LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
CriticalAntiDepBreaker.cpp
Go to the documentation of this file.
1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "post-RA-sched"
17 #include "CriticalAntiDepBreaker.h"
20 #include "llvm/Support/Debug.h"
26 
27 using namespace llvm;
28 
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  RegClassInfo(RCI),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0),
39  KeepRegs(TRI->getNumRegs(), false) {}
40 
42 }
43 
45  const unsigned BBSize = BB->size();
46  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47  // Clear out the register class data.
48  Classes[i] = static_cast<const TargetRegisterClass *>(0);
49 
50  // Initialize the indices to indicate that no registers are live.
51  KillIndices[i] = ~0u;
52  DefIndices[i] = BBSize;
53  }
54 
55  // Clear "do not change" set.
56  KeepRegs.reset();
57 
58  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59 
60  // Examine the live-in regs of all successors.
62  SE = BB->succ_end(); SI != SE; ++SI)
63  for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
64  E = (*SI)->livein_end(); I != E; ++I) {
65  for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
66  unsigned Reg = *AI;
67  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
68  KillIndices[Reg] = BBSize;
69  DefIndices[Reg] = ~0u;
70  }
71  }
72 
73  // Mark live-out callee-saved registers. In a return block this is
74  // all callee-saved registers. In non-return this is any
75  // callee-saved register that is not saved in the prolog.
76  const MachineFrameInfo *MFI = MF.getFrameInfo();
77  BitVector Pristine = MFI->getPristineRegs(BB);
78  for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
79  if (!IsReturnBlock && !Pristine.test(*I)) continue;
80  for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
81  unsigned Reg = *AI;
82  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
83  KillIndices[Reg] = BBSize;
84  DefIndices[Reg] = ~0u;
85  }
86  }
87 }
88 
90  RegRefs.clear();
91  KeepRegs.reset();
92 }
93 
95  unsigned InsertPosIndex) {
96  if (MI->isDebugValue())
97  return;
98  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
99 
100  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
101  if (KillIndices[Reg] != ~0u) {
102  // If Reg is currently live, then mark that it can't be renamed as
103  // we don't know the extent of its live-range anymore (now that it
104  // has been scheduled).
105  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
106  KillIndices[Reg] = Count;
107  } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
108  // Any register which was defined within the previous scheduling region
109  // may have been rescheduled and its lifetime may overlap with registers
110  // in ways not reflected in our current liveness state. For each such
111  // register, adjust the liveness state to be conservatively correct.
112  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
113 
114  // Move the def index to the end of the previous region, to reflect
115  // that the def could theoretically have been scheduled at the end.
116  DefIndices[Reg] = InsertPosIndex;
117  }
118  }
119 
120  PrescanInstruction(MI);
121  ScanInstruction(MI, Count);
122 }
123 
124 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
125 /// critical path.
126 static const SDep *CriticalPathStep(const SUnit *SU) {
127  const SDep *Next = 0;
128  unsigned NextDepth = 0;
129  // Find the predecessor edge with the greatest depth.
130  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
131  P != PE; ++P) {
132  const SUnit *PredSU = P->getSUnit();
133  unsigned PredLatency = P->getLatency();
134  unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
135  // In the case of a latency tie, prefer an anti-dependency edge over
136  // other types of edges.
137  if (NextDepth < PredTotalLatency ||
138  (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
139  NextDepth = PredTotalLatency;
140  Next = &*P;
141  }
142  }
143  return Next;
144 }
145 
146 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
147  // It's not safe to change register allocation for source operands of
148  // that have special allocation requirements. Also assume all registers
149  // used in a call must not be changed (ABI).
150  // FIXME: The issue with predicated instruction is more complex. We are being
151  // conservative here because the kill markers cannot be trusted after
152  // if-conversion:
153  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
154  // ...
155  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
156  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
157  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
158  //
159  // The first R6 kill is not really a kill since it's killed by a predicated
160  // instruction which may not be executed. The second R6 def may or may not
161  // re-define R6 so it's not safe to change it since the last R6 use cannot be
162  // changed.
163  bool Special = MI->isCall() ||
164  MI->hasExtraSrcRegAllocReq() ||
165  TII->isPredicated(MI);
166 
167  // Scan the register operands for this instruction and update
168  // Classes and RegRefs.
169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170  MachineOperand &MO = MI->getOperand(i);
171  if (!MO.isReg()) continue;
172  unsigned Reg = MO.getReg();
173  if (Reg == 0) continue;
174  const TargetRegisterClass *NewRC = 0;
175 
176  if (i < MI->getDesc().getNumOperands())
177  NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
178 
179  // For now, only allow the register to be changed if its register
180  // class is consistent across all uses.
181  if (!Classes[Reg] && NewRC)
182  Classes[Reg] = NewRC;
183  else if (!NewRC || Classes[Reg] != NewRC)
184  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
185 
186  // Now check for aliases.
187  for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
188  // If an alias of the reg is used during the live range, give up.
189  // Note that this allows us to skip checking if AntiDepReg
190  // overlaps with any of the aliases, among other things.
191  unsigned AliasReg = *AI;
192  if (Classes[AliasReg]) {
193  Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
194  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
195  }
196  }
197 
198  // If we're still willing to consider this register, note the reference.
199  if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
200  RegRefs.insert(std::make_pair(Reg, &MO));
201 
202  if (MO.isUse() && Special) {
203  if (!KeepRegs.test(Reg)) {
204  for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
205  SubRegs.isValid(); ++SubRegs)
206  KeepRegs.set(*SubRegs);
207  }
208  }
209  }
210 }
211 
212 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
213  unsigned Count) {
214  // Update liveness.
215  // Proceeding upwards, registers that are defed but not used in this
216  // instruction are now dead.
217 
218  if (!TII->isPredicated(MI)) {
219  // Predicated defs are modeled as read + write, i.e. similar to two
220  // address updates.
221  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222  MachineOperand &MO = MI->getOperand(i);
223 
224  if (MO.isRegMask())
225  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
226  if (MO.clobbersPhysReg(i)) {
227  DefIndices[i] = Count;
228  KillIndices[i] = ~0u;
229  KeepRegs.reset(i);
230  Classes[i] = 0;
231  RegRefs.erase(i);
232  }
233 
234  if (!MO.isReg()) continue;
235  unsigned Reg = MO.getReg();
236  if (Reg == 0) continue;
237  if (!MO.isDef()) continue;
238  // Ignore two-addr defs.
239  if (MI->isRegTiedToUseOperand(i)) continue;
240 
241  DefIndices[Reg] = Count;
242  KillIndices[Reg] = ~0u;
243  assert(((KillIndices[Reg] == ~0u) !=
244  (DefIndices[Reg] == ~0u)) &&
245  "Kill and Def maps aren't consistent for Reg!");
246  KeepRegs.reset(Reg);
247  Classes[Reg] = 0;
248  RegRefs.erase(Reg);
249  // Repeat, for all subregs.
250  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
251  unsigned SubregReg = *SubRegs;
252  DefIndices[SubregReg] = Count;
253  KillIndices[SubregReg] = ~0u;
254  KeepRegs.reset(SubregReg);
255  Classes[SubregReg] = 0;
256  RegRefs.erase(SubregReg);
257  }
258  // Conservatively mark super-registers as unusable.
259  for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
260  Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
261  }
262  }
263  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
264  MachineOperand &MO = MI->getOperand(i);
265  if (!MO.isReg()) continue;
266  unsigned Reg = MO.getReg();
267  if (Reg == 0) continue;
268  if (!MO.isUse()) continue;
269 
270  const TargetRegisterClass *NewRC = 0;
271  if (i < MI->getDesc().getNumOperands())
272  NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
273 
274  // For now, only allow the register to be changed if its register
275  // class is consistent across all uses.
276  if (!Classes[Reg] && NewRC)
277  Classes[Reg] = NewRC;
278  else if (!NewRC || Classes[Reg] != NewRC)
279  Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
280 
281  RegRefs.insert(std::make_pair(Reg, &MO));
282 
283  // It wasn't previously live but now it is, this is a kill.
284  if (KillIndices[Reg] == ~0u) {
285  KillIndices[Reg] = Count;
286  DefIndices[Reg] = ~0u;
287  assert(((KillIndices[Reg] == ~0u) !=
288  (DefIndices[Reg] == ~0u)) &&
289  "Kill and Def maps aren't consistent for Reg!");
290  }
291  // Repeat, for all aliases.
292  for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
293  unsigned AliasReg = *AI;
294  if (KillIndices[AliasReg] == ~0u) {
295  KillIndices[AliasReg] = Count;
296  DefIndices[AliasReg] = ~0u;
297  }
298  }
299  }
300 }
301 
302 // Check all machine operands that reference the antidependent register and must
303 // be replaced by NewReg. Return true if any of their parent instructions may
304 // clobber the new register.
305 //
306 // Note: AntiDepReg may be referenced by a two-address instruction such that
307 // it's use operand is tied to a def operand. We guard against the case in which
308 // the two-address instruction also defines NewReg, as may happen with
309 // pre/postincrement loads. In this case, both the use and def operands are in
310 // RegRefs because the def is inserted by PrescanInstruction and not erased
311 // during ScanInstruction. So checking for an instructions with definitions of
312 // both NewReg and AntiDepReg covers it.
313 bool
314 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
315  RegRefIter RegRefEnd,
316  unsigned NewReg)
317 {
318  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
319  MachineOperand *RefOper = I->second;
320 
321  // Don't allow the instruction defining AntiDepReg to earlyclobber its
322  // operands, in case they may be assigned to NewReg. In this case antidep
323  // breaking must fail, but it's too rare to bother optimizing.
324  if (RefOper->isDef() && RefOper->isEarlyClobber())
325  return true;
326 
327  // Handle cases in which this instructions defines NewReg.
328  MachineInstr *MI = RefOper->getParent();
329  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
330  const MachineOperand &CheckOper = MI->getOperand(i);
331 
332  if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
333  return true;
334 
335  if (!CheckOper.isReg() || !CheckOper.isDef() ||
336  CheckOper.getReg() != NewReg)
337  continue;
338 
339  // Don't allow the instruction to define NewReg and AntiDepReg.
340  // When AntiDepReg is renamed it will be an illegal op.
341  if (RefOper->isDef())
342  return true;
343 
344  // Don't allow an instruction using AntiDepReg to be earlyclobbered by
345  // NewReg
346  if (CheckOper.isEarlyClobber())
347  return true;
348 
349  // Don't allow inline asm to define NewReg at all. Who know what it's
350  // doing with it.
351  if (MI->isInlineAsm())
352  return true;
353  }
354  }
355  return false;
356 }
357 
358 unsigned CriticalAntiDepBreaker::
359 findSuitableFreeRegister(RegRefIter RegRefBegin,
360  RegRefIter RegRefEnd,
361  unsigned AntiDepReg,
362  unsigned LastNewReg,
363  const TargetRegisterClass *RC,
365 {
366  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
367  for (unsigned i = 0; i != Order.size(); ++i) {
368  unsigned NewReg = Order[i];
369  // Don't replace a register with itself.
370  if (NewReg == AntiDepReg) continue;
371  // Don't replace a register with one that was recently used to repair
372  // an anti-dependence with this AntiDepReg, because that would
373  // re-introduce that anti-dependence.
374  if (NewReg == LastNewReg) continue;
375  // If any instructions that define AntiDepReg also define the NewReg, it's
376  // not suitable. For example, Instruction with multiple definitions can
377  // result in this condition.
378  if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
379  // If NewReg is dead and NewReg's most recent def is not before
380  // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
381  assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
382  && "Kill and Def maps aren't consistent for AntiDepReg!");
383  assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
384  && "Kill and Def maps aren't consistent for NewReg!");
385  if (KillIndices[NewReg] != ~0u ||
386  Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
387  KillIndices[AntiDepReg] > DefIndices[NewReg])
388  continue;
389  // If NewReg overlaps any of the forbidden registers, we can't use it.
390  bool Forbidden = false;
391  for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
392  ite = Forbid.end(); it != ite; ++it)
393  if (TRI->regsOverlap(NewReg, *it)) {
394  Forbidden = true;
395  break;
396  }
397  if (Forbidden) continue;
398  return NewReg;
399  }
400 
401  // No registers are free and available!
402  return 0;
403 }
404 
406 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
409  unsigned InsertPosIndex,
410  DbgValueVector &DbgValues) {
411  // The code below assumes that there is at least one instruction,
412  // so just duck out immediately if the block is empty.
413  if (SUnits.empty()) return 0;
414 
415  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
416  // This is used for updating debug information.
417  //
418  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
420 
421  // Find the node at the bottom of the critical path.
422  const SUnit *Max = 0;
423  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
424  const SUnit *SU = &SUnits[i];
425  MISUnitMap[SU->getInstr()] = SU;
426  if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
427  Max = SU;
428  }
429 
430 #ifndef NDEBUG
431  {
432  DEBUG(dbgs() << "Critical path has total latency "
433  << (Max->getDepth() + Max->Latency) << "\n");
434  DEBUG(dbgs() << "Available regs:");
435  for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
436  if (KillIndices[Reg] == ~0u)
437  DEBUG(dbgs() << " " << TRI->getName(Reg));
438  }
439  DEBUG(dbgs() << '\n');
440  }
441 #endif
442 
443  // Track progress along the critical path through the SUnit graph as we walk
444  // the instructions.
445  const SUnit *CriticalPathSU = Max;
446  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
447 
448  // Consider this pattern:
449  // A = ...
450  // ... = A
451  // A = ...
452  // ... = A
453  // A = ...
454  // ... = A
455  // A = ...
456  // ... = A
457  // There are three anti-dependencies here, and without special care,
458  // we'd break all of them using the same register:
459  // A = ...
460  // ... = A
461  // B = ...
462  // ... = B
463  // B = ...
464  // ... = B
465  // B = ...
466  // ... = B
467  // because at each anti-dependence, B is the first register that
468  // isn't A which is free. This re-introduces anti-dependencies
469  // at all but one of the original anti-dependencies that we were
470  // trying to break. To avoid this, keep track of the most recent
471  // register that each register was replaced with, avoid
472  // using it to repair an anti-dependence on the same register.
473  // This lets us produce this:
474  // A = ...
475  // ... = A
476  // B = ...
477  // ... = B
478  // C = ...
479  // ... = C
480  // B = ...
481  // ... = B
482  // This still has an anti-dependence on B, but at least it isn't on the
483  // original critical path.
484  //
485  // TODO: If we tracked more than one register here, we could potentially
486  // fix that remaining critical edge too. This is a little more involved,
487  // because unlike the most recent register, less recent registers should
488  // still be considered, though only if no other registers are available.
489  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
490 
491  // Attempt to break anti-dependence edges on the critical path. Walk the
492  // instructions from the bottom up, tracking information about liveness
493  // as we go to help determine which registers are available.
494  unsigned Broken = 0;
495  unsigned Count = InsertPosIndex - 1;
496  for (MachineBasicBlock::iterator I = End, E = Begin;
497  I != E; --Count) {
498  MachineInstr *MI = --I;
499  if (MI->isDebugValue())
500  continue;
501 
502  // Check if this instruction has a dependence on the critical path that
503  // is an anti-dependence that we may be able to break. If it is, set
504  // AntiDepReg to the non-zero register associated with the anti-dependence.
505  //
506  // We limit our attention to the critical path as a heuristic to avoid
507  // breaking anti-dependence edges that aren't going to significantly
508  // impact the overall schedule. There are a limited number of registers
509  // and we want to save them for the important edges.
510  //
511  // TODO: Instructions with multiple defs could have multiple
512  // anti-dependencies. The current code here only knows how to break one
513  // edge per instruction. Note that we'd have to be able to break all of
514  // the anti-dependencies in an instruction in order to be effective.
515  unsigned AntiDepReg = 0;
516  if (MI == CriticalPathMI) {
517  if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
518  const SUnit *NextSU = Edge->getSUnit();
519 
520  // Only consider anti-dependence edges.
521  if (Edge->getKind() == SDep::Anti) {
522  AntiDepReg = Edge->getReg();
523  assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
524  if (!MRI.isAllocatable(AntiDepReg))
525  // Don't break anti-dependencies on non-allocatable registers.
526  AntiDepReg = 0;
527  else if (KeepRegs.test(AntiDepReg))
528  // Don't break anti-dependencies if an use down below requires
529  // this exact register.
530  AntiDepReg = 0;
531  else {
532  // If the SUnit has other dependencies on the SUnit that it
533  // anti-depends on, don't bother breaking the anti-dependency
534  // since those edges would prevent such units from being
535  // scheduled past each other regardless.
536  //
537  // Also, if there are dependencies on other SUnits with the
538  // same register as the anti-dependency, don't attempt to
539  // break it.
540  for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
541  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
542  if (P->getSUnit() == NextSU ?
543  (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
544  (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
545  AntiDepReg = 0;
546  break;
547  }
548  }
549  }
550  CriticalPathSU = NextSU;
551  CriticalPathMI = CriticalPathSU->getInstr();
552  } else {
553  // We've reached the end of the critical path.
554  CriticalPathSU = 0;
555  CriticalPathMI = 0;
556  }
557  }
558 
559  PrescanInstruction(MI);
560 
561  SmallVector<unsigned, 2> ForbidRegs;
562 
563  // If MI's defs have a special allocation requirement, don't allow
564  // any def registers to be changed. Also assume all registers
565  // defined in a call must not be changed (ABI).
566  if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
567  TII->isPredicated(MI))
568  // If this instruction's defs have special allocation requirement, don't
569  // break this anti-dependency.
570  AntiDepReg = 0;
571  else if (AntiDepReg) {
572  // If this instruction has a use of AntiDepReg, breaking it
573  // is invalid. If the instruction defines other registers,
574  // save a list of them so that we don't pick a new register
575  // that overlaps any of them.
576  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
577  MachineOperand &MO = MI->getOperand(i);
578  if (!MO.isReg()) continue;
579  unsigned Reg = MO.getReg();
580  if (Reg == 0) continue;
581  if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
582  AntiDepReg = 0;
583  break;
584  }
585  if (MO.isDef() && Reg != AntiDepReg)
586  ForbidRegs.push_back(Reg);
587  }
588  }
589 
590  // Determine AntiDepReg's register class, if it is live and is
591  // consistently used within a single class.
592  const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
593  assert((AntiDepReg == 0 || RC != NULL) &&
594  "Register should be live if it's causing an anti-dependence!");
595  if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
596  AntiDepReg = 0;
597 
598  // Look for a suitable register to use to break the anti-depenence.
599  //
600  // TODO: Instead of picking the first free register, consider which might
601  // be the best.
602  if (AntiDepReg != 0) {
603  std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
604  std::multimap<unsigned, MachineOperand *>::iterator>
605  Range = RegRefs.equal_range(AntiDepReg);
606  if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
607  AntiDepReg,
608  LastNewReg[AntiDepReg],
609  RC, ForbidRegs)) {
610  DEBUG(dbgs() << "Breaking anti-dependence edge on "
611  << TRI->getName(AntiDepReg)
612  << " with " << RegRefs.count(AntiDepReg) << " references"
613  << " using " << TRI->getName(NewReg) << "!\n");
614 
615  // Update the references to the old register to refer to the new
616  // register.
617  for (std::multimap<unsigned, MachineOperand *>::iterator
618  Q = Range.first, QE = Range.second; Q != QE; ++Q) {
619  Q->second->setReg(NewReg);
620  // If the SU for the instruction being updated has debug information
621  // related to the anti-dependency register, make sure to update that
622  // as well.
623  const SUnit *SU = MISUnitMap[Q->second->getParent()];
624  if (!SU) continue;
625  for (DbgValueVector::iterator DVI = DbgValues.begin(),
626  DVE = DbgValues.end(); DVI != DVE; ++DVI)
627  if (DVI->second == Q->second->getParent())
628  UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
629  }
630 
631  // We just went back in time and modified history; the
632  // liveness information for the anti-dependence reg is now
633  // inconsistent. Set the state as if it were dead.
634  Classes[NewReg] = Classes[AntiDepReg];
635  DefIndices[NewReg] = DefIndices[AntiDepReg];
636  KillIndices[NewReg] = KillIndices[AntiDepReg];
637  assert(((KillIndices[NewReg] == ~0u) !=
638  (DefIndices[NewReg] == ~0u)) &&
639  "Kill and Def maps aren't consistent for NewReg!");
640 
641  Classes[AntiDepReg] = 0;
642  DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
643  KillIndices[AntiDepReg] = ~0u;
644  assert(((KillIndices[AntiDepReg] == ~0u) !=
645  (DefIndices[AntiDepReg] == ~0u)) &&
646  "Kill and Def maps aren't consistent for AntiDepReg!");
647 
648  RegRefs.erase(AntiDepReg);
649  LastNewReg[AntiDepReg] = NewReg;
650  ++Broken;
651  }
652  }
653 
654  ScanInstruction(MI, Count);
655  }
656 
657  return Broken;
658 }
BitVector & set()
Definition: BitVector.h:236
MachineInstr * getParent()
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
void Observe(MachineInstr *MI, unsigned Count, unsigned InsertPosIndex)
void UpdateDbgValue(MachineInstr *MI, unsigned OldReg, unsigned NewReg)
std::vector< unsigned >::const_iterator livein_iterator
MachineInstr * getInstr() const
Definition: ScheduleDAG.h:386
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
void FinishBlock()
Finish - Finish anti-dep breaking for a basic block.
SmallVector< SDep, 4 > Preds
Definition: ScheduleDAG.h:263
A register anti-dependedence (aka WAR).
Definition: ScheduleDAG.h:50
virtual const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF=0) const =0
const HexagonInstrInfo * TII
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Regular data dependence (aka true-dependence).
Definition: ScheduleDAG.h:49
std::vector< MachineBasicBlock * >::iterator succ_iterator
Abstract Stack Frame Information.
#define false
Definition: ConvertUTF.c:64
ArrayRef< MCPhysReg > getOrder(const TargetRegisterClass *RC) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
void StartBlock(MachineBasicBlock *BB)
Start - Initialize anti-dep breaking for a new basic block.
unsigned getNumRegs() const
Return the number of registers this target has (useful for sizing arrays holding per register informa...
unsigned BreakAntiDependencies(const std::vector< SUnit > &SUnits, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned InsertPosIndex, DbgValueVector &DbgValues)
bool hasExtraSrcRegAllocReq(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:572
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
bool isDebugValue() const
Definition: MachineInstr.h:639
bool isEarlyClobber() const
bundle_iterator< MachineInstr, instr_iterator > iterator
#define P(N)
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:345
unsigned short Latency
Definition: ScheduleDAG.h:280
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
BitVector & reset()
Definition: BitVector.h:275
CriticalAntiDepBreaker(MachineFunction &MFi, const RegisterClassInfo &)
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
BitVector getPristineRegs(const MachineBasicBlock *MBB) const
bool test(unsigned Idx) const
Definition: BitVector.h:337
bool isInlineAsm() const
Definition: MachineInstr.h:651
bool hasExtraDefRegAllocReq(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:582
bool isAllocatable(unsigned PhysReg) const
MachineFrameInfo * getFrameInfo()
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static bool clobbersPhysReg(const uint32_t *RegMask, unsigned PhysReg)
unsigned getDepth() const
Definition: ScheduleDAG.h:403
#define I(x, y, z)
Definition: MD5.cpp:54
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:349
static const SDep * CriticalPathStep(const SUnit *SU)
unsigned getReg() const
getReg - Returns the register number.
std::vector< std::pair< MachineInstr *, MachineInstr * > > DbgValueVector
#define DEBUG(X)
Definition: Debug.h:97
virtual bool isPredicated(const MachineInstr *MI) const
const TargetRegisterClass * getRegClass(const MCInstrDesc &TID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
const MCRegisterInfo & MRI
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx=0) const
Definition: MachineInstr.h:850
SUnit - Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:249