that will raise
1019  // the offset of the instruction. Also account for unknown alignment padding
1020  // in blocks between CPE and the user.
1021  if (CPEOffset < UserOffset)
1022  UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1023  } else
1024  // CPE fits in existing padding.
1025  Growth = 0;
1026 
1027  return isOffsetInRange(UserOffset, CPEOffset, U);
1028 }
1029 
1030 /// isCPEntryInRange - Returns true if the distance between specific MI and
1031 /// specific ConstPool entry instruction can fit in MI's displacement field.
1032 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1033  MachineInstr *CPEMI, unsigned MaxDisp,
1034  bool NegOk, bool DoDump) {
1035  unsigned CPEOffset = getOffsetOf(CPEMI);
1036 
1037  if (DoDump) {
1038  DEBUG({
1039  unsigned Block = MI->getParent()->getNumber();
1040  const BasicBlockInfo &BBI = BBInfo[Block];
1041  dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1042  << " max delta=" << MaxDisp
1043  << format(" insn address=%#x", UserOffset)
1044  << " in BB#" << Block << ": "
1045  << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1046  << format("CPE address=%#x offset=%+d: ", CPEOffset,
1047  int(CPEOffset-UserOffset));
1048  });
1049  }
1050 
1051  return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1052 }
1053 
1054 #ifndef NDEBUG
1055 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1056 /// unconditionally branches to its only successor.
1058  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1059  return false;
1060 
1061  MachineBasicBlock *Succ = *MBB->succ_begin();
1062  MachineBasicBlock *Pred = *MBB->pred_begin();
1063  MachineInstr *PredMI = &Pred->back();
1064  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1065  || PredMI->getOpcode() == ARM::t2B)
1066  return PredMI->getOperand(0).getMBB() == Succ;
1067  return false;
1068 }
1069 #endif // NDEBUG
1070 
1071 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1072  unsigned BBNum = BB->getNumber();
1073  for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1074  // Get the offset and known bits at the end of the layout predecessor.
1075  // Include the alignment of the current block.
1076  unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1077  unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1078  unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1079 
1080  // This is where block i begins. Stop if the offset is already correct,
1081  // and we have updated 2 blocks. This is the maximum number of blocks
1082  // changed before calling this function.
1083  if (i > BBNum + 2 &&
1084  BBInfo[i].Offset == Offset &&
1085  BBInfo[i].KnownBits == KnownBits)
1086  break;
1087 
1088  BBInfo[i].Offset = Offset;
1089  BBInfo[i].KnownBits = KnownBits;
1090  }
1091 }
1092 
1093 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1094 /// and instruction CPEMI, and decrement its refcount. If the refcount
1095 /// becomes 0 remove the entry and instruction. Returns true if we removed
1096 /// the entry, false if we didn't.
1097 
1098 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1099  MachineInstr *CPEMI) {
1100  // Find the old entry. Eliminate it if it is no longer used.
1101  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1102  assert(CPE && "Unexpected!");
1103  if (--CPE->RefCount == 0) {
1104  removeDeadCPEMI(CPEMI);
1105  CPE->CPEMI = NULL;
1106  --NumCPEs;
1107  return true;
1108  }
1109  return false;
1110 }
1111 
1112 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1113 /// if not, see if an in-range clone of the CPE is in range, and if so,
1114 /// change the data structures so the user references the clone. Returns:
1115 /// 0 = no existing entry found
1116 /// 1 = entry found, and there were no code insertions or deletions
1117 /// 2 = entry found, and there were code insertions or deletions
1118 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1119 {
1120  MachineInstr *UserMI = U.MI;
1121  MachineInstr *CPEMI = U.CPEMI;
1122 
1123  // Check to see if the CPE is already in-range.
1124  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1125  true)) {
1126  DEBUG(dbgs() << "In range\n");
1127  return 1;
1128  }
1129 
1130  // No. Look for previously created clones of the CPE that are in range.
1131  unsigned CPI = CPEMI->getOperand(1).getIndex();
1132  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1133  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1134  // We already tried this one
1135  if (CPEs[i].CPEMI == CPEMI)
1136  continue;
1137  // Removing CPEs can leave empty entries, skip
1138  if (CPEs[i].CPEMI == NULL)
1139  continue;
1140  if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1141  U.NegOk)) {
1142  DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1143  << CPEs[i].CPI << "\n");
1144  // Point the CPUser node to the replacement
1145  U.CPEMI = CPEs[i].CPEMI;
1146  // Change the CPI in the instruction operand to refer to the clone.
1147  for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1148  if (UserMI->getOperand(j).isCPI()) {
1149  UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1150  break;
1151  }
1152  // Adjust the refcount of the clone...
1153  CPEs[i].RefCount++;
1154  // ...and the original. If we didn't remove the old entry, none of the
1155  // addresses changed, so we don't need another pass.
1156  return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1157  }
1158  }
1159  return 0;
1160 }
1161 
1162 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1163 /// the specific unconditional branch instruction.
1164 static inline unsigned getUnconditionalBrDisp(int Opc) {
1165  switch (Opc) {
1166  case ARM::tB:
1167  return ((1<<10)-1)*2;
1168  case ARM::t2B:
1169  return ((1<<23)-1)*2;
1170  default:
1171  break;
1172  }
1173 
1174  return ((1<<23)-1)*4;
1175 }
1176 
1177 /// findAvailableWater - Look for an existing entry in the WaterList in which
1178 /// we can place the CPE referenced from U so it's within range of U's MI.
1179 /// Returns true if found, false if not. If it returns true, WaterIter
1180 /// is set to the WaterList entry. For Thumb, prefer water that will not
1181 /// introduce padding to water that will. To ensure that this pass
1182 /// terminates, the CPE location for a particular CPUser is only allowed to
1183 /// move to a lower address, so search backward from the end of the list and
1184 /// prefer the first water that is in range.
1185 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1186  water_iterator &WaterIter) {
1187  if (WaterList.empty())
1188  return false;
1189 
1190  unsigned BestGrowth = ~0u;
1191  for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
1192  --IP) {
1193  MachineBasicBlock* WaterBB = *IP;
1194  // Check if water is in range and is either at a lower address than the
1195  // current "high water mark" or a new water block that was created since
1196  // the previous iteration by inserting an unconditional branch. In the
1197  // latter case, we want to allow resetting the high water mark back to
1198  // this new water since we haven't seen it before. Inserting branches
1199  // should be relatively uncommon and when it does happen, we want to be
1200  // sure to take advantage of it for all the CPEs near that block, so that
1201  // we don't insert more branches than necessary.
1202  unsigned Growth;
1203  if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1204  (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1205  NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1206  // This is the least amount of required padding seen so far.
1207  BestGrowth = Growth;
1208  WaterIter = IP;
1209  DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1210  << " Growth=" << Growth << '\n');
1211 
1212  // Keep looking unless it is perfect.
1213  if (BestGrowth == 0)
1214  return true;
1215  }
1216  if (IP == B)
1217  break;
1218  }
1219  return BestGrowth != ~0u;
1220 }
1221 
1222 /// createNewWater - No existing WaterList entry will work for
1223 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1224 /// block is used if in range, and the conditional branch munged so control
1225 /// flow is correct. Otherwise the block is split to create a hole with an
1226 /// unconditional branch around it. In either case NewMBB is set to a
1227 /// block following which the new island can be inserted (the WaterList
1228 /// is not adjusted).
1229 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1230  unsigned UserOffset,
1231  MachineBasicBlock *&NewMBB) {
1232  CPUser &U = CPUsers[CPUserIndex];
1233  MachineInstr *UserMI = U.MI;
1234  MachineInstr *CPEMI = U.CPEMI;
1235  unsigned CPELogAlign = getCPELogAlign(CPEMI);
1236  MachineBasicBlock *UserMBB = UserMI->getParent();
1237  const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1238 
1239  // If the block does not end in an unconditional branch already, and if the
1240  // end of the block is within range, make new water there. (The addition
1241  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1242  // Thumb2, 2 on Thumb1.
1243  if (BBHasFallthrough(UserMBB)) {
1244  // Size of branch to insert.
1245  unsigned Delta = isThumb1 ? 2 : 4;
1246  // Compute the offset where the CPE will begin.
1247  unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1248 
1249  if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1250  DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1251  << format(", expected CPE offset %#x\n", CPEOffset));
1252  NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1253  // Add an unconditional branch from UserMBB to fallthrough block. Record
1254  // it for branch lengthening; this new branch will not get out of range,
1255  // but if the preceding conditional branch is out of range, the targets
1256  // will be exchanged, and the altered branch may be out of range, so the
1257  // machinery has to know about it.
1258  int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1259  if (!isThumb)
1260  BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1261  else
1262  BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1263  .addImm(ARMCC::AL).addReg(0);
1264  unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1265  ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1266  MaxDisp, false, UncondBr));
1267  BBInfo[UserMBB->getNumber()].Size += Delta;
1268  adjustBBOffsetsAfter(UserMBB);
1269  return;
1270  }
1271  }
1272 
1273  // What a big block. Find a place within the block to split it. This is a
1274  // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1275  // entries are 4 bytes: if instruction I references island CPE, and
1276  // instruction I+1 references CPE', it will not work well to put CPE as far
1277  // forward as possible, since then CPE' cannot immediately follow it (that
1278  // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1279  // need to create a new island. So, we make a first guess, then walk through
1280  // the instructions between the one currently being looked at and the
1281  // possible insertion point, and make sure any other instructions that
1282  // reference CPEs will be able to use the same island area; if not, we back
1283  // up the insertion point.
1284 
1285  // Try to split the block so it's fully aligned. Compute the latest split
1286  // point where we can add a 4-byte branch instruction, and then align to
1287  // LogAlign which is the largest possible alignment in the function.
1288  unsigned LogAlign = MF->getAlignment();
1289  assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1290  unsigned KnownBits = UserBBI.internalKnownBits();
1291  unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1292  unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1293  DEBUG(dbgs() << format("Split in middle of big block before %#x",
1294  BaseInsertOffset));
1295 
1296  // The 4 in the following is for the unconditional branch we'll be inserting
1297  // (allows for long branch on Thumb1). Alignment of the island is handled
1298  // inside isOffsetInRange.
1299  BaseInsertOffset -= 4;
1300 
1301  DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1302  << " la=" << LogAlign
1303  << " kb=" << KnownBits
1304  << " up=" << UPad << '\n');
1305 
1306  // This could point off the end of the block if we've already got constant
1307  // pool entries following this block; only the last one is in the water list.
1308  // Back past any possible branches (allow for a conditional and a maximally
1309  // long unconditional).
1310  if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1311  BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
1312  DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1313  }
1314  unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1315  CPEMI->getOperand(2).getImm();
1316  MachineBasicBlock::iterator MI = UserMI;
1317  ++MI;
1318  unsigned CPUIndex = CPUserIndex+1;
1319  unsigned NumCPUsers = CPUsers.size();
1320  MachineInstr *LastIT = 0;
1321  for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1322  Offset < BaseInsertOffset;
1323  Offset += TII->GetInstSizeInBytes(MI),
1324  MI = llvm::next(MI)) {
1325  assert(MI != UserMBB->end() && "Fell off end of block");
1326  if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1327  CPUser &U = CPUsers[CPUIndex];
1328  if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1329  // Shift intertion point by one unit of alignment so it is within reach.
1330  BaseInsertOffset -= 1u << LogAlign;
1331  EndInsertOffset -= 1u << LogAlign;
1332  }
1333  // This is overly conservative, as we don't account for CPEMIs being
1334  // reused within the block, but it doesn't matter much. Also assume CPEs
1335  // are added in order with alignment padding. We may eventually be able
1336  // to pack the aligned CPEs better.
1337  EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1338  CPUIndex++;
1339  }
1340 
1341  // Remember the last IT instruction.
1342  if (MI->getOpcode() == ARM::t2IT)
1343  LastIT = MI;
1344  }
1345 
1346  --MI;
1347 
1348  // Avoid splitting an IT block.
1349  if (LastIT) {
1350  unsigned PredReg = 0;
1351  ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
1352  if (CC != ARMCC::AL)
1353  MI = LastIT;
1354  }
1355  NewMBB = splitBlockBeforeInstr(MI);
1356 }
1357 
1358 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1359 /// is out-of-range. If so, pick up the constant pool value and move it some
1360 /// place in-range. Return true if we changed any addresses (thus must run
1361 /// another pass of branch lengthening), false otherwise.
1362 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1363  CPUser &U = CPUsers[CPUserIndex];
1364  MachineInstr *UserMI = U.MI;
1365  MachineInstr *CPEMI = U.CPEMI;
1366  unsigned CPI = CPEMI->getOperand(1).getIndex();
1367  unsigned Size = CPEMI->getOperand(2).getImm();
1368  // Compute this only once, it's expensive.
1369  unsigned UserOffset = getUserOffset(U);
1370 
1371  // See if the current entry is within range, or there is a clone of it
1372  // in range.
1373  int result = findInRangeCPEntry(U, UserOffset);
1374  if (result==1) return false;
1375  else if (result==2) return true;
1376 
1377  // No existing clone of this CPE is within range.
1378  // We will be generating a new clone. Get a UID for it.
1379  unsigned ID = AFI->createPICLabelUId();
1380 
1381  // Look for water where we can place this CPE.
1382  MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1383  MachineBasicBlock *NewMBB;
1384  water_iterator IP;
1385  if (findAvailableWater(U, UserOffset, IP)) {
1386  DEBUG(dbgs() << "Found water in range\n");
1387  MachineBasicBlock *WaterBB = *IP;
1388 
1389  // If the original WaterList entry was "new water" on this iteration,
1390  // propagate that to the new island. This is just keeping NewWaterList
1391  // updated to match the WaterList, which will be updated below.
1392  if (NewWaterList.erase(WaterBB))
1393  NewWaterList.insert(NewIsland);
1394 
1395  // The new CPE goes before the following block (NewMBB).
1396  NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1397 
1398  } else {
1399  // No water found.
1400  DEBUG(dbgs() << "No water found\n");
1401  createNewWater(CPUserIndex, UserOffset, NewMBB);
1402 
1403  // splitBlockBeforeInstr adds to WaterList, which is important when it is
1404  // called while handling branches so that the water will be seen on the
1405  // next iteration for constant pools, but in this context, we don't want
1406  // it. Check for this so it will be removed from the WaterList.
1407  // Also remove any entry from NewWaterList.
1409  IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1410  if (IP != WaterList.end())
1411  NewWaterList.erase(WaterBB);
1412 
1413  // We are adding new water. Update NewWaterList.
1414  NewWaterList.insert(NewIsland);
1415  }
1416 
1417  // Remove the original WaterList entry; we want subsequent insertions in
1418  // this vicinity to go after the one we're about to insert. This
1419  // considerably reduces the number of times we have to move the same CPE
1420  // more than once and is also important to ensure the algorithm terminates.
1421  if (IP != WaterList.end())
1422  WaterList.erase(IP);
1423 
1424  // Okay, we know we can put an island before NewMBB now, do it!
1425  MF->insert(NewMBB, NewIsland);
1426 
1427  // Update internal data structures to account for the newly inserted MBB.
1428  updateForInsertedWaterBlock(NewIsland);
1429 
1430  // Decrement the old entry, and remove it if refcount becomes 0.
1431  decrementCPEReferenceCount(CPI, CPEMI);
1432 
1433  // Now that we have an island to add the CPE to, clone the original CPE and
1434  // add it to the island.
1435  U.HighWaterMark = NewIsland;
1436  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1437  .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1438  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1439  ++NumCPEs;
1440 
1441  // Mark the basic block as aligned as required by the const-pool entry.
1442  NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1443 
1444  // Increase the size of the island block to account for the new entry.
1445  BBInfo[NewIsland->getNumber()].Size += Size;
1446  adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
1447 
1448  // Finally, change the CPI in the instruction operand to be ID.
1449  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1450  if (UserMI->getOperand(i).isCPI()) {
1451  UserMI->getOperand(i).setIndex(ID);
1452  break;
1453  }
1454 
1455  DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1456  << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1457 
1458  return true;
1459 }
1460 
1461 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1462 /// sizes and offsets of impacted basic blocks.
1463 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1464  MachineBasicBlock *CPEBB = CPEMI->getParent();
1465  unsigned Size = CPEMI->getOperand(2).getImm();
1466  CPEMI->eraseFromParent();
1467  BBInfo[CPEBB->getNumber()].Size -= Size;
1468  // All succeeding offsets have the current size value added in, fix this.
1469  if (CPEBB->empty()) {
1470  BBInfo[CPEBB->getNumber()].Size = 0;
1471 
1472  // This block no longer needs to be aligned.
1473  CPEBB->setAlignment(0);
1474  } else
1475  // Entries are sorted by descending alignment, so realign from the front.
1476  CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1477 
1478  adjustBBOffsetsAfter(CPEBB);
1479  // An island has only one predecessor BB and one successor BB. Check if
1480  // this BB's predecessor jumps directly to this BB's successor. This
1481  // shouldn't happen currently.
1482  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1483  // FIXME: remove the empty blocks after all the work is done?
1484 }
1485 
1486 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1487 /// are zero.
1488 bool ARMConstantIslands::removeUnusedCPEntries() {
1489  unsigned MadeChange = false;
1490  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1491  std::vector<CPEntry> &CPEs = CPEntries[i];
1492  for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1493  if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1494  removeDeadCPEMI(CPEs[j].CPEMI);
1495  CPEs[j].CPEMI = NULL;
1496  MadeChange = true;
1497  }
1498  }
1499  }
1500  return MadeChange;
1501 }
1502 
1503 /// isBBInRange - Returns true if the distance between specific MI and
1504 /// specific BB can fit in MI's displacement field.
1505 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1506  unsigned MaxDisp) {
1507  unsigned PCAdj = isThumb ? 4 : 8;
1508  unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1509  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1510 
1511  DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1512  << " from BB#" << MI->getParent()->getNumber()
1513  << " max delta=" << MaxDisp
1514  << " from " << getOffsetOf(MI) << " to " << DestOffset
1515  << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1516 
1517  if (BrOffset <= DestOffset) {
1518  // Branch before the Dest.
1519  if (DestOffset-BrOffset <= MaxDisp)
1520  return true;
1521  } else {
1522  if (BrOffset-DestOffset <= MaxDisp)
1523  return true;
1524  }
1525  return false;
1526 }
1527 
1528 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1529 /// away to fit in its displacement field.
1530 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1531  MachineInstr *MI = Br.MI;
1532  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1533 
1534  // Check to see if the DestBB is already in-range.
1535  if (isBBInRange(MI, DestBB, Br.MaxDisp))
1536  return false;
1537 
1538  if (!Br.isCond)
1539  return fixupUnconditionalBr(Br);
1540  return fixupConditionalBr(Br);
1541 }
1542 
1543 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1544 /// too far away to fit in its displacement field. If the LR register has been
1545 /// spilled in the epilogue, then we can use BL to implement a far jump.
1546 /// Otherwise, add an intermediate branch instruction to a branch.
1547 bool
1548 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1549  MachineInstr *MI = Br.MI;
1550  MachineBasicBlock *MBB = MI->getParent();
1551  if (!isThumb1)
1552  llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1553 
1554  // Use BL to implement far jump.
1555  Br.MaxDisp = (1 << 21) * 2;
1556  MI->setDesc(TII->get(ARM::tBfar));
1557  BBInfo[MBB->getNumber()].Size += 2;
1558  adjustBBOffsetsAfter(MBB);
1559  HasFarJump = true;
1560  ++NumUBrFixed;
1561 
1562  DEBUG(dbgs() << " Changed B to long jump " << *MI);
1563 
1564  return true;
1565 }
1566 
1567 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1568 /// far away to fit in its displacement field. It is converted to an inverse
1569 /// conditional branch + an unconditional branch to the destination.
1570 bool
1571 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1572  MachineInstr *MI = Br.MI;
1573  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1574 
1575  // Add an unconditional branch to the destination and invert the branch
1576  // condition to jump over it:
1577  // blt L1
1578  // =>
1579  // bge L2
1580  // b L1
1581  // L2:
1583  CC = ARMCC::getOppositeCondition(CC);
1584  unsigned CCReg = MI->getOperand(2).getReg();
1585 
1586  // If the branch is at the end of its MBB and that has a fall-through block,
1587  // direct the updated conditional branch to the fall-through block. Otherwise,
1588  // split the MBB before the next instruction.
1589  MachineBasicBlock *MBB = MI->getParent();
1590  MachineInstr *BMI = &MBB->back();
1591  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1592 
1593  ++NumCBrFixed;
1594  if (BMI != MI) {
1595  if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1596  BMI->getOpcode() == Br.UncondBr) {
1597  // Last MI in the BB is an unconditional branch. Can we simply invert the
1598  // condition and swap destinations:
1599  // beq L1
1600  // b L2
1601  // =>
1602  // bne L2
1603  // b L1
1604  MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1605  if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1606  DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
1607  << *BMI);
1608  BMI->getOperand(0).setMBB(DestBB);
1609  MI->getOperand(0).setMBB(NewDest);
1610  MI->getOperand(1).setImm(CC);
1611  return true;
1612  }
1613  }
1614  }
1615 
1616  if (NeedSplit) {
1617  splitBlockBeforeInstr(MI);
1618  // No need for the branch to the next block. We're adding an unconditional
1619  // branch to the destination.
1620  int delta = TII->GetInstSizeInBytes(&MBB->back());
1621  BBInfo[MBB->getNumber()].Size -= delta;
1622  MBB->back().eraseFromParent();
1623  // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1624  }
1626 
1627  DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
1628  << " also invert condition and change dest. to BB#"
1629  << NextBB->getNumber() << "\n");
1630 
1631  // Insert a new conditional branch and a new unconditional branch.
1632  // Also update the ImmBranch as well as adding a new entry for the new branch.
1633  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1634  .addMBB(NextBB).addImm(CC).addReg(CCReg);
1635  Br.MI = &MBB->back();
1636  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1637  if (isThumb)
1638  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1639  .addImm(ARMCC::AL).addReg(0);
1640  else
1641  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1642  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1643  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1644  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1645 
1646  // Remove the old conditional branch. It may or may not still be in MBB.
1647  BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1648  MI->eraseFromParent();
1649  adjustBBOffsetsAfter(MBB);
1650  return true;
1651 }
1652 
1653 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1654 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1655 /// to do this if tBfar is not used.
1656 bool ARMConstantIslands::undoLRSpillRestore() {
1657  bool MadeChange = false;
1658  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1659  MachineInstr *MI = PushPopMIs[i];
1660  // First two operands are predicates.
1661  if (MI->getOpcode() == ARM::tPOP_RET &&
1662  MI->getOperand(2).getReg() == ARM::PC &&
1663  MI->getNumExplicitOperands() == 3) {
1664  // Create the new insn and copy the predicate from the old.
1665  BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1666  .addOperand(MI->getOperand(0))
1667  .addOperand(MI->getOperand(1));
1668  MI->eraseFromParent();
1669  MadeChange = true;
1670  }
1671  }
1672  return MadeChange;
1673 }
1674 
1675 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
1676 // below may shrink MI.
1677 bool
1678 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
1679  switch(MI->getOpcode()) {
1680  // optimizeThumb2Instructions.
1681  case ARM::t2LEApcrel:
1682  case ARM::t2LDRpci:
1683  // optimizeThumb2Branches.
1684  case ARM::t2B:
1685  case ARM::t2Bcc:
1686  case ARM::tBcc:
1687  // optimizeThumb2JumpTables.
1688  case ARM::t2BR_JT:
1689  return true;
1690  }
1691  return false;
1692 }
1693 
1694 bool ARMConstantIslands::optimizeThumb2Instructions() {
1695  bool MadeChange = false;
1696 
1697  // Shrink ADR and LDR from constantpool.
1698  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1699  CPUser &U = CPUsers[i];
1700  unsigned Opcode = U.MI->getOpcode();
1701  unsigned NewOpc = 0;
1702  unsigned Scale = 1;
1703  unsigned Bits = 0;
1704  switch (Opcode) {
1705  default: break;
1706  case ARM::t2LEApcrel:
1707  if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1708  NewOpc = ARM::tLEApcrel;
1709  Bits = 8;
1710  Scale = 4;
1711  }
1712  break;
1713  case ARM::t2LDRpci:
1714  if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1715  NewOpc = ARM::tLDRpci;
1716  Bits = 8;
1717  Scale = 4;
1718  }
1719  break;
1720  }
1721 
1722  if (!NewOpc)
1723  continue;
1724 
1725  unsigned UserOffset = getUserOffset(U);
1726  unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1727 
1728  // Be conservative with inline asm.
1729  if (!U.KnownAlignment)
1730  MaxOffs -= 2;
1731 
1732  // FIXME: Check if offset is multiple of scale if scale is not 4.
1733  if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1734  DEBUG(dbgs() << "Shrink: " << *U.MI);
1735  U.MI->setDesc(TII->get(NewOpc));
1736  MachineBasicBlock *MBB = U.MI->getParent();
1737  BBInfo[MBB->getNumber()].Size -= 2;
1738  adjustBBOffsetsAfter(MBB);
1739  ++NumT2CPShrunk;
1740  MadeChange = true;
1741  }
1742  }
1743 
1744  MadeChange |= optimizeThumb2Branches();
1745  MadeChange |= optimizeThumb2JumpTables();
1746  return MadeChange;
1747 }
1748 
1749 bool ARMConstantIslands::optimizeThumb2Branches() {
1750  bool MadeChange = false;
1751 
1752  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1753  ImmBranch &Br = ImmBranches[i];
1754  unsigned Opcode = Br.MI->getOpcode();
1755  unsigned NewOpc = 0;
1756  unsigned Scale = 1;
1757  unsigned Bits = 0;
1758  switch (Opcode) {
1759  default: break;
1760  case ARM::t2B:
1761  NewOpc = ARM::tB;
1762  Bits = 11;
1763  Scale = 2;
1764  break;
1765  case ARM::t2Bcc: {
1766  NewOpc = ARM::tBcc;
1767  Bits = 8;
1768  Scale = 2;
1769  break;
1770  }
1771  }
1772  if (NewOpc) {
1773  unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1774  MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1775  if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1776  DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1777  Br.MI->setDesc(TII->get(NewOpc));
1778  MachineBasicBlock *MBB = Br.MI->getParent();
1779  BBInfo[MBB->getNumber()].Size -= 2;
1780  adjustBBOffsetsAfter(MBB);
1781  ++NumT2BrShrunk;
1782  MadeChange = true;
1783  }
1784  }
1785 
1786  Opcode = Br.MI->getOpcode();
1787  if (Opcode != ARM::tBcc)
1788  continue;
1789 
1790  // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1791  // so this transformation is not safe.
1792  if (!Br.MI->killsRegister(ARM::CPSR))
1793  continue;
1794 
1795  NewOpc = 0;
1796  unsigned PredReg = 0;
1797  ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
1798  if (Pred == ARMCC::EQ)
1799  NewOpc = ARM::tCBZ;
1800  else if (Pred == ARMCC::NE)
1801  NewOpc = ARM::tCBNZ;
1802  if (!NewOpc)
1803  continue;
1804  MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1805  // Check if the distance is within 126. Subtract starting offset by 2
1806  // because the cmp will be eliminated.
1807  unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1808  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1809  if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1810  MachineBasicBlock::iterator CmpMI = Br.MI;
1811  if (CmpMI != Br.MI->getParent()->begin()) {
1812  --CmpMI;
1813  if (CmpMI->getOpcode() == ARM::tCMPi8) {
1814  unsigned Reg = CmpMI->getOperand(0).getReg();
1815  Pred = getInstrPredicate(CmpMI, PredReg);
1816  if (Pred == ARMCC::AL &&
1817  CmpMI->getOperand(1).getImm() == 0 &&
1818  isARMLowRegister(Reg)) {
1819  MachineBasicBlock *MBB = Br.MI->getParent();
1820  DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1821  MachineInstr *NewBR =
1822  BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1823  .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1824  CmpMI->eraseFromParent();
1825  Br.MI->eraseFromParent();
1826  Br.MI = NewBR;
1827  BBInfo[MBB->getNumber()].Size -= 2;
1828  adjustBBOffsetsAfter(MBB);
1829  ++NumCBZ;
1830  MadeChange = true;
1831  }
1832  }
1833  }
1834  }
1835  }
1836 
1837  return MadeChange;
1838 }
1839 
1840 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1841 /// jumptables when it's possible.
1842 bool ARMConstantIslands::optimizeThumb2JumpTables() {
1843  bool MadeChange = false;
1844 
1845  // FIXME: After the tables are shrunk, can we get rid some of the
1846  // constantpool tables?
1847  MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1848  if (MJTI == 0) return false;
1849 
1850  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1851  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1852  MachineInstr *MI = T2JumpTables[i];
1853  const MCInstrDesc &MCID = MI->getDesc();
1854  unsigned NumOps = MCID.getNumOperands();
1855  unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
1856  MachineOperand JTOP = MI->getOperand(JTOpIdx);
1857  unsigned JTI = JTOP.getIndex();
1858  assert(JTI < JT.size());
1859 
1860  bool ByteOk = true;
1861  bool HalfWordOk = true;
1862  unsigned JTOffset = getOffsetOf(MI) + 4;
1863  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1864  for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1865  MachineBasicBlock *MBB = JTBBs[j];
1866  unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
1867  // Negative offset is not ok. FIXME: We should change BB layout to make
1868  // sure all the branches are forward.
1869  if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1870  ByteOk = false;
1871  unsigned TBHLimit = ((1<<16)-1)*2;
1872  if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1873  HalfWordOk = false;
1874  if (!ByteOk && !HalfWordOk)
1875  break;
1876  }
1877 
1878  if (ByteOk || HalfWordOk) {
1879  MachineBasicBlock *MBB = MI->getParent();
1880  unsigned BaseReg = MI->getOperand(0).getReg();
1881  bool BaseRegKill = MI->getOperand(0).isKill();
1882  if (!BaseRegKill)
1883  continue;
1884  unsigned IdxReg = MI->getOperand(1).getReg();
1885  bool IdxRegKill = MI->getOperand(1).isKill();
1886 
1887  // Scan backwards to find the instruction that defines the base
1888  // register. Due to post-RA scheduling, we can't count on it
1889  // immediately preceding the branch instruction.
1892  while (PrevI != B && !PrevI->definesRegister(BaseReg))
1893  --PrevI;
1894 
1895  // If for some reason we didn't find it, we can't do anything, so
1896  // just skip this one.
1897  if (!PrevI->definesRegister(BaseReg))
1898  continue;
1899 
1900  MachineInstr *AddrMI = PrevI;
1901  bool OptOk = true;
1902  // Examine the instruction that calculates the jumptable entry address.
1903  // Make sure it only defines the base register and kills any uses
1904  // other than the index register.
1905  for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1906  const MachineOperand &MO = AddrMI->getOperand(k);
1907  if (!MO.isReg() || !MO.getReg())
1908  continue;
1909  if (MO.isDef() && MO.getReg() != BaseReg) {
1910  OptOk = false;
1911  break;
1912  }
1913  if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1914  OptOk = false;
1915  break;
1916  }
1917  }
1918  if (!OptOk)
1919  continue;
1920 
1921  // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1922  // that gave us the initial base register definition.
1923  for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1924  ;
1925 
1926  // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1927  // to delete it as well.
1928  MachineInstr *LeaMI = PrevI;
1929  if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1930  LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1931  LeaMI->getOperand(0).getReg() != BaseReg)
1932  OptOk = false;
1933 
1934  if (!OptOk)
1935  continue;
1936 
1937  DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI
1938  << " lea: " << *LeaMI);
1939  unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1940  MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1941  .addReg(IdxReg, getKillRegState(IdxRegKill))
1942  .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1943  .addImm(MI->getOperand(JTOpIdx+1).getImm());
1944  DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
1945  // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1946  // is 2-byte aligned. For now, asm printer will fix it up.
1947  unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1948  unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1949  OrigSize += TII->GetInstSizeInBytes(LeaMI);
1950  OrigSize += TII->GetInstSizeInBytes(MI);
1951 
1952  AddrMI->eraseFromParent();
1953  LeaMI->eraseFromParent();
1954  MI->eraseFromParent();
1955 
1956  int delta = OrigSize - NewSize;
1957  BBInfo[MBB->getNumber()].Size -= delta;
1958  adjustBBOffsetsAfter(MBB);
1959 
1960  ++NumTBs;
1961  MadeChange = true;
1962  }
1963  }
1964 
1965  return MadeChange;
1966 }
1967 
1968 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
1969 /// jump tables always branch forwards, since that's what tbb and tbh need.
1970 bool ARMConstantIslands::reorderThumb2JumpTables() {
1971  bool MadeChange = false;
1972 
1973  MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1974  if (MJTI == 0) return false;
1975 
1976  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1977  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1978  MachineInstr *MI = T2JumpTables[i];
1979  const MCInstrDesc &MCID = MI->getDesc();
1980  unsigned NumOps = MCID.getNumOperands();
1981  unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
1982  MachineOperand JTOP = MI->getOperand(JTOpIdx);
1983  unsigned JTI = JTOP.getIndex();
1984  assert(JTI < JT.size());
1985 
1986  // We prefer if target blocks for the jump table come after the jump
1987  // instruction so we can use TB[BH]. Loop through the target blocks
1988  // and try to adjust them such that that's true.
1989  int JTNumber = MI->getParent()->getNumber();
1990  const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1991  for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1992  MachineBasicBlock *MBB = JTBBs[j];
1993  int DTNumber = MBB->getNumber();
1994 
1995  if (DTNumber < JTNumber) {
1996  // The destination precedes the switch. Try to move the block forward
1997  // so we have a positive offset.
1998  MachineBasicBlock *NewBB =
1999  adjustJTTargetBlockForward(MBB, MI->getParent());
2000  if (NewBB)
2001  MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2002  MadeChange = true;
2003  }
2004  }
2005  }
2006 
2007  return MadeChange;
2008 }
2009 
2010 MachineBasicBlock *ARMConstantIslands::
2011 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2012  // If the destination block is terminated by an unconditional branch,
2013  // try to move it; otherwise, create a new block following the jump
2014  // table that branches back to the actual target. This is a very simple
2015  // heuristic. FIXME: We can definitely improve it.
2016  MachineBasicBlock *TBB = 0, *FBB = 0;
2019  MachineFunction::iterator BBi = BB;
2020  MachineFunction::iterator OldPrior = prior(BBi);
2021 
2022  // If the block terminator isn't analyzable, don't try to move the block
2023  bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
2024 
2025  // If the block ends in an unconditional branch, move it. The prior block
2026  // has to have an analyzable terminator for us to move this one. Be paranoid
2027  // and make sure we're not trying to move the entry block of the function.
2028  if (!B && Cond.empty() && BB != MF->begin() &&
2029  !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2030  BB->moveAfter(JTBB);
2031  OldPrior->updateTerminator();
2032  BB->updateTerminator();
2033  // Update numbering to account for the block being moved.
2034  MF->RenumberBlocks();
2035  ++NumJTMoved;
2036  return NULL;
2037  }
2038 
2039  // Create a new MBB for the code after the jump BB.
2040  MachineBasicBlock *NewBB =
2041  MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2042  MachineFunction::iterator MBBI = JTBB; ++MBBI;
2043  MF->insert(MBBI, NewBB);
2044 
2045  // Add an unconditional branch from NewBB to BB.
2046  // There doesn't seem to be meaningful DebugInfo available; this doesn't
2047  // correspond directly to anything in the source.
2048  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
2049  BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
2050  .addImm(ARMCC::AL).addReg(0);
2051 
2052  // Update internal data structures to account for the newly inserted MBB.
2053  MF->RenumberBlocks(NewBB);
2054 
2055  // Update the CFG.
2056  NewBB->addSuccessor(BB);
2057  JTBB->removeSuccessor(BB);
2058  JTBB->addSuccessor(NewBB);
2059 
2060  ++NumJTInserted;
2061  return NewBB;
2062 }
unsigned succ_size() const
const MachineFunction * getParent() const
The machine constant pool.
MachineBasicBlock * getMBB() const
bool isPredicable(QueryType Type=AllInBundle) const
Definition: MachineInstr.h:404
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
void moveAfter(MachineBasicBlock *NewBefore)
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
void setAlignment(unsigned Align)
bool ReplaceMBBInJumpTable(unsigned Idx, MachineBasicBlock *Old, MachineBasicBlock *New)
ARMCC::CondCodes getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS)
const std::vector< MachineJumpTableEntry > & getJumpTables() const
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
std::vector< MachineBasicBlock * >::iterator succ_iterator
void setIndex(int Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
const MachineInstrBuilder & addImm(int64_t Val) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
format_object1< T > format(const char *Fmt, const T &Val)
Definition: Format.h:180
FunctionPass * createARMConstantIslandPass()
static bool BBHasFallthrough(MachineBasicBlock *MBB)
bool isKill() const
void transferSuccessors(MachineBasicBlock *fromMBB)
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
int getOpcode() const
Definition: MachineInstr.h:261
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
void RenumberBlocks(MachineBasicBlock *MBBFrom=0)
int64_t getImm() const
STATISTIC(NumCPEs,"Number of constpool entries")
unsigned getKillRegState(bool B)
const BasicBlock * getBasicBlock() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bundle_iterator< MachineInstr, instr_iterator > iterator
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ARMCC::CondCodes getInstrPredicate(const MachineInstr *MI, unsigned &PredReg)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
static cl::opt< bool > AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), cl::desc("Align constant islands in code"))
void ensureAlignment(unsigned A)
ensureAlignment - Make sure the function is at least 1 << A bytes aligned.
void setMBB(MachineBasicBlock *MBB)
unsigned getNumExplicitOperands() const
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
static bool BBIsJumpedOver(MachineBasicBlock *MBB)
void setImm(int64_t immVal)
static unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits)
MachineConstantPool * getConstantPool()
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
void removeSuccessor(MachineBasicBlock *succ)
void setDesc(const MCInstrDesc &tid)
Definition: MachineInstr.h:984
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
static cl::opt< bool > AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), cl::desc("Adjust basic block layout to better use TB[BH]"))
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
static DebugLoc get(unsigned Line, unsigned Col, MDNode *Scope, MDNode *InlinedAt=0)
Definition: DebugLoc.cpp:74
static bool isARMLowRegister(unsigned Reg)
Definition: ARMBaseInfo.h:209
static CondCodes getOppositeCondition(CondCodes CC)
Definition: ARMBaseInfo.h:47
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned char TargetFlags=0) const
void push_back(MachineInstr *MI)
#define I(x, y, z)
Definition: MD5.cpp:54
instr_iterator insert(instr_iterator I, MachineInstr *M)
static unsigned getUnconditionalBrDisp(int Opc)
unsigned getReg() const
getReg - Returns the register number.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align)
Definition: MathExtras.h:572
BasicBlockListType::iterator iterator
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
ppc ctr loops verify
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
void addSuccessor(MachineBasicBlock *succ, uint32_t weight=0)
unsigned pred_size() const
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
unsigned getAlignment() const