LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
CPPBackend.cpp
Go to the documentation of this file.
1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Config/config.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrInfo.h"
29 #include "llvm/Pass.h"
30 #include "llvm/PassManager.h"
35 #include <algorithm>
36 #include <cctype>
37 #include <cstdio>
38 #include <map>
39 #include <set>
40 using namespace llvm;
41 
43 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
44  cl::value_desc("function name"));
45 
55 };
56 
58  cl::desc("Choose what kind of output to generate"),
60  cl::values(
61  clEnumValN(GenProgram, "program", "Generate a complete program"),
62  clEnumValN(GenModule, "module", "Generate a module definition"),
63  clEnumValN(GenContents, "contents", "Generate contents of a module"),
64  clEnumValN(GenFunction, "function", "Generate a function definition"),
65  clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
66  clEnumValN(GenInline, "inline", "Generate an inline function"),
67  clEnumValN(GenVariable, "variable", "Generate a variable definition"),
68  clEnumValN(GenType, "type", "Generate a type definition"),
70  )
71 );
72 
74  cl::desc("Specify the name of the thing to generate"),
75  cl::init("!bad!"));
76 
77 extern "C" void LLVMInitializeCppBackendTarget() {
78  // Register the target.
80 }
81 
82 namespace {
83  typedef std::vector<Type*> TypeList;
84  typedef std::map<Type*,std::string> TypeMap;
85  typedef std::map<const Value*,std::string> ValueMap;
86  typedef std::set<std::string> NameSet;
87  typedef std::set<Type*> TypeSet;
88  typedef std::set<const Value*> ValueSet;
89  typedef std::map<const Value*,std::string> ForwardRefMap;
90 
91  /// CppWriter - This class is the main chunk of code that converts an LLVM
92  /// module to a C++ translation unit.
93  class CppWriter : public ModulePass {
95  const Module *TheModule;
96  uint64_t uniqueNum;
97  TypeMap TypeNames;
98  ValueMap ValueNames;
99  NameSet UsedNames;
100  TypeSet DefinedTypes;
101  ValueSet DefinedValues;
102  ForwardRefMap ForwardRefs;
103  bool is_inline;
104  unsigned indent_level;
105 
106  public:
107  static char ID;
108  explicit CppWriter(formatted_raw_ostream &o) :
109  ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
110 
111  virtual const char *getPassName() const { return "C++ backend"; }
112 
113  bool runOnModule(Module &M);
114 
115  void printProgram(const std::string& fname, const std::string& modName );
116  void printModule(const std::string& fname, const std::string& modName );
117  void printContents(const std::string& fname, const std::string& modName );
118  void printFunction(const std::string& fname, const std::string& funcName );
119  void printFunctions();
120  void printInline(const std::string& fname, const std::string& funcName );
121  void printVariable(const std::string& fname, const std::string& varName );
122  void printType(const std::string& fname, const std::string& typeName );
123 
124  void error(const std::string& msg);
125 
126 
127  formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
128  inline void in() { indent_level++; }
129  inline void out() { if (indent_level >0) indent_level--; }
130 
131  private:
132  void printLinkageType(GlobalValue::LinkageTypes LT);
133  void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
134  void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
135  void printCallingConv(CallingConv::ID cc);
136  void printEscapedString(const std::string& str);
137  void printCFP(const ConstantFP* CFP);
138 
139  std::string getCppName(Type* val);
140  inline void printCppName(Type* val);
141 
142  std::string getCppName(const Value* val);
143  inline void printCppName(const Value* val);
144 
145  void printAttributes(const AttributeSet &PAL, const std::string &name);
146  void printType(Type* Ty);
147  void printTypes(const Module* M);
148 
149  void printConstant(const Constant *CPV);
150  void printConstants(const Module* M);
151 
152  void printVariableUses(const GlobalVariable *GV);
153  void printVariableHead(const GlobalVariable *GV);
154  void printVariableBody(const GlobalVariable *GV);
155 
156  void printFunctionUses(const Function *F);
157  void printFunctionHead(const Function *F);
158  void printFunctionBody(const Function *F);
159  void printInstruction(const Instruction *I, const std::string& bbname);
160  std::string getOpName(const Value*);
161 
162  void printModuleBody();
163  };
164 } // end anonymous namespace.
165 
166 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
167  Out << '\n';
168  if (delta >= 0 || indent_level >= unsigned(-delta))
169  indent_level += delta;
170  Out.indent(indent_level);
171  return Out;
172 }
173 
174 static inline void sanitize(std::string &str) {
175  for (size_t i = 0; i < str.length(); ++i)
176  if (!isalnum(str[i]) && str[i] != '_')
177  str[i] = '_';
178 }
179 
180 static std::string getTypePrefix(Type *Ty) {
181  switch (Ty->getTypeID()) {
182  case Type::VoidTyID: return "void_";
183  case Type::IntegerTyID:
184  return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
185  case Type::FloatTyID: return "float_";
186  case Type::DoubleTyID: return "double_";
187  case Type::LabelTyID: return "label_";
188  case Type::FunctionTyID: return "func_";
189  case Type::StructTyID: return "struct_";
190  case Type::ArrayTyID: return "array_";
191  case Type::PointerTyID: return "ptr_";
192  case Type::VectorTyID: return "packed_";
193  default: return "other_";
194  }
195 }
196 
197 void CppWriter::error(const std::string& msg) {
198  report_fatal_error(msg);
199 }
200 
201 static inline std::string ftostr(const APFloat& V) {
202  std::string Buf;
203  if (&V.getSemantics() == &APFloat::IEEEdouble) {
205  return Buf;
206  } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
207  raw_string_ostream(Buf) << (double)V.convertToFloat();
208  return Buf;
209  }
210  return "<unknown format in ftostr>"; // error
211 }
212 
213 // printCFP - Print a floating point constant .. very carefully :)
214 // This makes sure that conversion to/from floating yields the same binary
215 // result so that we don't lose precision.
216 void CppWriter::printCFP(const ConstantFP *CFP) {
217  bool ignored;
218  APFloat APF = APFloat(CFP->getValueAPF()); // copy
219  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
221  Out << "ConstantFP::get(mod->getContext(), ";
222  Out << "APFloat(";
223 #if HAVE_PRINTF_A
224  char Buffer[100];
225  sprintf(Buffer, "%A", APF.convertToDouble());
226  if ((!strncmp(Buffer, "0x", 2) ||
227  !strncmp(Buffer, "-0x", 3) ||
228  !strncmp(Buffer, "+0x", 3)) &&
229  APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
230  if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
231  Out << "BitsToDouble(" << Buffer << ")";
232  else
233  Out << "BitsToFloat((float)" << Buffer << ")";
234  Out << ")";
235  } else {
236 #endif
237  std::string StrVal = ftostr(CFP->getValueAPF());
238 
239  while (StrVal[0] == ' ')
240  StrVal.erase(StrVal.begin());
241 
242  // Check to make sure that the stringized number is not some string like
243  // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
244  if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
245  ((StrVal[0] == '-' || StrVal[0] == '+') &&
246  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
247  (CFP->isExactlyValue(atof(StrVal.c_str())))) {
248  if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
249  Out << StrVal;
250  else
251  Out << StrVal << "f";
252  } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
253  Out << "BitsToDouble(0x"
255  << "ULL) /* " << StrVal << " */";
256  else
257  Out << "BitsToFloat(0x"
258  << utohexstr((uint32_t)CFP->getValueAPF().
259  bitcastToAPInt().getZExtValue())
260  << "U) /* " << StrVal << " */";
261  Out << ")";
262 #if HAVE_PRINTF_A
263  }
264 #endif
265  Out << ")";
266 }
267 
268 void CppWriter::printCallingConv(CallingConv::ID cc){
269  // Print the calling convention.
270  switch (cc) {
271  case CallingConv::C: Out << "CallingConv::C"; break;
272  case CallingConv::Fast: Out << "CallingConv::Fast"; break;
273  case CallingConv::Cold: Out << "CallingConv::Cold"; break;
274  case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
275  default: Out << cc; break;
276  }
277 }
278 
279 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
280  switch (LT) {
282  Out << "GlobalValue::InternalLinkage"; break;
284  Out << "GlobalValue::PrivateLinkage"; break;
286  Out << "GlobalValue::LinkerPrivateLinkage"; break;
288  Out << "GlobalValue::LinkerPrivateWeakLinkage"; break;
290  Out << "GlobalValue::AvailableExternallyLinkage "; break;
292  Out << "GlobalValue::LinkOnceAnyLinkage "; break;
294  Out << "GlobalValue::LinkOnceODRLinkage "; break;
296  Out << "GlobalValue::WeakAnyLinkage"; break;
298  Out << "GlobalValue::WeakODRLinkage"; break;
300  Out << "GlobalValue::AppendingLinkage"; break;
302  Out << "GlobalValue::ExternalLinkage"; break;
304  Out << "GlobalValue::DLLImportLinkage"; break;
306  Out << "GlobalValue::DLLExportLinkage"; break;
308  Out << "GlobalValue::ExternalWeakLinkage"; break;
310  Out << "GlobalValue::CommonLinkage"; break;
311  }
312 }
313 
314 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
315  switch (VisType) {
317  Out << "GlobalValue::DefaultVisibility";
318  break;
320  Out << "GlobalValue::HiddenVisibility";
321  break;
323  Out << "GlobalValue::ProtectedVisibility";
324  break;
325  }
326 }
327 
328 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
329  switch (TLM) {
331  Out << "GlobalVariable::NotThreadLocal";
332  break;
334  Out << "GlobalVariable::GeneralDynamicTLSModel";
335  break;
337  Out << "GlobalVariable::LocalDynamicTLSModel";
338  break;
340  Out << "GlobalVariable::InitialExecTLSModel";
341  break;
343  Out << "GlobalVariable::LocalExecTLSModel";
344  break;
345  }
346 }
347 
348 // printEscapedString - Print each character of the specified string, escaping
349 // it if it is not printable or if it is an escape char.
350 void CppWriter::printEscapedString(const std::string &Str) {
351  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
352  unsigned char C = Str[i];
353  if (isprint(C) && C != '"' && C != '\\') {
354  Out << C;
355  } else {
356  Out << "\\x"
357  << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
358  << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
359  }
360  }
361 }
362 
363 std::string CppWriter::getCppName(Type* Ty) {
364  // First, handle the primitive types .. easy
365  if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
366  switch (Ty->getTypeID()) {
367  case Type::VoidTyID: return "Type::getVoidTy(mod->getContext())";
368  case Type::IntegerTyID: {
369  unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
370  return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
371  }
372  case Type::X86_FP80TyID: return "Type::getX86_FP80Ty(mod->getContext())";
373  case Type::FloatTyID: return "Type::getFloatTy(mod->getContext())";
374  case Type::DoubleTyID: return "Type::getDoubleTy(mod->getContext())";
375  case Type::LabelTyID: return "Type::getLabelTy(mod->getContext())";
376  case Type::X86_MMXTyID: return "Type::getX86_MMXTy(mod->getContext())";
377  default:
378  error("Invalid primitive type");
379  break;
380  }
381  // shouldn't be returned, but make it sensible
382  return "Type::getVoidTy(mod->getContext())";
383  }
384 
385  // Now, see if we've seen the type before and return that
386  TypeMap::iterator I = TypeNames.find(Ty);
387  if (I != TypeNames.end())
388  return I->second;
389 
390  // Okay, let's build a new name for this type. Start with a prefix
391  const char* prefix = 0;
392  switch (Ty->getTypeID()) {
393  case Type::FunctionTyID: prefix = "FuncTy_"; break;
394  case Type::StructTyID: prefix = "StructTy_"; break;
395  case Type::ArrayTyID: prefix = "ArrayTy_"; break;
396  case Type::PointerTyID: prefix = "PointerTy_"; break;
397  case Type::VectorTyID: prefix = "VectorTy_"; break;
398  default: prefix = "OtherTy_"; break; // prevent breakage
399  }
400 
401  // See if the type has a name in the symboltable and build accordingly
402  std::string name;
403  if (StructType *STy = dyn_cast<StructType>(Ty))
404  if (STy->hasName())
405  name = STy->getName();
406 
407  if (name.empty())
408  name = utostr(uniqueNum++);
409 
410  name = std::string(prefix) + name;
411  sanitize(name);
412 
413  // Save the name
414  return TypeNames[Ty] = name;
415 }
416 
417 void CppWriter::printCppName(Type* Ty) {
418  printEscapedString(getCppName(Ty));
419 }
420 
421 std::string CppWriter::getCppName(const Value* val) {
422  std::string name;
423  ValueMap::iterator I = ValueNames.find(val);
424  if (I != ValueNames.end() && I->first == val)
425  return I->second;
426 
427  if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
428  name = std::string("gvar_") +
429  getTypePrefix(GV->getType()->getElementType());
430  } else if (isa<Function>(val)) {
431  name = std::string("func_");
432  } else if (const Constant* C = dyn_cast<Constant>(val)) {
433  name = std::string("const_") + getTypePrefix(C->getType());
434  } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
435  if (is_inline) {
436  unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
438  name = std::string("arg_") + utostr(argNum);
439  NameSet::iterator NI = UsedNames.find(name);
440  if (NI != UsedNames.end())
441  name += std::string("_") + utostr(uniqueNum++);
442  UsedNames.insert(name);
443  return ValueNames[val] = name;
444  } else {
445  name = getTypePrefix(val->getType());
446  }
447  } else {
448  name = getTypePrefix(val->getType());
449  }
450  if (val->hasName())
451  name += val->getName();
452  else
453  name += utostr(uniqueNum++);
454  sanitize(name);
455  NameSet::iterator NI = UsedNames.find(name);
456  if (NI != UsedNames.end())
457  name += std::string("_") + utostr(uniqueNum++);
458  UsedNames.insert(name);
459  return ValueNames[val] = name;
460 }
461 
462 void CppWriter::printCppName(const Value* val) {
463  printEscapedString(getCppName(val));
464 }
465 
466 void CppWriter::printAttributes(const AttributeSet &PAL,
467  const std::string &name) {
468  Out << "AttributeSet " << name << "_PAL;";
469  nl(Out);
470  if (!PAL.isEmpty()) {
471  Out << '{'; in(); nl(Out);
472  Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
473  Out << "AttributeSet PAS;"; in(); nl(Out);
474  for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
475  unsigned index = PAL.getSlotIndex(i);
476  AttrBuilder attrs(PAL.getSlotAttributes(i), index);
477  Out << "{"; in(); nl(Out);
478  Out << "AttrBuilder B;"; nl(Out);
479 
480 #define HANDLE_ATTR(X) \
481  if (attrs.contains(Attribute::X)) { \
482  Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \
483  attrs.removeAttribute(Attribute::X); \
484  }
485 
486  HANDLE_ATTR(SExt);
487  HANDLE_ATTR(ZExt);
488  HANDLE_ATTR(NoReturn);
489  HANDLE_ATTR(InReg);
490  HANDLE_ATTR(StructRet);
491  HANDLE_ATTR(NoUnwind);
492  HANDLE_ATTR(NoAlias);
493  HANDLE_ATTR(ByVal);
494  HANDLE_ATTR(Nest);
495  HANDLE_ATTR(ReadNone);
496  HANDLE_ATTR(ReadOnly);
497  HANDLE_ATTR(NoInline);
498  HANDLE_ATTR(AlwaysInline);
499  HANDLE_ATTR(OptimizeNone);
500  HANDLE_ATTR(OptimizeForSize);
501  HANDLE_ATTR(StackProtect);
502  HANDLE_ATTR(StackProtectReq);
503  HANDLE_ATTR(StackProtectStrong);
504  HANDLE_ATTR(NoCapture);
505  HANDLE_ATTR(NoRedZone);
506  HANDLE_ATTR(NoImplicitFloat);
507  HANDLE_ATTR(Naked);
508  HANDLE_ATTR(InlineHint);
509  HANDLE_ATTR(ReturnsTwice);
510  HANDLE_ATTR(UWTable);
511  HANDLE_ATTR(NonLazyBind);
512  HANDLE_ATTR(MinSize);
513 #undef HANDLE_ATTR
514 
515  if (attrs.contains(Attribute::StackAlignment)) {
516  Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
517  nl(Out);
518  attrs.removeAttribute(Attribute::StackAlignment);
519  }
520 
521  Out << "PAS = AttributeSet::get(mod->getContext(), ";
522  if (index == ~0U)
523  Out << "~0U,";
524  else
525  Out << index << "U,";
526  Out << " B);"; out(); nl(Out);
527  Out << "}"; out(); nl(Out);
528  nl(Out);
529  Out << "Attrs.push_back(PAS);"; nl(Out);
530  }
531  Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
532  nl(Out);
533  out(); nl(Out);
534  Out << '}'; nl(Out);
535  }
536 }
537 
538 void CppWriter::printType(Type* Ty) {
539  // We don't print definitions for primitive types
540  if (Ty->isPrimitiveType() || Ty->isIntegerTy())
541  return;
542 
543  // If we already defined this type, we don't need to define it again.
544  if (DefinedTypes.find(Ty) != DefinedTypes.end())
545  return;
546 
547  // Everything below needs the name for the type so get it now.
548  std::string typeName(getCppName(Ty));
549 
550  // Print the type definition
551  switch (Ty->getTypeID()) {
552  case Type::FunctionTyID: {
553  FunctionType* FT = cast<FunctionType>(Ty);
554  Out << "std::vector<Type*>" << typeName << "_args;";
555  nl(Out);
558  for (; PI != PE; ++PI) {
559  Type* argTy = static_cast<Type*>(*PI);
560  printType(argTy);
561  std::string argName(getCppName(argTy));
562  Out << typeName << "_args.push_back(" << argName;
563  Out << ");";
564  nl(Out);
565  }
566  printType(FT->getReturnType());
567  std::string retTypeName(getCppName(FT->getReturnType()));
568  Out << "FunctionType* " << typeName << " = FunctionType::get(";
569  in(); nl(Out) << "/*Result=*/" << retTypeName;
570  Out << ",";
571  nl(Out) << "/*Params=*/" << typeName << "_args,";
572  nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
573  out();
574  nl(Out);
575  break;
576  }
577  case Type::StructTyID: {
578  StructType* ST = cast<StructType>(Ty);
579  if (!ST->isLiteral()) {
580  Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
581  printEscapedString(ST->getName());
582  Out << "\");";
583  nl(Out);
584  Out << "if (!" << typeName << ") {";
585  nl(Out);
586  Out << typeName << " = ";
587  Out << "StructType::create(mod->getContext(), \"";
588  printEscapedString(ST->getName());
589  Out << "\");";
590  nl(Out);
591  Out << "}";
592  nl(Out);
593  // Indicate that this type is now defined.
594  DefinedTypes.insert(Ty);
595  }
596 
597  Out << "std::vector<Type*>" << typeName << "_fields;";
598  nl(Out);
601  for (; EI != EE; ++EI) {
602  Type* fieldTy = static_cast<Type*>(*EI);
603  printType(fieldTy);
604  std::string fieldName(getCppName(fieldTy));
605  Out << typeName << "_fields.push_back(" << fieldName;
606  Out << ");";
607  nl(Out);
608  }
609 
610  if (ST->isLiteral()) {
611  Out << "StructType *" << typeName << " = ";
612  Out << "StructType::get(" << "mod->getContext(), ";
613  } else {
614  Out << "if (" << typeName << "->isOpaque()) {";
615  nl(Out);
616  Out << typeName << "->setBody(";
617  }
618 
619  Out << typeName << "_fields, /*isPacked=*/"
620  << (ST->isPacked() ? "true" : "false") << ");";
621  nl(Out);
622  if (!ST->isLiteral()) {
623  Out << "}";
624  nl(Out);
625  }
626  break;
627  }
628  case Type::ArrayTyID: {
629  ArrayType* AT = cast<ArrayType>(Ty);
630  Type* ET = AT->getElementType();
631  printType(ET);
632  if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
633  std::string elemName(getCppName(ET));
634  Out << "ArrayType* " << typeName << " = ArrayType::get("
635  << elemName
636  << ", " << utostr(AT->getNumElements()) << ");";
637  nl(Out);
638  }
639  break;
640  }
641  case Type::PointerTyID: {
642  PointerType* PT = cast<PointerType>(Ty);
643  Type* ET = PT->getElementType();
644  printType(ET);
645  if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
646  std::string elemName(getCppName(ET));
647  Out << "PointerType* " << typeName << " = PointerType::get("
648  << elemName
649  << ", " << utostr(PT->getAddressSpace()) << ");";
650  nl(Out);
651  }
652  break;
653  }
654  case Type::VectorTyID: {
655  VectorType* PT = cast<VectorType>(Ty);
656  Type* ET = PT->getElementType();
657  printType(ET);
658  if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
659  std::string elemName(getCppName(ET));
660  Out << "VectorType* " << typeName << " = VectorType::get("
661  << elemName
662  << ", " << utostr(PT->getNumElements()) << ");";
663  nl(Out);
664  }
665  break;
666  }
667  default:
668  error("Invalid TypeID");
669  }
670 
671  // Indicate that this type is now defined.
672  DefinedTypes.insert(Ty);
673 
674  // Finally, separate the type definition from other with a newline.
675  nl(Out);
676 }
677 
678 void CppWriter::printTypes(const Module* M) {
679  // Add all of the global variables to the value table.
680  for (Module::const_global_iterator I = TheModule->global_begin(),
681  E = TheModule->global_end(); I != E; ++I) {
682  if (I->hasInitializer())
683  printType(I->getInitializer()->getType());
684  printType(I->getType());
685  }
686 
687  // Add all the functions to the table
688  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
689  FI != FE; ++FI) {
690  printType(FI->getReturnType());
691  printType(FI->getFunctionType());
692  // Add all the function arguments
693  for (Function::const_arg_iterator AI = FI->arg_begin(),
694  AE = FI->arg_end(); AI != AE; ++AI) {
695  printType(AI->getType());
696  }
697 
698  // Add all of the basic blocks and instructions
699  for (Function::const_iterator BB = FI->begin(),
700  E = FI->end(); BB != E; ++BB) {
701  printType(BB->getType());
702  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
703  ++I) {
704  printType(I->getType());
705  for (unsigned i = 0; i < I->getNumOperands(); ++i)
706  printType(I->getOperand(i)->getType());
707  }
708  }
709  }
710 }
711 
712 
713 // printConstant - Print out a constant pool entry...
714 void CppWriter::printConstant(const Constant *CV) {
715  // First, if the constant is actually a GlobalValue (variable or function)
716  // or its already in the constant list then we've printed it already and we
717  // can just return.
718  if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
719  return;
720 
721  std::string constName(getCppName(CV));
722  std::string typeName(getCppName(CV->getType()));
723 
724  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
725  std::string constValue = CI->getValue().toString(10, true);
726  Out << "ConstantInt* " << constName
727  << " = ConstantInt::get(mod->getContext(), APInt("
728  << cast<IntegerType>(CI->getType())->getBitWidth()
729  << ", StringRef(\"" << constValue << "\"), 10));";
730  } else if (isa<ConstantAggregateZero>(CV)) {
731  Out << "ConstantAggregateZero* " << constName
732  << " = ConstantAggregateZero::get(" << typeName << ");";
733  } else if (isa<ConstantPointerNull>(CV)) {
734  Out << "ConstantPointerNull* " << constName
735  << " = ConstantPointerNull::get(" << typeName << ");";
736  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
737  Out << "ConstantFP* " << constName << " = ";
738  printCFP(CFP);
739  Out << ";";
740  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
741  Out << "std::vector<Constant*> " << constName << "_elems;";
742  nl(Out);
743  unsigned N = CA->getNumOperands();
744  for (unsigned i = 0; i < N; ++i) {
745  printConstant(CA->getOperand(i)); // recurse to print operands
746  Out << constName << "_elems.push_back("
747  << getCppName(CA->getOperand(i)) << ");";
748  nl(Out);
749  }
750  Out << "Constant* " << constName << " = ConstantArray::get("
751  << typeName << ", " << constName << "_elems);";
752  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
753  Out << "std::vector<Constant*> " << constName << "_fields;";
754  nl(Out);
755  unsigned N = CS->getNumOperands();
756  for (unsigned i = 0; i < N; i++) {
757  printConstant(CS->getOperand(i));
758  Out << constName << "_fields.push_back("
759  << getCppName(CS->getOperand(i)) << ");";
760  nl(Out);
761  }
762  Out << "Constant* " << constName << " = ConstantStruct::get("
763  << typeName << ", " << constName << "_fields);";
764  } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
765  Out << "std::vector<Constant*> " << constName << "_elems;";
766  nl(Out);
767  unsigned N = CVec->getNumOperands();
768  for (unsigned i = 0; i < N; ++i) {
769  printConstant(CVec->getOperand(i));
770  Out << constName << "_elems.push_back("
771  << getCppName(CVec->getOperand(i)) << ");";
772  nl(Out);
773  }
774  Out << "Constant* " << constName << " = ConstantVector::get("
775  << typeName << ", " << constName << "_elems);";
776  } else if (isa<UndefValue>(CV)) {
777  Out << "UndefValue* " << constName << " = UndefValue::get("
778  << typeName << ");";
779  } else if (const ConstantDataSequential *CDS =
780  dyn_cast<ConstantDataSequential>(CV)) {
781  if (CDS->isString()) {
782  Out << "Constant *" << constName <<
783  " = ConstantDataArray::getString(mod->getContext(), \"";
784  StringRef Str = CDS->getAsString();
785  bool nullTerminate = false;
786  if (Str.back() == 0) {
787  Str = Str.drop_back();
788  nullTerminate = true;
789  }
790  printEscapedString(Str);
791  // Determine if we want null termination or not.
792  if (nullTerminate)
793  Out << "\", true);";
794  else
795  Out << "\", false);";// No null terminator
796  } else {
797  // TODO: Could generate more efficient code generating CDS calls instead.
798  Out << "std::vector<Constant*> " << constName << "_elems;";
799  nl(Out);
800  for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
801  Constant *Elt = CDS->getElementAsConstant(i);
802  printConstant(Elt);
803  Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
804  nl(Out);
805  }
806  Out << "Constant* " << constName;
807 
808  if (isa<ArrayType>(CDS->getType()))
809  Out << " = ConstantArray::get(";
810  else
811  Out << " = ConstantVector::get(";
812  Out << typeName << ", " << constName << "_elems);";
813  }
814  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
815  if (CE->getOpcode() == Instruction::GetElementPtr) {
816  Out << "std::vector<Constant*> " << constName << "_indices;";
817  nl(Out);
818  printConstant(CE->getOperand(0));
819  for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
820  printConstant(CE->getOperand(i));
821  Out << constName << "_indices.push_back("
822  << getCppName(CE->getOperand(i)) << ");";
823  nl(Out);
824  }
825  Out << "Constant* " << constName
826  << " = ConstantExpr::getGetElementPtr("
827  << getCppName(CE->getOperand(0)) << ", "
828  << constName << "_indices);";
829  } else if (CE->isCast()) {
830  printConstant(CE->getOperand(0));
831  Out << "Constant* " << constName << " = ConstantExpr::getCast(";
832  switch (CE->getOpcode()) {
833  default: llvm_unreachable("Invalid cast opcode");
834  case Instruction::Trunc: Out << "Instruction::Trunc"; break;
835  case Instruction::ZExt: Out << "Instruction::ZExt"; break;
836  case Instruction::SExt: Out << "Instruction::SExt"; break;
837  case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
838  case Instruction::FPExt: Out << "Instruction::FPExt"; break;
839  case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
840  case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
841  case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
842  case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
843  case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
844  case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
845  case Instruction::BitCast: Out << "Instruction::BitCast"; break;
846  }
847  Out << ", " << getCppName(CE->getOperand(0)) << ", "
848  << getCppName(CE->getType()) << ");";
849  } else {
850  unsigned N = CE->getNumOperands();
851  for (unsigned i = 0; i < N; ++i ) {
852  printConstant(CE->getOperand(i));
853  }
854  Out << "Constant* " << constName << " = ConstantExpr::";
855  switch (CE->getOpcode()) {
856  case Instruction::Add: Out << "getAdd("; break;
857  case Instruction::FAdd: Out << "getFAdd("; break;
858  case Instruction::Sub: Out << "getSub("; break;
859  case Instruction::FSub: Out << "getFSub("; break;
860  case Instruction::Mul: Out << "getMul("; break;
861  case Instruction::FMul: Out << "getFMul("; break;
862  case Instruction::UDiv: Out << "getUDiv("; break;
863  case Instruction::SDiv: Out << "getSDiv("; break;
864  case Instruction::FDiv: Out << "getFDiv("; break;
865  case Instruction::URem: Out << "getURem("; break;
866  case Instruction::SRem: Out << "getSRem("; break;
867  case Instruction::FRem: Out << "getFRem("; break;
868  case Instruction::And: Out << "getAnd("; break;
869  case Instruction::Or: Out << "getOr("; break;
870  case Instruction::Xor: Out << "getXor("; break;
871  case Instruction::ICmp:
872  Out << "getICmp(ICmpInst::ICMP_";
873  switch (CE->getPredicate()) {
874  case ICmpInst::ICMP_EQ: Out << "EQ"; break;
875  case ICmpInst::ICMP_NE: Out << "NE"; break;
876  case ICmpInst::ICMP_SLT: Out << "SLT"; break;
877  case ICmpInst::ICMP_ULT: Out << "ULT"; break;
878  case ICmpInst::ICMP_SGT: Out << "SGT"; break;
879  case ICmpInst::ICMP_UGT: Out << "UGT"; break;
880  case ICmpInst::ICMP_SLE: Out << "SLE"; break;
881  case ICmpInst::ICMP_ULE: Out << "ULE"; break;
882  case ICmpInst::ICMP_SGE: Out << "SGE"; break;
883  case ICmpInst::ICMP_UGE: Out << "UGE"; break;
884  default: error("Invalid ICmp Predicate");
885  }
886  break;
887  case Instruction::FCmp:
888  Out << "getFCmp(FCmpInst::FCMP_";
889  switch (CE->getPredicate()) {
890  case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
891  case FCmpInst::FCMP_ORD: Out << "ORD"; break;
892  case FCmpInst::FCMP_UNO: Out << "UNO"; break;
893  case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
894  case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
895  case FCmpInst::FCMP_ONE: Out << "ONE"; break;
896  case FCmpInst::FCMP_UNE: Out << "UNE"; break;
897  case FCmpInst::FCMP_OLT: Out << "OLT"; break;
898  case FCmpInst::FCMP_ULT: Out << "ULT"; break;
899  case FCmpInst::FCMP_OGT: Out << "OGT"; break;
900  case FCmpInst::FCMP_UGT: Out << "UGT"; break;
901  case FCmpInst::FCMP_OLE: Out << "OLE"; break;
902  case FCmpInst::FCMP_ULE: Out << "ULE"; break;
903  case FCmpInst::FCMP_OGE: Out << "OGE"; break;
904  case FCmpInst::FCMP_UGE: Out << "UGE"; break;
905  case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
906  default: error("Invalid FCmp Predicate");
907  }
908  break;
909  case Instruction::Shl: Out << "getShl("; break;
910  case Instruction::LShr: Out << "getLShr("; break;
911  case Instruction::AShr: Out << "getAShr("; break;
912  case Instruction::Select: Out << "getSelect("; break;
913  case Instruction::ExtractElement: Out << "getExtractElement("; break;
914  case Instruction::InsertElement: Out << "getInsertElement("; break;
915  case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
916  default:
917  error("Invalid constant expression");
918  break;
919  }
920  Out << getCppName(CE->getOperand(0));
921  for (unsigned i = 1; i < CE->getNumOperands(); ++i)
922  Out << ", " << getCppName(CE->getOperand(i));
923  Out << ");";
924  }
925  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
926  Out << "Constant* " << constName << " = ";
927  Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
928  } else {
929  error("Bad Constant");
930  Out << "Constant* " << constName << " = 0; ";
931  }
932  nl(Out);
933 }
934 
935 void CppWriter::printConstants(const Module* M) {
936  // Traverse all the global variables looking for constant initializers
937  for (Module::const_global_iterator I = TheModule->global_begin(),
938  E = TheModule->global_end(); I != E; ++I)
939  if (I->hasInitializer())
940  printConstant(I->getInitializer());
941 
942  // Traverse the LLVM functions looking for constants
943  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
944  FI != FE; ++FI) {
945  // Add all of the basic blocks and instructions
946  for (Function::const_iterator BB = FI->begin(),
947  E = FI->end(); BB != E; ++BB) {
948  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
949  ++I) {
950  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
951  if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
952  printConstant(C);
953  }
954  }
955  }
956  }
957  }
958 }
959 
960 void CppWriter::printVariableUses(const GlobalVariable *GV) {
961  nl(Out) << "// Type Definitions";
962  nl(Out);
963  printType(GV->getType());
964  if (GV->hasInitializer()) {
965  const Constant *Init = GV->getInitializer();
966  printType(Init->getType());
967  if (const Function *F = dyn_cast<Function>(Init)) {
968  nl(Out)<< "/ Function Declarations"; nl(Out);
969  printFunctionHead(F);
970  } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
971  nl(Out) << "// Global Variable Declarations"; nl(Out);
972  printVariableHead(gv);
973 
974  nl(Out) << "// Global Variable Definitions"; nl(Out);
975  printVariableBody(gv);
976  } else {
977  nl(Out) << "// Constant Definitions"; nl(Out);
978  printConstant(Init);
979  }
980  }
981 }
982 
983 void CppWriter::printVariableHead(const GlobalVariable *GV) {
984  nl(Out) << "GlobalVariable* " << getCppName(GV);
985  if (is_inline) {
986  Out << " = mod->getGlobalVariable(mod->getContext(), ";
987  printEscapedString(GV->getName());
988  Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
989  nl(Out) << "if (!" << getCppName(GV) << ") {";
990  in(); nl(Out) << getCppName(GV);
991  }
992  Out << " = new GlobalVariable(/*Module=*/*mod, ";
993  nl(Out) << "/*Type=*/";
994  printCppName(GV->getType()->getElementType());
995  Out << ",";
996  nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
997  Out << ",";
998  nl(Out) << "/*Linkage=*/";
999  printLinkageType(GV->getLinkage());
1000  Out << ",";
1001  nl(Out) << "/*Initializer=*/0, ";
1002  if (GV->hasInitializer()) {
1003  Out << "// has initializer, specified below";
1004  }
1005  nl(Out) << "/*Name=*/\"";
1006  printEscapedString(GV->getName());
1007  Out << "\");";
1008  nl(Out);
1009 
1010  if (GV->hasSection()) {
1011  printCppName(GV);
1012  Out << "->setSection(\"";
1013  printEscapedString(GV->getSection());
1014  Out << "\");";
1015  nl(Out);
1016  }
1017  if (GV->getAlignment()) {
1018  printCppName(GV);
1019  Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1020  nl(Out);
1021  }
1023  printCppName(GV);
1024  Out << "->setVisibility(";
1025  printVisibilityType(GV->getVisibility());
1026  Out << ");";
1027  nl(Out);
1028  }
1029  if (GV->isThreadLocal()) {
1030  printCppName(GV);
1031  Out << "->setThreadLocalMode(";
1032  printThreadLocalMode(GV->getThreadLocalMode());
1033  Out << ");";
1034  nl(Out);
1035  }
1036  if (is_inline) {
1037  out(); Out << "}"; nl(Out);
1038  }
1039 }
1040 
1041 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1042  if (GV->hasInitializer()) {
1043  printCppName(GV);
1044  Out << "->setInitializer(";
1045  Out << getCppName(GV->getInitializer()) << ");";
1046  nl(Out);
1047  }
1048 }
1049 
1050 std::string CppWriter::getOpName(const Value* V) {
1051  if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1052  return getCppName(V);
1053 
1054  // See if its alread in the map of forward references, if so just return the
1055  // name we already set up for it
1056  ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1057  if (I != ForwardRefs.end())
1058  return I->second;
1059 
1060  // This is a new forward reference. Generate a unique name for it
1061  std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1062 
1063  // Yes, this is a hack. An Argument is the smallest instantiable value that
1064  // we can make as a placeholder for the real value. We'll replace these
1065  // Argument instances later.
1066  Out << "Argument* " << result << " = new Argument("
1067  << getCppName(V->getType()) << ");";
1068  nl(Out);
1069  ForwardRefs[V] = result;
1070  return result;
1071 }
1072 
1074  switch (Ordering) {
1075  case NotAtomic: return "NotAtomic";
1076  case Unordered: return "Unordered";
1077  case Monotonic: return "Monotonic";
1078  case Acquire: return "Acquire";
1079  case Release: return "Release";
1080  case AcquireRelease: return "AcquireRelease";
1081  case SequentiallyConsistent: return "SequentiallyConsistent";
1082  }
1083  llvm_unreachable("Unknown ordering");
1084 }
1085 
1087  switch (SynchScope) {
1088  case SingleThread: return "SingleThread";
1089  case CrossThread: return "CrossThread";
1090  }
1091  llvm_unreachable("Unknown synch scope");
1092 }
1093 
1094 // printInstruction - This member is called for each Instruction in a function.
1095 void CppWriter::printInstruction(const Instruction *I,
1096  const std::string& bbname) {
1097  std::string iName(getCppName(I));
1098 
1099  // Before we emit this instruction, we need to take care of generating any
1100  // forward references. So, we get the names of all the operands in advance
1101  const unsigned Ops(I->getNumOperands());
1102  std::string* opNames = new std::string[Ops];
1103  for (unsigned i = 0; i < Ops; i++)
1104  opNames[i] = getOpName(I->getOperand(i));
1105 
1106  switch (I->getOpcode()) {
1107  default:
1108  error("Invalid instruction");
1109  break;
1110 
1111  case Instruction::Ret: {
1112  const ReturnInst* ret = cast<ReturnInst>(I);
1113  Out << "ReturnInst::Create(mod->getContext(), "
1114  << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1115  break;
1116  }
1117  case Instruction::Br: {
1118  const BranchInst* br = cast<BranchInst>(I);
1119  Out << "BranchInst::Create(" ;
1120  if (br->getNumOperands() == 3) {
1121  Out << opNames[2] << ", "
1122  << opNames[1] << ", "
1123  << opNames[0] << ", ";
1124 
1125  } else if (br->getNumOperands() == 1) {
1126  Out << opNames[0] << ", ";
1127  } else {
1128  error("Branch with 2 operands?");
1129  }
1130  Out << bbname << ");";
1131  break;
1132  }
1133  case Instruction::Switch: {
1134  const SwitchInst *SI = cast<SwitchInst>(I);
1135  Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1136  << getOpName(SI->getCondition()) << ", "
1137  << getOpName(SI->getDefaultDest()) << ", "
1138  << SI->getNumCases() << ", " << bbname << ");";
1139  nl(Out);
1140  for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1141  i != e; ++i) {
1142  const ConstantInt* CaseVal = i.getCaseValue();
1143  const BasicBlock *BB = i.getCaseSuccessor();
1144  Out << iName << "->addCase("
1145  << getOpName(CaseVal) << ", "
1146  << getOpName(BB) << ");";
1147  nl(Out);
1148  }
1149  break;
1150  }
1151  case Instruction::IndirectBr: {
1152  const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1153  Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1154  << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1155  nl(Out);
1156  for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1157  Out << iName << "->addDestination(" << opNames[i] << ");";
1158  nl(Out);
1159  }
1160  break;
1161  }
1162  case Instruction::Resume: {
1163  Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1164  break;
1165  }
1166  case Instruction::Invoke: {
1167  const InvokeInst* inv = cast<InvokeInst>(I);
1168  Out << "std::vector<Value*> " << iName << "_params;";
1169  nl(Out);
1170  for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1171  Out << iName << "_params.push_back("
1172  << getOpName(inv->getArgOperand(i)) << ");";
1173  nl(Out);
1174  }
1175  // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1176  Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1177  << getOpName(inv->getCalledValue()) << ", "
1178  << getOpName(inv->getNormalDest()) << ", "
1179  << getOpName(inv->getUnwindDest()) << ", "
1180  << iName << "_params, \"";
1181  printEscapedString(inv->getName());
1182  Out << "\", " << bbname << ");";
1183  nl(Out) << iName << "->setCallingConv(";
1184  printCallingConv(inv->getCallingConv());
1185  Out << ");";
1186  printAttributes(inv->getAttributes(), iName);
1187  Out << iName << "->setAttributes(" << iName << "_PAL);";
1188  nl(Out);
1189  break;
1190  }
1191  case Instruction::Unreachable: {
1192  Out << "new UnreachableInst("
1193  << "mod->getContext(), "
1194  << bbname << ");";
1195  break;
1196  }
1197  case Instruction::Add:
1198  case Instruction::FAdd:
1199  case Instruction::Sub:
1200  case Instruction::FSub:
1201  case Instruction::Mul:
1202  case Instruction::FMul:
1203  case Instruction::UDiv:
1204  case Instruction::SDiv:
1205  case Instruction::FDiv:
1206  case Instruction::URem:
1207  case Instruction::SRem:
1208  case Instruction::FRem:
1209  case Instruction::And:
1210  case Instruction::Or:
1211  case Instruction::Xor:
1212  case Instruction::Shl:
1213  case Instruction::LShr:
1214  case Instruction::AShr:{
1215  Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1216  switch (I->getOpcode()) {
1217  case Instruction::Add: Out << "Instruction::Add"; break;
1218  case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1219  case Instruction::Sub: Out << "Instruction::Sub"; break;
1220  case Instruction::FSub: Out << "Instruction::FSub"; break;
1221  case Instruction::Mul: Out << "Instruction::Mul"; break;
1222  case Instruction::FMul: Out << "Instruction::FMul"; break;
1223  case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1224  case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1225  case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1226  case Instruction::URem:Out << "Instruction::URem"; break;
1227  case Instruction::SRem:Out << "Instruction::SRem"; break;
1228  case Instruction::FRem:Out << "Instruction::FRem"; break;
1229  case Instruction::And: Out << "Instruction::And"; break;
1230  case Instruction::Or: Out << "Instruction::Or"; break;
1231  case Instruction::Xor: Out << "Instruction::Xor"; break;
1232  case Instruction::Shl: Out << "Instruction::Shl"; break;
1233  case Instruction::LShr:Out << "Instruction::LShr"; break;
1234  case Instruction::AShr:Out << "Instruction::AShr"; break;
1235  default: Out << "Instruction::BadOpCode"; break;
1236  }
1237  Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1238  printEscapedString(I->getName());
1239  Out << "\", " << bbname << ");";
1240  break;
1241  }
1242  case Instruction::FCmp: {
1243  Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1244  switch (cast<FCmpInst>(I)->getPredicate()) {
1245  case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1246  case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1247  case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1248  case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1249  case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1250  case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1251  case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1252  case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1253  case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1254  case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1255  case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1256  case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1257  case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1258  case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1259  case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1260  case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1261  default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1262  }
1263  Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1264  printEscapedString(I->getName());
1265  Out << "\");";
1266  break;
1267  }
1268  case Instruction::ICmp: {
1269  Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1270  switch (cast<ICmpInst>(I)->getPredicate()) {
1271  case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1272  case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1273  case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1274  case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1275  case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1276  case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1277  case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1278  case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1279  case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1280  case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1281  default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1282  }
1283  Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1284  printEscapedString(I->getName());
1285  Out << "\");";
1286  break;
1287  }
1288  case Instruction::Alloca: {
1289  const AllocaInst* allocaI = cast<AllocaInst>(I);
1290  Out << "AllocaInst* " << iName << " = new AllocaInst("
1291  << getCppName(allocaI->getAllocatedType()) << ", ";
1292  if (allocaI->isArrayAllocation())
1293  Out << opNames[0] << ", ";
1294  Out << "\"";
1295  printEscapedString(allocaI->getName());
1296  Out << "\", " << bbname << ");";
1297  if (allocaI->getAlignment())
1298  nl(Out) << iName << "->setAlignment("
1299  << allocaI->getAlignment() << ");";
1300  break;
1301  }
1302  case Instruction::Load: {
1303  const LoadInst* load = cast<LoadInst>(I);
1304  Out << "LoadInst* " << iName << " = new LoadInst("
1305  << opNames[0] << ", \"";
1306  printEscapedString(load->getName());
1307  Out << "\", " << (load->isVolatile() ? "true" : "false" )
1308  << ", " << bbname << ");";
1309  if (load->getAlignment())
1310  nl(Out) << iName << "->setAlignment("
1311  << load->getAlignment() << ");";
1312  if (load->isAtomic()) {
1313  StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1315  nl(Out) << iName << "->setAtomic("
1316  << Ordering << ", " << CrossThread << ");";
1317  }
1318  break;
1319  }
1320  case Instruction::Store: {
1321  const StoreInst* store = cast<StoreInst>(I);
1322  Out << "StoreInst* " << iName << " = new StoreInst("
1323  << opNames[0] << ", "
1324  << opNames[1] << ", "
1325  << (store->isVolatile() ? "true" : "false")
1326  << ", " << bbname << ");";
1327  if (store->getAlignment())
1328  nl(Out) << iName << "->setAlignment("
1329  << store->getAlignment() << ");";
1330  if (store->isAtomic()) {
1331  StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1333  nl(Out) << iName << "->setAtomic("
1334  << Ordering << ", " << CrossThread << ");";
1335  }
1336  break;
1337  }
1338  case Instruction::GetElementPtr: {
1339  const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1340  if (gep->getNumOperands() <= 2) {
1341  Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1342  << opNames[0];
1343  if (gep->getNumOperands() == 2)
1344  Out << ", " << opNames[1];
1345  } else {
1346  Out << "std::vector<Value*> " << iName << "_indices;";
1347  nl(Out);
1348  for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1349  Out << iName << "_indices.push_back("
1350  << opNames[i] << ");";
1351  nl(Out);
1352  }
1353  Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1354  << opNames[0] << ", " << iName << "_indices";
1355  }
1356  Out << ", \"";
1357  printEscapedString(gep->getName());
1358  Out << "\", " << bbname << ");";
1359  break;
1360  }
1361  case Instruction::PHI: {
1362  const PHINode* phi = cast<PHINode>(I);
1363 
1364  Out << "PHINode* " << iName << " = PHINode::Create("
1365  << getCppName(phi->getType()) << ", "
1366  << phi->getNumIncomingValues() << ", \"";
1367  printEscapedString(phi->getName());
1368  Out << "\", " << bbname << ");";
1369  nl(Out);
1370  for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1371  Out << iName << "->addIncoming("
1372  << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1373  << getOpName(phi->getIncomingBlock(i)) << ");";
1374  nl(Out);
1375  }
1376  break;
1377  }
1378  case Instruction::Trunc:
1379  case Instruction::ZExt:
1380  case Instruction::SExt:
1381  case Instruction::FPTrunc:
1382  case Instruction::FPExt:
1383  case Instruction::FPToUI:
1384  case Instruction::FPToSI:
1385  case Instruction::UIToFP:
1386  case Instruction::SIToFP:
1387  case Instruction::PtrToInt:
1388  case Instruction::IntToPtr:
1389  case Instruction::BitCast: {
1390  const CastInst* cst = cast<CastInst>(I);
1391  Out << "CastInst* " << iName << " = new ";
1392  switch (I->getOpcode()) {
1393  case Instruction::Trunc: Out << "TruncInst"; break;
1394  case Instruction::ZExt: Out << "ZExtInst"; break;
1395  case Instruction::SExt: Out << "SExtInst"; break;
1396  case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1397  case Instruction::FPExt: Out << "FPExtInst"; break;
1398  case Instruction::FPToUI: Out << "FPToUIInst"; break;
1399  case Instruction::FPToSI: Out << "FPToSIInst"; break;
1400  case Instruction::UIToFP: Out << "UIToFPInst"; break;
1401  case Instruction::SIToFP: Out << "SIToFPInst"; break;
1402  case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1403  case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1404  case Instruction::BitCast: Out << "BitCastInst"; break;
1405  default: llvm_unreachable("Unreachable");
1406  }
1407  Out << "(" << opNames[0] << ", "
1408  << getCppName(cst->getType()) << ", \"";
1409  printEscapedString(cst->getName());
1410  Out << "\", " << bbname << ");";
1411  break;
1412  }
1413  case Instruction::Call: {
1414  const CallInst* call = cast<CallInst>(I);
1415  if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1416  Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1417  << getCppName(ila->getFunctionType()) << ", \""
1418  << ila->getAsmString() << "\", \""
1419  << ila->getConstraintString() << "\","
1420  << (ila->hasSideEffects() ? "true" : "false") << ");";
1421  nl(Out);
1422  }
1423  if (call->getNumArgOperands() > 1) {
1424  Out << "std::vector<Value*> " << iName << "_params;";
1425  nl(Out);
1426  for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1427  Out << iName << "_params.push_back(" << opNames[i] << ");";
1428  nl(Out);
1429  }
1430  Out << "CallInst* " << iName << " = CallInst::Create("
1431  << opNames[call->getNumArgOperands()] << ", "
1432  << iName << "_params, \"";
1433  } else if (call->getNumArgOperands() == 1) {
1434  Out << "CallInst* " << iName << " = CallInst::Create("
1435  << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1436  } else {
1437  Out << "CallInst* " << iName << " = CallInst::Create("
1438  << opNames[call->getNumArgOperands()] << ", \"";
1439  }
1440  printEscapedString(call->getName());
1441  Out << "\", " << bbname << ");";
1442  nl(Out) << iName << "->setCallingConv(";
1443  printCallingConv(call->getCallingConv());
1444  Out << ");";
1445  nl(Out) << iName << "->setTailCall("
1446  << (call->isTailCall() ? "true" : "false");
1447  Out << ");";
1448  nl(Out);
1449  printAttributes(call->getAttributes(), iName);
1450  Out << iName << "->setAttributes(" << iName << "_PAL);";
1451  nl(Out);
1452  break;
1453  }
1454  case Instruction::Select: {
1455  const SelectInst* sel = cast<SelectInst>(I);
1456  Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1457  Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1458  printEscapedString(sel->getName());
1459  Out << "\", " << bbname << ");";
1460  break;
1461  }
1462  case Instruction::UserOp1:
1463  /// FALL THROUGH
1464  case Instruction::UserOp2: {
1465  /// FIXME: What should be done here?
1466  break;
1467  }
1468  case Instruction::VAArg: {
1469  const VAArgInst* va = cast<VAArgInst>(I);
1470  Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1471  << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1472  printEscapedString(va->getName());
1473  Out << "\", " << bbname << ");";
1474  break;
1475  }
1477  const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1478  Out << "ExtractElementInst* " << getCppName(eei)
1479  << " = new ExtractElementInst(" << opNames[0]
1480  << ", " << opNames[1] << ", \"";
1481  printEscapedString(eei->getName());
1482  Out << "\", " << bbname << ");";
1483  break;
1484  }
1485  case Instruction::InsertElement: {
1486  const InsertElementInst* iei = cast<InsertElementInst>(I);
1487  Out << "InsertElementInst* " << getCppName(iei)
1488  << " = InsertElementInst::Create(" << opNames[0]
1489  << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1490  printEscapedString(iei->getName());
1491  Out << "\", " << bbname << ");";
1492  break;
1493  }
1494  case Instruction::ShuffleVector: {
1495  const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1496  Out << "ShuffleVectorInst* " << getCppName(svi)
1497  << " = new ShuffleVectorInst(" << opNames[0]
1498  << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1499  printEscapedString(svi->getName());
1500  Out << "\", " << bbname << ");";
1501  break;
1502  }
1503  case Instruction::ExtractValue: {
1504  const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1505  Out << "std::vector<unsigned> " << iName << "_indices;";
1506  nl(Out);
1507  for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1508  Out << iName << "_indices.push_back("
1509  << evi->idx_begin()[i] << ");";
1510  nl(Out);
1511  }
1512  Out << "ExtractValueInst* " << getCppName(evi)
1513  << " = ExtractValueInst::Create(" << opNames[0]
1514  << ", "
1515  << iName << "_indices, \"";
1516  printEscapedString(evi->getName());
1517  Out << "\", " << bbname << ");";
1518  break;
1519  }
1520  case Instruction::InsertValue: {
1521  const InsertValueInst *ivi = cast<InsertValueInst>(I);
1522  Out << "std::vector<unsigned> " << iName << "_indices;";
1523  nl(Out);
1524  for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1525  Out << iName << "_indices.push_back("
1526  << ivi->idx_begin()[i] << ");";
1527  nl(Out);
1528  }
1529  Out << "InsertValueInst* " << getCppName(ivi)
1530  << " = InsertValueInst::Create(" << opNames[0]
1531  << ", " << opNames[1] << ", "
1532  << iName << "_indices, \"";
1533  printEscapedString(ivi->getName());
1534  Out << "\", " << bbname << ");";
1535  break;
1536  }
1537  case Instruction::Fence: {
1538  const FenceInst *fi = cast<FenceInst>(I);
1539  StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1541  Out << "FenceInst* " << iName
1542  << " = new FenceInst(mod->getContext(), "
1543  << Ordering << ", " << CrossThread << ", " << bbname
1544  << ");";
1545  break;
1546  }
1547  case Instruction::AtomicCmpXchg: {
1548  const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1549  StringRef Ordering = ConvertAtomicOrdering(cxi->getOrdering());
1550  StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1551  Out << "AtomicCmpXchgInst* " << iName
1552  << " = new AtomicCmpXchgInst("
1553  << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1554  << Ordering << ", " << CrossThread << ", " << bbname
1555  << ");";
1556  nl(Out) << iName << "->setName(\"";
1557  printEscapedString(cxi->getName());
1558  Out << "\");";
1559  break;
1560  }
1561  case Instruction::AtomicRMW: {
1562  const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1563  StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1564  StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1565  StringRef Operation;
1566  switch (rmwi->getOperation()) {
1567  case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1568  case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break;
1569  case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break;
1570  case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break;
1571  case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1572  case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break;
1573  case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break;
1574  case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break;
1575  case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break;
1576  case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1577  case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1578  case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1579  }
1580  Out << "AtomicRMWInst* " << iName
1581  << " = new AtomicRMWInst("
1582  << Operation << ", "
1583  << opNames[0] << ", " << opNames[1] << ", "
1584  << Ordering << ", " << CrossThread << ", " << bbname
1585  << ");";
1586  nl(Out) << iName << "->setName(\"";
1587  printEscapedString(rmwi->getName());
1588  Out << "\");";
1589  break;
1590  }
1591  case Instruction::LandingPad: {
1592  const LandingPadInst *lpi = cast<LandingPadInst>(I);
1593  Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1594  printCppName(lpi->getType());
1595  Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1596  printEscapedString(lpi->getName());
1597  Out << "\", " << bbname << ");";
1598  nl(Out) << iName << "->setCleanup("
1599  << (lpi->isCleanup() ? "true" : "false")
1600  << ");";
1601  for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1602  nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1603  break;
1604  }
1605  }
1606  DefinedValues.insert(I);
1607  nl(Out);
1608  delete [] opNames;
1609 }
1610 
1611 // Print out the types, constants and declarations needed by one function
1612 void CppWriter::printFunctionUses(const Function* F) {
1613  nl(Out) << "// Type Definitions"; nl(Out);
1614  if (!is_inline) {
1615  // Print the function's return type
1616  printType(F->getReturnType());
1617 
1618  // Print the function's function type
1619  printType(F->getFunctionType());
1620 
1621  // Print the types of each of the function's arguments
1622  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1623  AI != AE; ++AI) {
1624  printType(AI->getType());
1625  }
1626  }
1627 
1628  // Print type definitions for every type referenced by an instruction and
1629  // make a note of any global values or constants that are referenced
1632  for (Function::const_iterator BB = F->begin(), BE = F->end();
1633  BB != BE; ++BB){
1634  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1635  I != E; ++I) {
1636  // Print the type of the instruction itself
1637  printType(I->getType());
1638 
1639  // Print the type of each of the instruction's operands
1640  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1641  Value* operand = I->getOperand(i);
1642  printType(operand->getType());
1643 
1644  // If the operand references a GVal or Constant, make a note of it
1645  if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1646  gvs.insert(GV);
1647  if (GenerationType != GenFunction)
1648  if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1649  if (GVar->hasInitializer())
1650  consts.insert(GVar->getInitializer());
1651  } else if (Constant* C = dyn_cast<Constant>(operand)) {
1652  consts.insert(C);
1653  for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1654  // If the operand references a GVal or Constant, make a note of it
1655  Value* operand = C->getOperand(j);
1656  printType(operand->getType());
1657  if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1658  gvs.insert(GV);
1659  if (GenerationType != GenFunction)
1660  if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1661  if (GVar->hasInitializer())
1662  consts.insert(GVar->getInitializer());
1663  }
1664  }
1665  }
1666  }
1667  }
1668  }
1669 
1670  // Print the function declarations for any functions encountered
1671  nl(Out) << "// Function Declarations"; nl(Out);
1672  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1673  I != E; ++I) {
1674  if (Function* Fun = dyn_cast<Function>(*I)) {
1675  if (!is_inline || Fun != F)
1676  printFunctionHead(Fun);
1677  }
1678  }
1679 
1680  // Print the global variable declarations for any variables encountered
1681  nl(Out) << "// Global Variable Declarations"; nl(Out);
1682  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1683  I != E; ++I) {
1684  if (GlobalVariable* F = dyn_cast<GlobalVariable>(*I))
1685  printVariableHead(F);
1686  }
1687 
1688  // Print the constants found
1689  nl(Out) << "// Constant Definitions"; nl(Out);
1690  for (SmallPtrSet<Constant*,64>::iterator I = consts.begin(),
1691  E = consts.end(); I != E; ++I) {
1692  printConstant(*I);
1693  }
1694 
1695  // Process the global variables definitions now that all the constants have
1696  // been emitted. These definitions just couple the gvars with their constant
1697  // initializers.
1698  if (GenerationType != GenFunction) {
1699  nl(Out) << "// Global Variable Definitions"; nl(Out);
1700  for (SmallPtrSet<GlobalValue*,64>::iterator I = gvs.begin(), E = gvs.end();
1701  I != E; ++I) {
1702  if (GlobalVariable* GV = dyn_cast<GlobalVariable>(*I))
1703  printVariableBody(GV);
1704  }
1705  }
1706 }
1707 
1708 void CppWriter::printFunctionHead(const Function* F) {
1709  nl(Out) << "Function* " << getCppName(F);
1710  Out << " = mod->getFunction(\"";
1711  printEscapedString(F->getName());
1712  Out << "\");";
1713  nl(Out) << "if (!" << getCppName(F) << ") {";
1714  nl(Out) << getCppName(F);
1715 
1716  Out<< " = Function::Create(";
1717  nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1718  nl(Out) << "/*Linkage=*/";
1719  printLinkageType(F->getLinkage());
1720  Out << ",";
1721  nl(Out) << "/*Name=*/\"";
1722  printEscapedString(F->getName());
1723  Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1724  nl(Out,-1);
1725  printCppName(F);
1726  Out << "->setCallingConv(";
1727  printCallingConv(F->getCallingConv());
1728  Out << ");";
1729  nl(Out);
1730  if (F->hasSection()) {
1731  printCppName(F);
1732  Out << "->setSection(\"" << F->getSection() << "\");";
1733  nl(Out);
1734  }
1735  if (F->getAlignment()) {
1736  printCppName(F);
1737  Out << "->setAlignment(" << F->getAlignment() << ");";
1738  nl(Out);
1739  }
1741  printCppName(F);
1742  Out << "->setVisibility(";
1743  printVisibilityType(F->getVisibility());
1744  Out << ");";
1745  nl(Out);
1746  }
1747  if (F->hasGC()) {
1748  printCppName(F);
1749  Out << "->setGC(\"" << F->getGC() << "\");";
1750  nl(Out);
1751  }
1752  Out << "}";
1753  nl(Out);
1754  printAttributes(F->getAttributes(), getCppName(F));
1755  printCppName(F);
1756  Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1757  nl(Out);
1758 }
1759 
1760 void CppWriter::printFunctionBody(const Function *F) {
1761  if (F->isDeclaration())
1762  return; // external functions have no bodies.
1763 
1764  // Clear the DefinedValues and ForwardRefs maps because we can't have
1765  // cross-function forward refs
1766  ForwardRefs.clear();
1767  DefinedValues.clear();
1768 
1769  // Create all the argument values
1770  if (!is_inline) {
1771  if (!F->arg_empty()) {
1772  Out << "Function::arg_iterator args = " << getCppName(F)
1773  << "->arg_begin();";
1774  nl(Out);
1775  }
1776  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1777  AI != AE; ++AI) {
1778  Out << "Value* " << getCppName(AI) << " = args++;";
1779  nl(Out);
1780  if (AI->hasName()) {
1781  Out << getCppName(AI) << "->setName(\"";
1782  printEscapedString(AI->getName());
1783  Out << "\");";
1784  nl(Out);
1785  }
1786  }
1787  }
1788 
1789  // Create all the basic blocks
1790  nl(Out);
1791  for (Function::const_iterator BI = F->begin(), BE = F->end();
1792  BI != BE; ++BI) {
1793  std::string bbname(getCppName(BI));
1794  Out << "BasicBlock* " << bbname <<
1795  " = BasicBlock::Create(mod->getContext(), \"";
1796  if (BI->hasName())
1797  printEscapedString(BI->getName());
1798  Out << "\"," << getCppName(BI->getParent()) << ",0);";
1799  nl(Out);
1800  }
1801 
1802  // Output all of its basic blocks... for the function
1803  for (Function::const_iterator BI = F->begin(), BE = F->end();
1804  BI != BE; ++BI) {
1805  std::string bbname(getCppName(BI));
1806  nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1807  nl(Out);
1808 
1809  // Output all of the instructions in the basic block...
1810  for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1811  I != E; ++I) {
1812  printInstruction(I,bbname);
1813  }
1814  }
1815 
1816  // Loop over the ForwardRefs and resolve them now that all instructions
1817  // are generated.
1818  if (!ForwardRefs.empty()) {
1819  nl(Out) << "// Resolve Forward References";
1820  nl(Out);
1821  }
1822 
1823  while (!ForwardRefs.empty()) {
1824  ForwardRefMap::iterator I = ForwardRefs.begin();
1825  Out << I->second << "->replaceAllUsesWith("
1826  << getCppName(I->first) << "); delete " << I->second << ";";
1827  nl(Out);
1828  ForwardRefs.erase(I);
1829  }
1830 }
1831 
1832 void CppWriter::printInline(const std::string& fname,
1833  const std::string& func) {
1834  const Function* F = TheModule->getFunction(func);
1835  if (!F) {
1836  error(std::string("Function '") + func + "' not found in input module");
1837  return;
1838  }
1839  if (F->isDeclaration()) {
1840  error(std::string("Function '") + func + "' is external!");
1841  return;
1842  }
1843  nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1844  << getCppName(F);
1845  unsigned arg_count = 1;
1846  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1847  AI != AE; ++AI) {
1848  Out << ", Value* arg_" << arg_count++;
1849  }
1850  Out << ") {";
1851  nl(Out);
1852  is_inline = true;
1853  printFunctionUses(F);
1854  printFunctionBody(F);
1855  is_inline = false;
1856  Out << "return " << getCppName(F->begin()) << ";";
1857  nl(Out) << "}";
1858  nl(Out);
1859 }
1860 
1861 void CppWriter::printModuleBody() {
1862  // Print out all the type definitions
1863  nl(Out) << "// Type Definitions"; nl(Out);
1864  printTypes(TheModule);
1865 
1866  // Functions can call each other and global variables can reference them so
1867  // define all the functions first before emitting their function bodies.
1868  nl(Out) << "// Function Declarations"; nl(Out);
1869  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1870  I != E; ++I)
1871  printFunctionHead(I);
1872 
1873  // Process the global variables declarations. We can't initialze them until
1874  // after the constants are printed so just print a header for each global
1875  nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1876  for (Module::const_global_iterator I = TheModule->global_begin(),
1877  E = TheModule->global_end(); I != E; ++I) {
1878  printVariableHead(I);
1879  }
1880 
1881  // Print out all the constants definitions. Constants don't recurse except
1882  // through GlobalValues. All GlobalValues have been declared at this point
1883  // so we can proceed to generate the constants.
1884  nl(Out) << "// Constant Definitions"; nl(Out);
1885  printConstants(TheModule);
1886 
1887  // Process the global variables definitions now that all the constants have
1888  // been emitted. These definitions just couple the gvars with their constant
1889  // initializers.
1890  nl(Out) << "// Global Variable Definitions"; nl(Out);
1891  for (Module::const_global_iterator I = TheModule->global_begin(),
1892  E = TheModule->global_end(); I != E; ++I) {
1893  printVariableBody(I);
1894  }
1895 
1896  // Finally, we can safely put out all of the function bodies.
1897  nl(Out) << "// Function Definitions"; nl(Out);
1898  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1899  I != E; ++I) {
1900  if (!I->isDeclaration()) {
1901  nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1902  << ")";
1903  nl(Out) << "{";
1904  nl(Out,1);
1905  printFunctionBody(I);
1906  nl(Out,-1) << "}";
1907  nl(Out);
1908  }
1909  }
1910 }
1911 
1912 void CppWriter::printProgram(const std::string& fname,
1913  const std::string& mName) {
1914  Out << "#include <llvm/Pass.h>\n";
1915  Out << "#include <llvm/PassManager.h>\n";
1916 
1917  Out << "#include <llvm/ADT/SmallVector.h>\n";
1918  Out << "#include <llvm/Analysis/Verifier.h>\n";
1919  Out << "#include <llvm/Assembly/PrintModulePass.h>\n";
1920  Out << "#include <llvm/IR/BasicBlock.h>\n";
1921  Out << "#include <llvm/IR/CallingConv.h>\n";
1922  Out << "#include <llvm/IR/Constants.h>\n";
1923  Out << "#include <llvm/IR/DerivedTypes.h>\n";
1924  Out << "#include <llvm/IR/Function.h>\n";
1925  Out << "#include <llvm/IR/GlobalVariable.h>\n";
1926  Out << "#include <llvm/IR/InlineAsm.h>\n";
1927  Out << "#include <llvm/IR/Instructions.h>\n";
1928  Out << "#include <llvm/IR/LLVMContext.h>\n";
1929  Out << "#include <llvm/IR/Module.h>\n";
1930  Out << "#include <llvm/Support/FormattedStream.h>\n";
1931  Out << "#include <llvm/Support/MathExtras.h>\n";
1932  Out << "#include <algorithm>\n";
1933  Out << "using namespace llvm;\n\n";
1934  Out << "Module* " << fname << "();\n\n";
1935  Out << "int main(int argc, char**argv) {\n";
1936  Out << " Module* Mod = " << fname << "();\n";
1937  Out << " verifyModule(*Mod, PrintMessageAction);\n";
1938  Out << " PassManager PM;\n";
1939  Out << " PM.add(createPrintModulePass(&outs()));\n";
1940  Out << " PM.run(*Mod);\n";
1941  Out << " return 0;\n";
1942  Out << "}\n\n";
1943  printModule(fname,mName);
1944 }
1945 
1946 void CppWriter::printModule(const std::string& fname,
1947  const std::string& mName) {
1948  nl(Out) << "Module* " << fname << "() {";
1949  nl(Out,1) << "// Module Construction";
1950  nl(Out) << "Module* mod = new Module(\"";
1951  printEscapedString(mName);
1952  Out << "\", getGlobalContext());";
1953  if (!TheModule->getTargetTriple().empty()) {
1954  nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1955  }
1956  if (!TheModule->getTargetTriple().empty()) {
1957  nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1958  << "\");";
1959  }
1960 
1961  if (!TheModule->getModuleInlineAsm().empty()) {
1962  nl(Out) << "mod->setModuleInlineAsm(\"";
1963  printEscapedString(TheModule->getModuleInlineAsm());
1964  Out << "\");";
1965  }
1966  nl(Out);
1967 
1968  printModuleBody();
1969  nl(Out) << "return mod;";
1970  nl(Out,-1) << "}";
1971  nl(Out);
1972 }
1973 
1974 void CppWriter::printContents(const std::string& fname,
1975  const std::string& mName) {
1976  Out << "\nModule* " << fname << "(Module *mod) {\n";
1977  Out << "\nmod->setModuleIdentifier(\"";
1978  printEscapedString(mName);
1979  Out << "\");\n";
1980  printModuleBody();
1981  Out << "\nreturn mod;\n";
1982  Out << "\n}\n";
1983 }
1984 
1985 void CppWriter::printFunction(const std::string& fname,
1986  const std::string& funcName) {
1987  const Function* F = TheModule->getFunction(funcName);
1988  if (!F) {
1989  error(std::string("Function '") + funcName + "' not found in input module");
1990  return;
1991  }
1992  Out << "\nFunction* " << fname << "(Module *mod) {\n";
1993  printFunctionUses(F);
1994  printFunctionHead(F);
1995  printFunctionBody(F);
1996  Out << "return " << getCppName(F) << ";\n";
1997  Out << "}\n";
1998 }
1999 
2000 void CppWriter::printFunctions() {
2001  const Module::FunctionListType &funcs = TheModule->getFunctionList();
2002  Module::const_iterator I = funcs.begin();
2003  Module::const_iterator IE = funcs.end();
2004 
2005  for (; I != IE; ++I) {
2006  const Function &func = *I;
2007  if (!func.isDeclaration()) {
2008  std::string name("define_");
2009  name += func.getName();
2010  printFunction(name, func.getName());
2011  }
2012  }
2013 }
2014 
2015 void CppWriter::printVariable(const std::string& fname,
2016  const std::string& varName) {
2017  const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2018 
2019  if (!GV) {
2020  error(std::string("Variable '") + varName + "' not found in input module");
2021  return;
2022  }
2023  Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2024  printVariableUses(GV);
2025  printVariableHead(GV);
2026  printVariableBody(GV);
2027  Out << "return " << getCppName(GV) << ";\n";
2028  Out << "}\n";
2029 }
2030 
2031 void CppWriter::printType(const std::string &fname,
2032  const std::string &typeName) {
2033  Type* Ty = TheModule->getTypeByName(typeName);
2034  if (!Ty) {
2035  error(std::string("Type '") + typeName + "' not found in input module");
2036  return;
2037  }
2038  Out << "\nType* " << fname << "(Module *mod) {\n";
2039  printType(Ty);
2040  Out << "return " << getCppName(Ty) << ";\n";
2041  Out << "}\n";
2042 }
2043 
2044 bool CppWriter::runOnModule(Module &M) {
2045  TheModule = &M;
2046 
2047  // Emit a header
2048  Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2049 
2050  // Get the name of the function we're supposed to generate
2051  std::string fname = FuncName.getValue();
2052 
2053  // Get the name of the thing we are to generate
2054  std::string tgtname = NameToGenerate.getValue();
2055  if (GenerationType == GenModule ||
2059  if (tgtname == "!bad!") {
2060  if (M.getModuleIdentifier() == "-")
2061  tgtname = "<stdin>";
2062  else
2063  tgtname = M.getModuleIdentifier();
2064  }
2065  } else if (tgtname == "!bad!")
2066  error("You must use the -for option with -gen-{function,variable,type}");
2067 
2068  switch (WhatToGenerate(GenerationType)) {
2069  case GenProgram:
2070  if (fname.empty())
2071  fname = "makeLLVMModule";
2072  printProgram(fname,tgtname);
2073  break;
2074  case GenModule:
2075  if (fname.empty())
2076  fname = "makeLLVMModule";
2077  printModule(fname,tgtname);
2078  break;
2079  case GenContents:
2080  if (fname.empty())
2081  fname = "makeLLVMModuleContents";
2082  printContents(fname,tgtname);
2083  break;
2084  case GenFunction:
2085  if (fname.empty())
2086  fname = "makeLLVMFunction";
2087  printFunction(fname,tgtname);
2088  break;
2089  case GenFunctions:
2090  printFunctions();
2091  break;
2092  case GenInline:
2093  if (fname.empty())
2094  fname = "makeLLVMInline";
2095  printInline(fname,tgtname);
2096  break;
2097  case GenVariable:
2098  if (fname.empty())
2099  fname = "makeLLVMVariable";
2100  printVariable(fname,tgtname);
2101  break;
2102  case GenType:
2103  if (fname.empty())
2104  fname = "makeLLVMType";
2105  printType(fname,tgtname);
2106  break;
2107  }
2108 
2109  return false;
2110 }
2111 
2112 char CppWriter::ID = 0;
2113 
2114 //===----------------------------------------------------------------------===//
2115 // External Interface declaration
2116 //===----------------------------------------------------------------------===//
2117 
2118 bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2121  bool DisableVerify,
2124  if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2125  PM.add(new CppWriter(o));
2126  return false;
2127 }
static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering)
const Value * getCalledValue() const
7: Labels
Definition: Type.h:62
LinkageTypes getLinkage() const
Definition: GlobalValue.h:218
Like Private, but linker removes.
Definition: GlobalValue.h:43
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:231
int sprintf(char *str, const char *format, ...);
AtomicOrdering getOrdering() const
Returns the ordering constraint on this cmpxchg.
Definition: Instructions.h:501
Special purpose, only applies to global arrays.
Definition: GlobalValue.h:40
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:87
*p = old <signed v ? old : v
Definition: Instructions.h:583
LLVM Argument representation.
Definition: Argument.h:35
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
ThreadLocalMode getThreadLocalMode() const
bool hasName() const
Definition: Value.h:117
bool isVolatile() const
Definition: Instructions.h:287
SynchronizationScope getSynchScope() const
Definition: Instructions.h:319
bool isPrimitiveType() const
Definition: Type.h:245
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
2: 32-bit floating point type
Definition: Type.h:57
unsigned getAlignment() const
Definition: GlobalValue.h:79
iterator end()
Definition: Function.h:397
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:39
#define clEnumValEnd
Definition: CommandLine.h:472
unsigned getNumOperands() const
Definition: User.h:108
Available for inspection, not emission.
Definition: GlobalValue.h:35
Type::subtype_iterator param_iterator
Definition: DerivedTypes.h:123
const char * getGC() const
Definition: Function.cpp:315
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
*p = old <unsigned v ? old : v
Definition: Instructions.h:587
virtual bool addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out, CodeGenFileType FileType, bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter)
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:42
ValuesClass< DataType > END_WITH_NULL values(const char *Arg, DataType Val, const char *Desc,...)
Definition: CommandLine.h:510
void LLVMInitializeCppBackendTarget()
Definition: CPPBackend.cpp:77
*p = old >unsigned v ? old : v
Definition: Instructions.h:585
Externally visible function.
Definition: GlobalValue.h:34
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
Type * getReturnType() const
Definition: Function.cpp:179
unsigned getNumIndices() const
arg_iterator arg_end()
Definition: Function.h:418
12: Structures
Definition: Type.h:70
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:59
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
iterator begin()
Definition: ilist.h:359
static std::string ftostr(const APFloat &V)
Definition: CPPBackend.cpp:201
StringRef drop_back(size_t N=1) const
Definition: StringRef.h:406
14: Pointers
Definition: Type.h:72
const Constant * getInitializer() const
11: Functions
Definition: Type.h:69
*p = old >signed v ? old : v
Definition: Instructions.h:581
Tentative definitions.
Definition: GlobalValue.h:48
bool bitwiseIsEqual(const APFloat &) const
Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
Definition: APFloat.cpp:755
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
CallingConv::ID getCallingConv() const
Definition: Function.h:161
StringRef getName() const
Definition: Value.cpp:167
element_iterator element_end() const
Definition: DerivedTypes.h:279
bool isArrayAllocation() const
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
static std::string utohexstr(uint64_t X)
Definition: StringExtras.h:67
static unsigned getOperandNumForIncomingValue(unsigned i)
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
bool isPacked() const
Definition: DerivedTypes.h:241
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
Type::subtype_iterator element_iterator
Definition: DerivedTypes.h:277
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:230
Base class of casting instructions.
Definition: InstrTypes.h:387
bool hasSection() const
Definition: GlobalValue.h:95
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
#define llvm_unreachable(msg)
param_iterator param_end() const
Definition: DerivedTypes.h:125
unsigned getNumArgOperands() const
unsigned getNumIndices() const
const Value * getCalledValue() const
bool isLiteral() const
Definition: DerivedTypes.h:245
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
double atof(const char *str);
SynchronizationScope
Definition: Instructions.h:47
element_iterator element_begin() const
Definition: DerivedTypes.h:278
Type * getAllocatedType() const
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
const std::string & getModuleIdentifier() const
Definition: Module.h:228
#define false
Definition: ConvertUTF.c:64
SynchronizationScope getSynchScope() const
Definition: Instructions.h:199
AtomicOrdering
Definition: Instructions.h:36
static cl::opt< WhatToGenerate > GenerationType("cppgen", cl::Optional, cl::desc("Choose what kind of output to generate"), cl::init(GenProgram), cl::values(clEnumValN(GenProgram,"program","Generate a complete program"), clEnumValN(GenModule,"module","Generate a module definition"), clEnumValN(GenContents,"contents","Generate contents of a module"), clEnumValN(GenFunction,"function","Generate a function definition"), clEnumValN(GenFunctions,"functions","Generate all function definitions"), clEnumValN(GenInline,"inline","Generate an inline function"), clEnumValN(GenVariable,"variable","Generate a variable definition"), clEnumValN(GenType,"type","Generate a type definition"), clEnumValEnd))
static void sanitize(std::string &str)
Definition: CPPBackend.cpp:174
AtomicOrdering getOrdering() const
Returns the ordering constraint on this RMW.
Definition: Instructions.h:648
static cl::opt< std::string > FuncName("cppfname", cl::desc("Specify the name of the generated function"), cl::value_desc("function name"))
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition: GlobalValue.h:52
Function to be imported from DLL.
Definition: GlobalValue.h:45
static std::string utostr(uint64_t X, bool isNeg=false)
Definition: StringExtras.h:88
double convertToDouble() const
Definition: APFloat.cpp:3082
TypeID getTypeID() const
Definition: Type.h:137
unsigned getNumClauses() const
getNumClauses - Get the number of clauses for this landing pad.
WhatToGenerate
Definition: CPPBackend.cpp:46
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
iterator begin()
Definition: Function.h:395
Type * getElementType() const
Definition: DerivedTypes.h:319
BasicBlock * getNormalDest() const
unsigned getNumIncomingValues() const
static cl::opt< std::string > NameToGenerate("cppfor", cl::Optional, cl::desc("Specify the name of the thing to generate"), cl::init("!bad!"))
10: Arbitrary bit width integers
Definition: Type.h:68
ExternalWeak linkage description.
Definition: GlobalValue.h:47
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
0: type with no size
Definition: Type.h:55
Same, but only replaced by something equivalent.
Definition: GlobalValue.h:37
unsigned getNumSlots() const
Return the number of slots used in this attribute list. This is the number of arguments that have an ...
Definition: Attributes.cpp:906
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
unsigned getAlignment() const
Definition: Instructions.h:301
* if(!EatIfPresent(lltok::kw_thread_local)) return false
SynchronizationScope getSynchScope() const
Definition: Instructions.h:654
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
AttributeSet getSlotAttributes(unsigned Slot) const
Return the attributes at the given slot.
Definition: Attributes.cpp:916
LLVM Constant Representation.
Definition: Constant.h:41
Target TheCppBackendTarget
param_iterator param_begin() const
Definition: DerivedTypes.h:124
char back() const
back - Get the last character in the string.
Definition: StringRef.h:122
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
unsigned getAlignment() const
Definition: Instructions.h:103
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
BasicBlock * getIncomingBlock(unsigned i) const
uint64_t getNumElements() const
Definition: DerivedTypes.h:348
opStatus convert(const fltSemantics &, roundingMode, bool *)
Definition: APFloat.cpp:1938
Value * getOperand(unsigned i) const
Definition: User.h:88
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
arg_iterator arg_begin()
Definition: Function.h:410
Function to be accessible from DLL.
Definition: GlobalValue.h:46
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:668
const std::string & getSection() const
Definition: GlobalValue.h:96
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
bool isAtomic() const
Definition: Instructions.h:211
signed greater than
Definition: InstrTypes.h:678
CallingConv::ID getCallingConv() const
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
13: Arrays
Definition: Type.h:71
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
idx_iterator idx_begin() const
BasicBlock * getUnwindDest() const
See the file comment.
Definition: ValueMap.h:75
AtomicOrdering getOrdering() const
Returns the ordering effect of this store.
Definition: Instructions.h:308
Class for constant integers.
Definition: Constants.h:51
15: SIMD 'packed' format, or other vector type
Definition: Type.h:73
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Keep one copy of function when linking (inline)
Definition: GlobalValue.h:36
Type * getType() const
Definition: Value.h:111
bool isVolatile() const
Definition: Instructions.h:170
signed less than
Definition: InstrTypes.h:680
AtomicOrdering getOrdering() const
Returns the ordering effect of this fence.
Definition: Instructions.h:188
BinOp getOperation() const
Definition: Instructions.h:605
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
SynchronizationScope getSynchScope() const
Definition: Instructions.h:414
signed less or equal
Definition: InstrTypes.h:681
bool arg_empty() const
Definition: Function.cpp:251
bool hasInitializer() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:33
bool isAtomic() const
Definition: Instructions.h:331
bool isConstant() const
bool isIntegerTy() const
Definition: Type.h:196
StringRef getName() const
Definition: Type.cpp:580
APInt bitcastToAPInt() const
Definition: APFloat.cpp:3050
bool hasGC() const
Definition: Function.cpp:310
Value * getCondition() const
const AttributeSet & getAttributes() const
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:471
Like LinkerPrivate, but weak.
Definition: GlobalValue.h:44
PointerType * getType() const
getType - Global values are always pointers.
Definition: GlobalValue.h:107
Value * getArgOperand(unsigned i) const
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
const AttributeSet & getAttributes() const
BasicBlock * getDefaultDest() const
AtomicOrdering getOrdering() const
Returns the ordering effect of this fence.
Definition: Instructions.h:403
bool isDeclaration() const
Definition: Globals.cpp:66
unsigned getSlotIndex(unsigned Slot) const
Return the index for the given slot.
Definition: Attributes.cpp:910
unsigned greater or equal
Definition: InstrTypes.h:675
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
FunctionType * getFunctionType() const
Definition: Function.cpp:171
iterator end() const
Definition: SmallPtrSet.h:279
bool isTailCall() const
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
float convertToFloat() const
Definition: APFloat.cpp:3073
cl::opt< std::string > StopAfter("stop-after", cl::desc("Stop compilation after a specific pass"), cl::value_desc("pass-name"), cl::init(""))
cl::opt< std::string > StartAfter("start-after", cl::desc("Resume compilation after a specific pass"), cl::value_desc("pass-name"), cl::init(""))
Keep one copy of named function when linking (weak)
Definition: GlobalValue.h:38
Rename collisions when linking (static functions).
Definition: GlobalValue.h:41
cl::opt< TargetMachine::CodeGenFileType > FileType("filetype", cl::init(TargetMachine::CGFT_AssemblyFile), cl::desc("Choose a file type (not all types are supported by all targets):"), cl::values(clEnumValN(TargetMachine::CGFT_AssemblyFile,"asm","Emit an assembly ('.s') file"), clEnumValN(TargetMachine::CGFT_ObjectFile,"obj","Emit a native object ('.o') file"), clEnumValN(TargetMachine::CGFT_Null,"null","Emit nothing, for performance testing"), clEnumValEnd))
static std::string getTypePrefix(Type *Ty)
Definition: CPPBackend.cpp:180
const void * AnalysisID
Definition: Pass.h:47
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
unsigned getNumCases() const
const APFloat & getValueAPF() const
Definition: Constants.h:263
bool isVarArg() const
Definition: DerivedTypes.h:120
bool isExactlyValue(const APFloat &V) const
Definition: Constants.cpp:650
3: 64-bit floating point type
Definition: Type.h:58
Type * getReturnType() const
Definition: DerivedTypes.h:121
iterator end()
Definition: ilist.h:367
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
iterator begin() const
Definition: SmallPtrSet.h:276
bool isCleanup() const
const HexagonInstrInfo bool ShouldCombineAggressively switch(MI->getOpcode())
unsigned greater than
Definition: InstrTypes.h:674
CallingConv::ID getCallingConv() const
static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope)
idx_iterator idx_begin() const
ArgumentListType::const_iterator const_arg_iterator
Definition: Function.h:81
int strncmp(const char *s1, const char *s2, size_t n);
#define HANDLE_ATTR(X)
9: MMX vectors (64 bits, X86 specific)
Definition: Type.h:64
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
SynchronizationScope getSynchScope() const
Definition: Instructions.h:507
unsigned getNumArgOperands() const
unsigned getNumDestinations() const
bool isEmpty() const
Return true if there are no attributes.
Definition: Attributes.h:345
const fltSemantics & getSemantics() const
Definition: APFloat.h:397
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
TLM
Definition: LLParser.cpp:1117
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:653
signed greater or equal
Definition: InstrTypes.h:679