LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
IndVarSimplify.cpp
Go to the documentation of this file.
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #define DEBUG_TYPE "indvars"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/LoopPass.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CFG.h"
45 #include "llvm/Support/Debug.h"
51 using namespace llvm;
52 
53 STATISTIC(NumWidened , "Number of indvars widened");
54 STATISTIC(NumReplaced , "Number of exit values replaced");
55 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
58 
59 // Trip count verification can be enabled by default under NDEBUG if we
60 // implement a strong expression equivalence checker in SCEV. Until then, we
61 // use the verify-indvars flag, which may assert in some cases.
63  "verify-indvars", cl::Hidden,
64  cl::desc("Verify the ScalarEvolution result after running indvars"));
65 
66 namespace {
67  class IndVarSimplify : public LoopPass {
68  LoopInfo *LI;
69  ScalarEvolution *SE;
70  DominatorTree *DT;
71  DataLayout *TD;
72  TargetLibraryInfo *TLI;
73 
74  SmallVector<WeakVH, 16> DeadInsts;
75  bool Changed;
76  public:
77 
78  static char ID; // Pass identification, replacement for typeid
79  IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80  Changed(false) {
82  }
83 
84  virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85 
86  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88  AU.addRequired<LoopInfo>();
95  AU.setPreservesCFG();
96  }
97 
98  private:
99  virtual void releaseMemory() {
100  DeadInsts.clear();
101  }
102 
103  bool isValidRewrite(Value *FromVal, Value *ToVal);
104 
105  void HandleFloatingPointIV(Loop *L, PHINode *PH);
106  void RewriteNonIntegerIVs(Loop *L);
107 
108  void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109 
110  void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111 
112  Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113  PHINode *IndVar, SCEVExpander &Rewriter);
114 
115  void SinkUnusedInvariants(Loop *L);
116  };
117 }
118 
119 char IndVarSimplify::ID = 0;
120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121  "Induction Variable Simplification", false, false)
125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
127 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128  "Induction Variable Simplification", false, false)
129 
131  return new IndVarSimplify();
132 }
133 
134 /// isValidRewrite - Return true if the SCEV expansion generated by the
135 /// rewriter can replace the original value. SCEV guarantees that it
136 /// produces the same value, but the way it is produced may be illegal IR.
137 /// Ideally, this function will only be called for verification.
138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139  // If an SCEV expression subsumed multiple pointers, its expansion could
140  // reassociate the GEP changing the base pointer. This is illegal because the
141  // final address produced by a GEP chain must be inbounds relative to its
142  // underlying object. Otherwise basic alias analysis, among other things,
143  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144  // producing an expression involving multiple pointers. Until then, we must
145  // bail out here.
146  //
147  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148  // because it understands lcssa phis while SCEV does not.
149  Value *FromPtr = FromVal;
150  Value *ToPtr = ToVal;
151  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152  FromPtr = GEP->getPointerOperand();
153  }
154  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155  ToPtr = GEP->getPointerOperand();
156  }
157  if (FromPtr != FromVal || ToPtr != ToVal) {
158  // Quickly check the common case
159  if (FromPtr == ToPtr)
160  return true;
161 
162  // SCEV may have rewritten an expression that produces the GEP's pointer
163  // operand. That's ok as long as the pointer operand has the same base
164  // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165  // base of a recurrence. This handles the case in which SCEV expansion
166  // converts a pointer type recurrence into a nonrecurrent pointer base
167  // indexed by an integer recurrence.
168 
169  // If the GEP base pointer is a vector of pointers, abort.
170  if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171  return false;
172 
173  const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174  const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175  if (FromBase == ToBase)
176  return true;
177 
178  DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179  << *FromBase << " != " << *ToBase << "\n");
180 
181  return false;
182  }
183  return true;
184 }
185 
186 /// Determine the insertion point for this user. By default, insert immediately
187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189 /// common dominator for the incoming blocks.
191  DominatorTree *DT) {
192  PHINode *PHI = dyn_cast<PHINode>(User);
193  if (!PHI)
194  return User;
195 
196  Instruction *InsertPt = 0;
197  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198  if (PHI->getIncomingValue(i) != Def)
199  continue;
200 
201  BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202  if (!InsertPt) {
203  InsertPt = InsertBB->getTerminator();
204  continue;
205  }
206  InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207  InsertPt = InsertBB->getTerminator();
208  }
209  assert(InsertPt && "Missing phi operand");
210  assert((!isa<Instruction>(Def) ||
211  DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212  "def does not dominate all uses");
213  return InsertPt;
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218 //===----------------------------------------------------------------------===//
219 
220 /// ConvertToSInt - Convert APF to an integer, if possible.
221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222  bool isExact = false;
223  // See if we can convert this to an int64_t
224  uint64_t UIntVal;
225  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226  &isExact) != APFloat::opOK || !isExact)
227  return false;
228  IntVal = UIntVal;
229  return true;
230 }
231 
232 /// HandleFloatingPointIV - If the loop has floating induction variable
233 /// then insert corresponding integer induction variable if possible.
234 /// For example,
235 /// for(double i = 0; i < 10000; ++i)
236 /// bar(i)
237 /// is converted into
238 /// for(int i = 0; i < 10000; ++i)
239 /// bar((double)i);
240 ///
241 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243  unsigned BackEdge = IncomingEdge^1;
244 
245  // Check incoming value.
246  ConstantFP *InitValueVal =
247  dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
248 
249  int64_t InitValue;
250  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251  return;
252 
253  // Check IV increment. Reject this PN if increment operation is not
254  // an add or increment value can not be represented by an integer.
255  BinaryOperator *Incr =
256  dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
258 
259  // If this is not an add of the PHI with a constantfp, or if the constant fp
260  // is not an integer, bail out.
261  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262  int64_t IncValue;
263  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264  !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265  return;
266 
267  // Check Incr uses. One user is PN and the other user is an exit condition
268  // used by the conditional terminator.
269  Value::use_iterator IncrUse = Incr->use_begin();
270  Instruction *U1 = cast<Instruction>(*IncrUse++);
271  if (IncrUse == Incr->use_end()) return;
272  Instruction *U2 = cast<Instruction>(*IncrUse++);
273  if (IncrUse != Incr->use_end()) return;
274 
275  // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
276  // only used by a branch, we can't transform it.
278  if (!Compare)
279  Compare = dyn_cast<FCmpInst>(U2);
280  if (Compare == 0 || !Compare->hasOneUse() ||
281  !isa<BranchInst>(Compare->use_back()))
282  return;
283 
284  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285 
286  // We need to verify that the branch actually controls the iteration count
287  // of the loop. If not, the new IV can overflow and no one will notice.
288  // The branch block must be in the loop and one of the successors must be out
289  // of the loop.
290  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291  if (!L->contains(TheBr->getParent()) ||
292  (L->contains(TheBr->getSuccessor(0)) &&
293  L->contains(TheBr->getSuccessor(1))))
294  return;
295 
296 
297  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298  // transform it.
299  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300  int64_t ExitValue;
301  if (ExitValueVal == 0 ||
302  !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303  return;
304 
305  // Find new predicate for integer comparison.
307  switch (Compare->getPredicate()) {
308  default: return; // Unknown comparison.
309  case CmpInst::FCMP_OEQ:
310  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311  case CmpInst::FCMP_ONE:
312  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313  case CmpInst::FCMP_OGT:
314  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315  case CmpInst::FCMP_OGE:
316  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317  case CmpInst::FCMP_OLT:
318  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319  case CmpInst::FCMP_OLE:
320  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
321  }
322 
323  // We convert the floating point induction variable to a signed i32 value if
324  // we can. This is only safe if the comparison will not overflow in a way
325  // that won't be trapped by the integer equivalent operations. Check for this
326  // now.
327  // TODO: We could use i64 if it is native and the range requires it.
328 
329  // The start/stride/exit values must all fit in signed i32.
330  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331  return;
332 
333  // If not actually striding (add x, 0.0), avoid touching the code.
334  if (IncValue == 0)
335  return;
336 
337  // Positive and negative strides have different safety conditions.
338  if (IncValue > 0) {
339  // If we have a positive stride, we require the init to be less than the
340  // exit value.
341  if (InitValue >= ExitValue)
342  return;
343 
344  uint32_t Range = uint32_t(ExitValue-InitValue);
345  // Check for infinite loop, either:
346  // while (i <= Exit) or until (i > Exit)
347  if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
348  if (++Range == 0) return; // Range overflows.
349  }
350 
351  unsigned Leftover = Range % uint32_t(IncValue);
352 
353  // If this is an equality comparison, we require that the strided value
354  // exactly land on the exit value, otherwise the IV condition will wrap
355  // around and do things the fp IV wouldn't.
356  if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357  Leftover != 0)
358  return;
359 
360  // If the stride would wrap around the i32 before exiting, we can't
361  // transform the IV.
362  if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363  return;
364 
365  } else {
366  // If we have a negative stride, we require the init to be greater than the
367  // exit value.
368  if (InitValue <= ExitValue)
369  return;
370 
371  uint32_t Range = uint32_t(InitValue-ExitValue);
372  // Check for infinite loop, either:
373  // while (i >= Exit) or until (i < Exit)
374  if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
375  if (++Range == 0) return; // Range overflows.
376  }
377 
378  unsigned Leftover = Range % uint32_t(-IncValue);
379 
380  // If this is an equality comparison, we require that the strided value
381  // exactly land on the exit value, otherwise the IV condition will wrap
382  // around and do things the fp IV wouldn't.
383  if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384  Leftover != 0)
385  return;
386 
387  // If the stride would wrap around the i32 before exiting, we can't
388  // transform the IV.
389  if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390  return;
391  }
392 
394 
395  // Insert new integer induction variable.
396  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398  PN->getIncomingBlock(IncomingEdge));
399 
400  Value *NewAdd =
401  BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402  Incr->getName()+".int", Incr);
403  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
404 
405  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406  ConstantInt::get(Int32Ty, ExitValue),
407  Compare->getName());
408 
409  // In the following deletions, PN may become dead and may be deleted.
410  // Use a WeakVH to observe whether this happens.
411  WeakVH WeakPH = PN;
412 
413  // Delete the old floating point exit comparison. The branch starts using the
414  // new comparison.
415  NewCompare->takeName(Compare);
416  Compare->replaceAllUsesWith(NewCompare);
418 
419  // Delete the old floating point increment.
422 
423  // If the FP induction variable still has uses, this is because something else
424  // in the loop uses its value. In order to canonicalize the induction
425  // variable, we chose to eliminate the IV and rewrite it in terms of an
426  // int->fp cast.
427  //
428  // We give preference to sitofp over uitofp because it is faster on most
429  // platforms.
430  if (WeakPH) {
431  Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
432  PN->getParent()->getFirstInsertionPt());
433  PN->replaceAllUsesWith(Conv);
435  }
436  Changed = true;
437 }
438 
439 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440  // First step. Check to see if there are any floating-point recurrences.
441  // If there are, change them into integer recurrences, permitting analysis by
442  // the SCEV routines.
443  //
444  BasicBlock *Header = L->getHeader();
445 
447  for (BasicBlock::iterator I = Header->begin();
448  PHINode *PN = dyn_cast<PHINode>(I); ++I)
449  PHIs.push_back(PN);
450 
451  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452  if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453  HandleFloatingPointIV(L, PN);
454 
455  // If the loop previously had floating-point IV, ScalarEvolution
456  // may not have been able to compute a trip count. Now that we've done some
457  // re-writing, the trip count may be computable.
458  if (Changed)
459  SE->forgetLoop(L);
460 }
461 
462 //===----------------------------------------------------------------------===//
463 // RewriteLoopExitValues - Optimize IV users outside the loop.
464 // As a side effect, reduces the amount of IV processing within the loop.
465 //===----------------------------------------------------------------------===//
466 
467 /// RewriteLoopExitValues - Check to see if this loop has a computable
468 /// loop-invariant execution count. If so, this means that we can compute the
469 /// final value of any expressions that are recurrent in the loop, and
470 /// substitute the exit values from the loop into any instructions outside of
471 /// the loop that use the final values of the current expressions.
472 ///
473 /// This is mostly redundant with the regular IndVarSimplify activities that
474 /// happen later, except that it's more powerful in some cases, because it's
475 /// able to brute-force evaluate arbitrary instructions as long as they have
476 /// constant operands at the beginning of the loop.
477 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
478  // Verify the input to the pass in already in LCSSA form.
479  assert(L->isLCSSAForm(*DT));
480 
481  SmallVector<BasicBlock*, 8> ExitBlocks;
482  L->getUniqueExitBlocks(ExitBlocks);
483 
484  // Find all values that are computed inside the loop, but used outside of it.
485  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
486  // the exit blocks of the loop to find them.
487  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488  BasicBlock *ExitBB = ExitBlocks[i];
489 
490  // If there are no PHI nodes in this exit block, then no values defined
491  // inside the loop are used on this path, skip it.
492  PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493  if (!PN) continue;
494 
495  unsigned NumPreds = PN->getNumIncomingValues();
496 
497  // Iterate over all of the PHI nodes.
498  BasicBlock::iterator BBI = ExitBB->begin();
499  while ((PN = dyn_cast<PHINode>(BBI++))) {
500  if (PN->use_empty())
501  continue; // dead use, don't replace it
502 
503  // SCEV only supports integer expressions for now.
504  if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505  continue;
506 
507  // It's necessary to tell ScalarEvolution about this explicitly so that
508  // it can walk the def-use list and forget all SCEVs, as it may not be
509  // watching the PHI itself. Once the new exit value is in place, there
510  // may not be a def-use connection between the loop and every instruction
511  // which got a SCEVAddRecExpr for that loop.
512  SE->forgetValue(PN);
513 
514  // Iterate over all of the values in all the PHI nodes.
515  for (unsigned i = 0; i != NumPreds; ++i) {
516  // If the value being merged in is not integer or is not defined
517  // in the loop, skip it.
518  Value *InVal = PN->getIncomingValue(i);
519  if (!isa<Instruction>(InVal))
520  continue;
521 
522  // If this pred is for a subloop, not L itself, skip it.
523  if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
524  continue; // The Block is in a subloop, skip it.
525 
526  // Check that InVal is defined in the loop.
527  Instruction *Inst = cast<Instruction>(InVal);
528  if (!L->contains(Inst))
529  continue;
530 
531  // Okay, this instruction has a user outside of the current loop
532  // and varies predictably *inside* the loop. Evaluate the value it
533  // contains when the loop exits, if possible.
534  const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
535  if (!SE->isLoopInvariant(ExitValue, L) ||
536  !isSafeToExpand(ExitValue, *SE))
537  continue;
538 
539  // Computing the value outside of the loop brings no benefit if :
540  // - it is definitely used inside the loop in a way which can not be
541  // optimized away.
542  // - no use outside of the loop can take advantage of hoisting the
543  // computation out of the loop
544  if (ExitValue->getSCEVType()>=scMulExpr) {
545  unsigned NumHardInternalUses = 0;
546  unsigned NumSoftExternalUses = 0;
547  unsigned NumUses = 0;
548  for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
549  IB!=IE && NumUses<=6 ; ++IB) {
550  Instruction *UseInstr = cast<Instruction>(*IB);
551  unsigned Opc = UseInstr->getOpcode();
552  NumUses++;
553  if (L->contains(UseInstr)) {
554  if (Opc == Instruction::Call || Opc == Instruction::Ret)
555  NumHardInternalUses++;
556  } else {
557  if (Opc == Instruction::PHI) {
558  // Do not count the Phi as a use. LCSSA may have inserted
559  // plenty of trivial ones.
560  NumUses--;
561  for (Value::use_iterator PB=UseInstr->use_begin(),
562  PE=UseInstr->use_end();
563  PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
564  unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
565  if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
566  NumSoftExternalUses++;
567  }
568  continue;
569  }
570  if (Opc != Instruction::Call && Opc != Instruction::Ret)
571  NumSoftExternalUses++;
572  }
573  }
574  if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
575  continue;
576  }
577 
578  Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
579 
580  DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
581  << " LoopVal = " << *Inst << "\n");
582 
583  if (!isValidRewrite(Inst, ExitVal)) {
584  DeadInsts.push_back(ExitVal);
585  continue;
586  }
587  Changed = true;
588  ++NumReplaced;
589 
590  PN->setIncomingValue(i, ExitVal);
591 
592  // If this instruction is dead now, delete it. Don't do it now to avoid
593  // invalidating iterators.
594  if (isInstructionTriviallyDead(Inst, TLI))
595  DeadInsts.push_back(Inst);
596 
597  if (NumPreds == 1) {
598  // Completely replace a single-pred PHI. This is safe, because the
599  // NewVal won't be variant in the loop, so we don't need an LCSSA phi
600  // node anymore.
601  PN->replaceAllUsesWith(ExitVal);
602  PN->eraseFromParent();
603  }
604  }
605  if (NumPreds != 1) {
606  // Clone the PHI and delete the original one. This lets IVUsers and
607  // any other maps purge the original user from their records.
608  PHINode *NewPN = cast<PHINode>(PN->clone());
609  NewPN->takeName(PN);
610  NewPN->insertBefore(PN);
611  PN->replaceAllUsesWith(NewPN);
612  PN->eraseFromParent();
613  }
614  }
615  }
616 
617  // The insertion point instruction may have been deleted; clear it out
618  // so that the rewriter doesn't trip over it later.
619  Rewriter.clearInsertPoint();
620 }
621 
622 //===----------------------------------------------------------------------===//
623 // IV Widening - Extend the width of an IV to cover its widest uses.
624 //===----------------------------------------------------------------------===//
625 
626 namespace {
627  // Collect information about induction variables that are used by sign/zero
628  // extend operations. This information is recorded by CollectExtend and
629  // provides the input to WidenIV.
630  struct WideIVInfo {
631  PHINode *NarrowIV;
632  Type *WidestNativeType; // Widest integer type created [sz]ext
633  bool IsSigned; // Was an sext user seen before a zext?
634 
635  WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
636  };
637 
638  class WideIVVisitor : public IVVisitor {
639  ScalarEvolution *SE;
640  const DataLayout *TD;
641 
642  public:
643  WideIVInfo WI;
644 
645  WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
646  const DataLayout *TData) :
647  SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
648 
649  // Implement the interface used by simplifyUsersOfIV.
650  virtual void visitCast(CastInst *Cast);
651  };
652 }
653 
654 /// visitCast - Update information about the induction variable that is
655 /// extended by this sign or zero extend operation. This is used to determine
656 /// the final width of the IV before actually widening it.
657 void WideIVVisitor::visitCast(CastInst *Cast) {
658  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
659  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
660  return;
661 
662  Type *Ty = Cast->getType();
663  uint64_t Width = SE->getTypeSizeInBits(Ty);
664  if (TD && !TD->isLegalInteger(Width))
665  return;
666 
667  if (!WI.WidestNativeType) {
668  WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
669  WI.IsSigned = IsSigned;
670  return;
671  }
672 
673  // We extend the IV to satisfy the sign of its first user, arbitrarily.
674  if (WI.IsSigned != IsSigned)
675  return;
676 
677  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
678  WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
679 }
680 
681 namespace {
682 
683 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
684 /// WideIV that computes the same value as the Narrow IV def. This avoids
685 /// caching Use* pointers.
686 struct NarrowIVDefUse {
687  Instruction *NarrowDef;
688  Instruction *NarrowUse;
689  Instruction *WideDef;
690 
691  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
692 
693  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
694  NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
695 };
696 
697 /// WidenIV - The goal of this transform is to remove sign and zero extends
698 /// without creating any new induction variables. To do this, it creates a new
699 /// phi of the wider type and redirects all users, either removing extends or
700 /// inserting truncs whenever we stop propagating the type.
701 ///
702 class WidenIV {
703  // Parameters
704  PHINode *OrigPhi;
705  Type *WideType;
706  bool IsSigned;
707 
708  // Context
709  LoopInfo *LI;
710  Loop *L;
711  ScalarEvolution *SE;
712  DominatorTree *DT;
713 
714  // Result
715  PHINode *WidePhi;
716  Instruction *WideInc;
717  const SCEV *WideIncExpr;
718  SmallVectorImpl<WeakVH> &DeadInsts;
719 
721  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
722 
723 public:
724  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
725  ScalarEvolution *SEv, DominatorTree *DTree,
727  OrigPhi(WI.NarrowIV),
728  WideType(WI.WidestNativeType),
729  IsSigned(WI.IsSigned),
730  LI(LInfo),
731  L(LI->getLoopFor(OrigPhi->getParent())),
732  SE(SEv),
733  DT(DTree),
734  WidePhi(0),
735  WideInc(0),
736  WideIncExpr(0),
737  DeadInsts(DI) {
738  assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
739  }
740 
741  PHINode *CreateWideIV(SCEVExpander &Rewriter);
742 
743 protected:
744  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
745  Instruction *Use);
746 
747  Instruction *CloneIVUser(NarrowIVDefUse DU);
748 
749  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
750 
751  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
752 
753  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
754 
755  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
756 };
757 } // anonymous namespace
758 
759 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
760 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
761 /// gratuitous for this purpose.
762 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
763  Instruction *Inst = dyn_cast<Instruction>(V);
764  if (!Inst)
765  return true;
766 
767  return DT->properlyDominates(Inst->getParent(), L->getHeader());
768 }
769 
770 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
771  Instruction *Use) {
772  // Set the debug location and conservative insertion point.
773  IRBuilder<> Builder(Use);
774  // Hoist the insertion point into loop preheaders as far as possible.
775  for (const Loop *L = LI->getLoopFor(Use->getParent());
776  L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
777  L = L->getParentLoop())
778  Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
779 
780  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
781  Builder.CreateZExt(NarrowOper, WideType);
782 }
783 
784 /// CloneIVUser - Instantiate a wide operation to replace a narrow
785 /// operation. This only needs to handle operations that can evaluation to
786 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
787 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
788  unsigned Opcode = DU.NarrowUse->getOpcode();
789  switch (Opcode) {
790  default:
791  return 0;
792  case Instruction::Add:
793  case Instruction::Mul:
794  case Instruction::UDiv:
795  case Instruction::Sub:
796  case Instruction::And:
797  case Instruction::Or:
798  case Instruction::Xor:
799  case Instruction::Shl:
800  case Instruction::LShr:
801  case Instruction::AShr:
802  DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
803 
804  // Replace NarrowDef operands with WideDef. Otherwise, we don't know
805  // anything about the narrow operand yet so must insert a [sz]ext. It is
806  // probably loop invariant and will be folded or hoisted. If it actually
807  // comes from a widened IV, it should be removed during a future call to
808  // WidenIVUse.
809  Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
810  getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
811  Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
812  getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
813 
814  BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
815  BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
816  LHS, RHS,
817  NarrowBO->getName());
818  IRBuilder<> Builder(DU.NarrowUse);
819  Builder.Insert(WideBO);
820  if (const OverflowingBinaryOperator *OBO =
821  dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
822  if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
823  if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
824  }
825  return WideBO;
826  }
827 }
828 
829 /// No-wrap operations can transfer sign extension of their result to their
830 /// operands. Generate the SCEV value for the widened operation without
831 /// actually modifying the IR yet. If the expression after extending the
832 /// operands is an AddRec for this loop, return it.
833 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
834  // Handle the common case of add<nsw/nuw>
835  if (DU.NarrowUse->getOpcode() != Instruction::Add)
836  return 0;
837 
838  // One operand (NarrowDef) has already been extended to WideDef. Now determine
839  // if extending the other will lead to a recurrence.
840  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
841  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
842 
843  const SCEV *ExtendOperExpr = 0;
844  const OverflowingBinaryOperator *OBO =
845  cast<OverflowingBinaryOperator>(DU.NarrowUse);
846  if (IsSigned && OBO->hasNoSignedWrap())
847  ExtendOperExpr = SE->getSignExtendExpr(
848  SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
849  else if(!IsSigned && OBO->hasNoUnsignedWrap())
850  ExtendOperExpr = SE->getZeroExtendExpr(
851  SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
852  else
853  return 0;
854 
855  // When creating this AddExpr, don't apply the current operations NSW or NUW
856  // flags. This instruction may be guarded by control flow that the no-wrap
857  // behavior depends on. Non-control-equivalent instructions can be mapped to
858  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
859  // semantics to those operations.
860  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
861  SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
862 
863  if (!AddRec || AddRec->getLoop() != L)
864  return 0;
865  return AddRec;
866 }
867 
868 /// GetWideRecurrence - Is this instruction potentially interesting from
869 /// IVUsers' perspective after widening it's type? In other words, can the
870 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
871 /// recurrence on the same loop. If so, return the sign or zero extended
872 /// recurrence. Otherwise return NULL.
873 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
874  if (!SE->isSCEVable(NarrowUse->getType()))
875  return 0;
876 
877  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
878  if (SE->getTypeSizeInBits(NarrowExpr->getType())
879  >= SE->getTypeSizeInBits(WideType)) {
880  // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
881  // index. So don't follow this use.
882  return 0;
883  }
884 
885  const SCEV *WideExpr = IsSigned ?
886  SE->getSignExtendExpr(NarrowExpr, WideType) :
887  SE->getZeroExtendExpr(NarrowExpr, WideType);
888  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
889  if (!AddRec || AddRec->getLoop() != L)
890  return 0;
891  return AddRec;
892 }
893 
894 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
895 /// widened. If so, return the wide clone of the user.
896 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
897 
898  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
899  if (isa<PHINode>(DU.NarrowUse) &&
900  LI->getLoopFor(DU.NarrowUse->getParent()) != L)
901  return 0;
902 
903  // Our raison d'etre! Eliminate sign and zero extension.
904  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
905  Value *NewDef = DU.WideDef;
906  if (DU.NarrowUse->getType() != WideType) {
907  unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
908  unsigned IVWidth = SE->getTypeSizeInBits(WideType);
909  if (CastWidth < IVWidth) {
910  // The cast isn't as wide as the IV, so insert a Trunc.
911  IRBuilder<> Builder(DU.NarrowUse);
912  NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
913  }
914  else {
915  // A wider extend was hidden behind a narrower one. This may induce
916  // another round of IV widening in which the intermediate IV becomes
917  // dead. It should be very rare.
918  DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
919  << " not wide enough to subsume " << *DU.NarrowUse << "\n");
920  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
921  NewDef = DU.NarrowUse;
922  }
923  }
924  if (NewDef != DU.NarrowUse) {
925  DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
926  << " replaced by " << *DU.WideDef << "\n");
927  ++NumElimExt;
928  DU.NarrowUse->replaceAllUsesWith(NewDef);
929  DeadInsts.push_back(DU.NarrowUse);
930  }
931  // Now that the extend is gone, we want to expose it's uses for potential
932  // further simplification. We don't need to directly inform SimplifyIVUsers
933  // of the new users, because their parent IV will be processed later as a
934  // new loop phi. If we preserved IVUsers analysis, we would also want to
935  // push the uses of WideDef here.
936 
937  // No further widening is needed. The deceased [sz]ext had done it for us.
938  return 0;
939  }
940 
941  // Does this user itself evaluate to a recurrence after widening?
942  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
943  if (!WideAddRec) {
944  WideAddRec = GetExtendedOperandRecurrence(DU);
945  }
946  if (!WideAddRec) {
947  // This user does not evaluate to a recurence after widening, so don't
948  // follow it. Instead insert a Trunc to kill off the original use,
949  // eventually isolating the original narrow IV so it can be removed.
950  IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
951  Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
952  DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
953  return 0;
954  }
955  // Assume block terminators cannot evaluate to a recurrence. We can't to
956  // insert a Trunc after a terminator if there happens to be a critical edge.
957  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
958  "SCEV is not expected to evaluate a block terminator");
959 
960  // Reuse the IV increment that SCEVExpander created as long as it dominates
961  // NarrowUse.
962  Instruction *WideUse = 0;
963  if (WideAddRec == WideIncExpr
964  && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
965  WideUse = WideInc;
966  else {
967  WideUse = CloneIVUser(DU);
968  if (!WideUse)
969  return 0;
970  }
971  // Evaluation of WideAddRec ensured that the narrow expression could be
972  // extended outside the loop without overflow. This suggests that the wide use
973  // evaluates to the same expression as the extended narrow use, but doesn't
974  // absolutely guarantee it. Hence the following failsafe check. In rare cases
975  // where it fails, we simply throw away the newly created wide use.
976  if (WideAddRec != SE->getSCEV(WideUse)) {
977  DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
978  << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
979  DeadInsts.push_back(WideUse);
980  return 0;
981  }
982 
983  // Returning WideUse pushes it on the worklist.
984  return WideUse;
985 }
986 
987 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
988 ///
989 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
990  for (Value::use_iterator UI = NarrowDef->use_begin(),
991  UE = NarrowDef->use_end(); UI != UE; ++UI) {
992  Instruction *NarrowUse = cast<Instruction>(*UI);
993 
994  // Handle data flow merges and bizarre phi cycles.
995  if (!Widened.insert(NarrowUse))
996  continue;
997 
998  NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
999  }
1000 }
1001 
1002 /// CreateWideIV - Process a single induction variable. First use the
1003 /// SCEVExpander to create a wide induction variable that evaluates to the same
1004 /// recurrence as the original narrow IV. Then use a worklist to forward
1005 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1006 /// interesting IV users, the narrow IV will be isolated for removal by
1007 /// DeleteDeadPHIs.
1008 ///
1009 /// It would be simpler to delete uses as they are processed, but we must avoid
1010 /// invalidating SCEV expressions.
1011 ///
1012 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1013  // Is this phi an induction variable?
1014  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1015  if (!AddRec)
1016  return NULL;
1017 
1018  // Widen the induction variable expression.
1019  const SCEV *WideIVExpr = IsSigned ?
1020  SE->getSignExtendExpr(AddRec, WideType) :
1021  SE->getZeroExtendExpr(AddRec, WideType);
1022 
1023  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1024  "Expect the new IV expression to preserve its type");
1025 
1026  // Can the IV be extended outside the loop without overflow?
1027  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1028  if (!AddRec || AddRec->getLoop() != L)
1029  return NULL;
1030 
1031  // An AddRec must have loop-invariant operands. Since this AddRec is
1032  // materialized by a loop header phi, the expression cannot have any post-loop
1033  // operands, so they must dominate the loop header.
1034  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1035  SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1036  && "Loop header phi recurrence inputs do not dominate the loop");
1037 
1038  // The rewriter provides a value for the desired IV expression. This may
1039  // either find an existing phi or materialize a new one. Either way, we
1040  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1041  // of the phi-SCC dominates the loop entry.
1042  Instruction *InsertPt = L->getHeader()->begin();
1043  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1044 
1045  // Remembering the WideIV increment generated by SCEVExpander allows
1046  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1047  // employ a general reuse mechanism because the call above is the only call to
1048  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1049  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1050  WideInc =
1051  cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1052  WideIncExpr = SE->getSCEV(WideInc);
1053  }
1054 
1055  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1056  ++NumWidened;
1057 
1058  // Traverse the def-use chain using a worklist starting at the original IV.
1059  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1060 
1061  Widened.insert(OrigPhi);
1062  pushNarrowIVUsers(OrigPhi, WidePhi);
1063 
1064  while (!NarrowIVUsers.empty()) {
1065  NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1066 
1067  // Process a def-use edge. This may replace the use, so don't hold a
1068  // use_iterator across it.
1069  Instruction *WideUse = WidenIVUse(DU, Rewriter);
1070 
1071  // Follow all def-use edges from the previous narrow use.
1072  if (WideUse)
1073  pushNarrowIVUsers(DU.NarrowUse, WideUse);
1074 
1075  // WidenIVUse may have removed the def-use edge.
1076  if (DU.NarrowDef->use_empty())
1077  DeadInsts.push_back(DU.NarrowDef);
1078  }
1079  return WidePhi;
1080 }
1081 
1082 //===----------------------------------------------------------------------===//
1083 // Simplification of IV users based on SCEV evaluation.
1084 //===----------------------------------------------------------------------===//
1085 
1086 
1087 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1088 /// users. Each successive simplification may push more users which may
1089 /// themselves be candidates for simplification.
1090 ///
1091 /// Sign/Zero extend elimination is interleaved with IV simplification.
1092 ///
1093 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1094  SCEVExpander &Rewriter,
1095  LPPassManager &LPM) {
1097 
1098  SmallVector<PHINode*, 8> LoopPhis;
1099  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1100  LoopPhis.push_back(cast<PHINode>(I));
1101  }
1102  // Each round of simplification iterates through the SimplifyIVUsers worklist
1103  // for all current phis, then determines whether any IVs can be
1104  // widened. Widening adds new phis to LoopPhis, inducing another round of
1105  // simplification on the wide IVs.
1106  while (!LoopPhis.empty()) {
1107  // Evaluate as many IV expressions as possible before widening any IVs. This
1108  // forces SCEV to set no-wrap flags before evaluating sign/zero
1109  // extension. The first time SCEV attempts to normalize sign/zero extension,
1110  // the result becomes final. So for the most predictable results, we delay
1111  // evaluation of sign/zero extend evaluation until needed, and avoid running
1112  // other SCEV based analysis prior to SimplifyAndExtend.
1113  do {
1114  PHINode *CurrIV = LoopPhis.pop_back_val();
1115 
1116  // Information about sign/zero extensions of CurrIV.
1117  WideIVVisitor WIV(CurrIV, SE, TD);
1118 
1119  Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1120 
1121  if (WIV.WI.WidestNativeType) {
1122  WideIVs.push_back(WIV.WI);
1123  }
1124  } while(!LoopPhis.empty());
1125 
1126  for (; !WideIVs.empty(); WideIVs.pop_back()) {
1127  WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1128  if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1129  Changed = true;
1130  LoopPhis.push_back(WidePhi);
1131  }
1132  }
1133  }
1134 }
1135 
1136 //===----------------------------------------------------------------------===//
1137 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1138 //===----------------------------------------------------------------------===//
1139 
1140 /// Check for expressions that ScalarEvolution generates to compute
1141 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1142 /// expanding them may incur additional cost (albeit in the loop preheader).
1143 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1144  SmallPtrSet<const SCEV*, 8> &Processed,
1145  ScalarEvolution *SE) {
1146  if (!Processed.insert(S))
1147  return false;
1148 
1149  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1150  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1151  // precise expression, rather than a UDiv from the user's code. If we can't
1152  // find a UDiv in the code with some simple searching, assume the former and
1153  // forego rewriting the loop.
1154  if (isa<SCEVUDivExpr>(S)) {
1155  ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1156  if (!OrigCond) return true;
1157  const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1158  R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1159  if (R != S) {
1160  const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1161  L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1162  if (L != S)
1163  return true;
1164  }
1165  }
1166 
1167  // Recurse past add expressions, which commonly occur in the
1168  // BackedgeTakenCount. They may already exist in program code, and if not,
1169  // they are not too expensive rematerialize.
1170  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1171  for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1172  I != E; ++I) {
1173  if (isHighCostExpansion(*I, BI, Processed, SE))
1174  return true;
1175  }
1176  return false;
1177  }
1178 
1179  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1180  // the exit condition.
1181  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1182  return true;
1183 
1184  // If we haven't recognized an expensive SCEV pattern, assume it's an
1185  // expression produced by program code.
1186  return false;
1187 }
1188 
1189 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1190 /// count expression can be safely and cheaply expanded into an instruction
1191 /// sequence that can be used by LinearFunctionTestReplace.
1192 ///
1193 /// TODO: This fails for pointer-type loop counters with greater than one byte
1194 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1195 /// we could skip this check in the case that the LFTR loop counter (chosen by
1196 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1197 /// the loop test to an inequality test by checking the target data's alignment
1198 /// of element types (given that the initial pointer value originates from or is
1199 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1200 /// However, we don't yet have a strong motivation for converting loop tests
1201 /// into inequality tests.
1203  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1204  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1205  BackedgeTakenCount->isZero())
1206  return false;
1207 
1208  if (!L->getExitingBlock())
1209  return false;
1210 
1211  // Can't rewrite non-branch yet.
1212  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1213  if (!BI)
1214  return false;
1215 
1216  SmallPtrSet<const SCEV*, 8> Processed;
1217  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1218  return false;
1219 
1220  return true;
1221 }
1222 
1223 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1224 /// invariant value to the phi.
1226  Instruction *IncI = dyn_cast<Instruction>(IncV);
1227  if (!IncI)
1228  return 0;
1229 
1230  switch (IncI->getOpcode()) {
1231  case Instruction::Add:
1232  case Instruction::Sub:
1233  break;
1234  case Instruction::GetElementPtr:
1235  // An IV counter must preserve its type.
1236  if (IncI->getNumOperands() == 2)
1237  break;
1238  default:
1239  return 0;
1240  }
1241 
1242  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1243  if (Phi && Phi->getParent() == L->getHeader()) {
1244  if (isLoopInvariant(IncI->getOperand(1), L, DT))
1245  return Phi;
1246  return 0;
1247  }
1248  if (IncI->getOpcode() == Instruction::GetElementPtr)
1249  return 0;
1250 
1251  // Allow add/sub to be commuted.
1252  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1253  if (Phi && Phi->getParent() == L->getHeader()) {
1254  if (isLoopInvariant(IncI->getOperand(0), L, DT))
1255  return Phi;
1256  }
1257  return 0;
1258 }
1259 
1260 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1262  assert(L->getExitingBlock() && "expected loop exit");
1263 
1264  BasicBlock *LatchBlock = L->getLoopLatch();
1265  // Don't bother with LFTR if the loop is not properly simplified.
1266  if (!LatchBlock)
1267  return 0;
1268 
1269  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1270  assert(BI && "expected exit branch");
1271 
1272  return dyn_cast<ICmpInst>(BI->getCondition());
1273 }
1274 
1275 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1276 /// that the current exit test is already sufficiently canonical.
1277 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1278  // Do LFTR to simplify the exit condition to an ICMP.
1279  ICmpInst *Cond = getLoopTest(L);
1280  if (!Cond)
1281  return true;
1282 
1283  // Do LFTR to simplify the exit ICMP to EQ/NE
1284  ICmpInst::Predicate Pred = Cond->getPredicate();
1285  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1286  return true;
1287 
1288  // Look for a loop invariant RHS
1289  Value *LHS = Cond->getOperand(0);
1290  Value *RHS = Cond->getOperand(1);
1291  if (!isLoopInvariant(RHS, L, DT)) {
1292  if (!isLoopInvariant(LHS, L, DT))
1293  return true;
1294  std::swap(LHS, RHS);
1295  }
1296  // Look for a simple IV counter LHS
1297  PHINode *Phi = dyn_cast<PHINode>(LHS);
1298  if (!Phi)
1299  Phi = getLoopPhiForCounter(LHS, L, DT);
1300 
1301  if (!Phi)
1302  return true;
1303 
1304  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1305  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1306  if (Idx < 0)
1307  return true;
1308 
1309  // Do LFTR if the exit condition's IV is *not* a simple counter.
1310  Value *IncV = Phi->getIncomingValue(Idx);
1311  return Phi != getLoopPhiForCounter(IncV, L, DT);
1312 }
1313 
1314 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1315 /// down to checking that all operands are constant and listing instructions
1316 /// that may hide undef.
1318  unsigned Depth) {
1319  if (isa<Constant>(V))
1320  return !isa<UndefValue>(V);
1321 
1322  if (Depth >= 6)
1323  return false;
1324 
1325  // Conservatively handle non-constant non-instructions. For example, Arguments
1326  // may be undef.
1328  if (!I)
1329  return false;
1330 
1331  // Load and return values may be undef.
1332  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1333  return false;
1334 
1335  // Optimistically handle other instructions.
1336  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1337  if (!Visited.insert(*OI))
1338  continue;
1339  if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1340  return false;
1341  }
1342  return true;
1343 }
1344 
1345 /// Return true if the given value is concrete. We must prove that undef can
1346 /// never reach it.
1347 ///
1348 /// TODO: If we decide that this is a good approach to checking for undef, we
1349 /// may factor it into a common location.
1350 static bool hasConcreteDef(Value *V) {
1351  SmallPtrSet<Value*, 8> Visited;
1352  Visited.insert(V);
1353  return hasConcreteDefImpl(V, Visited, 0);
1354 }
1355 
1356 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1357 /// be rewritten) loop exit test.
1358 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1359  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1360  Value *IncV = Phi->getIncomingValue(LatchIdx);
1361 
1362  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1363  UI != UE; ++UI) {
1364  if (*UI != Cond && *UI != IncV) return false;
1365  }
1366 
1367  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1368  UI != UE; ++UI) {
1369  if (*UI != Cond && *UI != Phi) return false;
1370  }
1371  return true;
1372 }
1373 
1374 /// FindLoopCounter - Find an affine IV in canonical form.
1375 ///
1376 /// BECount may be an i8* pointer type. The pointer difference is already
1377 /// valid count without scaling the address stride, so it remains a pointer
1378 /// expression as far as SCEV is concerned.
1379 ///
1380 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1381 ///
1382 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1383 ///
1384 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1385 /// This is difficult in general for SCEV because of potential overflow. But we
1386 /// could at least handle constant BECounts.
1387 static PHINode *
1388 FindLoopCounter(Loop *L, const SCEV *BECount,
1389  ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
1390  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1391 
1392  Value *Cond =
1393  cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1394 
1395  // Loop over all of the PHI nodes, looking for a simple counter.
1396  PHINode *BestPhi = 0;
1397  const SCEV *BestInit = 0;
1398  BasicBlock *LatchBlock = L->getLoopLatch();
1399  assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1400 
1401  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1402  PHINode *Phi = cast<PHINode>(I);
1403  if (!SE->isSCEVable(Phi->getType()))
1404  continue;
1405 
1406  // Avoid comparing an integer IV against a pointer Limit.
1407  if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1408  continue;
1409 
1410  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1411  if (!AR || AR->getLoop() != L || !AR->isAffine())
1412  continue;
1413 
1414  // AR may be a pointer type, while BECount is an integer type.
1415  // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1416  // AR may not be a narrower type, or we may never exit.
1417  uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1418  if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1419  continue;
1420 
1421  const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1422  if (!Step || !Step->isOne())
1423  continue;
1424 
1425  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1426  Value *IncV = Phi->getIncomingValue(LatchIdx);
1427  if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1428  continue;
1429 
1430  // Avoid reusing a potentially undef value to compute other values that may
1431  // have originally had a concrete definition.
1432  if (!hasConcreteDef(Phi)) {
1433  // We explicitly allow unknown phis as long as they are already used by
1434  // the loop test. In this case we assume that performing LFTR could not
1435  // increase the number of undef users.
1436  if (ICmpInst *Cond = getLoopTest(L)) {
1437  if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1438  && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1439  continue;
1440  }
1441  }
1442  }
1443  const SCEV *Init = AR->getStart();
1444 
1445  if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1446  // Don't force a live loop counter if another IV can be used.
1447  if (AlmostDeadIV(Phi, LatchBlock, Cond))
1448  continue;
1449 
1450  // Prefer to count-from-zero. This is a more "canonical" counter form. It
1451  // also prefers integer to pointer IVs.
1452  if (BestInit->isZero() != Init->isZero()) {
1453  if (BestInit->isZero())
1454  continue;
1455  }
1456  // If two IVs both count from zero or both count from nonzero then the
1457  // narrower is likely a dead phi that has been widened. Use the wider phi
1458  // to allow the other to be eliminated.
1459  else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1460  continue;
1461  }
1462  BestPhi = Phi;
1463  BestInit = Init;
1464  }
1465  return BestPhi;
1466 }
1467 
1468 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1469 /// holds the RHS of the new loop test.
1470 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1471  SCEVExpander &Rewriter, ScalarEvolution *SE) {
1472  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1473  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1474  const SCEV *IVInit = AR->getStart();
1475 
1476  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1477  // finds a valid pointer IV. Sign extend BECount in order to materialize a
1478  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1479  // the existing GEPs whenever possible.
1480  if (IndVar->getType()->isPointerTy()
1481  && !IVCount->getType()->isPointerTy()) {
1482 
1483  // IVOffset will be the new GEP offset that is interpreted by GEP as a
1484  // signed value. IVCount on the other hand represents the loop trip count,
1485  // which is an unsigned value. FindLoopCounter only allows induction
1486  // variables that have a positive unit stride of one. This means we don't
1487  // have to handle the case of negative offsets (yet) and just need to zero
1488  // extend IVCount.
1489  Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1490  const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1491 
1492  // Expand the code for the iteration count.
1493  assert(SE->isLoopInvariant(IVOffset, L) &&
1494  "Computed iteration count is not loop invariant!");
1495  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1496  Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1497 
1498  Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1499  assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1500  // We could handle pointer IVs other than i8*, but we need to compensate for
1501  // gep index scaling. See canExpandBackedgeTakenCount comments.
1502  assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1503  cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1504  && "unit stride pointer IV must be i8*");
1505 
1506  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1507  return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1508  }
1509  else {
1510  // In any other case, convert both IVInit and IVCount to integers before
1511  // comparing. This may result in SCEV expension of pointers, but in practice
1512  // SCEV will fold the pointer arithmetic away as such:
1513  // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1514  //
1515  // Valid Cases: (1) both integers is most common; (2) both may be pointers
1516  // for simple memset-style loops.
1517  //
1518  // IVInit integer and IVCount pointer would only occur if a canonical IV
1519  // were generated on top of case #2, which is not expected.
1520 
1521  const SCEV *IVLimit = 0;
1522  // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1523  // For non-zero Start, compute IVCount here.
1524  if (AR->getStart()->isZero())
1525  IVLimit = IVCount;
1526  else {
1527  assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1528  const SCEV *IVInit = AR->getStart();
1529 
1530  // For integer IVs, truncate the IV before computing IVInit + BECount.
1531  if (SE->getTypeSizeInBits(IVInit->getType())
1532  > SE->getTypeSizeInBits(IVCount->getType()))
1533  IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1534 
1535  IVLimit = SE->getAddExpr(IVInit, IVCount);
1536  }
1537  // Expand the code for the iteration count.
1538  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1539  IRBuilder<> Builder(BI);
1540  assert(SE->isLoopInvariant(IVLimit, L) &&
1541  "Computed iteration count is not loop invariant!");
1542  // Ensure that we generate the same type as IndVar, or a smaller integer
1543  // type. In the presence of null pointer values, we have an integer type
1544  // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1545  Type *LimitTy = IVCount->getType()->isPointerTy() ?
1546  IndVar->getType() : IVCount->getType();
1547  return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1548  }
1549 }
1550 
1551 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1552 /// loop to be a canonical != comparison against the incremented loop induction
1553 /// variable. This pass is able to rewrite the exit tests of any loop where the
1554 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1555 /// is actually a much broader range than just linear tests.
1556 Value *IndVarSimplify::
1557 LinearFunctionTestReplace(Loop *L,
1558  const SCEV *BackedgeTakenCount,
1559  PHINode *IndVar,
1560  SCEVExpander &Rewriter) {
1561  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1562 
1563  // Initialize CmpIndVar and IVCount to their preincremented values.
1564  Value *CmpIndVar = IndVar;
1565  const SCEV *IVCount = BackedgeTakenCount;
1566 
1567  // If the exiting block is the same as the backedge block, we prefer to
1568  // compare against the post-incremented value, otherwise we must compare
1569  // against the preincremented value.
1570  if (L->getExitingBlock() == L->getLoopLatch()) {
1571  // Add one to the "backedge-taken" count to get the trip count.
1572  // This addition may overflow, which is valid as long as the comparison is
1573  // truncated to BackedgeTakenCount->getType().
1574  IVCount = SE->getAddExpr(BackedgeTakenCount,
1575  SE->getConstant(BackedgeTakenCount->getType(), 1));
1576  // The BackedgeTaken expression contains the number of times that the
1577  // backedge branches to the loop header. This is one less than the
1578  // number of times the loop executes, so use the incremented indvar.
1579  CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1580  }
1581 
1582  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1583  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1584  && "genLoopLimit missed a cast");
1585 
1586  // Insert a new icmp_ne or icmp_eq instruction before the branch.
1587  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1589  if (L->contains(BI->getSuccessor(0)))
1590  P = ICmpInst::ICMP_NE;
1591  else
1592  P = ICmpInst::ICMP_EQ;
1593 
1594  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1595  << " LHS:" << *CmpIndVar << '\n'
1596  << " op:\t"
1597  << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1598  << " RHS:\t" << *ExitCnt << "\n"
1599  << " IVCount:\t" << *IVCount << "\n");
1600 
1601  IRBuilder<> Builder(BI);
1602 
1603  // LFTR can ignore IV overflow and truncate to the width of
1604  // BECount. This avoids materializing the add(zext(add)) expression.
1605  unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1606  unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1607  if (CmpIndVarSize > ExitCntSize) {
1608  const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1609  const SCEV *ARStart = AR->getStart();
1610  const SCEV *ARStep = AR->getStepRecurrence(*SE);
1611  // For constant IVCount, avoid truncation.
1612  if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1613  const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1614  APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1615  // Note that the post-inc value of BackedgeTakenCount may have overflowed
1616  // above such that IVCount is now zero.
1617  if (IVCount != BackedgeTakenCount && Count == 0) {
1618  Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1619  ++Count;
1620  }
1621  else
1622  Count = Count.zext(CmpIndVarSize);
1623  APInt NewLimit;
1624  if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1625  NewLimit = Start - Count;
1626  else
1627  NewLimit = Start + Count;
1628  ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1629 
1630  DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
1631  } else {
1632  CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1633  "lftr.wideiv");
1634  }
1635  }
1636  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1637  Value *OrigCond = BI->getCondition();
1638  // It's tempting to use replaceAllUsesWith here to fully replace the old
1639  // comparison, but that's not immediately safe, since users of the old
1640  // comparison may not be dominated by the new comparison. Instead, just
1641  // update the branch to use the new comparison; in the common case this
1642  // will make old comparison dead.
1643  BI->setCondition(Cond);
1644  DeadInsts.push_back(OrigCond);
1645 
1646  ++NumLFTR;
1647  Changed = true;
1648  return Cond;
1649 }
1650 
1651 //===----------------------------------------------------------------------===//
1652 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1653 //===----------------------------------------------------------------------===//
1654 
1655 /// If there's a single exit block, sink any loop-invariant values that
1656 /// were defined in the preheader but not used inside the loop into the
1657 /// exit block to reduce register pressure in the loop.
1658 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1659  BasicBlock *ExitBlock = L->getExitBlock();
1660  if (!ExitBlock) return;
1661 
1662  BasicBlock *Preheader = L->getLoopPreheader();
1663  if (!Preheader) return;
1664 
1665  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1666  BasicBlock::iterator I = Preheader->getTerminator();
1667  while (I != Preheader->begin()) {
1668  --I;
1669  // New instructions were inserted at the end of the preheader.
1670  if (isa<PHINode>(I))
1671  break;
1672 
1673  // Don't move instructions which might have side effects, since the side
1674  // effects need to complete before instructions inside the loop. Also don't
1675  // move instructions which might read memory, since the loop may modify
1676  // memory. Note that it's okay if the instruction might have undefined
1677  // behavior: LoopSimplify guarantees that the preheader dominates the exit
1678  // block.
1679  if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1680  continue;
1681 
1682  // Skip debug info intrinsics.
1683  if (isa<DbgInfoIntrinsic>(I))
1684  continue;
1685 
1686  // Skip landingpad instructions.
1687  if (isa<LandingPadInst>(I))
1688  continue;
1689 
1690  // Don't sink alloca: we never want to sink static alloca's out of the
1691  // entry block, and correctly sinking dynamic alloca's requires
1692  // checks for stacksave/stackrestore intrinsics.
1693  // FIXME: Refactor this check somehow?
1694  if (isa<AllocaInst>(I))
1695  continue;
1696 
1697  // Determine if there is a use in or before the loop (direct or
1698  // otherwise).
1699  bool UsedInLoop = false;
1700  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1701  UI != UE; ++UI) {
1702  User *U = *UI;
1703  BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1704  if (PHINode *P = dyn_cast<PHINode>(U)) {
1705  unsigned i =
1706  PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1707  UseBB = P->getIncomingBlock(i);
1708  }
1709  if (UseBB == Preheader || L->contains(UseBB)) {
1710  UsedInLoop = true;
1711  break;
1712  }
1713  }
1714 
1715  // If there is, the def must remain in the preheader.
1716  if (UsedInLoop)
1717  continue;
1718 
1719  // Otherwise, sink it to the exit block.
1720  Instruction *ToMove = I;
1721  bool Done = false;
1722 
1723  if (I != Preheader->begin()) {
1724  // Skip debug info intrinsics.
1725  do {
1726  --I;
1727  } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1728 
1729  if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1730  Done = true;
1731  } else {
1732  Done = true;
1733  }
1734 
1735  ToMove->moveBefore(InsertPt);
1736  if (Done) break;
1737  InsertPt = ToMove;
1738  }
1739 }
1740 
1741 //===----------------------------------------------------------------------===//
1742 // IndVarSimplify driver. Manage several subpasses of IV simplification.
1743 //===----------------------------------------------------------------------===//
1744 
1745 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1746  // If LoopSimplify form is not available, stay out of trouble. Some notes:
1747  // - LSR currently only supports LoopSimplify-form loops. Indvars'
1748  // canonicalization can be a pessimization without LSR to "clean up"
1749  // afterwards.
1750  // - We depend on having a preheader; in particular,
1751  // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1752  // and we're in trouble if we can't find the induction variable even when
1753  // we've manually inserted one.
1754  if (!L->isLoopSimplifyForm())
1755  return false;
1756 
1757  LI = &getAnalysis<LoopInfo>();
1758  SE = &getAnalysis<ScalarEvolution>();
1759  DT = &getAnalysis<DominatorTree>();
1760  TD = getAnalysisIfAvailable<DataLayout>();
1761  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1762 
1763  DeadInsts.clear();
1764  Changed = false;
1765 
1766  // If there are any floating-point recurrences, attempt to
1767  // transform them to use integer recurrences.
1768  RewriteNonIntegerIVs(L);
1769 
1770  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1771 
1772  // Create a rewriter object which we'll use to transform the code with.
1773  SCEVExpander Rewriter(*SE, "indvars");
1774 #ifndef NDEBUG
1775  Rewriter.setDebugType(DEBUG_TYPE);
1776 #endif
1777 
1778  // Eliminate redundant IV users.
1779  //
1780  // Simplification works best when run before other consumers of SCEV. We
1781  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1782  // other expressions involving loop IVs have been evaluated. This helps SCEV
1783  // set no-wrap flags before normalizing sign/zero extension.
1784  Rewriter.disableCanonicalMode();
1785  SimplifyAndExtend(L, Rewriter, LPM);
1786 
1787  // Check to see if this loop has a computable loop-invariant execution count.
1788  // If so, this means that we can compute the final value of any expressions
1789  // that are recurrent in the loop, and substitute the exit values from the
1790  // loop into any instructions outside of the loop that use the final values of
1791  // the current expressions.
1792  //
1793  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1794  RewriteLoopExitValues(L, Rewriter);
1795 
1796  // Eliminate redundant IV cycles.
1797  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1798 
1799  // If we have a trip count expression, rewrite the loop's exit condition
1800  // using it. We can currently only handle loops with a single exit.
1801  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1802  PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1803  if (IndVar) {
1804  // Check preconditions for proper SCEVExpander operation. SCEV does not
1805  // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1806  // pass that uses the SCEVExpander must do it. This does not work well for
1807  // loop passes because SCEVExpander makes assumptions about all loops, while
1808  // LoopPassManager only forces the current loop to be simplified.
1809  //
1810  // FIXME: SCEV expansion has no way to bail out, so the caller must
1811  // explicitly check any assumptions made by SCEV. Brittle.
1812  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1813  if (!AR || AR->getLoop()->getLoopPreheader())
1814  (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1815  Rewriter);
1816  }
1817  }
1818  // Clear the rewriter cache, because values that are in the rewriter's cache
1819  // can be deleted in the loop below, causing the AssertingVH in the cache to
1820  // trigger.
1821  Rewriter.clear();
1822 
1823  // Now that we're done iterating through lists, clean up any instructions
1824  // which are now dead.
1825  while (!DeadInsts.empty())
1826  if (Instruction *Inst =
1827  dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1829 
1830  // The Rewriter may not be used from this point on.
1831 
1832  // Loop-invariant instructions in the preheader that aren't used in the
1833  // loop may be sunk below the loop to reduce register pressure.
1834  SinkUnusedInvariants(L);
1835 
1836  // Clean up dead instructions.
1837  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1838  // Check a post-condition.
1839  assert(L->isLCSSAForm(*DT) &&
1840  "Indvars did not leave the loop in lcssa form!");
1841 
1842  // Verify that LFTR, and any other change have not interfered with SCEV's
1843  // ability to compute trip count.
1844 #ifndef NDEBUG
1845  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1846  SE->forgetLoop(L);
1847  const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1848  if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1849  SE->getTypeSizeInBits(NewBECount->getType()))
1850  NewBECount = SE->getTruncateOrNoop(NewBECount,
1851  BackedgeTakenCount->getType());
1852  else
1853  BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1854  NewBECount->getType());
1855  assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1856  }
1857 #endif
1858 
1859  return Changed;
1860 }
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
Value * CreateGEP(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:931
use_iterator use_end()
Definition: Value.h:152
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos)
hoistIVInc - Utility for hoisting an IV increment.
Induction Variable Simplification
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
Induction Variable false
AnalysisUsage & addPreserved()
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT)
bool isOne() const
const SCEV * getConstant(ConstantInt *V)
bool isZero() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:316
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
static Instruction * getInsertPointForUses(Instruction *User, Value *Def, DominatorTree *DT)
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:818
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
void setDebugType(const char *s)
bool isLoopInvariant(const SCEV *S, const Loop *L)
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE)
BlockT * getExitBlock() const
Definition: LoopInfoImpl.h:76
static bool hasConcreteDef(Value *V)
op_iterator op_begin()
Definition: User.h:116
static bool hasConcreteDefImpl(Value *V, SmallPtrSet< Value *, 8 > &Visited, unsigned Depth)
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const SCEV * getStart() const
StringRef getName() const
Definition: Value.cpp:167
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
iterator begin()
Definition: BasicBlock.h:193
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
static Value * genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, SCEVExpander &Rewriter, ScalarEvolution *SE)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Base class of casting instructions.
Definition: InstrTypes.h:387
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const
Definition: APFloat.cpp:2157
Definition: Use.h:60
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal)
ConvertToSInt - Convert APF to an integer, if possible.
const SCEV *const * op_iterator
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, SmallPtrSet< const SCEV *, 8 > &Processed, ScalarEvolution *SE)
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
uint64_t getTypeSizeInBits(Type *Ty) const
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Instruction * clone() const
bool isLoopSimplifyForm() const
Definition: LoopInfo.cpp:207
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, SmallVectorImpl< WeakVH > &Dead, IVVisitor *V=NULL)
bool mayReadFromMemory() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
Represents a floating point comparison operator.
static cl::opt< bool > VerifyIndvars("verify-indvars", cl::Hidden, cl::desc("Verify the ScalarEvolution result after running indvars"))
BasicBlock * getSuccessor(unsigned i) const
const SCEV * getSizeOfExpr(Type *IntTy, Type *AllocTy)
AnalysisUsage & addPreservedID(const void *ID)
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
Type * getEffectiveSCEVType(Type *Ty) const
void takeName(Value *V)
Definition: Value.cpp:239
unsigned getNumIncomingValues() const
STATISTIC(NumWidened,"Number of indvars widened")
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
#define P(N)
bool isSCEVable(Type *Ty) const
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
void insertBefore(Instruction *InsertPos)
Definition: Instruction.cpp:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
Type * getType() const
Type * Int32Ty
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
char & LCSSAID
Definition: LCSSA.cpp:94
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
op_iterator op_end()
Definition: User.h:118
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
Represent an integer comparison operator.
Definition: Instructions.h:911
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
Value * expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I)
BlockT * getExitingBlock() const
Definition: LoopInfoImpl.h:49
Value * getOperand(unsigned i) const
Definition: User.h:88
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
void getUniqueExitBlocks(SmallVectorImpl< BasicBlock * > &ExitBlocks) const
Definition: LoopInfo.cpp:354
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
static unsigned getIncomingValueNumForOperand(unsigned i)
static ICmpInst * getLoopTest(Loop *L)
Return the compare guarding the loop latch, or NULL for unrecognized tests.
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl< WeakVH > &DeadInsts, const TargetTransformInfo *TTI=NULL)
signed greater than
Definition: InstrTypes.h:678
#define DEBUG_TYPE
char & LoopSimplifyID
bool isConditional() const
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
INITIALIZE_PASS_BEGIN(IndVarSimplify,"indvars","Induction Variable Simplification", false, false) INITIALIZE_PASS_END(IndVarSimplify
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
Value * getIncomingValue(unsigned i) const
const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty)
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:262
bool isLCSSAForm(DominatorTree &DT) const
isLCSSAForm - Return true if the Loop is in LCSSA form
Definition: LoopInfo.cpp:179
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
signed less than
Definition: InstrTypes.h:680
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
static PHINode * getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT)
void setPreservesCFG()
Definition: Pass.cpp:249
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
Value * getIncomingValueForBlock(const BasicBlock *BB) const
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
void initializeIndVarSimplifyPass(PassRegistry &)
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:418
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
Virtual Register Rewriter
Definition: VirtRegMap.cpp:185
use_iterator use_begin()
Definition: Value.h:150
static PHINode * FindLoopCounter(Loop *L, const SCEV *BECount, ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD)
Value * getCondition() const
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
bool isLegalInteger(unsigned Width) const
Definition: DataLayout.h:210
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
static bool needsLFTR(Loop *L, DominatorTree *DT)
BasicBlock * findNearestCommonDominator(BasicBlock *A, BasicBlock *B)
Definition: Dominators.h:828
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=0)
const Loop * getLoop() const
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
const APFloat & getValueAPF() const
Definition: Constants.h:263
const SCEV * getBackedgeTakenCount(const Loop *L)
bool use_empty() const
Definition: Value.h:149
This class represents a cast from signed integer to floating point.
unsigned getSCEVType() const
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
const SCEV * getSCEV(Value *V)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond)
static const Function * getParent(const Value *V)
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=0)
#define DEBUG(X)
Definition: Debug.h:97
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty)
iterator getFirstInsertionPt()
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:170
void setIncomingValue(unsigned i, Value *V)
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE)
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
int getBasicBlockIndex(const BasicBlock *BB) const
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
Pass * createIndVarSimplifyPass()
bool hasNoUnsignedWrap() const
Definition: Operator.h:101
signed greater or equal
Definition: InstrTypes.h:679