LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LegalizeDAG.cpp
Go to the documentation of this file.
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/Support/Debug.h"
35 using namespace llvm;
36 
37 //===----------------------------------------------------------------------===//
38 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
39 /// hacks on it until the target machine can handle it. This involves
40 /// eliminating value sizes the machine cannot handle (promoting small sizes to
41 /// large sizes or splitting up large values into small values) as well as
42 /// eliminating operations the machine cannot handle.
43 ///
44 /// This code also does a small amount of optimization and recognition of idioms
45 /// as part of its processing. For example, if a target does not support a
46 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
47 /// will attempt merge setcc and brc instructions into brcc's.
48 ///
49 namespace {
50 class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
51  const TargetMachine &TM;
52  const TargetLowering &TLI;
53  SelectionDAG &DAG;
54 
55  /// LegalizePosition - The iterator for walking through the node list.
56  SelectionDAG::allnodes_iterator LegalizePosition;
57 
58  /// LegalizedNodes - The set of nodes which have already been legalized.
59  SmallPtrSet<SDNode *, 16> LegalizedNodes;
60 
61  EVT getSetCCResultType(EVT VT) const {
62  return TLI.getSetCCResultType(*DAG.getContext(), VT);
63  }
64 
65  // Libcall insertion helpers.
66 
67 public:
68  explicit SelectionDAGLegalize(SelectionDAG &DAG);
69 
70  void LegalizeDAG();
71 
72 private:
73  /// LegalizeOp - Legalizes the given operation.
74  void LegalizeOp(SDNode *Node);
75 
76  SDValue OptimizeFloatStore(StoreSDNode *ST);
77 
78  void LegalizeLoadOps(SDNode *Node);
79  void LegalizeStoreOps(SDNode *Node);
80 
81  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
82  /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
83  /// is necessary to spill the vector being inserted into to memory, perform
84  /// the insert there, and then read the result back.
85  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
86  SDValue Idx, SDLoc dl);
87  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
88  SDValue Idx, SDLoc dl);
89 
90  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
91  /// performs the same shuffe in terms of order or result bytes, but on a type
92  /// whose vector element type is narrower than the original shuffle type.
93  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
94  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
95  SDValue N1, SDValue N2,
96  ArrayRef<int> Mask) const;
97 
98  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
99  bool &NeedInvert, SDLoc dl);
100 
101  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
102  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
103  unsigned NumOps, bool isSigned, SDLoc dl);
104 
105  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
106  SDNode *Node, bool isSigned);
107  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
108  RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
109  RTLIB::Libcall Call_F128,
110  RTLIB::Libcall Call_PPCF128);
111  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
112  RTLIB::Libcall Call_I8,
113  RTLIB::Libcall Call_I16,
114  RTLIB::Libcall Call_I32,
115  RTLIB::Libcall Call_I64,
116  RTLIB::Libcall Call_I128);
117  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
118  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
119 
120  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl);
121  SDValue ExpandBUILD_VECTOR(SDNode *Node);
122  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
123  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
124  SmallVectorImpl<SDValue> &Results);
125  SDValue ExpandFCOPYSIGN(SDNode *Node);
126  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
127  SDLoc dl);
128  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
129  SDLoc dl);
130  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
131  SDLoc dl);
132 
133  SDValue ExpandBSWAP(SDValue Op, SDLoc dl);
134  SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl);
135 
136  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
137  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
138  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
139 
140  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
141 
142  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
143 
144  void ExpandNode(SDNode *Node);
145  void PromoteNode(SDNode *Node);
146 
147  void ForgetNode(SDNode *N) {
148  LegalizedNodes.erase(N);
149  if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
150  ++LegalizePosition;
151  }
152 
153 public:
154  // DAGUpdateListener implementation.
155  virtual void NodeDeleted(SDNode *N, SDNode *E) {
156  ForgetNode(N);
157  }
158  virtual void NodeUpdated(SDNode *N) {}
159 
160  // Node replacement helpers
161  void ReplacedNode(SDNode *N) {
162  if (N->use_empty()) {
163  DAG.RemoveDeadNode(N);
164  } else {
165  ForgetNode(N);
166  }
167  }
168  void ReplaceNode(SDNode *Old, SDNode *New) {
169  DAG.ReplaceAllUsesWith(Old, New);
170  ReplacedNode(Old);
171  }
172  void ReplaceNode(SDValue Old, SDValue New) {
173  DAG.ReplaceAllUsesWith(Old, New);
174  ReplacedNode(Old.getNode());
175  }
176  void ReplaceNode(SDNode *Old, const SDValue *New) {
177  DAG.ReplaceAllUsesWith(Old, New);
178  ReplacedNode(Old);
179  }
180 };
181 }
182 
183 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184 /// performs the same shuffe in terms of order or result bytes, but on a type
185 /// whose vector element type is narrower than the original shuffle type.
186 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187 SDValue
188 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl,
189  SDValue N1, SDValue N2,
190  ArrayRef<int> Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194 
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196 
197  if (NumEltsGrowth == 1)
198  return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199 
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202  int Idx = Mask[i];
203  for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204  if (Idx < 0)
205  NewMask.push_back(-1);
206  else
207  NewMask.push_back(Idx * NumEltsGrowth + j);
208  }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213 }
214 
215 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
216  : SelectionDAG::DAGUpdateListener(dag),
217  TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
218  DAG(dag) {
219 }
220 
221 void SelectionDAGLegalize::LegalizeDAG() {
222  DAG.AssignTopologicalOrder();
223 
224  // Visit all the nodes. We start in topological order, so that we see
225  // nodes with their original operands intact. Legalization can produce
226  // new nodes which may themselves need to be legalized. Iterate until all
227  // nodes have been legalized.
228  for (;;) {
229  bool AnyLegalized = false;
230  for (LegalizePosition = DAG.allnodes_end();
231  LegalizePosition != DAG.allnodes_begin(); ) {
232  --LegalizePosition;
233 
234  SDNode *N = LegalizePosition;
235  if (LegalizedNodes.insert(N)) {
236  AnyLegalized = true;
237  LegalizeOp(N);
238  }
239  }
240  if (!AnyLegalized)
241  break;
242 
243  }
244 
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247 }
248 
249 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
250 /// a load from the constant pool.
251 SDValue
252 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
253  bool Extend = false;
254  SDLoc dl(CFP);
255 
256  // If a FP immediate is precise when represented as a float and if the
257  // target can do an extending load from float to double, we put it into
258  // the constant pool as a float, even if it's is statically typed as a
259  // double. This shrinks FP constants and canonicalizes them for targets where
260  // an FP extending load is the same cost as a normal load (such as on the x87
261  // fp stack or PPC FP unit).
262  EVT VT = CFP->getValueType(0);
263  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
264  if (!UseCP) {
265  assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
266  return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
267  (VT == MVT::f64) ? MVT::i64 : MVT::i32);
268  }
269 
270  EVT OrigVT = VT;
271  EVT SVT = VT;
272  while (SVT != MVT::f32) {
273  SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
275  // Only do this if the target has a native EXTLOAD instruction from
276  // smaller type.
277  TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
278  TLI.ShouldShrinkFPConstant(OrigVT)) {
279  Type *SType = SVT.getTypeForEVT(*DAG.getContext());
280  LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
281  VT = SVT;
282  Extend = true;
283  }
284  }
285 
286  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
287  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
288  if (Extend) {
289  SDValue Result =
290  DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
291  DAG.getEntryNode(),
293  VT, false, false, Alignment);
294  return Result;
295  }
296  SDValue Result =
297  DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
298  MachinePointerInfo::getConstantPool(), false, false, false,
299  Alignment);
300  return Result;
301 }
302 
303 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
305  const TargetLowering &TLI,
306  SelectionDAGLegalize *DAGLegalize) {
307  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
308  "unaligned indexed stores not implemented!");
309  SDValue Chain = ST->getChain();
310  SDValue Ptr = ST->getBasePtr();
311  SDValue Val = ST->getValue();
312  EVT VT = Val.getValueType();
313  int Alignment = ST->getAlignment();
314  unsigned AS = ST->getAddressSpace();
315 
316  SDLoc dl(ST);
317  if (ST->getMemoryVT().isFloatingPoint() ||
318  ST->getMemoryVT().isVector()) {
319  EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
320  if (TLI.isTypeLegal(intVT)) {
321  // Expand to a bitconvert of the value to the integer type of the
322  // same size, then a (misaligned) int store.
323  // FIXME: Does not handle truncating floating point stores!
324  SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
325  Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
326  ST->isVolatile(), ST->isNonTemporal(), Alignment);
327  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
328  return;
329  }
330  // Do a (aligned) store to a stack slot, then copy from the stack slot
331  // to the final destination using (unaligned) integer loads and stores.
332  EVT StoredVT = ST->getMemoryVT();
333  MVT RegVT =
334  TLI.getRegisterType(*DAG.getContext(),
336  StoredVT.getSizeInBits()));
337  unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
338  unsigned RegBytes = RegVT.getSizeInBits() / 8;
339  unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
340 
341  // Make sure the stack slot is also aligned for the register type.
342  SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
343 
344  // Perform the original store, only redirected to the stack slot.
345  SDValue Store = DAG.getTruncStore(Chain, dl,
346  Val, StackPtr, MachinePointerInfo(),
347  StoredVT, false, false, 0);
348  SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy(AS));
350  unsigned Offset = 0;
351 
352  // Do all but one copies using the full register width.
353  for (unsigned i = 1; i < NumRegs; i++) {
354  // Load one integer register's worth from the stack slot.
355  SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
357  false, false, false, 0);
358  // Store it to the final location. Remember the store.
359  Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
360  ST->getPointerInfo().getWithOffset(Offset),
361  ST->isVolatile(), ST->isNonTemporal(),
362  MinAlign(ST->getAlignment(), Offset)));
363  // Increment the pointers.
364  Offset += RegBytes;
365  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
366  Increment);
367  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
368  }
369 
370  // The last store may be partial. Do a truncating store. On big-endian
371  // machines this requires an extending load from the stack slot to ensure
372  // that the bits are in the right place.
373  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
374  8 * (StoredBytes - Offset));
375 
376  // Load from the stack slot.
377  SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
379  MemVT, false, false, 0);
380 
381  Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
382  ST->getPointerInfo()
383  .getWithOffset(Offset),
384  MemVT, ST->isVolatile(),
385  ST->isNonTemporal(),
386  MinAlign(ST->getAlignment(), Offset),
387  ST->getTBAAInfo()));
388  // The order of the stores doesn't matter - say it with a TokenFactor.
389  SDValue Result =
390  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
391  Stores.size());
392  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
393  return;
394  }
395  assert(ST->getMemoryVT().isInteger() &&
396  !ST->getMemoryVT().isVector() &&
397  "Unaligned store of unknown type.");
398  // Get the half-size VT
399  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
400  int NumBits = NewStoredVT.getSizeInBits();
401  int IncrementSize = NumBits / 8;
402 
403  // Divide the stored value in two parts.
404  SDValue ShiftAmount = DAG.getConstant(NumBits,
405  TLI.getShiftAmountTy(Val.getValueType()));
406  SDValue Lo = Val;
407  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
408 
409  // Store the two parts
410  SDValue Store1, Store2;
411  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
412  ST->getPointerInfo(), NewStoredVT,
413  ST->isVolatile(), ST->isNonTemporal(), Alignment);
414 
415  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
416  DAG.getConstant(IncrementSize, TLI.getPointerTy(AS)));
417  Alignment = MinAlign(Alignment, IncrementSize);
418  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
419  ST->getPointerInfo().getWithOffset(IncrementSize),
420  NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
421  Alignment, ST->getTBAAInfo());
422 
423  SDValue Result =
424  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
425  DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
426 }
427 
428 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
429 static void
431  const TargetLowering &TLI,
432  SDValue &ValResult, SDValue &ChainResult) {
433  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
434  "unaligned indexed loads not implemented!");
435  SDValue Chain = LD->getChain();
436  SDValue Ptr = LD->getBasePtr();
437  EVT VT = LD->getValueType(0);
438  EVT LoadedVT = LD->getMemoryVT();
439  SDLoc dl(LD);
440  if (VT.isFloatingPoint() || VT.isVector()) {
441  EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
442  if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) {
443  // Expand to a (misaligned) integer load of the same size,
444  // then bitconvert to floating point or vector.
445  SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
446  LD->getMemOperand());
447  SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
448  if (LoadedVT != VT)
449  Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
450  ISD::ANY_EXTEND, dl, VT, Result);
451 
452  ValResult = Result;
453  ChainResult = Chain;
454  return;
455  }
456 
457  // Copy the value to a (aligned) stack slot using (unaligned) integer
458  // loads and stores, then do a (aligned) load from the stack slot.
459  MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
460  unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
461  unsigned RegBytes = RegVT.getSizeInBits() / 8;
462  unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
463 
464  // Make sure the stack slot is also aligned for the register type.
465  SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
466 
467  SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
469  SDValue StackPtr = StackBase;
470  unsigned Offset = 0;
471 
472  // Do all but one copies using the full register width.
473  for (unsigned i = 1; i < NumRegs; i++) {
474  // Load one integer register's worth from the original location.
475  SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
476  LD->getPointerInfo().getWithOffset(Offset),
477  LD->isVolatile(), LD->isNonTemporal(),
478  LD->isInvariant(),
479  MinAlign(LD->getAlignment(), Offset),
480  LD->getTBAAInfo());
481  // Follow the load with a store to the stack slot. Remember the store.
482  Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
483  MachinePointerInfo(), false, false, 0));
484  // Increment the pointers.
485  Offset += RegBytes;
486  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
487  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
488  Increment);
489  }
490 
491  // The last copy may be partial. Do an extending load.
492  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
493  8 * (LoadedBytes - Offset));
494  SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
495  LD->getPointerInfo().getWithOffset(Offset),
496  MemVT, LD->isVolatile(),
497  LD->isNonTemporal(),
498  MinAlign(LD->getAlignment(), Offset),
499  LD->getTBAAInfo());
500  // Follow the load with a store to the stack slot. Remember the store.
501  // On big-endian machines this requires a truncating store to ensure
502  // that the bits end up in the right place.
503  Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
504  MachinePointerInfo(), MemVT,
505  false, false, 0));
506 
507  // The order of the stores doesn't matter - say it with a TokenFactor.
508  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
509  Stores.size());
510 
511  // Finally, perform the original load only redirected to the stack slot.
512  Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
513  MachinePointerInfo(), LoadedVT, false, false, 0);
514 
515  // Callers expect a MERGE_VALUES node.
516  ValResult = Load;
517  ChainResult = TF;
518  return;
519  }
520  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
521  "Unaligned load of unsupported type.");
522 
523  // Compute the new VT that is half the size of the old one. This is an
524  // integer MVT.
525  unsigned NumBits = LoadedVT.getSizeInBits();
526  EVT NewLoadedVT;
527  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
528  NumBits >>= 1;
529 
530  unsigned Alignment = LD->getAlignment();
531  unsigned IncrementSize = NumBits / 8;
532  ISD::LoadExtType HiExtType = LD->getExtensionType();
533 
534  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
535  if (HiExtType == ISD::NON_EXTLOAD)
536  HiExtType = ISD::ZEXTLOAD;
537 
538  // Load the value in two parts
539  SDValue Lo, Hi;
540  if (TLI.isLittleEndian()) {
541  Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
542  NewLoadedVT, LD->isVolatile(),
543  LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
544  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
545  DAG.getConstant(IncrementSize, Ptr.getValueType()));
546  Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
547  LD->getPointerInfo().getWithOffset(IncrementSize),
548  NewLoadedVT, LD->isVolatile(),
549  LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
550  LD->getTBAAInfo());
551  } else {
552  Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
553  NewLoadedVT, LD->isVolatile(),
554  LD->isNonTemporal(), Alignment, LD->getTBAAInfo());
555  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
556  DAG.getConstant(IncrementSize, Ptr.getValueType()));
557  Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
558  LD->getPointerInfo().getWithOffset(IncrementSize),
559  NewLoadedVT, LD->isVolatile(),
560  LD->isNonTemporal(), MinAlign(Alignment, IncrementSize),
561  LD->getTBAAInfo());
562  }
563 
564  // aggregate the two parts
565  SDValue ShiftAmount = DAG.getConstant(NumBits,
566  TLI.getShiftAmountTy(Hi.getValueType()));
567  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
568  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
569 
570  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
571  Hi.getValue(1));
572 
573  ValResult = Result;
574  ChainResult = TF;
575 }
576 
577 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
578 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
579 /// is necessary to spill the vector being inserted into to memory, perform
580 /// the insert there, and then read the result back.
581 SDValue SelectionDAGLegalize::
582 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
583  SDLoc dl) {
584  SDValue Tmp1 = Vec;
585  SDValue Tmp2 = Val;
586  SDValue Tmp3 = Idx;
587 
588  // If the target doesn't support this, we have to spill the input vector
589  // to a temporary stack slot, update the element, then reload it. This is
590  // badness. We could also load the value into a vector register (either
591  // with a "move to register" or "extload into register" instruction, then
592  // permute it into place, if the idx is a constant and if the idx is
593  // supported by the target.
594  EVT VT = Tmp1.getValueType();
595  EVT EltVT = VT.getVectorElementType();
596  EVT IdxVT = Tmp3.getValueType();
597  EVT PtrVT = TLI.getPointerTy();
598  SDValue StackPtr = DAG.CreateStackTemporary(VT);
599 
600  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
601 
602  // Store the vector.
603  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
605  false, false, 0);
606 
607  // Truncate or zero extend offset to target pointer type.
608  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
609  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
610  // Add the offset to the index.
611  unsigned EltSize = EltVT.getSizeInBits()/8;
612  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
613  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
614  // Store the scalar value.
615  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
616  false, false, 0);
617  // Load the updated vector.
618  return DAG.getLoad(VT, dl, Ch, StackPtr,
619  MachinePointerInfo::getFixedStack(SPFI), false, false,
620  false, 0);
621 }
622 
623 
624 SDValue SelectionDAGLegalize::
625 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) {
626  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
627  // SCALAR_TO_VECTOR requires that the type of the value being inserted
628  // match the element type of the vector being created, except for
629  // integers in which case the inserted value can be over width.
630  EVT EltVT = Vec.getValueType().getVectorElementType();
631  if (Val.getValueType() == EltVT ||
632  (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
633  SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
634  Vec.getValueType(), Val);
635 
636  unsigned NumElts = Vec.getValueType().getVectorNumElements();
637  // We generate a shuffle of InVec and ScVec, so the shuffle mask
638  // should be 0,1,2,3,4,5... with the appropriate element replaced with
639  // elt 0 of the RHS.
640  SmallVector<int, 8> ShufOps;
641  for (unsigned i = 0; i != NumElts; ++i)
642  ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
643 
644  return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
645  &ShufOps[0]);
646  }
647  }
648  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
649 }
650 
651 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
652  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
653  // FIXME: We shouldn't do this for TargetConstantFP's.
654  // FIXME: move this to the DAG Combiner! Note that we can't regress due
655  // to phase ordering between legalized code and the dag combiner. This
656  // probably means that we need to integrate dag combiner and legalizer
657  // together.
658  // We generally can't do this one for long doubles.
659  SDValue Chain = ST->getChain();
660  SDValue Ptr = ST->getBasePtr();
661  unsigned Alignment = ST->getAlignment();
662  bool isVolatile = ST->isVolatile();
663  bool isNonTemporal = ST->isNonTemporal();
664  const MDNode *TBAAInfo = ST->getTBAAInfo();
665  SDLoc dl(ST);
666  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
667  if (CFP->getValueType(0) == MVT::f32 &&
668  TLI.isTypeLegal(MVT::i32)) {
669  SDValue Con = DAG.getConstant(CFP->getValueAPF().
670  bitcastToAPInt().zextOrTrunc(32),
671  MVT::i32);
672  return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
673  isVolatile, isNonTemporal, Alignment, TBAAInfo);
674  }
675 
676  if (CFP->getValueType(0) == MVT::f64) {
677  // If this target supports 64-bit registers, do a single 64-bit store.
678  if (TLI.isTypeLegal(MVT::i64)) {
679  SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
680  zextOrTrunc(64), MVT::i64);
681  return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
682  isVolatile, isNonTemporal, Alignment, TBAAInfo);
683  }
684 
685  if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
686  // Otherwise, if the target supports 32-bit registers, use 2 32-bit
687  // stores. If the target supports neither 32- nor 64-bits, this
688  // xform is certainly not worth it.
689  const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
690  SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
691  SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
692  if (TLI.isBigEndian()) std::swap(Lo, Hi);
693 
694  Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile,
695  isNonTemporal, Alignment, TBAAInfo);
696  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
697  DAG.getConstant(4, Ptr.getValueType()));
698  Hi = DAG.getStore(Chain, dl, Hi, Ptr,
699  ST->getPointerInfo().getWithOffset(4),
700  isVolatile, isNonTemporal, MinAlign(Alignment, 4U),
701  TBAAInfo);
702 
703  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
704  }
705  }
706  }
707  return SDValue(0, 0);
708 }
709 
710 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
711  StoreSDNode *ST = cast<StoreSDNode>(Node);
712  SDValue Chain = ST->getChain();
713  SDValue Ptr = ST->getBasePtr();
714  SDLoc dl(Node);
715 
716  unsigned Alignment = ST->getAlignment();
717  bool isVolatile = ST->isVolatile();
718  bool isNonTemporal = ST->isNonTemporal();
719  const MDNode *TBAAInfo = ST->getTBAAInfo();
720 
721  if (!ST->isTruncatingStore()) {
722  if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
723  ReplaceNode(ST, OptStore);
724  return;
725  }
726 
727  {
728  SDValue Value = ST->getValue();
729  MVT VT = Value.getSimpleValueType();
730  switch (TLI.getOperationAction(ISD::STORE, VT)) {
731  default: llvm_unreachable("This action is not supported yet!");
733  // If this is an unaligned store and the target doesn't support it,
734  // expand it.
735  if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
736  Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
737  unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
738  if (ST->getAlignment() < ABIAlignment)
739  ExpandUnalignedStore(cast<StoreSDNode>(Node),
740  DAG, TLI, this);
741  }
742  break;
743  case TargetLowering::Custom: {
744  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
745  if (Res.getNode())
746  ReplaceNode(SDValue(Node, 0), Res);
747  return;
748  }
750  MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
751  assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
752  "Can only promote stores to same size type");
753  Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
754  SDValue Result =
755  DAG.getStore(Chain, dl, Value, Ptr,
756  ST->getPointerInfo(), isVolatile,
757  isNonTemporal, Alignment, TBAAInfo);
758  ReplaceNode(SDValue(Node, 0), Result);
759  break;
760  }
761  }
762  return;
763  }
764  } else {
765  SDValue Value = ST->getValue();
766 
767  EVT StVT = ST->getMemoryVT();
768  unsigned StWidth = StVT.getSizeInBits();
769 
770  if (StWidth != StVT.getStoreSizeInBits()) {
771  // Promote to a byte-sized store with upper bits zero if not
772  // storing an integral number of bytes. For example, promote
773  // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
774  EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
775  StVT.getStoreSizeInBits());
776  Value = DAG.getZeroExtendInReg(Value, dl, StVT);
777  SDValue Result =
778  DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
779  NVT, isVolatile, isNonTemporal, Alignment,
780  TBAAInfo);
781  ReplaceNode(SDValue(Node, 0), Result);
782  } else if (StWidth & (StWidth - 1)) {
783  // If not storing a power-of-2 number of bits, expand as two stores.
784  assert(!StVT.isVector() && "Unsupported truncstore!");
785  unsigned RoundWidth = 1 << Log2_32(StWidth);
786  assert(RoundWidth < StWidth);
787  unsigned ExtraWidth = StWidth - RoundWidth;
788  assert(ExtraWidth < RoundWidth);
789  assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
790  "Store size not an integral number of bytes!");
791  EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
792  EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
793  SDValue Lo, Hi;
794  unsigned IncrementSize;
795 
796  if (TLI.isLittleEndian()) {
797  // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
798  // Store the bottom RoundWidth bits.
799  Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
800  RoundVT,
801  isVolatile, isNonTemporal, Alignment,
802  TBAAInfo);
803 
804  // Store the remaining ExtraWidth bits.
805  IncrementSize = RoundWidth / 8;
806  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
807  DAG.getConstant(IncrementSize, Ptr.getValueType()));
808  Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
809  DAG.getConstant(RoundWidth,
810  TLI.getShiftAmountTy(Value.getValueType())));
811  Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
812  ST->getPointerInfo().getWithOffset(IncrementSize),
813  ExtraVT, isVolatile, isNonTemporal,
814  MinAlign(Alignment, IncrementSize), TBAAInfo);
815  } else {
816  // Big endian - avoid unaligned stores.
817  // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
818  // Store the top RoundWidth bits.
819  Hi = DAG.getNode(ISD::SRL, dl, Value.getValueType(), Value,
820  DAG.getConstant(ExtraWidth,
821  TLI.getShiftAmountTy(Value.getValueType())));
822  Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
823  RoundVT, isVolatile, isNonTemporal, Alignment,
824  TBAAInfo);
825 
826  // Store the remaining ExtraWidth bits.
827  IncrementSize = RoundWidth / 8;
828  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
829  DAG.getConstant(IncrementSize, Ptr.getValueType()));
830  Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
831  ST->getPointerInfo().getWithOffset(IncrementSize),
832  ExtraVT, isVolatile, isNonTemporal,
833  MinAlign(Alignment, IncrementSize), TBAAInfo);
834  }
835 
836  // The order of the stores doesn't matter.
837  SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
838  ReplaceNode(SDValue(Node, 0), Result);
839  } else {
840  switch (TLI.getTruncStoreAction(ST->getValue().getSimpleValueType(),
841  StVT.getSimpleVT())) {
842  default: llvm_unreachable("This action is not supported yet!");
844  // If this is an unaligned store and the target doesn't support it,
845  // expand it.
846  if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
847  Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
848  unsigned ABIAlignment= TLI.getDataLayout()->getABITypeAlignment(Ty);
849  if (ST->getAlignment() < ABIAlignment)
850  ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
851  }
852  break;
853  case TargetLowering::Custom: {
854  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
855  if (Res.getNode())
856  ReplaceNode(SDValue(Node, 0), Res);
857  return;
858  }
860  assert(!StVT.isVector() &&
861  "Vector Stores are handled in LegalizeVectorOps");
862 
863  // TRUNCSTORE:i16 i32 -> STORE i16
864  assert(TLI.isTypeLegal(StVT) &&
865  "Do not know how to expand this store!");
866  Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
867  SDValue Result =
868  DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
869  isVolatile, isNonTemporal, Alignment, TBAAInfo);
870  ReplaceNode(SDValue(Node, 0), Result);
871  break;
872  }
873  }
874  }
875 }
876 
877 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
878  LoadSDNode *LD = cast<LoadSDNode>(Node);
879  SDValue Chain = LD->getChain(); // The chain.
880  SDValue Ptr = LD->getBasePtr(); // The base pointer.
881  SDValue Value; // The value returned by the load op.
882  SDLoc dl(Node);
883 
884  ISD::LoadExtType ExtType = LD->getExtensionType();
885  if (ExtType == ISD::NON_EXTLOAD) {
886  MVT VT = Node->getSimpleValueType(0);
887  SDValue RVal = SDValue(Node, 0);
888  SDValue RChain = SDValue(Node, 1);
889 
890  switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
891  default: llvm_unreachable("This action is not supported yet!");
893  // If this is an unaligned load and the target doesn't support it,
894  // expand it.
895  if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
896  Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
897  unsigned ABIAlignment =
898  TLI.getDataLayout()->getABITypeAlignment(Ty);
899  if (LD->getAlignment() < ABIAlignment){
900  ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain);
901  }
902  }
903  break;
904  case TargetLowering::Custom: {
905  SDValue Res = TLI.LowerOperation(RVal, DAG);
906  if (Res.getNode()) {
907  RVal = Res;
908  RChain = Res.getValue(1);
909  }
910  break;
911  }
913  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
914  assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
915  "Can only promote loads to same size type");
916 
917  SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
918  RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
919  RChain = Res.getValue(1);
920  break;
921  }
922  }
923  if (RChain.getNode() != Node) {
924  assert(RVal.getNode() != Node && "Load must be completely replaced");
925  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
926  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
927  ReplacedNode(Node);
928  }
929  return;
930  }
931 
932  EVT SrcVT = LD->getMemoryVT();
933  unsigned SrcWidth = SrcVT.getSizeInBits();
934  unsigned Alignment = LD->getAlignment();
935  bool isVolatile = LD->isVolatile();
936  bool isNonTemporal = LD->isNonTemporal();
937  const MDNode *TBAAInfo = LD->getTBAAInfo();
938 
939  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
940  // Some targets pretend to have an i1 loading operation, and actually
941  // load an i8. This trick is correct for ZEXTLOAD because the top 7
942  // bits are guaranteed to be zero; it helps the optimizers understand
943  // that these bits are zero. It is also useful for EXTLOAD, since it
944  // tells the optimizers that those bits are undefined. It would be
945  // nice to have an effective generic way of getting these benefits...
946  // Until such a way is found, don't insist on promoting i1 here.
947  (SrcVT != MVT::i1 ||
948  TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
949  // Promote to a byte-sized load if not loading an integral number of
950  // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
951  unsigned NewWidth = SrcVT.getStoreSizeInBits();
952  EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
953  SDValue Ch;
954 
955  // The extra bits are guaranteed to be zero, since we stored them that
956  // way. A zext load from NVT thus automatically gives zext from SrcVT.
957 
958  ISD::LoadExtType NewExtType =
960 
961  SDValue Result =
962  DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
963  Chain, Ptr, LD->getPointerInfo(),
964  NVT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
965 
966  Ch = Result.getValue(1); // The chain.
967 
968  if (ExtType == ISD::SEXTLOAD)
969  // Having the top bits zero doesn't help when sign extending.
970  Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
971  Result.getValueType(),
972  Result, DAG.getValueType(SrcVT));
973  else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
974  // All the top bits are guaranteed to be zero - inform the optimizers.
975  Result = DAG.getNode(ISD::AssertZext, dl,
976  Result.getValueType(), Result,
977  DAG.getValueType(SrcVT));
978 
979  Value = Result;
980  Chain = Ch;
981  } else if (SrcWidth & (SrcWidth - 1)) {
982  // If not loading a power-of-2 number of bits, expand as two loads.
983  assert(!SrcVT.isVector() && "Unsupported extload!");
984  unsigned RoundWidth = 1 << Log2_32(SrcWidth);
985  assert(RoundWidth < SrcWidth);
986  unsigned ExtraWidth = SrcWidth - RoundWidth;
987  assert(ExtraWidth < RoundWidth);
988  assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
989  "Load size not an integral number of bytes!");
990  EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
991  EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
992  SDValue Lo, Hi, Ch;
993  unsigned IncrementSize;
994 
995  if (TLI.isLittleEndian()) {
996  // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
997  // Load the bottom RoundWidth bits.
998  Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
999  Chain, Ptr,
1000  LD->getPointerInfo(), RoundVT, isVolatile,
1001  isNonTemporal, Alignment, TBAAInfo);
1002 
1003  // Load the remaining ExtraWidth bits.
1004  IncrementSize = RoundWidth / 8;
1005  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1006  DAG.getConstant(IncrementSize, Ptr.getValueType()));
1007  Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1008  LD->getPointerInfo().getWithOffset(IncrementSize),
1009  ExtraVT, isVolatile, isNonTemporal,
1010  MinAlign(Alignment, IncrementSize), TBAAInfo);
1011 
1012  // Build a factor node to remember that this load is independent of
1013  // the other one.
1014  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1015  Hi.getValue(1));
1016 
1017  // Move the top bits to the right place.
1018  Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1019  DAG.getConstant(RoundWidth,
1020  TLI.getShiftAmountTy(Hi.getValueType())));
1021 
1022  // Join the hi and lo parts.
1023  Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1024  } else {
1025  // Big endian - avoid unaligned loads.
1026  // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1027  // Load the top RoundWidth bits.
1028  Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
1029  LD->getPointerInfo(), RoundVT, isVolatile,
1030  isNonTemporal, Alignment, TBAAInfo);
1031 
1032  // Load the remaining ExtraWidth bits.
1033  IncrementSize = RoundWidth / 8;
1034  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1035  DAG.getConstant(IncrementSize, Ptr.getValueType()));
1036  Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1037  dl, Node->getValueType(0), Chain, Ptr,
1038  LD->getPointerInfo().getWithOffset(IncrementSize),
1039  ExtraVT, isVolatile, isNonTemporal,
1040  MinAlign(Alignment, IncrementSize), TBAAInfo);
1041 
1042  // Build a factor node to remember that this load is independent of
1043  // the other one.
1044  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1045  Hi.getValue(1));
1046 
1047  // Move the top bits to the right place.
1048  Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1049  DAG.getConstant(ExtraWidth,
1050  TLI.getShiftAmountTy(Hi.getValueType())));
1051 
1052  // Join the hi and lo parts.
1053  Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1054  }
1055 
1056  Chain = Ch;
1057  } else {
1058  bool isCustom = false;
1059  switch (TLI.getLoadExtAction(ExtType, SrcVT.getSimpleVT())) {
1060  default: llvm_unreachable("This action is not supported yet!");
1062  isCustom = true;
1063  // FALLTHROUGH
1064  case TargetLowering::Legal: {
1065  Value = SDValue(Node, 0);
1066  Chain = SDValue(Node, 1);
1067 
1068  if (isCustom) {
1069  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1070  if (Res.getNode()) {
1071  Value = Res;
1072  Chain = Res.getValue(1);
1073  }
1074  } else {
1075  // If this is an unaligned load and the target doesn't support it,
1076  // expand it.
1077  if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1078  Type *Ty =
1079  LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1080  unsigned ABIAlignment =
1081  TLI.getDataLayout()->getABITypeAlignment(Ty);
1082  if (LD->getAlignment() < ABIAlignment){
1083  ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1084  DAG, TLI, Value, Chain);
1085  }
1086  }
1087  }
1088  break;
1089  }
1091  if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1092  SDValue Load = DAG.getLoad(SrcVT, dl, Chain, Ptr,
1093  LD->getMemOperand());
1094  unsigned ExtendOp;
1095  switch (ExtType) {
1096  case ISD::EXTLOAD:
1097  ExtendOp = (SrcVT.isFloatingPoint() ?
1099  break;
1100  case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1101  case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1102  default: llvm_unreachable("Unexpected extend load type!");
1103  }
1104  Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1105  Chain = Load.getValue(1);
1106  break;
1107  }
1108 
1109  assert(!SrcVT.isVector() &&
1110  "Vector Loads are handled in LegalizeVectorOps");
1111 
1112  // FIXME: This does not work for vectors on most targets. Sign- and
1113  // zero-extend operations are currently folded into extending loads,
1114  // whether they are legal or not, and then we end up here without any
1115  // support for legalizing them.
1116  assert(ExtType != ISD::EXTLOAD &&
1117  "EXTLOAD should always be supported!");
1118  // Turn the unsupported load into an EXTLOAD followed by an explicit
1119  // zero/sign extend inreg.
1120  SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1121  Chain, Ptr, SrcVT,
1122  LD->getMemOperand());
1123  SDValue ValRes;
1124  if (ExtType == ISD::SEXTLOAD)
1125  ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1126  Result.getValueType(),
1127  Result, DAG.getValueType(SrcVT));
1128  else
1129  ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1130  Value = ValRes;
1131  Chain = Result.getValue(1);
1132  break;
1133  }
1134  }
1135 
1136  // Since loads produce two values, make sure to remember that we legalized
1137  // both of them.
1138  if (Chain.getNode() != Node) {
1139  assert(Value.getNode() != Node && "Load must be completely replaced");
1140  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
1141  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
1142  ReplacedNode(Node);
1143  }
1144 }
1145 
1146 /// LegalizeOp - Return a legal replacement for the given operation, with
1147 /// all legal operands.
1148 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
1149  if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
1150  return;
1151 
1152  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1153  assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
1155  "Unexpected illegal type!");
1156 
1157  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
1158  assert((TLI.getTypeAction(*DAG.getContext(),
1159  Node->getOperand(i).getValueType()) ==
1161  Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
1162  "Unexpected illegal type!");
1163 
1164  // Figure out the correct action; the way to query this varies by opcode
1166  bool SimpleFinishLegalizing = true;
1167  switch (Node->getOpcode()) {
1170  case ISD::INTRINSIC_VOID:
1171  case ISD::STACKSAVE:
1172  Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1173  break;
1174  case ISD::VAARG:
1175  Action = TLI.getOperationAction(Node->getOpcode(),
1176  Node->getValueType(0));
1177  if (Action != TargetLowering::Promote)
1178  Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
1179  break;
1180  case ISD::SINT_TO_FP:
1181  case ISD::UINT_TO_FP:
1183  Action = TLI.getOperationAction(Node->getOpcode(),
1184  Node->getOperand(0).getValueType());
1185  break;
1186  case ISD::FP_ROUND_INREG:
1187  case ISD::SIGN_EXTEND_INREG: {
1188  EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1189  Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1190  break;
1191  }
1192  case ISD::ATOMIC_STORE: {
1193  Action = TLI.getOperationAction(Node->getOpcode(),
1194  Node->getOperand(2).getValueType());
1195  break;
1196  }
1197  case ISD::SELECT_CC:
1198  case ISD::SETCC:
1199  case ISD::BR_CC: {
1200  unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1201  Node->getOpcode() == ISD::SETCC ? 2 : 1;
1202  unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1203  MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1204  ISD::CondCode CCCode =
1205  cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1206  Action = TLI.getCondCodeAction(CCCode, OpVT);
1207  if (Action == TargetLowering::Legal) {
1208  if (Node->getOpcode() == ISD::SELECT_CC)
1209  Action = TLI.getOperationAction(Node->getOpcode(),
1210  Node->getValueType(0));
1211  else
1212  Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1213  }
1214  break;
1215  }
1216  case ISD::LOAD:
1217  case ISD::STORE:
1218  // FIXME: Model these properly. LOAD and STORE are complicated, and
1219  // STORE expects the unlegalized operand in some cases.
1220  SimpleFinishLegalizing = false;
1221  break;
1222  case ISD::CALLSEQ_START:
1223  case ISD::CALLSEQ_END:
1224  // FIXME: This shouldn't be necessary. These nodes have special properties
1225  // dealing with the recursive nature of legalization. Removing this
1226  // special case should be done as part of making LegalizeDAG non-recursive.
1227  SimpleFinishLegalizing = false;
1228  break;
1229  case ISD::EXTRACT_ELEMENT:
1230  case ISD::FLT_ROUNDS_:
1231  case ISD::SADDO:
1232  case ISD::SSUBO:
1233  case ISD::UADDO:
1234  case ISD::USUBO:
1235  case ISD::SMULO:
1236  case ISD::UMULO:
1237  case ISD::FPOWI:
1238  case ISD::MERGE_VALUES:
1239  case ISD::EH_RETURN:
1241  case ISD::EH_SJLJ_SETJMP:
1242  case ISD::EH_SJLJ_LONGJMP:
1243  // These operations lie about being legal: when they claim to be legal,
1244  // they should actually be expanded.
1245  Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1246  if (Action == TargetLowering::Legal)
1247  Action = TargetLowering::Expand;
1248  break;
1249  case ISD::INIT_TRAMPOLINE:
1251  case ISD::FRAMEADDR:
1252  case ISD::RETURNADDR:
1253  // These operations lie about being legal: when they claim to be legal,
1254  // they should actually be custom-lowered.
1255  Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1256  if (Action == TargetLowering::Legal)
1257  Action = TargetLowering::Custom;
1258  break;
1259  case ISD::DEBUGTRAP:
1260  Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1261  if (Action == TargetLowering::Expand) {
1262  // replace ISD::DEBUGTRAP with ISD::TRAP
1263  SDValue NewVal;
1264  NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1265  Node->getOperand(0));
1266  ReplaceNode(Node, NewVal.getNode());
1267  LegalizeOp(NewVal.getNode());
1268  return;
1269  }
1270  break;
1271 
1272  default:
1273  if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1274  Action = TargetLowering::Legal;
1275  } else {
1276  Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1277  }
1278  break;
1279  }
1280 
1281  if (SimpleFinishLegalizing) {
1282  SDNode *NewNode = Node;
1283  switch (Node->getOpcode()) {
1284  default: break;
1285  case ISD::SHL:
1286  case ISD::SRL:
1287  case ISD::SRA:
1288  case ISD::ROTL:
1289  case ISD::ROTR:
1290  // Legalizing shifts/rotates requires adjusting the shift amount
1291  // to the appropriate width.
1292  if (!Node->getOperand(1).getValueType().isVector()) {
1293  SDValue SAO =
1294  DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1295  Node->getOperand(1));
1296  HandleSDNode Handle(SAO);
1297  LegalizeOp(SAO.getNode());
1298  NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1299  Handle.getValue());
1300  }
1301  break;
1302  case ISD::SRL_PARTS:
1303  case ISD::SRA_PARTS:
1304  case ISD::SHL_PARTS:
1305  // Legalizing shifts/rotates requires adjusting the shift amount
1306  // to the appropriate width.
1307  if (!Node->getOperand(2).getValueType().isVector()) {
1308  SDValue SAO =
1309  DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
1310  Node->getOperand(2));
1311  HandleSDNode Handle(SAO);
1312  LegalizeOp(SAO.getNode());
1313  NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
1314  Node->getOperand(1),
1315  Handle.getValue());
1316  }
1317  break;
1318  }
1319 
1320  if (NewNode != Node) {
1321  DAG.ReplaceAllUsesWith(Node, NewNode);
1322  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1323  DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
1324  ReplacedNode(Node);
1325  Node = NewNode;
1326  }
1327  switch (Action) {
1328  case TargetLowering::Legal:
1329  return;
1330  case TargetLowering::Custom: {
1331  // FIXME: The handling for custom lowering with multiple results is
1332  // a complete mess.
1333  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
1334  if (Res.getNode()) {
1335  SmallVector<SDValue, 8> ResultVals;
1336  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
1337  if (e == 1)
1338  ResultVals.push_back(Res);
1339  else
1340  ResultVals.push_back(Res.getValue(i));
1341  }
1342  if (Res.getNode() != Node || Res.getResNo() != 0) {
1343  DAG.ReplaceAllUsesWith(Node, ResultVals.data());
1344  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1345  DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
1346  ReplacedNode(Node);
1347  }
1348  return;
1349  }
1350  }
1351  // FALL THROUGH
1353  ExpandNode(Node);
1354  return;
1356  PromoteNode(Node);
1357  return;
1358  }
1359  }
1360 
1361  switch (Node->getOpcode()) {
1362  default:
1363 #ifndef NDEBUG
1364  dbgs() << "NODE: ";
1365  Node->dump( &DAG);
1366  dbgs() << "\n";
1367 #endif
1368  llvm_unreachable("Do not know how to legalize this operator!");
1369 
1370  case ISD::CALLSEQ_START:
1371  case ISD::CALLSEQ_END:
1372  break;
1373  case ISD::LOAD: {
1374  return LegalizeLoadOps(Node);
1375  }
1376  case ISD::STORE: {
1377  return LegalizeStoreOps(Node);
1378  }
1379  }
1380 }
1381 
1382 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1383  SDValue Vec = Op.getOperand(0);
1384  SDValue Idx = Op.getOperand(1);
1385  SDLoc dl(Op);
1386  // Store the value to a temporary stack slot, then LOAD the returned part.
1387  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1388  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1389  MachinePointerInfo(), false, false, 0);
1390 
1391  // Add the offset to the index.
1392  unsigned EltSize =
1393  Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1394  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1395  DAG.getConstant(EltSize, Idx.getValueType()));
1396 
1397  Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
1398  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1399 
1400  if (Op.getValueType().isVector())
1401  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1402  false, false, false, 0);
1403  return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1405  Vec.getValueType().getVectorElementType(),
1406  false, false, 0);
1407 }
1408 
1409 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1410  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1411 
1412  SDValue Vec = Op.getOperand(0);
1413  SDValue Part = Op.getOperand(1);
1414  SDValue Idx = Op.getOperand(2);
1415  SDLoc dl(Op);
1416 
1417  // Store the value to a temporary stack slot, then LOAD the returned part.
1418 
1419  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1420  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1422 
1423  // First store the whole vector.
1424  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1425  false, false, 0);
1426 
1427  // Then store the inserted part.
1428 
1429  // Add the offset to the index.
1430  unsigned EltSize =
1431  Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1432 
1433  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1434  DAG.getConstant(EltSize, Idx.getValueType()));
1435  Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy());
1436 
1437  SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1438  StackPtr);
1439 
1440  // Store the subvector.
1441  Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1442  MachinePointerInfo(), false, false, 0);
1443 
1444  // Finally, load the updated vector.
1445  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1446  false, false, false, 0);
1447 }
1448 
1449 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1450  // We can't handle this case efficiently. Allocate a sufficiently
1451  // aligned object on the stack, store each element into it, then load
1452  // the result as a vector.
1453  // Create the stack frame object.
1454  EVT VT = Node->getValueType(0);
1455  EVT EltVT = VT.getVectorElementType();
1456  SDLoc dl(Node);
1457  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1458  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1460 
1461  // Emit a store of each element to the stack slot.
1462  SmallVector<SDValue, 8> Stores;
1463  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1464  // Store (in the right endianness) the elements to memory.
1465  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1466  // Ignore undef elements.
1467  if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1468 
1469  unsigned Offset = TypeByteSize*i;
1470 
1471  SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1472  Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1473 
1474  // If the destination vector element type is narrower than the source
1475  // element type, only store the bits necessary.
1476  if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1477  Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1478  Node->getOperand(i), Idx,
1479  PtrInfo.getWithOffset(Offset),
1480  EltVT, false, false, 0));
1481  } else
1482  Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1483  Node->getOperand(i), Idx,
1484  PtrInfo.getWithOffset(Offset),
1485  false, false, 0));
1486  }
1487 
1488  SDValue StoreChain;
1489  if (!Stores.empty()) // Not all undef elements?
1490  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1491  &Stores[0], Stores.size());
1492  else
1493  StoreChain = DAG.getEntryNode();
1494 
1495  // Result is a load from the stack slot.
1496  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo,
1497  false, false, false, 0);
1498 }
1499 
1500 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1501  SDLoc dl(Node);
1502  SDValue Tmp1 = Node->getOperand(0);
1503  SDValue Tmp2 = Node->getOperand(1);
1504 
1505  // Get the sign bit of the RHS. First obtain a value that has the same
1506  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1507  SDValue SignBit;
1508  EVT FloatVT = Tmp2.getValueType();
1509  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1510  if (TLI.isTypeLegal(IVT)) {
1511  // Convert to an integer with the same sign bit.
1512  SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1513  } else {
1514  // Store the float to memory, then load the sign part out as an integer.
1515  MVT LoadTy = TLI.getPointerTy();
1516  // First create a temporary that is aligned for both the load and store.
1517  SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1518  // Then store the float to it.
1519  SDValue Ch =
1520  DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1521  false, false, 0);
1522  if (TLI.isBigEndian()) {
1523  assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1524  // Load out a legal integer with the same sign bit as the float.
1525  SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1526  false, false, false, 0);
1527  } else { // Little endian
1528  SDValue LoadPtr = StackPtr;
1529  // The float may be wider than the integer we are going to load. Advance
1530  // the pointer so that the loaded integer will contain the sign bit.
1531  unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1532  unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1533  LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1534  LoadPtr,
1535  DAG.getConstant(ByteOffset, LoadPtr.getValueType()));
1536  // Load a legal integer containing the sign bit.
1537  SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1538  false, false, false, 0);
1539  // Move the sign bit to the top bit of the loaded integer.
1540  unsigned BitShift = LoadTy.getSizeInBits() -
1541  (FloatVT.getSizeInBits() - 8 * ByteOffset);
1542  assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1543  if (BitShift)
1544  SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1545  DAG.getConstant(BitShift,
1546  TLI.getShiftAmountTy(SignBit.getValueType())));
1547  }
1548  }
1549  // Now get the sign bit proper, by seeing whether the value is negative.
1550  SignBit = DAG.getSetCC(dl, getSetCCResultType(SignBit.getValueType()),
1551  SignBit, DAG.getConstant(0, SignBit.getValueType()),
1552  ISD::SETLT);
1553  // Get the absolute value of the result.
1554  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1555  // Select between the nabs and abs value based on the sign bit of
1556  // the input.
1557  return DAG.getSelect(dl, AbsVal.getValueType(), SignBit,
1558  DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1559  AbsVal);
1560 }
1561 
1562 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1563  SmallVectorImpl<SDValue> &Results) {
1564  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1565  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1566  " not tell us which reg is the stack pointer!");
1567  SDLoc dl(Node);
1568  EVT VT = Node->getValueType(0);
1569  SDValue Tmp1 = SDValue(Node, 0);
1570  SDValue Tmp2 = SDValue(Node, 1);
1571  SDValue Tmp3 = Node->getOperand(2);
1572  SDValue Chain = Tmp1.getOperand(0);
1573 
1574  // Chain the dynamic stack allocation so that it doesn't modify the stack
1575  // pointer when other instructions are using the stack.
1576  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true),
1577  SDLoc(Node));
1578 
1579  SDValue Size = Tmp2.getOperand(1);
1580  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1581  Chain = SP.getValue(1);
1582  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1583  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1584  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1585  if (Align > StackAlign)
1586  Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1587  DAG.getConstant(-(uint64_t)Align, VT));
1588  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1589 
1590  Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1591  DAG.getIntPtrConstant(0, true), SDValue(),
1592  SDLoc(Node));
1593 
1594  Results.push_back(Tmp1);
1595  Results.push_back(Tmp2);
1596 }
1597 
1598 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1599 /// condition code CC on the current target.
1600 ///
1601 /// If the SETCC has been legalized using AND / OR, then the legalized node
1602 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1603 /// will be set to false.
1604 ///
1605 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1606 /// then the values of LHS and RHS will be swapped, CC will be set to the
1607 /// new condition, and NeedInvert will be set to false.
1608 ///
1609 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1610 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1611 /// will be set to true. The caller must invert the result of the SETCC with
1612 /// SelectionDAG::getNOT() or take equivalent action to swap the effect of a
1613 /// true/false result.
1614 ///
1615 /// \returns true if the SetCC has been legalized, false if it hasn't.
1616 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1617  SDValue &LHS, SDValue &RHS,
1618  SDValue &CC,
1619  bool &NeedInvert,
1620  SDLoc dl) {
1621  MVT OpVT = LHS.getSimpleValueType();
1622  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1623  NeedInvert = false;
1624  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1625  default: llvm_unreachable("Unknown condition code action!");
1626  case TargetLowering::Legal:
1627  // Nothing to do.
1628  break;
1629  case TargetLowering::Expand: {
1631  if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1632  std::swap(LHS, RHS);
1633  CC = DAG.getCondCode(InvCC);
1634  return true;
1635  }
1637  unsigned Opc = 0;
1638  switch (CCCode) {
1639  default: llvm_unreachable("Don't know how to expand this condition!");
1640  case ISD::SETO:
1641  assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT)
1643  && "If SETO is expanded, SETOEQ must be legal!");
1644  CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1645  case ISD::SETUO:
1646  assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT)
1648  && "If SETUO is expanded, SETUNE must be legal!");
1649  CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1650  case ISD::SETOEQ:
1651  case ISD::SETOGT:
1652  case ISD::SETOGE:
1653  case ISD::SETOLT:
1654  case ISD::SETOLE:
1655  case ISD::SETONE:
1656  case ISD::SETUEQ:
1657  case ISD::SETUNE:
1658  case ISD::SETUGT:
1659  case ISD::SETUGE:
1660  case ISD::SETULT:
1661  case ISD::SETULE:
1662  // If we are floating point, assign and break, otherwise fall through.
1663  if (!OpVT.isInteger()) {
1664  // We can use the 4th bit to tell if we are the unordered
1665  // or ordered version of the opcode.
1666  CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1667  Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1668  CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1669  break;
1670  }
1671  // Fallthrough if we are unsigned integer.
1672  case ISD::SETLE:
1673  case ISD::SETGT:
1674  case ISD::SETGE:
1675  case ISD::SETLT:
1676  // We only support using the inverted operation, which is computed above
1677  // and not a different manner of supporting expanding these cases.
1678  llvm_unreachable("Don't know how to expand this condition!");
1679  case ISD::SETNE:
1680  case ISD::SETEQ:
1681  // Try inverting the result of the inverse condition.
1682  InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ;
1683  if (TLI.isCondCodeLegal(InvCC, OpVT)) {
1684  CC = DAG.getCondCode(InvCC);
1685  NeedInvert = true;
1686  return true;
1687  }
1688  // If inverting the condition didn't work then we have no means to expand
1689  // the condition.
1690  llvm_unreachable("Don't know how to expand this condition!");
1691  }
1692 
1693  SDValue SetCC1, SetCC2;
1694  if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1695  // If we aren't the ordered or unorder operation,
1696  // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1697  SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1698  SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1699  } else {
1700  // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1701  SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1702  SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1703  }
1704  LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1705  RHS = SDValue();
1706  CC = SDValue();
1707  return true;
1708  }
1709  }
1710  return false;
1711 }
1712 
1713 /// EmitStackConvert - Emit a store/load combination to the stack. This stores
1714 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1715 /// a load from the stack slot to DestVT, extending it if needed.
1716 /// The resultant code need not be legal.
1717 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1718  EVT SlotVT,
1719  EVT DestVT,
1720  SDLoc dl) {
1721  // Create the stack frame object.
1722  unsigned SrcAlign =
1723  TLI.getDataLayout()->getPrefTypeAlignment(SrcOp.getValueType().
1724  getTypeForEVT(*DAG.getContext()));
1725  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1726 
1727  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1728  int SPFI = StackPtrFI->getIndex();
1730 
1731  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1732  unsigned SlotSize = SlotVT.getSizeInBits();
1733  unsigned DestSize = DestVT.getSizeInBits();
1734  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1735  unsigned DestAlign = TLI.getDataLayout()->getPrefTypeAlignment(DestType);
1736 
1737  // Emit a store to the stack slot. Use a truncstore if the input value is
1738  // later than DestVT.
1739  SDValue Store;
1740 
1741  if (SrcSize > SlotSize)
1742  Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1743  PtrInfo, SlotVT, false, false, SrcAlign);
1744  else {
1745  assert(SrcSize == SlotSize && "Invalid store");
1746  Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1747  PtrInfo, false, false, SrcAlign);
1748  }
1749 
1750  // Result is a load from the stack slot.
1751  if (SlotSize == DestSize)
1752  return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1753  false, false, false, DestAlign);
1754 
1755  assert(SlotSize < DestSize && "Unknown extension!");
1756  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1757  PtrInfo, SlotVT, false, false, DestAlign);
1758 }
1759 
1760 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1761  SDLoc dl(Node);
1762  // Create a vector sized/aligned stack slot, store the value to element #0,
1763  // then load the whole vector back out.
1764  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1765 
1766  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1767  int SPFI = StackPtrFI->getIndex();
1768 
1769  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1770  StackPtr,
1773  false, false, 0);
1774  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1776  false, false, false, 0);
1777 }
1778 
1779 
1780 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1781 /// support the operation, but do support the resultant vector type.
1782 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1783  unsigned NumElems = Node->getNumOperands();
1784  SDValue Value1, Value2;
1785  SDLoc dl(Node);
1786  EVT VT = Node->getValueType(0);
1787  EVT OpVT = Node->getOperand(0).getValueType();
1788  EVT EltVT = VT.getVectorElementType();
1789 
1790  // If the only non-undef value is the low element, turn this into a
1791  // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1792  bool isOnlyLowElement = true;
1793  bool MoreThanTwoValues = false;
1794  bool isConstant = true;
1795  for (unsigned i = 0; i < NumElems; ++i) {
1796  SDValue V = Node->getOperand(i);
1797  if (V.getOpcode() == ISD::UNDEF)
1798  continue;
1799  if (i > 0)
1800  isOnlyLowElement = false;
1801  if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1802  isConstant = false;
1803 
1804  if (!Value1.getNode()) {
1805  Value1 = V;
1806  } else if (!Value2.getNode()) {
1807  if (V != Value1)
1808  Value2 = V;
1809  } else if (V != Value1 && V != Value2) {
1810  MoreThanTwoValues = true;
1811  }
1812  }
1813 
1814  if (!Value1.getNode())
1815  return DAG.getUNDEF(VT);
1816 
1817  if (isOnlyLowElement)
1818  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1819 
1820  // If all elements are constants, create a load from the constant pool.
1821  if (isConstant) {
1823  for (unsigned i = 0, e = NumElems; i != e; ++i) {
1824  if (ConstantFPSDNode *V =
1825  dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1826  CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1827  } else if (ConstantSDNode *V =
1828  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1829  if (OpVT==EltVT)
1830  CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1831  else {
1832  // If OpVT and EltVT don't match, EltVT is not legal and the
1833  // element values have been promoted/truncated earlier. Undo this;
1834  // we don't want a v16i8 to become a v16i32 for example.
1835  const ConstantInt *CI = V->getConstantIntValue();
1836  CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1837  CI->getZExtValue()));
1838  }
1839  } else {
1840  assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1841  Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1842  CV.push_back(UndefValue::get(OpNTy));
1843  }
1844  }
1845  Constant *CP = ConstantVector::get(CV);
1846  SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1847  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1848  return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1850  false, false, false, Alignment);
1851  }
1852 
1853  if (!MoreThanTwoValues) {
1854  SmallVector<int, 8> ShuffleVec(NumElems, -1);
1855  for (unsigned i = 0; i < NumElems; ++i) {
1856  SDValue V = Node->getOperand(i);
1857  if (V.getOpcode() == ISD::UNDEF)
1858  continue;
1859  ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1860  }
1861  if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1862  // Get the splatted value into the low element of a vector register.
1863  SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1864  SDValue Vec2;
1865  if (Value2.getNode())
1866  Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1867  else
1868  Vec2 = DAG.getUNDEF(VT);
1869 
1870  // Return shuffle(LowValVec, undef, <0,0,0,0>)
1871  return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1872  }
1873  }
1874 
1875  // Otherwise, we can't handle this case efficiently.
1876  return ExpandVectorBuildThroughStack(Node);
1877 }
1878 
1879 // ExpandLibCall - Expand a node into a call to a libcall. If the result value
1880 // does not fit into a register, return the lo part and set the hi part to the
1881 // by-reg argument. If it does fit into a single register, return the result
1882 // and leave the Hi part unset.
1883 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1884  bool isSigned) {
1887  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1888  EVT ArgVT = Node->getOperand(i).getValueType();
1889  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1890  Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1891  Entry.isSExt = isSigned;
1892  Entry.isZExt = !isSigned;
1893  Args.push_back(Entry);
1894  }
1895  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1896  TLI.getPointerTy());
1897 
1898  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1899 
1900  // By default, the input chain to this libcall is the entry node of the
1901  // function. If the libcall is going to be emitted as a tail call then
1902  // TLI.isUsedByReturnOnly will change it to the right chain if the return
1903  // node which is being folded has a non-entry input chain.
1904  SDValue InChain = DAG.getEntryNode();
1905 
1906  // isTailCall may be true since the callee does not reference caller stack
1907  // frame. Check if it's in the right position.
1908  SDValue TCChain = InChain;
1909  bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain);
1910  if (isTailCall)
1911  InChain = TCChain;
1912 
1914  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1915  0, TLI.getLibcallCallingConv(LC), isTailCall,
1916  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1917  Callee, Args, DAG, SDLoc(Node));
1918  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1919 
1920 
1921  if (!CallInfo.second.getNode())
1922  // It's a tailcall, return the chain (which is the DAG root).
1923  return DAG.getRoot();
1924 
1925  return CallInfo.first;
1926 }
1927 
1928 /// ExpandLibCall - Generate a libcall taking the given operands as arguments
1929 /// and returning a result of type RetVT.
1930 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1931  const SDValue *Ops, unsigned NumOps,
1932  bool isSigned, SDLoc dl) {
1934  Args.reserve(NumOps);
1935 
1937  for (unsigned i = 0; i != NumOps; ++i) {
1938  Entry.Node = Ops[i];
1939  Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1940  Entry.isSExt = isSigned;
1941  Entry.isZExt = !isSigned;
1942  Args.push_back(Entry);
1943  }
1944  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1945  TLI.getPointerTy());
1946 
1947  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1949  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1950  false, 0, TLI.getLibcallCallingConv(LC),
1951  /*isTailCall=*/false,
1952  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1953  Callee, Args, DAG, dl);
1954  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1955 
1956  return CallInfo.first;
1957 }
1958 
1959 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1960 // ExpandLibCall except that the first operand is the in-chain.
1961 std::pair<SDValue, SDValue>
1962 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1963  SDNode *Node,
1964  bool isSigned) {
1965  SDValue InChain = Node->getOperand(0);
1966 
1969  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1970  EVT ArgVT = Node->getOperand(i).getValueType();
1971  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1972  Entry.Node = Node->getOperand(i);
1973  Entry.Ty = ArgTy;
1974  Entry.isSExt = isSigned;
1975  Entry.isZExt = !isSigned;
1976  Args.push_back(Entry);
1977  }
1978  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1979  TLI.getPointerTy());
1980 
1981  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1983  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1984  0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1985  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1986  Callee, Args, DAG, SDLoc(Node));
1987  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1988 
1989  return CallInfo;
1990 }
1991 
1992 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1993  RTLIB::Libcall Call_F32,
1994  RTLIB::Libcall Call_F64,
1995  RTLIB::Libcall Call_F80,
1996  RTLIB::Libcall Call_F128,
1997  RTLIB::Libcall Call_PPCF128) {
1998  RTLIB::Libcall LC;
1999  switch (Node->getSimpleValueType(0).SimpleTy) {
2000  default: llvm_unreachable("Unexpected request for libcall!");
2001  case MVT::f32: LC = Call_F32; break;
2002  case MVT::f64: LC = Call_F64; break;
2003  case MVT::f80: LC = Call_F80; break;
2004  case MVT::f128: LC = Call_F128; break;
2005  case MVT::ppcf128: LC = Call_PPCF128; break;
2006  }
2007  return ExpandLibCall(LC, Node, false);
2008 }
2009 
2010 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2011  RTLIB::Libcall Call_I8,
2012  RTLIB::Libcall Call_I16,
2013  RTLIB::Libcall Call_I32,
2014  RTLIB::Libcall Call_I64,
2015  RTLIB::Libcall Call_I128) {
2016  RTLIB::Libcall LC;
2017  switch (Node->getSimpleValueType(0).SimpleTy) {
2018  default: llvm_unreachable("Unexpected request for libcall!");
2019  case MVT::i8: LC = Call_I8; break;
2020  case MVT::i16: LC = Call_I16; break;
2021  case MVT::i32: LC = Call_I32; break;
2022  case MVT::i64: LC = Call_I64; break;
2023  case MVT::i128: LC = Call_I128; break;
2024  }
2025  return ExpandLibCall(LC, Node, isSigned);
2026 }
2027 
2028 /// isDivRemLibcallAvailable - Return true if divmod libcall is available.
2029 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2030  const TargetLowering &TLI) {
2031  RTLIB::Libcall LC;
2032  switch (Node->getSimpleValueType(0).SimpleTy) {
2033  default: llvm_unreachable("Unexpected request for libcall!");
2034  case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2035  case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2036  case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2037  case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2038  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2039  }
2040 
2041  return TLI.getLibcallName(LC) != 0;
2042 }
2043 
2044 /// useDivRem - Only issue divrem libcall if both quotient and remainder are
2045 /// needed.
2046 static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
2047  // The other use might have been replaced with a divrem already.
2048  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2049  unsigned OtherOpcode = 0;
2050  if (isSigned)
2051  OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
2052  else
2053  OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
2054 
2055  SDValue Op0 = Node->getOperand(0);
2056  SDValue Op1 = Node->getOperand(1);
2057  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2058  UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2059  SDNode *User = *UI;
2060  if (User == Node)
2061  continue;
2062  if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
2063  User->getOperand(0) == Op0 &&
2064  User->getOperand(1) == Op1)
2065  return true;
2066  }
2067  return false;
2068 }
2069 
2070 /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
2071 /// pairs.
2072 void
2073 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2074  SmallVectorImpl<SDValue> &Results) {
2075  unsigned Opcode = Node->getOpcode();
2076  bool isSigned = Opcode == ISD::SDIVREM;
2077 
2078  RTLIB::Libcall LC;
2079  switch (Node->getSimpleValueType(0).SimpleTy) {
2080  default: llvm_unreachable("Unexpected request for libcall!");
2081  case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2082  case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2083  case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2084  case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2085  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2086  }
2087 
2088  // The input chain to this libcall is the entry node of the function.
2089  // Legalizing the call will automatically add the previous call to the
2090  // dependence.
2091  SDValue InChain = DAG.getEntryNode();
2092 
2093  EVT RetVT = Node->getValueType(0);
2094  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2095 
2098  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
2099  EVT ArgVT = Node->getOperand(i).getValueType();
2100  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2101  Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
2102  Entry.isSExt = isSigned;
2103  Entry.isZExt = !isSigned;
2104  Args.push_back(Entry);
2105  }
2106 
2107  // Also pass the return address of the remainder.
2108  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2109  Entry.Node = FIPtr;
2110  Entry.Ty = RetTy->getPointerTo();
2111  Entry.isSExt = isSigned;
2112  Entry.isZExt = !isSigned;
2113  Args.push_back(Entry);
2114 
2115  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2116  TLI.getPointerTy());
2117 
2118  SDLoc dl(Node);
2120  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2121  0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2122  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2123  Callee, Args, DAG, dl);
2124  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2125 
2126  // Remainder is loaded back from the stack frame.
2127  SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2128  MachinePointerInfo(), false, false, false, 0);
2129  Results.push_back(CallInfo.first);
2130  Results.push_back(Rem);
2131 }
2132 
2133 /// isSinCosLibcallAvailable - Return true if sincos libcall is available.
2134 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2135  RTLIB::Libcall LC;
2136  switch (Node->getSimpleValueType(0).SimpleTy) {
2137  default: llvm_unreachable("Unexpected request for libcall!");
2138  case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2139  case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2140  case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2141  case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2142  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2143  }
2144  return TLI.getLibcallName(LC) != 0;
2145 }
2146 
2147 /// canCombineSinCosLibcall - Return true if sincos libcall is available and
2148 /// can be used to combine sin and cos.
2149 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI,
2150  const TargetMachine &TM) {
2151  if (!isSinCosLibcallAvailable(Node, TLI))
2152  return false;
2153  // GNU sin/cos functions set errno while sincos does not. Therefore
2154  // combining sin and cos is only safe if unsafe-fpmath is enabled.
2155  bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU;
2156  if (isGNU && !TM.Options.UnsafeFPMath)
2157  return false;
2158  return true;
2159 }
2160 
2161 /// useSinCos - Only issue sincos libcall if both sin and cos are
2162 /// needed.
2163 static bool useSinCos(SDNode *Node) {
2164  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2165  ? ISD::FCOS : ISD::FSIN;
2166 
2167  SDValue Op0 = Node->getOperand(0);
2168  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2169  UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2170  SDNode *User = *UI;
2171  if (User == Node)
2172  continue;
2173  // The other user might have been turned into sincos already.
2174  if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2175  return true;
2176  }
2177  return false;
2178 }
2179 
2180 /// ExpandSinCosLibCall - Issue libcalls to sincos to compute sin / cos
2181 /// pairs.
2182 void
2183 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2184  SmallVectorImpl<SDValue> &Results) {
2185  RTLIB::Libcall LC;
2186  switch (Node->getSimpleValueType(0).SimpleTy) {
2187  default: llvm_unreachable("Unexpected request for libcall!");
2188  case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2189  case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2190  case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2191  case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2192  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2193  }
2194 
2195  // The input chain to this libcall is the entry node of the function.
2196  // Legalizing the call will automatically add the previous call to the
2197  // dependence.
2198  SDValue InChain = DAG.getEntryNode();
2199 
2200  EVT RetVT = Node->getValueType(0);
2201  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2202 
2205 
2206  // Pass the argument.
2207  Entry.Node = Node->getOperand(0);
2208  Entry.Ty = RetTy;
2209  Entry.isSExt = false;
2210  Entry.isZExt = false;
2211  Args.push_back(Entry);
2212 
2213  // Pass the return address of sin.
2214  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2215  Entry.Node = SinPtr;
2216  Entry.Ty = RetTy->getPointerTo();
2217  Entry.isSExt = false;
2218  Entry.isZExt = false;
2219  Args.push_back(Entry);
2220 
2221  // Also pass the return address of the cos.
2222  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2223  Entry.Node = CosPtr;
2224  Entry.Ty = RetTy->getPointerTo();
2225  Entry.isSExt = false;
2226  Entry.isZExt = false;
2227  Args.push_back(Entry);
2228 
2229  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2230  TLI.getPointerTy());
2231 
2232  SDLoc dl(Node);
2234  CallLoweringInfo CLI(InChain, Type::getVoidTy(*DAG.getContext()),
2235  false, false, false, false,
2236  0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2237  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2238  Callee, Args, DAG, dl);
2239  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2240 
2241  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr,
2242  MachinePointerInfo(), false, false, false, 0));
2243  Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr,
2244  MachinePointerInfo(), false, false, false, 0));
2245 }
2246 
2247 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2248 /// INT_TO_FP operation of the specified operand when the target requests that
2249 /// we expand it. At this point, we know that the result and operand types are
2250 /// legal for the target.
2251 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2252  SDValue Op0,
2253  EVT DestVT,
2254  SDLoc dl) {
2255  if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2256  // simple 32-bit [signed|unsigned] integer to float/double expansion
2257 
2258  // Get the stack frame index of a 8 byte buffer.
2259  SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2260 
2261  // word offset constant for Hi/Lo address computation
2262  SDValue WordOff = DAG.getConstant(sizeof(int), StackSlot.getValueType());
2263  // set up Hi and Lo (into buffer) address based on endian
2264  SDValue Hi = StackSlot;
2265  SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2266  StackSlot, WordOff);
2267  if (TLI.isLittleEndian())
2268  std::swap(Hi, Lo);
2269 
2270  // if signed map to unsigned space
2271  SDValue Op0Mapped;
2272  if (isSigned) {
2273  // constant used to invert sign bit (signed to unsigned mapping)
2274  SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2275  Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2276  } else {
2277  Op0Mapped = Op0;
2278  }
2279  // store the lo of the constructed double - based on integer input
2280  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2281  Op0Mapped, Lo, MachinePointerInfo(),
2282  false, false, 0);
2283  // initial hi portion of constructed double
2284  SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2285  // store the hi of the constructed double - biased exponent
2286  SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2288  false, false, 0);
2289  // load the constructed double
2290  SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2291  MachinePointerInfo(), false, false, false, 0);
2292  // FP constant to bias correct the final result
2293  SDValue Bias = DAG.getConstantFP(isSigned ?
2294  BitsToDouble(0x4330000080000000ULL) :
2295  BitsToDouble(0x4330000000000000ULL),
2296  MVT::f64);
2297  // subtract the bias
2298  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2299  // final result
2300  SDValue Result;
2301  // handle final rounding
2302  if (DestVT == MVT::f64) {
2303  // do nothing
2304  Result = Sub;
2305  } else if (DestVT.bitsLT(MVT::f64)) {
2306  Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2307  DAG.getIntPtrConstant(0));
2308  } else if (DestVT.bitsGT(MVT::f64)) {
2309  Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2310  }
2311  return Result;
2312  }
2313  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2314  // Code below here assumes !isSigned without checking again.
2315 
2316  // Implementation of unsigned i64 to f64 following the algorithm in
2317  // __floatundidf in compiler_rt. This implementation has the advantage
2318  // of performing rounding correctly, both in the default rounding mode
2319  // and in all alternate rounding modes.
2320  // TODO: Generalize this for use with other types.
2321  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2322  SDValue TwoP52 =
2323  DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2324  SDValue TwoP84PlusTwoP52 =
2325  DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2326  SDValue TwoP84 =
2327  DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2328 
2329  SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2330  SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2331  DAG.getConstant(32, MVT::i64));
2332  SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2333  SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2334  SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2335  SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2336  SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2337  TwoP84PlusTwoP52);
2338  return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2339  }
2340 
2341  // Implementation of unsigned i64 to f32.
2342  // TODO: Generalize this for use with other types.
2343  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2344  // For unsigned conversions, convert them to signed conversions using the
2345  // algorithm from the x86_64 __floatundidf in compiler_rt.
2346  if (!isSigned) {
2347  SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2348 
2349  SDValue ShiftConst =
2350  DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2351  SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2352  SDValue AndConst = DAG.getConstant(1, MVT::i64);
2353  SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2354  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2355 
2356  SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2357  SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2358 
2359  // TODO: This really should be implemented using a branch rather than a
2360  // select. We happen to get lucky and machinesink does the right
2361  // thing most of the time. This would be a good candidate for a
2362  //pseudo-op, or, even better, for whole-function isel.
2363  SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2364  Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2365  return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast);
2366  }
2367 
2368  // Otherwise, implement the fully general conversion.
2369 
2370  SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2371  DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2372  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2373  DAG.getConstant(UINT64_C(0x800), MVT::i64));
2374  SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2375  DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2376  SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2377  And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2378  SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0);
2379  SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
2380  Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2381  ISD::SETUGE);
2382  SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0);
2383  EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2384 
2385  SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2386  DAG.getConstant(32, SHVT));
2387  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2388  SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2389  SDValue TwoP32 =
2390  DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2391  SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2392  SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2393  SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2394  SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2395  return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2396  DAG.getIntPtrConstant(0));
2397  }
2398 
2399  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2400 
2401  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()),
2402  Op0, DAG.getConstant(0, Op0.getValueType()),
2403  ISD::SETLT);
2404  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2405  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2406  SignSet, Four, Zero);
2407 
2408  // If the sign bit of the integer is set, the large number will be treated
2409  // as a negative number. To counteract this, the dynamic code adds an
2410  // offset depending on the data type.
2411  uint64_t FF;
2412  switch (Op0.getSimpleValueType().SimpleTy) {
2413  default: llvm_unreachable("Unsupported integer type!");
2414  case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2415  case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2416  case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2417  case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2418  }
2419  if (TLI.isLittleEndian()) FF <<= 32;
2420  Constant *FudgeFactor = ConstantInt::get(
2421  Type::getInt64Ty(*DAG.getContext()), FF);
2422 
2423  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2424  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2425  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2426  Alignment = std::min(Alignment, 4u);
2427  SDValue FudgeInReg;
2428  if (DestVT == MVT::f32)
2429  FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2431  false, false, false, Alignment);
2432  else {
2433  SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2434  DAG.getEntryNode(), CPIdx,
2436  MVT::f32, false, false, Alignment);
2437  HandleSDNode Handle(Load);
2438  LegalizeOp(Load.getNode());
2439  FudgeInReg = Handle.getValue();
2440  }
2441 
2442  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2443 }
2444 
2445 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2446 /// *INT_TO_FP operation of the specified operand when the target requests that
2447 /// we promote it. At this point, we know that the result and operand types are
2448 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2449 /// operation that takes a larger input.
2450 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2451  EVT DestVT,
2452  bool isSigned,
2453  SDLoc dl) {
2454  // First step, figure out the appropriate *INT_TO_FP operation to use.
2455  EVT NewInTy = LegalOp.getValueType();
2456 
2457  unsigned OpToUse = 0;
2458 
2459  // Scan for the appropriate larger type to use.
2460  while (1) {
2461  NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2462  assert(NewInTy.isInteger() && "Ran out of possibilities!");
2463 
2464  // If the target supports SINT_TO_FP of this type, use it.
2465  if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2466  OpToUse = ISD::SINT_TO_FP;
2467  break;
2468  }
2469  if (isSigned) continue;
2470 
2471  // If the target supports UINT_TO_FP of this type, use it.
2472  if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2473  OpToUse = ISD::UINT_TO_FP;
2474  break;
2475  }
2476 
2477  // Otherwise, try a larger type.
2478  }
2479 
2480  // Okay, we found the operation and type to use. Zero extend our input to the
2481  // desired type then run the operation on it.
2482  return DAG.getNode(OpToUse, dl, DestVT,
2483  DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2484  dl, NewInTy, LegalOp));
2485 }
2486 
2487 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2488 /// FP_TO_*INT operation of the specified operand when the target requests that
2489 /// we promote it. At this point, we know that the result and operand types are
2490 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2491 /// operation that returns a larger result.
2492 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2493  EVT DestVT,
2494  bool isSigned,
2495  SDLoc dl) {
2496  // First step, figure out the appropriate FP_TO*INT operation to use.
2497  EVT NewOutTy = DestVT;
2498 
2499  unsigned OpToUse = 0;
2500 
2501  // Scan for the appropriate larger type to use.
2502  while (1) {
2503  NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2504  assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2505 
2506  if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2507  OpToUse = ISD::FP_TO_SINT;
2508  break;
2509  }
2510 
2511  if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2512  OpToUse = ISD::FP_TO_UINT;
2513  break;
2514  }
2515 
2516  // Otherwise, try a larger type.
2517  }
2518 
2519 
2520  // Okay, we found the operation and type to use.
2521  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2522 
2523  // Truncate the result of the extended FP_TO_*INT operation to the desired
2524  // size.
2525  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2526 }
2527 
2528 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2529 ///
2530 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) {
2531  EVT VT = Op.getValueType();
2532  EVT SHVT = TLI.getShiftAmountTy(VT);
2533  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2534  switch (VT.getSimpleVT().SimpleTy) {
2535  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2536  case MVT::i16:
2537  Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2538  Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2539  return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2540  case MVT::i32:
2541  Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2542  Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2543  Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2544  Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2545  Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2546  Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2547  Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2548  Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2549  return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2550  case MVT::i64:
2551  Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2552  Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2553  Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2554  Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2555  Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2556  Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2557  Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2558  Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2559  Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2560  Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2561  Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2562  Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2563  Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2564  Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2565  Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2566  Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2567  Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2568  Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2569  Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2570  Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2571  return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2572  }
2573 }
2574 
2575 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2576 ///
2577 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2578  SDLoc dl) {
2579  switch (Opc) {
2580  default: llvm_unreachable("Cannot expand this yet!");
2581  case ISD::CTPOP: {
2582  EVT VT = Op.getValueType();
2583  EVT ShVT = TLI.getShiftAmountTy(VT);
2584  unsigned Len = VT.getSizeInBits();
2585 
2586  assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2587  "CTPOP not implemented for this type.");
2588 
2589  // This is the "best" algorithm from
2590  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2591 
2592  SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), VT);
2593  SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), VT);
2594  SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), VT);
2595  SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), VT);
2596 
2597  // v = v - ((v >> 1) & 0x55555555...)
2598  Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2599  DAG.getNode(ISD::AND, dl, VT,
2600  DAG.getNode(ISD::SRL, dl, VT, Op,
2601  DAG.getConstant(1, ShVT)),
2602  Mask55));
2603  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2604  Op = DAG.getNode(ISD::ADD, dl, VT,
2605  DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2606  DAG.getNode(ISD::AND, dl, VT,
2607  DAG.getNode(ISD::SRL, dl, VT, Op,
2608  DAG.getConstant(2, ShVT)),
2609  Mask33));
2610  // v = (v + (v >> 4)) & 0x0F0F0F0F...
2611  Op = DAG.getNode(ISD::AND, dl, VT,
2612  DAG.getNode(ISD::ADD, dl, VT, Op,
2613  DAG.getNode(ISD::SRL, dl, VT, Op,
2614  DAG.getConstant(4, ShVT))),
2615  Mask0F);
2616  // v = (v * 0x01010101...) >> (Len - 8)
2617  Op = DAG.getNode(ISD::SRL, dl, VT,
2618  DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2619  DAG.getConstant(Len - 8, ShVT));
2620 
2621  return Op;
2622  }
2623  case ISD::CTLZ_ZERO_UNDEF:
2624  // This trivially expands to CTLZ.
2625  return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2626  case ISD::CTLZ: {
2627  // for now, we do this:
2628  // x = x | (x >> 1);
2629  // x = x | (x >> 2);
2630  // ...
2631  // x = x | (x >>16);
2632  // x = x | (x >>32); // for 64-bit input
2633  // return popcount(~x);
2634  //
2635  // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2636  EVT VT = Op.getValueType();
2637  EVT ShVT = TLI.getShiftAmountTy(VT);
2638  unsigned len = VT.getSizeInBits();
2639  for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2640  SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2641  Op = DAG.getNode(ISD::OR, dl, VT, Op,
2642  DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2643  }
2644  Op = DAG.getNOT(dl, Op, VT);
2645  return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2646  }
2647  case ISD::CTTZ_ZERO_UNDEF:
2648  // This trivially expands to CTTZ.
2649  return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2650  case ISD::CTTZ: {
2651  // for now, we use: { return popcount(~x & (x - 1)); }
2652  // unless the target has ctlz but not ctpop, in which case we use:
2653  // { return 32 - nlz(~x & (x-1)); }
2654  // see also http://www.hackersdelight.org/HDcode/ntz.cc
2655  EVT VT = Op.getValueType();
2656  SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2657  DAG.getNOT(dl, Op, VT),
2658  DAG.getNode(ISD::SUB, dl, VT, Op,
2659  DAG.getConstant(1, VT)));
2660  // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2661  if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2662  TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2663  return DAG.getNode(ISD::SUB, dl, VT,
2664  DAG.getConstant(VT.getSizeInBits(), VT),
2665  DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2666  return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2667  }
2668  }
2669 }
2670 
2671 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2672  unsigned Opc = Node->getOpcode();
2673  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2674  RTLIB::Libcall LC;
2675 
2676  switch (Opc) {
2677  default:
2678  llvm_unreachable("Unhandled atomic intrinsic Expand!");
2679  case ISD::ATOMIC_SWAP:
2680  switch (VT.SimpleTy) {
2681  default: llvm_unreachable("Unexpected value type for atomic!");
2682  case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2683  case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2684  case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2685  case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2687  }
2688  break;
2689  case ISD::ATOMIC_CMP_SWAP:
2690  switch (VT.SimpleTy) {
2691  default: llvm_unreachable("Unexpected value type for atomic!");
2692  case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2693  case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2694  case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2695  case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2697  }
2698  break;
2699  case ISD::ATOMIC_LOAD_ADD:
2700  switch (VT.SimpleTy) {
2701  default: llvm_unreachable("Unexpected value type for atomic!");
2702  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2703  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2704  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2705  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2706  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_ADD_16;break;
2707  }
2708  break;
2709  case ISD::ATOMIC_LOAD_SUB:
2710  switch (VT.SimpleTy) {
2711  default: llvm_unreachable("Unexpected value type for atomic!");
2712  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2713  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2714  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2715  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2716  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_SUB_16;break;
2717  }
2718  break;
2719  case ISD::ATOMIC_LOAD_AND:
2720  switch (VT.SimpleTy) {
2721  default: llvm_unreachable("Unexpected value type for atomic!");
2722  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2723  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2724  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2725  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2726  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_AND_16;break;
2727  }
2728  break;
2729  case ISD::ATOMIC_LOAD_OR:
2730  switch (VT.SimpleTy) {
2731  default: llvm_unreachable("Unexpected value type for atomic!");
2732  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2733  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2734  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2735  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2736  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_OR_16;break;
2737  }
2738  break;
2739  case ISD::ATOMIC_LOAD_XOR:
2740  switch (VT.SimpleTy) {
2741  default: llvm_unreachable("Unexpected value type for atomic!");
2742  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2743  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2744  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2745  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2746  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_XOR_16;break;
2747  }
2748  break;
2749  case ISD::ATOMIC_LOAD_NAND:
2750  switch (VT.SimpleTy) {
2751  default: llvm_unreachable("Unexpected value type for atomic!");
2752  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2753  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2754  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2755  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2756  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_NAND_16;break;
2757  }
2758  break;
2759  case ISD::ATOMIC_LOAD_MAX:
2760  switch (VT.SimpleTy) {
2761  default: llvm_unreachable("Unexpected value type for atomic!");
2762  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MAX_1; break;
2763  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MAX_2; break;
2764  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MAX_4; break;
2765  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MAX_8; break;
2766  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MAX_16;break;
2767  }
2768  break;
2769  case ISD::ATOMIC_LOAD_UMAX:
2770  switch (VT.SimpleTy) {
2771  default: llvm_unreachable("Unexpected value type for atomic!");
2772  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMAX_1; break;
2773  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMAX_2; break;
2774  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMAX_4; break;
2775  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMAX_8; break;
2776  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMAX_16;break;
2777  }
2778  break;
2779  case ISD::ATOMIC_LOAD_MIN:
2780  switch (VT.SimpleTy) {
2781  default: llvm_unreachable("Unexpected value type for atomic!");
2782  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_MIN_1; break;
2783  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_MIN_2; break;
2784  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_MIN_4; break;
2785  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_MIN_8; break;
2786  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_MIN_16;break;
2787  }
2788  break;
2789  case ISD::ATOMIC_LOAD_UMIN:
2790  switch (VT.SimpleTy) {
2791  default: llvm_unreachable("Unexpected value type for atomic!");
2792  case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_UMIN_1; break;
2793  case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_UMIN_2; break;
2794  case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_UMIN_4; break;
2795  case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_UMIN_8; break;
2796  case MVT::i128:LC = RTLIB::SYNC_FETCH_AND_UMIN_16;break;
2797  }
2798  break;
2799  }
2800 
2801  return ExpandChainLibCall(LC, Node, false);
2802 }
2803 
2804 void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2805  SmallVector<SDValue, 8> Results;
2806  SDLoc dl(Node);
2807  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2808  bool NeedInvert;
2809  switch (Node->getOpcode()) {
2810  case ISD::CTPOP:
2811  case ISD::CTLZ:
2812  case ISD::CTLZ_ZERO_UNDEF:
2813  case ISD::CTTZ:
2814  case ISD::CTTZ_ZERO_UNDEF:
2815  Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2816  Results.push_back(Tmp1);
2817  break;
2818  case ISD::BSWAP:
2819  Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2820  break;
2821  case ISD::FRAMEADDR:
2822  case ISD::RETURNADDR:
2824  Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2825  break;
2826  case ISD::FLT_ROUNDS_:
2827  Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2828  break;
2829  case ISD::EH_RETURN:
2830  case ISD::EH_LABEL:
2831  case ISD::PREFETCH:
2832  case ISD::VAEND:
2833  case ISD::EH_SJLJ_LONGJMP:
2834  // If the target didn't expand these, there's nothing to do, so just
2835  // preserve the chain and be done.
2836  Results.push_back(Node->getOperand(0));
2837  break;
2838  case ISD::EH_SJLJ_SETJMP:
2839  // If the target didn't expand this, just return 'zero' and preserve the
2840  // chain.
2841  Results.push_back(DAG.getConstant(0, MVT::i32));
2842  Results.push_back(Node->getOperand(0));
2843  break;
2844  case ISD::ATOMIC_FENCE: {
2845  // If the target didn't lower this, lower it to '__sync_synchronize()' call
2846  // FIXME: handle "fence singlethread" more efficiently.
2849  CallLoweringInfo CLI(Node->getOperand(0),
2850  Type::getVoidTy(*DAG.getContext()),
2851  false, false, false, false, 0, CallingConv::C,
2852  /*isTailCall=*/false,
2853  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2854  DAG.getExternalSymbol("__sync_synchronize",
2855  TLI.getPointerTy()),
2856  Args, DAG, dl);
2857  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2858 
2859  Results.push_back(CallResult.second);
2860  break;
2861  }
2862  case ISD::ATOMIC_LOAD: {
2863  // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2864  SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2865  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2866  cast<AtomicSDNode>(Node)->getMemoryVT(),
2867  Node->getOperand(0),
2868  Node->getOperand(1), Zero, Zero,
2869  cast<AtomicSDNode>(Node)->getMemOperand(),
2870  cast<AtomicSDNode>(Node)->getOrdering(),
2871  cast<AtomicSDNode>(Node)->getSynchScope());
2872  Results.push_back(Swap.getValue(0));
2873  Results.push_back(Swap.getValue(1));
2874  break;
2875  }
2876  case ISD::ATOMIC_STORE: {
2877  // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2878  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2879  cast<AtomicSDNode>(Node)->getMemoryVT(),
2880  Node->getOperand(0),
2881  Node->getOperand(1), Node->getOperand(2),
2882  cast<AtomicSDNode>(Node)->getMemOperand(),
2883  cast<AtomicSDNode>(Node)->getOrdering(),
2884  cast<AtomicSDNode>(Node)->getSynchScope());
2885  Results.push_back(Swap.getValue(1));
2886  break;
2887  }
2888  // By default, atomic intrinsics are marked Legal and lowered. Targets
2889  // which don't support them directly, however, may want libcalls, in which
2890  // case they mark them Expand, and we get here.
2891  case ISD::ATOMIC_SWAP:
2892  case ISD::ATOMIC_LOAD_ADD:
2893  case ISD::ATOMIC_LOAD_SUB:
2894  case ISD::ATOMIC_LOAD_AND:
2895  case ISD::ATOMIC_LOAD_OR:
2896  case ISD::ATOMIC_LOAD_XOR:
2897  case ISD::ATOMIC_LOAD_NAND:
2898  case ISD::ATOMIC_LOAD_MIN:
2899  case ISD::ATOMIC_LOAD_MAX:
2900  case ISD::ATOMIC_LOAD_UMIN:
2901  case ISD::ATOMIC_LOAD_UMAX:
2902  case ISD::ATOMIC_CMP_SWAP: {
2903  std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2904  Results.push_back(Tmp.first);
2905  Results.push_back(Tmp.second);
2906  break;
2907  }
2909  ExpandDYNAMIC_STACKALLOC(Node, Results);
2910  break;
2911  case ISD::MERGE_VALUES:
2912  for (unsigned i = 0; i < Node->getNumValues(); i++)
2913  Results.push_back(Node->getOperand(i));
2914  break;
2915  case ISD::UNDEF: {
2916  EVT VT = Node->getValueType(0);
2917  if (VT.isInteger())
2918  Results.push_back(DAG.getConstant(0, VT));
2919  else {
2920  assert(VT.isFloatingPoint() && "Unknown value type!");
2921  Results.push_back(DAG.getConstantFP(0, VT));
2922  }
2923  break;
2924  }
2925  case ISD::TRAP: {
2926  // If this operation is not supported, lower it to 'abort()' call
2929  CallLoweringInfo CLI(Node->getOperand(0),
2930  Type::getVoidTy(*DAG.getContext()),
2931  false, false, false, false, 0, CallingConv::C,
2932  /*isTailCall=*/false,
2933  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2934  DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2935  Args, DAG, dl);
2936  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2937 
2938  Results.push_back(CallResult.second);
2939  break;
2940  }
2941  case ISD::FP_ROUND:
2942  case ISD::BITCAST:
2943  Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2944  Node->getValueType(0), dl);
2945  Results.push_back(Tmp1);
2946  break;
2947  case ISD::FP_EXTEND:
2948  Tmp1 = EmitStackConvert(Node->getOperand(0),
2949  Node->getOperand(0).getValueType(),
2950  Node->getValueType(0), dl);
2951  Results.push_back(Tmp1);
2952  break;
2953  case ISD::SIGN_EXTEND_INREG: {
2954  // NOTE: we could fall back on load/store here too for targets without
2955  // SAR. However, it is doubtful that any exist.
2956  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2957  EVT VT = Node->getValueType(0);
2958  EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2959  if (VT.isVector())
2960  ShiftAmountTy = VT;
2961  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2962  ExtraVT.getScalarType().getSizeInBits();
2963  SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2964  Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2965  Node->getOperand(0), ShiftCst);
2966  Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2967  Results.push_back(Tmp1);
2968  break;
2969  }
2970  case ISD::FP_ROUND_INREG: {
2971  // The only way we can lower this is to turn it into a TRUNCSTORE,
2972  // EXTLOAD pair, targeting a temporary location (a stack slot).
2973 
2974  // NOTE: there is a choice here between constantly creating new stack
2975  // slots and always reusing the same one. We currently always create
2976  // new ones, as reuse may inhibit scheduling.
2977  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2978  Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2979  Node->getValueType(0), dl);
2980  Results.push_back(Tmp1);
2981  break;
2982  }
2983  case ISD::SINT_TO_FP:
2984  case ISD::UINT_TO_FP:
2985  Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2986  Node->getOperand(0), Node->getValueType(0), dl);
2987  Results.push_back(Tmp1);
2988  break;
2989  case ISD::FP_TO_UINT: {
2990  SDValue True, False;
2991  EVT VT = Node->getOperand(0).getValueType();
2992  EVT NVT = Node->getValueType(0);
2993  APFloat apf(DAG.EVTToAPFloatSemantics(VT),
2996  (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2997  Tmp1 = DAG.getConstantFP(apf, VT);
2998  Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT),
2999  Node->getOperand(0),
3000  Tmp1, ISD::SETLT);
3001  True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
3002  False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
3003  DAG.getNode(ISD::FSUB, dl, VT,
3004  Node->getOperand(0), Tmp1));
3005  False = DAG.getNode(ISD::XOR, dl, NVT, False,
3006  DAG.getConstant(x, NVT));
3007  Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False);
3008  Results.push_back(Tmp1);
3009  break;
3010  }
3011  case ISD::VAARG: {
3012  const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3013  EVT VT = Node->getValueType(0);
3014  Tmp1 = Node->getOperand(0);
3015  Tmp2 = Node->getOperand(1);
3016  unsigned Align = Node->getConstantOperandVal(3);
3017 
3018  SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
3019  MachinePointerInfo(V),
3020  false, false, false, 0);
3021  SDValue VAList = VAListLoad;
3022 
3023  if (Align > TLI.getMinStackArgumentAlignment()) {
3024  assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
3025 
3026  VAList = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3027  DAG.getConstant(Align - 1,
3028  VAList.getValueType()));
3029 
3030  VAList = DAG.getNode(ISD::AND, dl, VAList.getValueType(), VAList,
3031  DAG.getConstant(-(int64_t)Align,
3032  VAList.getValueType()));
3033  }
3034 
3035  // Increment the pointer, VAList, to the next vaarg
3036  Tmp3 = DAG.getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
3037  DAG.getConstant(TLI.getDataLayout()->
3038  getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
3039  VAList.getValueType()));
3040  // Store the incremented VAList to the legalized pointer
3041  Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
3042  MachinePointerInfo(V), false, false, 0);
3043  // Load the actual argument out of the pointer VAList
3044  Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
3045  false, false, false, 0));
3046  Results.push_back(Results[0].getValue(1));
3047  break;
3048  }
3049  case ISD::VACOPY: {
3050  // This defaults to loading a pointer from the input and storing it to the
3051  // output, returning the chain.
3052  const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
3053  const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
3054  Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
3055  Node->getOperand(2), MachinePointerInfo(VS),
3056  false, false, false, 0);
3057  Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
3058  MachinePointerInfo(VD), false, false, 0);
3059  Results.push_back(Tmp1);
3060  break;
3061  }
3063  if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3064  // This must be an access of the only element. Return it.
3065  Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3066  Node->getOperand(0));
3067  else
3068  Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3069  Results.push_back(Tmp1);
3070  break;
3072  Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3073  break;
3074  case ISD::INSERT_SUBVECTOR:
3075  Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3076  break;
3077  case ISD::CONCAT_VECTORS: {
3078  Results.push_back(ExpandVectorBuildThroughStack(Node));
3079  break;
3080  }
3081  case ISD::SCALAR_TO_VECTOR:
3082  Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3083  break;
3085  Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3086  Node->getOperand(1),
3087  Node->getOperand(2), dl));
3088  break;
3089  case ISD::VECTOR_SHUFFLE: {
3090  SmallVector<int, 32> NewMask;
3091  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3092 
3093  EVT VT = Node->getValueType(0);
3094  EVT EltVT = VT.getVectorElementType();
3095  SDValue Op0 = Node->getOperand(0);
3096  SDValue Op1 = Node->getOperand(1);
3097  if (!TLI.isTypeLegal(EltVT)) {
3098 
3099  EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3100 
3101  // BUILD_VECTOR operands are allowed to be wider than the element type.
3102  // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
3103  if (NewEltVT.bitsLT(EltVT)) {
3104 
3105  // Convert shuffle node.
3106  // If original node was v4i64 and the new EltVT is i32,
3107  // cast operands to v8i32 and re-build the mask.
3108 
3109  // Calculate new VT, the size of the new VT should be equal to original.
3110  EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3111  VT.getSizeInBits()/NewEltVT.getSizeInBits());
3112  assert(NewVT.bitsEq(VT));
3113 
3114  // cast operands to new VT
3115  Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3116  Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3117 
3118  // Convert the shuffle mask
3119  unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
3120 
3121  // EltVT gets smaller
3122  assert(factor > 0);
3123 
3124  for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3125  if (Mask[i] < 0) {
3126  for (unsigned fi = 0; fi < factor; ++fi)
3127  NewMask.push_back(Mask[i]);
3128  }
3129  else {
3130  for (unsigned fi = 0; fi < factor; ++fi)
3131  NewMask.push_back(Mask[i]*factor+fi);
3132  }
3133  }
3134  Mask = NewMask;
3135  VT = NewVT;
3136  }
3137  EltVT = NewEltVT;
3138  }
3139  unsigned NumElems = VT.getVectorNumElements();
3141  for (unsigned i = 0; i != NumElems; ++i) {
3142  if (Mask[i] < 0) {
3143  Ops.push_back(DAG.getUNDEF(EltVT));
3144  continue;
3145  }
3146  unsigned Idx = Mask[i];
3147  if (Idx < NumElems)
3148  Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3149  Op0,
3150  DAG.getConstant(Idx, TLI.getVectorIdxTy())));
3151  else
3152  Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3153  Op1,
3154  DAG.getConstant(Idx - NumElems,
3155  TLI.getVectorIdxTy())));
3156  }
3157 
3158  Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
3159  // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3160  Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3161  Results.push_back(Tmp1);
3162  break;
3163  }
3164  case ISD::EXTRACT_ELEMENT: {
3165  EVT OpTy = Node->getOperand(0).getValueType();
3166  if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3167  // 1 -> Hi
3168  Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3169  DAG.getConstant(OpTy.getSizeInBits()/2,
3170  TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
3171  Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3172  } else {
3173  // 0 -> Lo
3174  Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3175  Node->getOperand(0));
3176  }
3177  Results.push_back(Tmp1);
3178  break;
3179  }
3180  case ISD::STACKSAVE:
3181  // Expand to CopyFromReg if the target set
3182  // StackPointerRegisterToSaveRestore.
3183  if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3184  Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3185  Node->getValueType(0)));
3186  Results.push_back(Results[0].getValue(1));
3187  } else {
3188  Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3189  Results.push_back(Node->getOperand(0));
3190  }
3191  break;
3192  case ISD::STACKRESTORE:
3193  // Expand to CopyToReg if the target set
3194  // StackPointerRegisterToSaveRestore.
3195  if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3196  Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3197  Node->getOperand(1)));
3198  } else {
3199  Results.push_back(Node->getOperand(0));
3200  }
3201  break;
3202  case ISD::FCOPYSIGN:
3203  Results.push_back(ExpandFCOPYSIGN(Node));
3204  break;
3205  case ISD::FNEG:
3206  // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3207  Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
3208  Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3209  Node->getOperand(0));
3210  Results.push_back(Tmp1);
3211  break;
3212  case ISD::FABS: {
3213  // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
3214  EVT VT = Node->getValueType(0);
3215  Tmp1 = Node->getOperand(0);
3216  Tmp2 = DAG.getConstantFP(0.0, VT);
3217  Tmp2 = DAG.getSetCC(dl, getSetCCResultType(Tmp1.getValueType()),
3218  Tmp1, Tmp2, ISD::SETUGT);
3219  Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
3220  Tmp1 = DAG.getSelect(dl, VT, Tmp2, Tmp1, Tmp3);
3221  Results.push_back(Tmp1);
3222  break;
3223  }
3224  case ISD::FSQRT:
3225  Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3228  break;
3229  case ISD::FSIN:
3230  case ISD::FCOS: {
3231  EVT VT = Node->getValueType(0);
3232  bool isSIN = Node->getOpcode() == ISD::FSIN;
3233  // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3234  // fcos which share the same operand and both are used.
3235  if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3236  canCombineSinCosLibcall(Node, TLI, TM))
3237  && useSinCos(Node)) {
3238  SDVTList VTs = DAG.getVTList(VT, VT);
3239  Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3240  if (!isSIN)
3241  Tmp1 = Tmp1.getValue(1);
3242  Results.push_back(Tmp1);
3243  } else if (isSIN) {
3244  Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3247  } else {
3248  Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3251  }
3252  break;
3253  }
3254  case ISD::FSINCOS:
3255  // Expand into sincos libcall.
3256  ExpandSinCosLibCall(Node, Results);
3257  break;
3258  case ISD::FLOG:
3259  Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3262  break;
3263  case ISD::FLOG2:
3264  Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3267  break;
3268  case ISD::FLOG10:
3269  Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3272  break;
3273  case ISD::FEXP:
3274  Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3277  break;
3278  case ISD::FEXP2:
3279  Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3282  break;
3283  case ISD::FTRUNC:
3284  Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3287  break;
3288  case ISD::FFLOOR:
3289  Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3292  break;
3293  case ISD::FCEIL:
3294  Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3297  break;
3298  case ISD::FRINT:
3299  Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3302  break;
3303  case ISD::FNEARBYINT:
3304  Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3309  break;
3310  case ISD::FROUND:
3311  Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3316  break;
3317  case ISD::FPOWI:
3318  Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3321  break;
3322  case ISD::FPOW:
3323  Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3326  break;
3327  case ISD::FDIV:
3328  Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3331  break;
3332  case ISD::FREM:
3333  Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3336  break;
3337  case ISD::FMA:
3338  Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3341  break;
3342  case ISD::FP16_TO_FP32:
3343  Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3344  break;
3345  case ISD::FP32_TO_FP16:
3346  Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3347  break;
3348  case ISD::ConstantFP: {
3349  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3350  // Check to see if this FP immediate is already legal.
3351  // If this is a legal constant, turn it into a TargetConstantFP node.
3352  if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3353  Results.push_back(ExpandConstantFP(CFP, true));
3354  break;
3355  }
3356  case ISD::FSUB: {
3357  EVT VT = Node->getValueType(0);
3358  assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3359  TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3360  "Don't know how to expand this FP subtraction!");
3361  Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3362  Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3363  Results.push_back(Tmp1);
3364  break;
3365  }
3366  case ISD::SUB: {
3367  EVT VT = Node->getValueType(0);
3368  assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3369  TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3370  "Don't know how to expand this subtraction!");
3371  Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3372  DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3373  Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3374  Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3375  break;
3376  }
3377  case ISD::UREM:
3378  case ISD::SREM: {
3379  EVT VT = Node->getValueType(0);
3380  bool isSigned = Node->getOpcode() == ISD::SREM;
3381  unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3382  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3383  Tmp2 = Node->getOperand(0);
3384  Tmp3 = Node->getOperand(1);
3385  if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3386  (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3387  // If div is legal, it's better to do the normal expansion
3388  !TLI.isOperationLegalOrCustom(DivOpc, Node->getValueType(0)) &&
3389  useDivRem(Node, isSigned, false))) {
3390  SDVTList VTs = DAG.getVTList(VT, VT);
3391  Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3392  } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3393  // X % Y -> X-X/Y*Y
3394  Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3395  Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3396  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3397  } else if (isSigned)
3398  Tmp1 = ExpandIntLibCall(Node, true,
3402  else
3403  Tmp1 = ExpandIntLibCall(Node, false,
3407  Results.push_back(Tmp1);
3408  break;
3409  }
3410  case ISD::UDIV:
3411  case ISD::SDIV: {
3412  bool isSigned = Node->getOpcode() == ISD::SDIV;
3413  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3414  EVT VT = Node->getValueType(0);
3415  SDVTList VTs = DAG.getVTList(VT, VT);
3416  if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3417  (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3418  useDivRem(Node, isSigned, true)))
3419  Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3420  Node->getOperand(1));
3421  else if (isSigned)
3422  Tmp1 = ExpandIntLibCall(Node, true,
3426  else
3427  Tmp1 = ExpandIntLibCall(Node, false,
3431  Results.push_back(Tmp1);
3432  break;
3433  }
3434  case ISD::MULHU:
3435  case ISD::MULHS: {
3436  unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3438  EVT VT = Node->getValueType(0);
3439  SDVTList VTs = DAG.getVTList(VT, VT);
3440  assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3441  "If this wasn't legal, it shouldn't have been created!");
3442  Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3443  Node->getOperand(1));
3444  Results.push_back(Tmp1.getValue(1));
3445  break;
3446  }
3447  case ISD::SDIVREM:
3448  case ISD::UDIVREM:
3449  // Expand into divrem libcall
3450  ExpandDivRemLibCall(Node, Results);
3451  break;
3452  case ISD::MUL: {
3453  EVT VT = Node->getValueType(0);
3454  SDVTList VTs = DAG.getVTList(VT, VT);
3455  // See if multiply or divide can be lowered using two-result operations.
3456  // We just need the low half of the multiply; try both the signed
3457  // and unsigned forms. If the target supports both SMUL_LOHI and
3458  // UMUL_LOHI, form a preference by checking which forms of plain
3459  // MULH it supports.
3460  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3461  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3462  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3463  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3464  unsigned OpToUse = 0;
3465  if (HasSMUL_LOHI && !HasMULHS) {
3466  OpToUse = ISD::SMUL_LOHI;
3467  } else if (HasUMUL_LOHI && !HasMULHU) {
3468  OpToUse = ISD::UMUL_LOHI;
3469  } else if (HasSMUL_LOHI) {
3470  OpToUse = ISD::SMUL_LOHI;
3471  } else if (HasUMUL_LOHI) {
3472  OpToUse = ISD::UMUL_LOHI;
3473  }
3474  if (OpToUse) {
3475  Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3476  Node->getOperand(1)));
3477  break;
3478  }
3479  Tmp1 = ExpandIntLibCall(Node, false,
3480  RTLIB::MUL_I8,
3483  Results.push_back(Tmp1);
3484  break;
3485  }
3486  case ISD::SADDO:
3487  case ISD::SSUBO: {
3488  SDValue LHS = Node->getOperand(0);
3489  SDValue RHS = Node->getOperand(1);
3490  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3491  ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3492  LHS, RHS);
3493  Results.push_back(Sum);
3494  EVT OType = Node->getValueType(1);
3495 
3496  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3497 
3498  // LHSSign -> LHS >= 0
3499  // RHSSign -> RHS >= 0
3500  // SumSign -> Sum >= 0
3501  //
3502  // Add:
3503  // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3504  // Sub:
3505  // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3506  //
3507  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3508  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3509  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3510  Node->getOpcode() == ISD::SADDO ?
3512 
3513  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3514  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3515 
3516  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3517  Results.push_back(Cmp);
3518  break;
3519  }
3520  case ISD::UADDO:
3521  case ISD::USUBO: {
3522  SDValue LHS = Node->getOperand(0);
3523  SDValue RHS = Node->getOperand(1);
3524  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3525  ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3526  LHS, RHS);
3527  Results.push_back(Sum);
3528  Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3529  Node->getOpcode () == ISD::UADDO ?
3531  break;
3532  }
3533  case ISD::UMULO:
3534  case ISD::SMULO: {
3535  EVT VT = Node->getValueType(0);
3536  EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3537  SDValue LHS = Node->getOperand(0);
3538  SDValue RHS = Node->getOperand(1);
3539  SDValue BottomHalf;
3540  SDValue TopHalf;
3541  static const unsigned Ops[2][3] =
3544  bool isSigned = Node->getOpcode() == ISD::SMULO;
3545  if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3546  BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3547  TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3548  } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3549  BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3550  RHS);
3551  TopHalf = BottomHalf.getValue(1);
3552  } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3553  VT.getSizeInBits() * 2))) {
3554  LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3555  RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3556  Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3557  BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3558  DAG.getIntPtrConstant(0));
3559  TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3560  DAG.getIntPtrConstant(1));
3561  } else {
3562  // We can fall back to a libcall with an illegal type for the MUL if we
3563  // have a libcall big enough.
3564  // Also, we can fall back to a division in some cases, but that's a big
3565  // performance hit in the general case.
3567  if (WideVT == MVT::i16)
3568  LC = RTLIB::MUL_I16;
3569  else if (WideVT == MVT::i32)
3570  LC = RTLIB::MUL_I32;
3571  else if (WideVT == MVT::i64)
3572  LC = RTLIB::MUL_I64;
3573  else if (WideVT == MVT::i128)
3574  LC = RTLIB::MUL_I128;
3575  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3576 
3577  // The high part is obtained by SRA'ing all but one of the bits of low
3578  // part.
3579  unsigned LoSize = VT.getSizeInBits();
3580  SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3581  DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3582  SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3583  DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3584 
3585  // Here we're passing the 2 arguments explicitly as 4 arguments that are
3586  // pre-lowered to the correct types. This all depends upon WideVT not
3587  // being a legal type for the architecture and thus has to be split to
3588  // two arguments.
3589  SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3590  SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3591  BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3592  DAG.getIntPtrConstant(0));
3593  TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3594  DAG.getIntPtrConstant(1));
3595  // Ret is a node with an illegal type. Because such things are not
3596  // generally permitted during this phase of legalization, delete the
3597  // node. The above EXTRACT_ELEMENT nodes should have been folded.
3598  DAG.DeleteNode(Ret.getNode());
3599  }
3600 
3601  if (isSigned) {
3602  Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3603  TLI.getShiftAmountTy(BottomHalf.getValueType()));
3604  Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3605  TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3606  ISD::SETNE);
3607  } else {
3608  TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3609  DAG.getConstant(0, VT), ISD::SETNE);
3610  }
3611  Results.push_back(BottomHalf);
3612  Results.push_back(TopHalf);
3613  break;
3614  }
3615  case ISD::BUILD_PAIR: {
3616  EVT PairTy = Node->getValueType(0);
3617  Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3618  Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3619  Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3620  DAG.getConstant(PairTy.getSizeInBits()/2,
3621  TLI.getShiftAmountTy(PairTy)));
3622  Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3623  break;
3624  }
3625  case ISD::SELECT:
3626  Tmp1 = Node->getOperand(0);
3627  Tmp2 = Node->getOperand(1);
3628  Tmp3 = Node->getOperand(2);
3629  if (Tmp1.getOpcode() == ISD::SETCC) {
3630  Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3631  Tmp2, Tmp3,
3632  cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3633  } else {
3634  Tmp1 = DAG.getSelectCC(dl, Tmp1,
3635  DAG.getConstant(0, Tmp1.getValueType()),
3636  Tmp2, Tmp3, ISD::SETNE);
3637  }
3638  Results.push_back(Tmp1);
3639  break;
3640  case ISD::BR_JT: {
3641  SDValue Chain = Node->getOperand(0);
3642  SDValue Table = Node->getOperand(1);
3643  SDValue Index = Node->getOperand(2);
3644 
3645  EVT PTy = TLI.getPointerTy();
3646 
3647  const DataLayout &TD = *TLI.getDataLayout();
3648  unsigned EntrySize =
3649  DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3650 
3651  Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(),
3652  Index, DAG.getConstant(EntrySize, Index.getValueType()));
3653  SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3654  Index, Table);
3655 
3656  EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3657  SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3659  false, false, 0);
3660  Addr = LD;
3661  if (TM.getRelocationModel() == Reloc::PIC_) {
3662  // For PIC, the sequence is:
3663  // BRIND(load(Jumptable + index) + RelocBase)
3664  // RelocBase can be JumpTable, GOT or some sort of global base.
3665  Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3666  TLI.getPICJumpTableRelocBase(Table, DAG));
3667  }
3668  Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3669  Results.push_back(Tmp1);
3670  break;
3671  }
3672  case ISD::BRCOND:
3673  // Expand brcond's setcc into its constituent parts and create a BR_CC
3674  // Node.
3675  Tmp1 = Node->getOperand(0);
3676  Tmp2 = Node->getOperand(1);
3677  if (Tmp2.getOpcode() == ISD::SETCC) {
3678  Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3679  Tmp1, Tmp2.getOperand(2),
3680  Tmp2.getOperand(0), Tmp2.getOperand(1),
3681  Node->getOperand(2));
3682  } else {
3683  // We test only the i1 bit. Skip the AND if UNDEF.
3684  Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3685  DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3686  DAG.getConstant(1, Tmp2.getValueType()));
3687  Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3688  DAG.getCondCode(ISD::SETNE), Tmp3,
3689  DAG.getConstant(0, Tmp3.getValueType()),
3690  Node->getOperand(2));
3691  }
3692  Results.push_back(Tmp1);
3693  break;
3694  case ISD::SETCC: {
3695  Tmp1 = Node->getOperand(0);
3696  Tmp2 = Node->getOperand(1);
3697  Tmp3 = Node->getOperand(2);
3698  bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3699  Tmp3, NeedInvert, dl);
3700 
3701  if (Legalized) {
3702  // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3703  // condition code, create a new SETCC node.
3704  if (Tmp3.getNode())
3705  Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3706  Tmp1, Tmp2, Tmp3);
3707 
3708  // If we expanded the SETCC by inverting the condition code, then wrap
3709  // the existing SETCC in a NOT to restore the intended condition.
3710  if (NeedInvert)
3711  Tmp1 = DAG.getNOT(dl, Tmp1, Tmp1->getValueType(0));
3712 
3713  Results.push_back(Tmp1);
3714  break;
3715  }
3716 
3717  // Otherwise, SETCC for the given comparison type must be completely
3718  // illegal; expand it into a SELECT_CC.
3719  EVT VT = Node->getValueType(0);
3720  int TrueValue;
3721  switch (TLI.getBooleanContents(VT.isVector())) {
3724  TrueValue = 1;
3725  break;
3727  TrueValue = -1;
3728  break;
3729  }
3730  Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3731  DAG.getConstant(TrueValue, VT), DAG.getConstant(0, VT),
3732  Tmp3);
3733  Results.push_back(Tmp1);
3734  break;
3735  }
3736  case ISD::SELECT_CC: {
3737  Tmp1 = Node->getOperand(0); // LHS
3738  Tmp2 = Node->getOperand(1); // RHS
3739  Tmp3 = Node->getOperand(2); // True
3740  Tmp4 = Node->getOperand(3); // False
3741  SDValue CC = Node->getOperand(4);
3742 
3743  bool Legalized = false;
3744  // Try to legalize by inverting the condition. This is for targets that
3745  // might support an ordered version of a condition, but not the unordered
3746  // version (or vice versa).
3747  ISD::CondCode InvCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3748  Tmp1.getValueType().isInteger());
3749  if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) {
3750  // Use the new condition code and swap true and false
3751  Legalized = true;
3752  Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3753  } else {
3754  // If The inverse is not legal, then try to swap the arguments using
3755  // the inverse condition code.
3756  ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3757  if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) {
3758  // The swapped inverse condition is legal, so swap true and false,
3759  // lhs and rhs.
3760  Legalized = true;
3761  Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3762  }
3763  }
3764 
3765  if (!Legalized) {
3766  Legalized = LegalizeSetCCCondCode(
3767  getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3768  dl);
3769 
3770  assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3771 
3772  // If we expanded the SETCC by inverting the condition code, then swap
3773  // the True/False operands to match.
3774  if (NeedInvert)
3775  std::swap(Tmp3, Tmp4);
3776 
3777  // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3778  // condition code, create a new SELECT_CC node.
3779  if (CC.getNode()) {
3780  Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3781  Tmp1, Tmp2, Tmp3, Tmp4, CC);
3782  } else {
3783  Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3784  CC = DAG.getCondCode(ISD::SETNE);
3785  Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3786  Tmp3, Tmp4, CC);
3787  }
3788  }
3789  Results.push_back(Tmp1);
3790  break;
3791  }
3792  case ISD::BR_CC: {
3793  Tmp1 = Node->getOperand(0); // Chain
3794  Tmp2 = Node->getOperand(2); // LHS
3795  Tmp3 = Node->getOperand(3); // RHS
3796  Tmp4 = Node->getOperand(1); // CC
3797 
3798  bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3799  Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3800  (void)Legalized;
3801  assert(Legalized && "Can't legalize BR_CC with legal condition!");
3802 
3803  // If we expanded the SETCC by inverting the condition code, then wrap
3804  // the existing SETCC in a NOT to restore the intended condition.
3805  if (NeedInvert)
3806  Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0));
3807 
3808  // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3809  // node.
3810  if (Tmp4.getNode()) {
3811  Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3812  Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3813  } else {
3814  Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3815  Tmp4 = DAG.getCondCode(ISD::SETNE);
3816  Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3817  Tmp3, Node->getOperand(4));
3818  }
3819  Results.push_back(Tmp1);
3820  break;
3821  }
3822  case ISD::BUILD_VECTOR:
3823  Results.push_back(ExpandBUILD_VECTOR(Node));
3824  break;
3825  case ISD::SRA:
3826  case ISD::SRL:
3827  case ISD::SHL: {
3828  // Scalarize vector SRA/SRL/SHL.
3829  EVT VT = Node->getValueType(0);
3830  assert(VT.isVector() && "Unable to legalize non-vector shift");
3831  assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3832  unsigned NumElem = VT.getVectorNumElements();
3833 
3834  SmallVector<SDValue, 8> Scalars;
3835  for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3837  VT.getScalarType(),
3838  Node->getOperand(0), DAG.getConstant(Idx,
3839  TLI.getVectorIdxTy()));
3841  VT.getScalarType(),
3842  Node->getOperand(1), DAG.getConstant(Idx,
3843  TLI.getVectorIdxTy()));
3844  Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3845  VT.getScalarType(), Ex, Sh));
3846  }
3847  SDValue Result =
3848  DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3849  &Scalars[0], Scalars.size());
3850  ReplaceNode(SDValue(Node, 0), Result);
3851  break;
3852  }
3854  case ISD::GlobalAddress:
3855  case ISD::GlobalTLSAddress:
3856  case ISD::ExternalSymbol:
3857  case ISD::ConstantPool:
3858  case ISD::JumpTable:
3861  case ISD::INTRINSIC_VOID:
3862  // FIXME: Custom lowering for these operations shouldn't return null!
3863  break;
3864  }
3865 
3866  // Replace the original node with the legalized result.
3867  if (!Results.empty())
3868  ReplaceNode(Node, Results.data());
3869 }
3870 
3871 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3872  SmallVector<SDValue, 8> Results;
3873  MVT OVT = Node->getSimpleValueType(0);
3874  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3875  Node->getOpcode() == ISD::SINT_TO_FP ||
3876  Node->getOpcode() == ISD::SETCC) {
3877  OVT = Node->getOperand(0).getSimpleValueType();
3878  }
3879  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3880  SDLoc dl(Node);
3881  SDValue Tmp1, Tmp2, Tmp3;
3882  switch (Node->getOpcode()) {
3883  case ISD::CTTZ:
3884  case ISD::CTTZ_ZERO_UNDEF:
3885  case ISD::CTLZ:
3886  case ISD::CTLZ_ZERO_UNDEF:
3887  case ISD::CTPOP:
3888  // Zero extend the argument.
3889  Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3890  // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3891  // already the correct result.
3892  Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3893  if (Node->getOpcode() == ISD::CTTZ) {
3894  // FIXME: This should set a bit in the zero extended value instead.
3895  Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT),
3896  Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3897  ISD::SETEQ);
3898  Tmp1 = DAG.getSelect(dl, NVT, Tmp2,
3899  DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3900  } else if (Node->getOpcode() == ISD::CTLZ ||
3901  Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3902  // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3903  Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3904  DAG.getConstant(NVT.getSizeInBits() -
3905  OVT.getSizeInBits(), NVT));
3906  }
3907  Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3908  break;
3909  case ISD::BSWAP: {
3910  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3911  Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3912  Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3913  Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3914  DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3915  Results.push_back(Tmp1);
3916  break;
3917  }
3918  case ISD::FP_TO_UINT:
3919  case ISD::FP_TO_SINT:
3920  Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3921  Node->getOpcode() == ISD::FP_TO_SINT, dl);
3922  Results.push_back(Tmp1);
3923  break;
3924  case ISD::UINT_TO_FP:
3925  case ISD::SINT_TO_FP:
3926  Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3927  Node->getOpcode() == ISD::SINT_TO_FP, dl);
3928  Results.push_back(Tmp1);
3929  break;
3930  case ISD::VAARG: {
3931  SDValue Chain = Node->getOperand(0); // Get the chain.
3932  SDValue Ptr = Node->getOperand(1); // Get the pointer.
3933 
3934  unsigned TruncOp;
3935  if (OVT.isVector()) {
3936  TruncOp = ISD::BITCAST;
3937  } else {
3938  assert(OVT.isInteger()
3939  && "VAARG promotion is supported only for vectors or integer types");
3940  TruncOp = ISD::TRUNCATE;
3941  }
3942 
3943  // Perform the larger operation, then convert back
3944  Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3945  Node->getConstantOperandVal(3));
3946  Chain = Tmp1.getValue(1);
3947 
3948  Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3949 
3950  // Modified the chain result - switch anything that used the old chain to
3951  // use the new one.
3952  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3953  DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3954  ReplacedNode(Node);
3955  break;
3956  }
3957  case ISD::AND:
3958  case ISD::OR:
3959  case ISD::XOR: {
3960  unsigned ExtOp, TruncOp;
3961  if (OVT.isVector()) {
3962  ExtOp = ISD::BITCAST;
3963  TruncOp = ISD::BITCAST;
3964  } else {
3965  assert(OVT.isInteger() && "Cannot promote logic operation");
3966  ExtOp = ISD::ANY_EXTEND;
3967  TruncOp = ISD::TRUNCATE;
3968  }
3969  // Promote each of the values to the new type.
3970  Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3971  Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3972  // Perform the larger operation, then convert back
3973  Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3974  Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3975  break;
3976  }
3977  case ISD::SELECT: {
3978  unsigned ExtOp, TruncOp;
3979  if (Node->getValueType(0).isVector()) {
3980  ExtOp = ISD::BITCAST;
3981  TruncOp = ISD::BITCAST;
3982  } else if (Node->getValueType(0).isInteger()) {
3983  ExtOp = ISD::ANY_EXTEND;
3984  TruncOp = ISD::TRUNCATE;
3985  } else {
3986  ExtOp = ISD::FP_EXTEND;
3987  TruncOp = ISD::FP_ROUND;
3988  }
3989  Tmp1 = Node->getOperand(0);
3990  // Promote each of the values to the new type.
3991  Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3992  Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3993  // Perform the larger operation, then round down.
3994  Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
3995  if (TruncOp != ISD::FP_ROUND)
3996  Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3997  else
3998  Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3999  DAG.getIntPtrConstant(0));
4000  Results.push_back(Tmp1);
4001  break;
4002  }
4003  case ISD::VECTOR_SHUFFLE: {
4004  ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4005 
4006  // Cast the two input vectors.
4007  Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4008  Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4009 
4010  // Convert the shuffle mask to the right # elements.
4011  Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4012  Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4013  Results.push_back(Tmp1);
4014  break;
4015  }
4016  case ISD::SETCC: {
4017  unsigned ExtOp = ISD::FP_EXTEND;
4018  if (NVT.isInteger()) {
4019  ISD::CondCode CCCode =
4020  cast<CondCodeSDNode>(Node->getOperand(2))->get();
4022  }
4023  Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4024  Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4025  Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4026  Tmp1, Tmp2, Node->getOperand(2)));
4027  break;
4028  }
4029  case ISD::FDIV:
4030  case ISD::FREM:
4031  case ISD::FPOW: {
4032  Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4033  Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4034  Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4035  Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4036  Tmp3, DAG.getIntPtrConstant(0)));
4037  break;
4038  }
4039  case ISD::FLOG2:
4040  case ISD::FEXP2:
4041  case ISD::FLOG:
4042  case ISD::FEXP: {
4043  Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4044  Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4045  Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4046  Tmp2, DAG.getIntPtrConstant(0)));
4047  break;
4048  }
4049  }
4050 
4051  // Replace the original node with the legalized result.
4052  if (!Results.empty())
4053  ReplaceNode(Node, Results.data());
4054 }
4055 
4056 // SelectionDAG::Legalize - This is the entry point for the file.
4057 //
4059  /// run - This is the main entry point to this class.
4060  ///
4061  SelectionDAGLegalize(*this).LegalizeDAG();
4062 }
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
bool use_empty() const
SDValue getConstant(uint64_t Val, EVT VT, bool isTarget=false)
SDValue getValue(unsigned R) const
static APInt getSignBit(unsigned BitWidth)
Get the SignBit for a specific bit width.
Definition: APInt.h:443
static void ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, const TargetLowering &TLI, SDValue &ValResult, SDValue &ChainResult)
ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:450
LLVMContext * getContext() const
Definition: SelectionDAG.h:285
void dump() const
dump - Dump this node, for debugging.
static MachinePointerInfo getJumpTable()
SDVTList getVTList() const
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, const TargetLowering &TLI)
isDivRemLibcallAvailable - Return true if divmod libcall is available.
unsigned getOpcode() const
Type * getTypeForEVT(LLVMContext &Context) const
Definition: ValueTypes.cpp:180
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
unsigned getNumOperands() const
MDNode - a tuple of other values.
Definition: Metadata.h:69
const SDValue & getOperand(unsigned Num) const
static MachinePointerInfo getConstantPool()
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
Same for subtraction.
Definition: ISDOpcodes.h:216
const SDValue & getBasePtr() const
The address of the GOT.
Definition: ISDOpcodes.h:66
unsigned getResNo() const
get the index which selects a specific result in the SDNode
bool bitsLT(EVT VT) const
bitsLT - Return true if this has less bits than VT.
Definition: ValueTypes.h:735
static MachinePointerInfo getFixedStack(int FI, int64_t offset=0)
SDValue getLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const MDNode *TBAAInfo=0, const MDNode *Ranges=0)
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:661
EVT getShiftAmountTy(EVT LHSTy) const
bool isLittleEndian() const
SDValue getStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1127
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:923
MachinePointerInfo getWithOffset(int64_t O) const
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
EVT getScalarType() const
Definition: ValueTypes.h:756
bool bitsGE(EVT VT) const
bitsGE - Return true if this has no less bits than VT.
Definition: ValueTypes.h:729
virtual MVT getPointerTy(uint32_t=0) const
bool isInteger() const
isInteger - Return true if this is an integer, or a vector integer type.
Definition: ValueTypes.h:656
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
EVT getVectorElementType() const
Definition: ValueTypes.h:762
unsigned getNumValues() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
const SDValue & getBasePtr() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Definition: ValueTypes.h:812
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, const TargetLowering &TLI, SelectionDAGLegalize *DAGLegalize)
ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
static bool useSinCos(SDNode *Node)
bool isSignedIntSetCC(CondCode Code)
Definition: ISDOpcodes.h:752
UNDEF - An undefined node.
Definition: ISDOpcodes.h:154
static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV)
SDNode * getNode() const
get the SDNode which holds the desired result
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
bool isTypeLegal(EVT VT) const
unsigned getStoreSizeInBits() const
Definition: ValueTypes.h:793
bool isInteger() const
isInteger - Return true if this is an integer, or a vector integer type.
Definition: ValueTypes.h:182
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
const SDValue & getOperand(unsigned i) const
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
bool isNonTemporal() const
LLVM Constant Representation.
Definition: Constant.h:41
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:190
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:227
unsigned getOpcode() const
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:586
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
DEBUGTRAP - Trap intended to get the attention of a debugger.
Definition: ISDOpcodes.h:589
static Constant * getFPTrunc(Constant *C, Type *Ty)
Definition: Constants.cpp:1569
CondCode getSetCCSwappedOperands(CondCode Operation)
use_iterator use_begin() const
bool isVolatile() const
const SDValue & getValue() const
static bool isValueValidForType(EVT VT, const APFloat &Val)
Bit counting operators with an undefined result for zero inputs.
Definition: ISDOpcodes.h:312
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:411
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
std::vector< ArgListEntry > ArgListTy
const APFloat & getValueAPF() const
bool bitsEq(EVT VT) const
bitsEq - Return true if this has the same number of bits as VT.
Definition: ValueTypes.h:717
const ConstantFP * getConstantFPValue() const
ISD::MemIndexedMode getAddressingMode() const
PointerType * getPointerTo(unsigned AddrSpace=0)
Definition: Type.cpp:756
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements)
Definition: ValueTypes.h:616
uint64_t getConstantOperandVal(unsigned Num) const
SDValue CreateStackTemporary(EVT VT, unsigned minAlign=1)
const MachinePointerInfo & getPointerInfo() const
bool bitsGT(EVT VT) const
bitsGT - Return true if this has more bits than VT.
Definition: ValueTypes.h:723
Class for constant integers.
Definition: Constants.h:51
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool isInvariant() const
SDValue getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
const SDValue & getChain() const
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:309
MachineMemOperand * getMemOperand() const
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
CondCode getSetCCInverse(CondCode Operation, bool isInteger)
double BitsToDouble(uint64_t Bits)
Definition: MathExtras.h:479
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
const MDNode * getTBAAInfo() const
Returns the TBAAInfo that describes the dereference.
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.h:542
ISD::LoadExtType getExtensionType() const
Class for arbitrary precision integers.
Definition: APInt.h:75
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
APInt bitcastToAPInt() const
Definition: APFloat.cpp:3050
SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT)
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:360
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
const StringRef getTargetTriple() const
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
unsigned getAddressSpace() const
getAddressSpace - Return the address space for the associated pointer
uint64_t MinAlign(uint64_t A, uint64_t B)
Definition: MathExtras.h:535
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
pointer data()
data - Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:135
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
#define N
SDValue getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT TVT, bool isNonTemporal, bool isVolatile, unsigned Alignment, const MDNode *TBAAInfo=0)
Same for multiplication.
Definition: ISDOpcodes.h:219
FSINCOS - Compute both fsin and fcos as a single operation.
Definition: ISDOpcodes.h:454
EVT getValueType() const
const APFloat & getValueAPF() const
Definition: Constants.h:263
bool isByteSized() const
isByteSized - Return true if the bit size is a multiple of 8.
Definition: ValueTypes.h:706
bool isFloatingPoint() const
isFloatingPoint - Return true if this is a FP, or a vector FP type.
Definition: ValueTypes.h:651
static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI)
isSinCosLibcallAvailable - Return true if sincos libcall is available.
LLVM Value Representation.
Definition: Value.h:66
bool isTruncatingStore() const
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:457
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
unsigned getAlignment() const
static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, const TargetMachine &TM)
MVT getSimpleValueType(unsigned ResNo) const
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Definition: ValueTypes.h:607
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
MVT getSimpleVT() const
Definition: ValueTypes.h:749
unsigned getVectorNumElements() const
Definition: ValueTypes.h:771