LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
HexagonMachineScheduler.cpp
Go to the documentation of this file.
1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "misched"
16 
19 #include "llvm/IR/Function.h"
20 
21 using namespace llvm;
22 
23 /// Platform specific modifications to DAG.
25  SUnit* LastSequentialCall = NULL;
26  // Currently we only catch the situation when compare gets scheduled
27  // before preceding call.
28  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
29  // Remember the call.
30  if (SUnits[su].getInstr()->isCall())
31  LastSequentialCall = &(SUnits[su]);
32  // Look for a compare that defines a predicate.
33  else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall)
34  SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier));
35  }
36 }
37 
38 /// Check if scheduling of this SU is possible
39 /// in the current packet.
40 /// It is _not_ precise (statefull), it is more like
41 /// another heuristic. Many corner cases are figured
42 /// empirically.
44  if (!SU || !SU->getInstr())
45  return false;
46 
47  // First see if the pipeline could receive this instruction
48  // in the current cycle.
49  switch (SU->getInstr()->getOpcode()) {
50  default:
51  if (!ResourcesModel->canReserveResources(SU->getInstr()))
52  return false;
58  case TargetOpcode::COPY:
60  break;
61  }
62 
63  // Now see if there are no other dependencies to instructions already
64  // in the packet.
65  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
66  if (Packet[i]->Succs.size() == 0)
67  continue;
68  for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
69  E = Packet[i]->Succs.end(); I != E; ++I) {
70  // Since we do not add pseudos to packets, might as well
71  // ignore order dependencies.
72  if (I->isCtrl())
73  continue;
74 
75  if (I->getSUnit() == SU)
76  return false;
77  }
78  }
79  return true;
80 }
81 
82 /// Keep track of available resources.
84  bool startNewCycle = false;
85  // Artificially reset state.
86  if (!SU) {
87  ResourcesModel->clearResources();
88  Packet.clear();
89  TotalPackets++;
90  return false;
91  }
92  // If this SU does not fit in the packet
93  // start a new one.
94  if (!isResourceAvailable(SU)) {
95  ResourcesModel->clearResources();
96  Packet.clear();
97  TotalPackets++;
98  startNewCycle = true;
99  }
100 
101  switch (SU->getInstr()->getOpcode()) {
102  default:
103  ResourcesModel->reserveResources(SU->getInstr());
104  break;
110  case TargetOpcode::KILL:
113  case TargetOpcode::COPY:
115  break;
116  }
117  Packet.push_back(SU);
118 
119 #ifndef NDEBUG
120  DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
121  for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
122  DEBUG(dbgs() << "\t[" << i << "] SU(");
123  DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
124  DEBUG(Packet[i]->getInstr()->dump());
125  }
126 #endif
127 
128  // If packet is now full, reset the state so in the next cycle
129  // we start fresh.
130  if (Packet.size() >= SchedModel->getIssueWidth()) {
131  ResourcesModel->clearResources();
132  Packet.clear();
133  TotalPackets++;
134  startNewCycle = true;
135  }
136 
137  return startNewCycle;
138 }
139 
140 /// schedule - Called back from MachineScheduler::runOnMachineFunction
141 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
142 /// only includes instructions that have DAG nodes, not scheduling boundaries.
144  DEBUG(dbgs()
145  << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber()
146  << " " << BB->getName()
147  << " in_func " << BB->getParent()->getFunction()->getName()
148  << " at loop depth " << MLI.getLoopDepth(BB)
149  << " \n");
150 
152 
153  // Postprocess the DAG to add platform specific artificial dependencies.
154  postprocessDAG();
155 
156  SmallVector<SUnit*, 8> TopRoots, BotRoots;
157  findRootsAndBiasEdges(TopRoots, BotRoots);
158 
159  // Initialize the strategy before modifying the DAG.
160  SchedImpl->initialize(this);
161 
162  // To view Height/Depth correctly, they should be accessed at least once.
163  //
164  // FIXME: SUnit::dumpAll always recompute depth and height now. The max
165  // depth/height could be computed directly from the roots and leaves.
166  DEBUG(unsigned maxH = 0;
167  for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
168  if (SUnits[su].getHeight() > maxH)
169  maxH = SUnits[su].getHeight();
170  dbgs() << "Max Height " << maxH << "\n";);
171  DEBUG(unsigned maxD = 0;
172  for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
173  if (SUnits[su].getDepth() > maxD)
174  maxD = SUnits[su].getDepth();
175  dbgs() << "Max Depth " << maxD << "\n";);
176  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
177  SUnits[su].dumpAll(this));
178 
179  initQueues(TopRoots, BotRoots);
180 
181  bool IsTopNode = false;
182  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
183  if (!checkSchedLimit())
184  break;
185 
186  scheduleMI(SU, IsTopNode);
187 
188  updateQueues(SU, IsTopNode);
189  }
190  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
191 
193 }
194 
196  DAG = static_cast<VLIWMachineScheduler*>(dag);
197  SchedModel = DAG->getSchedModel();
198 
199  Top.init(DAG, SchedModel);
200  Bot.init(DAG, SchedModel);
201 
202  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
203  // are disabled, then these HazardRecs will be disabled.
204  const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
205  const TargetMachine &TM = DAG->MF.getTarget();
206  delete Top.HazardRec;
207  delete Bot.HazardRec;
208  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
209  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
210 
211  delete Top.ResourceModel;
212  delete Bot.ResourceModel;
213  Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
214  Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel());
215 
216  assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) &&
217  "-misched-topdown incompatible with -misched-bottomup");
218 }
219 
221  if (SU->isScheduled)
222  return;
223 
224  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
225  I != E; ++I) {
226  unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
227  unsigned MinLatency = I->getLatency();
228 #ifndef NDEBUG
229  Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
230 #endif
231  if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
232  SU->TopReadyCycle = PredReadyCycle + MinLatency;
233  }
234  Top.releaseNode(SU, SU->TopReadyCycle);
235 }
236 
238  if (SU->isScheduled)
239  return;
240 
241  assert(SU->getInstr() && "Scheduled SUnit must have instr");
242 
243  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
244  I != E; ++I) {
245  unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
246  unsigned MinLatency = I->getLatency();
247 #ifndef NDEBUG
248  Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
249 #endif
250  if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
251  SU->BotReadyCycle = SuccReadyCycle + MinLatency;
252  }
253  Bot.releaseNode(SU, SU->BotReadyCycle);
254 }
255 
256 /// Does this SU have a hazard within the current instruction group.
257 ///
258 /// The scheduler supports two modes of hazard recognition. The first is the
259 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
260 /// supports highly complicated in-order reservation tables
261 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
262 ///
263 /// The second is a streamlined mechanism that checks for hazards based on
264 /// simple counters that the scheduler itself maintains. It explicitly checks
265 /// for instruction dispatch limitations, including the number of micro-ops that
266 /// can dispatch per cycle.
267 ///
268 /// TODO: Also check whether the SU must start a new group.
269 bool ConvergingVLIWScheduler::SchedBoundary::checkHazard(SUnit *SU) {
270  if (HazardRec->isEnabled())
271  return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
272 
273  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
274  if (IssueCount + uops > SchedModel->getIssueWidth())
275  return true;
276 
277  return false;
278 }
279 
280 void ConvergingVLIWScheduler::SchedBoundary::releaseNode(SUnit *SU,
281  unsigned ReadyCycle) {
282  if (ReadyCycle < MinReadyCycle)
283  MinReadyCycle = ReadyCycle;
284 
285  // Check for interlocks first. For the purpose of other heuristics, an
286  // instruction that cannot issue appears as if it's not in the ReadyQueue.
287  if (ReadyCycle > CurrCycle || checkHazard(SU))
288 
289  Pending.push(SU);
290  else
291  Available.push(SU);
292 }
293 
294 /// Move the boundary of scheduled code by one cycle.
295 void ConvergingVLIWScheduler::SchedBoundary::bumpCycle() {
296  unsigned Width = SchedModel->getIssueWidth();
297  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
298 
299  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
300  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
301 
302  if (!HazardRec->isEnabled()) {
303  // Bypass HazardRec virtual calls.
304  CurrCycle = NextCycle;
305  } else {
306  // Bypass getHazardType calls in case of long latency.
307  for (; CurrCycle != NextCycle; ++CurrCycle) {
308  if (isTop())
309  HazardRec->AdvanceCycle();
310  else
311  HazardRec->RecedeCycle();
312  }
313  }
314  CheckPending = true;
315 
316  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
317  << CurrCycle << '\n');
318 }
319 
320 /// Move the boundary of scheduled code by one SUnit.
321 void ConvergingVLIWScheduler::SchedBoundary::bumpNode(SUnit *SU) {
322  bool startNewCycle = false;
323 
324  // Update the reservation table.
325  if (HazardRec->isEnabled()) {
326  if (!isTop() && SU->isCall) {
327  // Calls are scheduled with their preceding instructions. For bottom-up
328  // scheduling, clear the pipeline state before emitting.
329  HazardRec->Reset();
330  }
331  HazardRec->EmitInstruction(SU);
332  }
333 
334  // Update DFA model.
335  startNewCycle = ResourceModel->reserveResources(SU);
336 
337  // Check the instruction group dispatch limit.
338  // TODO: Check if this SU must end a dispatch group.
339  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
340  if (startNewCycle) {
341  DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
342  bumpCycle();
343  }
344  else
345  DEBUG(dbgs() << "*** IssueCount " << IssueCount
346  << " at cycle " << CurrCycle << '\n');
347 }
348 
349 /// Release pending ready nodes in to the available queue. This makes them
350 /// visible to heuristics.
351 void ConvergingVLIWScheduler::SchedBoundary::releasePending() {
352  // If the available queue is empty, it is safe to reset MinReadyCycle.
353  if (Available.empty())
354  MinReadyCycle = UINT_MAX;
355 
356  // Check to see if any of the pending instructions are ready to issue. If
357  // so, add them to the available queue.
358  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
359  SUnit *SU = *(Pending.begin()+i);
360  unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
361 
362  if (ReadyCycle < MinReadyCycle)
363  MinReadyCycle = ReadyCycle;
364 
365  if (ReadyCycle > CurrCycle)
366  continue;
367 
368  if (checkHazard(SU))
369  continue;
370 
371  Available.push(SU);
372  Pending.remove(Pending.begin()+i);
373  --i; --e;
374  }
375  CheckPending = false;
376 }
377 
378 /// Remove SU from the ready set for this boundary.
379 void ConvergingVLIWScheduler::SchedBoundary::removeReady(SUnit *SU) {
380  if (Available.isInQueue(SU))
381  Available.remove(Available.find(SU));
382  else {
383  assert(Pending.isInQueue(SU) && "bad ready count");
384  Pending.remove(Pending.find(SU));
385  }
386 }
387 
388 /// If this queue only has one ready candidate, return it. As a side effect,
389 /// advance the cycle until at least one node is ready. If multiple instructions
390 /// are ready, return NULL.
391 SUnit *ConvergingVLIWScheduler::SchedBoundary::pickOnlyChoice() {
392  if (CheckPending)
393  releasePending();
394 
395  for (unsigned i = 0; Available.empty(); ++i) {
396  assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
397  "permanent hazard"); (void)i;
398  ResourceModel->reserveResources(0);
399  bumpCycle();
400  releasePending();
401  }
402  if (Available.size() == 1)
403  return *Available.begin();
404  return NULL;
405 }
406 
407 #ifndef NDEBUG
409  const ReadyQueue &Q,
410  SUnit *SU, PressureChange P) {
411  dbgs() << Label << " " << Q.getName() << " ";
412  if (P.isValid())
413  dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
414  << P.getUnitInc() << " ";
415  else
416  dbgs() << " ";
417  SU->dump(DAG);
418 }
419 #endif
420 
421 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
422 /// of SU, return it, otherwise return null.
424  SUnit *OnlyAvailablePred = 0;
425  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
426  I != E; ++I) {
427  SUnit &Pred = *I->getSUnit();
428  if (!Pred.isScheduled) {
429  // We found an available, but not scheduled, predecessor. If it's the
430  // only one we have found, keep track of it... otherwise give up.
431  if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
432  return 0;
433  OnlyAvailablePred = &Pred;
434  }
435  }
436  return OnlyAvailablePred;
437 }
438 
439 /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor
440 /// of SU, return it, otherwise return null.
442  SUnit *OnlyAvailableSucc = 0;
443  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
444  I != E; ++I) {
445  SUnit &Succ = *I->getSUnit();
446  if (!Succ.isScheduled) {
447  // We found an available, but not scheduled, successor. If it's the
448  // only one we have found, keep track of it... otherwise give up.
449  if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ)
450  return 0;
451  OnlyAvailableSucc = &Succ;
452  }
453  }
454  return OnlyAvailableSucc;
455 }
456 
457 // Constants used to denote relative importance of
458 // heuristic components for cost computation.
459 static const unsigned PriorityOne = 200;
460 static const unsigned PriorityTwo = 50;
461 static const unsigned ScaleTwo = 10;
462 static const unsigned FactorOne = 2;
463 
464 /// Single point to compute overall scheduling cost.
465 /// TODO: More heuristics will be used soon.
467  SchedCandidate &Candidate,
468  RegPressureDelta &Delta,
469  bool verbose) {
470  // Initial trivial priority.
471  int ResCount = 1;
472 
473  // Do not waste time on a node that is already scheduled.
474  if (!SU || SU->isScheduled)
475  return ResCount;
476 
477  // Forced priority is high.
478  if (SU->isScheduleHigh)
479  ResCount += PriorityOne;
480 
481  // Critical path first.
482  if (Q.getID() == TopQID) {
483  ResCount += (SU->getHeight() * ScaleTwo);
484 
485  // If resources are available for it, multiply the
486  // chance of scheduling.
487  if (Top.ResourceModel->isResourceAvailable(SU))
488  ResCount <<= FactorOne;
489  } else {
490  ResCount += (SU->getDepth() * ScaleTwo);
491 
492  // If resources are available for it, multiply the
493  // chance of scheduling.
494  if (Bot.ResourceModel->isResourceAvailable(SU))
495  ResCount <<= FactorOne;
496  }
497 
498  unsigned NumNodesBlocking = 0;
499  if (Q.getID() == TopQID) {
500  // How many SUs does it block from scheduling?
501  // Look at all of the successors of this node.
502  // Count the number of nodes that
503  // this node is the sole unscheduled node for.
504  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
505  I != E; ++I)
506  if (getSingleUnscheduledPred(I->getSUnit()) == SU)
507  ++NumNodesBlocking;
508  } else {
509  // How many unscheduled predecessors block this node?
510  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
511  I != E; ++I)
512  if (getSingleUnscheduledSucc(I->getSUnit()) == SU)
513  ++NumNodesBlocking;
514  }
515  ResCount += (NumNodesBlocking * ScaleTwo);
516 
517  // Factor in reg pressure as a heuristic.
518  ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo);
519  ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo);
520 
521  DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")");
522 
523  return ResCount;
524 }
525 
526 /// Pick the best candidate from the top queue.
527 ///
528 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
529 /// DAG building. To adjust for the current scheduling location we need to
530 /// maintain the number of vreg uses remaining to be top-scheduled.
531 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
533  SchedCandidate &Candidate) {
534  DEBUG(Q.dump());
535 
536  // getMaxPressureDelta temporarily modifies the tracker.
537  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
538 
539  // BestSU remains NULL if no top candidates beat the best existing candidate.
540  CandResult FoundCandidate = NoCand;
541  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
542  RegPressureDelta RPDelta;
543  TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
544  DAG->getRegionCriticalPSets(),
546 
547  int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
548 
549  // Initialize the candidate if needed.
550  if (!Candidate.SU) {
551  Candidate.SU = *I;
552  Candidate.RPDelta = RPDelta;
553  Candidate.SCost = CurrentCost;
554  FoundCandidate = NodeOrder;
555  continue;
556  }
557 
558  // Best cost.
559  if (CurrentCost > Candidate.SCost) {
560  DEBUG(traceCandidate("CCAND", Q, *I));
561  Candidate.SU = *I;
562  Candidate.RPDelta = RPDelta;
563  Candidate.SCost = CurrentCost;
564  FoundCandidate = BestCost;
565  continue;
566  }
567 
568  // Fall through to original instruction order.
569  // Only consider node order if Candidate was chosen from this Q.
570  if (FoundCandidate == NoCand)
571  continue;
572  }
573  return FoundCandidate;
574 }
575 
576 /// Pick the best candidate node from either the top or bottom queue.
578  // Schedule as far as possible in the direction of no choice. This is most
579  // efficient, but also provides the best heuristics for CriticalPSets.
580  if (SUnit *SU = Bot.pickOnlyChoice()) {
581  IsTopNode = false;
582  return SU;
583  }
584  if (SUnit *SU = Top.pickOnlyChoice()) {
585  IsTopNode = true;
586  return SU;
587  }
588  SchedCandidate BotCand;
589  // Prefer bottom scheduling when heuristics are silent.
590  CandResult BotResult = pickNodeFromQueue(Bot.Available,
591  DAG->getBotRPTracker(), BotCand);
592  assert(BotResult != NoCand && "failed to find the first candidate");
593 
594  // If either Q has a single candidate that provides the least increase in
595  // Excess pressure, we can immediately schedule from that Q.
596  //
597  // RegionCriticalPSets summarizes the pressure within the scheduled region and
598  // affects picking from either Q. If scheduling in one direction must
599  // increase pressure for one of the excess PSets, then schedule in that
600  // direction first to provide more freedom in the other direction.
601  if (BotResult == SingleExcess || BotResult == SingleCritical) {
602  IsTopNode = false;
603  return BotCand.SU;
604  }
605  // Check if the top Q has a better candidate.
606  SchedCandidate TopCand;
607  CandResult TopResult = pickNodeFromQueue(Top.Available,
608  DAG->getTopRPTracker(), TopCand);
609  assert(TopResult != NoCand && "failed to find the first candidate");
610 
611  if (TopResult == SingleExcess || TopResult == SingleCritical) {
612  IsTopNode = true;
613  return TopCand.SU;
614  }
615  // If either Q has a single candidate that minimizes pressure above the
616  // original region's pressure pick it.
617  if (BotResult == SingleMax) {
618  IsTopNode = false;
619  return BotCand.SU;
620  }
621  if (TopResult == SingleMax) {
622  IsTopNode = true;
623  return TopCand.SU;
624  }
625  if (TopCand.SCost > BotCand.SCost) {
626  IsTopNode = true;
627  return TopCand.SU;
628  }
629  // Otherwise prefer the bottom candidate in node order.
630  IsTopNode = false;
631  return BotCand.SU;
632 }
633 
634 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
636  if (DAG->top() == DAG->bottom()) {
637  assert(Top.Available.empty() && Top.Pending.empty() &&
638  Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
639  return NULL;
640  }
641  SUnit *SU;
642  if (llvm::ForceTopDown) {
643  SU = Top.pickOnlyChoice();
644  if (!SU) {
645  SchedCandidate TopCand;
646  CandResult TopResult =
647  pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
648  assert(TopResult != NoCand && "failed to find the first candidate");
649  (void)TopResult;
650  SU = TopCand.SU;
651  }
652  IsTopNode = true;
653  } else if (llvm::ForceBottomUp) {
654  SU = Bot.pickOnlyChoice();
655  if (!SU) {
656  SchedCandidate BotCand;
657  CandResult BotResult =
658  pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
659  assert(BotResult != NoCand && "failed to find the first candidate");
660  (void)BotResult;
661  SU = BotCand.SU;
662  }
663  IsTopNode = false;
664  } else {
665  SU = pickNodeBidrectional(IsTopNode);
666  }
667  if (SU->isTopReady())
668  Top.removeReady(SU);
669  if (SU->isBottomReady())
670  Bot.removeReady(SU);
671 
672  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
673  << " Scheduling Instruction in cycle "
674  << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
675  SU->dump(DAG));
676  return SU;
677 }
678 
679 /// Update the scheduler's state after scheduling a node. This is the same node
680 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
681 /// to update it's state based on the current cycle before MachineSchedStrategy
682 /// does.
683 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
684  if (IsTopNode) {
685  SU->TopReadyCycle = Top.CurrCycle;
686  Top.bumpNode(SU);
687  } else {
688  SU->BotReadyCycle = Bot.CurrCycle;
689  Bot.bumpNode(SU);
690  }
691 }
bool canReserveResources(const llvm::MCInstrDesc *MID)
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
const MachineFunction * getParent() const
virtual void initialize(ScheduleDAGMI *DAG)=0
Initialize the strategy after building the DAG for a new region.
virtual void initialize(ScheduleDAGMI *dag)
Initialize the strategy after building the DAG for a new region.
int SchedulingCost(ReadyQueue &Q, SUnit *SU, SchedCandidate &Candidate, RegPressureDelta &Delta, bool verbose)
MachineBasicBlock::iterator CurrentTop
The top of the unscheduled zone.
MachineInstr * getInstr() const
Definition: ScheduleDAG.h:386
CandResult pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, SchedCandidate &Candidate)
void buildDAGWithRegPressure()
Build the DAG and setup three register pressure trackers.
static SUnit * getSingleUnscheduledPred(SUnit *SU)
const Function * getFunction() const
unsigned getID() const
MachineBasicBlock::iterator top() const
unsigned BotReadyCycle
Definition: ScheduleDAG.h:304
void updateQueues(SUnit *SU, bool IsTopNode)
Update scheduler DAG and queues after scheduling an instruction.
SmallVector< SDep, 4 > Preds
Definition: ScheduleDAG.h:263
const RegPressureTracker & getTopRPTracker() const
StringRef getName() const
Definition: Value.cpp:167
MachineFunction & MF
Definition: ScheduleDAG.h:543
const TargetSchedModel * getSchedModel() const
Get the machine model for instruction scheduling.
bool isScheduled
Definition: ScheduleDAG.h:291
unsigned getHeight() const
Definition: ScheduleDAG.h:411
SUnit * pickNodeBidrectional(bool &IsTopNode)
Pick the best candidate node from either the top or bottom queue.
static const unsigned ScaleTwo
virtual const char * getRegPressureSetName(unsigned Idx) const =0
Get the name of this register unit pressure set.
unsigned getPSet() const
unsigned TopReadyCycle
Definition: ScheduleDAG.h:303
static SUnit * getSingleUnscheduledSucc(SUnit *SU)
int getOpcode() const
Definition: MachineInstr.h:261
const MachineLoopInfo & MLI
void reserveResources(const llvm::MCInstrDesc *MID)
std::vector< SUnit * >::iterator iterator
MachineSchedStrategy * SchedImpl
#define P(N)
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
const InstrItineraryData * getInstrItineraries() const
void findRootsAndBiasEdges(SmallVectorImpl< SUnit * > &TopRoots, SmallVectorImpl< SUnit * > &BotRoots)
static const unsigned FactorOne
void scheduleMI(SUnit *SU, bool IsTopNode)
Move an instruction and update register pressure.
An unknown scheduling barrier.
Definition: ScheduleDAG.h:65
std::vector< unsigned > MaxSetPressure
Map of max reg pressure indexed by pressure set ID, not class ID.
virtual const TargetInstrInfo * getInstrInfo() const
void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU, PressureChange P=PressureChange())
bool isScheduleHigh
Definition: ScheduleDAG.h:292
virtual SUnit * pickNode(bool &IsTopNode)
Pick the best node to balance the schedule. Implements MachineSchedStrategy.
virtual void releaseBottomNode(SUnit *SU)
const std::vector< PressureChange > & getRegionCriticalPSets() const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isTopReady() const
Definition: ScheduleDAG.h:453
StringRef getName() const
PressureChange CriticalMax
MachineBasicBlock::iterator bottom() const
const IntervalPressure & getRegPressure() const
Get register pressure for the entire scheduling region before scheduling.
unsigned getDepth() const
Definition: ScheduleDAG.h:403
virtual SUnit * pickNode(bool &IsTopNode)=0
virtual void schedNode(SUnit *SU, bool IsTopNode)
const TargetRegisterInfo * TRI
Definition: ScheduleDAG.h:542
static const unsigned PriorityOne
cl::opt< bool > ForceBottomUp
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
#define I(x, y, z)
Definition: MD5.cpp:54
void postprocessDAG()
Perform platform specific DAG postprocessing.
const TargetMachine & getTarget() const
void placeDebugValues()
Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
bool reserveResources(SUnit *SU)
Keep track of available resources.
unsigned getLoopDepth(const MachineBasicBlock *BB) const
MachineBasicBlock::iterator CurrentBottom
The bottom of the unscheduled zone.
void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)
Release ExitSU predecessors and setup scheduler queues.
static const unsigned PriorityTwo
SmallVector< SDep, 4 > Succs
Definition: ScheduleDAG.h:264
unsigned getIssueWidth() const
Maximum number of micro-ops that may be scheduled per cycle.
bool isBottomReady() const
Definition: ScheduleDAG.h:456
StringRef getName() const
#define DEBUG(X)
Definition: Debug.h:97
MachineBasicBlock * BB
The block in which to insert instructions.
const RegPressureTracker & getBotRPTracker() const
std::vector< SUnit > SUnits
Definition: ScheduleDAG.h:545
void dump(const ScheduleDAG *G) const
SUnit - Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:249
cl::opt< bool > ForceTopDown