LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopIdiomRecognize.cpp
Go to the documentation of this file.
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form. In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 // memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 // fpowi
22 // Future integer operation idioms to recognize:
23 // ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set. It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop. This would handle things like:
31 // void foo(_Complex float *P)
32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; }
33 //
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior. Negative strides *do* happen for memset/memcpy loops.
38 //
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #define DEBUG_TYPE "loop-idiom"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/ADT/Statistic.h"
48 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/Support/Debug.h"
61 using namespace llvm;
62 
63 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
64 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
65 
66 namespace {
67 
68  class LoopIdiomRecognize;
69 
70  /// This class defines some utility functions for loop idiom recognization.
71  class LIRUtil {
72  public:
73  /// Return true iff the block contains nothing but an uncondition branch
74  /// (aka goto instruction).
75  static bool isAlmostEmpty(BasicBlock *);
76 
77  static BranchInst *getBranch(BasicBlock *BB) {
78  return dyn_cast<BranchInst>(BB->getTerminator());
79  }
80 
81  /// Return the condition of the branch terminating the given basic block.
82  static Value *getBrCondtion(BasicBlock *);
83 
84  /// Derive the precondition block (i.e the block that guards the loop
85  /// preheader) from the given preheader.
86  static BasicBlock *getPrecondBb(BasicBlock *PreHead);
87  };
88 
89  /// This class is to recoginize idioms of population-count conducted in
90  /// a noncountable loop. Currently it only recognizes this pattern:
91  /// \code
92  /// while(x) {cnt++; ...; x &= x - 1; ...}
93  /// \endcode
94  class NclPopcountRecognize {
95  LoopIdiomRecognize &LIR;
96  Loop *CurLoop;
97  BasicBlock *PreCondBB;
98 
99  typedef IRBuilder<> IRBuilderTy;
100 
101  public:
102  explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
103  bool recognize();
104 
105  private:
106  /// Take a glimpse of the loop to see if we need to go ahead recoginizing
107  /// the idiom.
108  bool preliminaryScreen();
109 
110  /// Check if the given conditional branch is based on the comparison
111  /// beween a variable and zero, and if the variable is non-zero, the
112  /// control yeilds to the loop entry. If the branch matches the behavior,
113  /// the variable involved in the comparion is returned. This function will
114  /// be called to see if the precondition and postcondition of the loop
115  /// are in desirable form.
116  Value *matchCondition (BranchInst *Br, BasicBlock *NonZeroTarget) const;
117 
118  /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
119  /// is set to the instruction counting the pupulation bit. 2) \p CntPhi
120  /// is set to the corresponding phi node. 3) \p Var is set to the value
121  /// whose population bits are being counted.
122  bool detectIdiom
123  (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
124 
125  /// Insert ctpop intrinsic function and some obviously dead instructions.
126  void transform (Instruction *CntInst, PHINode *CntPhi, Value *Var);
127 
128  /// Create llvm.ctpop.* intrinsic function.
129  CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
130  };
131 
132  class LoopIdiomRecognize : public LoopPass {
133  Loop *CurLoop;
134  const DataLayout *TD;
135  DominatorTree *DT;
136  ScalarEvolution *SE;
137  TargetLibraryInfo *TLI;
138  const TargetTransformInfo *TTI;
139  public:
140  static char ID;
141  explicit LoopIdiomRecognize() : LoopPass(ID) {
143  TD = 0; DT = 0; SE = 0; TLI = 0; TTI = 0;
144  }
145 
146  bool runOnLoop(Loop *L, LPPassManager &LPM);
147  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
148  SmallVectorImpl<BasicBlock*> &ExitBlocks);
149 
150  bool processLoopStore(StoreInst *SI, const SCEV *BECount);
151  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
152 
153  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
154  unsigned StoreAlignment,
155  Value *SplatValue, Instruction *TheStore,
156  const SCEVAddRecExpr *Ev,
157  const SCEV *BECount);
158  bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
159  const SCEVAddRecExpr *StoreEv,
160  const SCEVAddRecExpr *LoadEv,
161  const SCEV *BECount);
162 
163  /// This transformation requires natural loop information & requires that
164  /// loop preheaders be inserted into the CFG.
165  ///
166  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
167  AU.addRequired<LoopInfo>();
168  AU.addPreserved<LoopInfo>();
181  }
182 
183  const DataLayout *getDataLayout() {
184  return TD ? TD : TD=getAnalysisIfAvailable<DataLayout>();
185  }
186 
187  DominatorTree *getDominatorTree() {
188  return DT ? DT : (DT=&getAnalysis<DominatorTree>());
189  }
190 
191  ScalarEvolution *getScalarEvolution() {
192  return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
193  }
194 
195  TargetLibraryInfo *getTargetLibraryInfo() {
196  return TLI ? TLI : (TLI = &getAnalysis<TargetLibraryInfo>());
197  }
198 
199  const TargetTransformInfo *getTargetTransformInfo() {
200  return TTI ? TTI : (TTI = &getAnalysis<TargetTransformInfo>());
201  }
202 
203  Loop *getLoop() const { return CurLoop; }
204 
205  private:
206  bool runOnNoncountableLoop();
207  bool runOnCountableLoop();
208  };
209 }
210 
211 char LoopIdiomRecognize::ID = 0;
212 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
213  false, false)
216 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
222 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
223  false, false)
224 
225 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
226 
227 /// deleteDeadInstruction - Delete this instruction. Before we do, go through
228 /// and zero out all the operands of this instruction. If any of them become
229 /// dead, delete them and the computation tree that feeds them.
230 ///
232  const TargetLibraryInfo *TLI) {
233  SmallVector<Instruction*, 32> NowDeadInsts;
234 
235  NowDeadInsts.push_back(I);
236 
237  // Before we touch this instruction, remove it from SE!
238  do {
239  Instruction *DeadInst = NowDeadInsts.pop_back_val();
240 
241  // This instruction is dead, zap it, in stages. Start by removing it from
242  // SCEV.
243  SE.forgetValue(DeadInst);
244 
245  for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
246  Value *Op = DeadInst->getOperand(op);
247  DeadInst->setOperand(op, 0);
248 
249  // If this operand just became dead, add it to the NowDeadInsts list.
250  if (!Op->use_empty()) continue;
251 
252  if (Instruction *OpI = dyn_cast<Instruction>(Op))
253  if (isInstructionTriviallyDead(OpI, TLI))
254  NowDeadInsts.push_back(OpI);
255  }
256 
257  DeadInst->eraseFromParent();
258 
259  } while (!NowDeadInsts.empty());
260 }
261 
262 /// deleteIfDeadInstruction - If the specified value is a dead instruction,
263 /// delete it and any recursively used instructions.
265  const TargetLibraryInfo *TLI) {
266  if (Instruction *I = dyn_cast<Instruction>(V))
267  if (isInstructionTriviallyDead(I, TLI))
268  deleteDeadInstruction(I, SE, TLI);
269 }
270 
271 //===----------------------------------------------------------------------===//
272 //
273 // Implementation of LIRUtil
274 //
275 //===----------------------------------------------------------------------===//
276 
277 // This function will return true iff the given block contains nothing but goto.
278 // A typical usage of this function is to check if the preheader function is
279 // "almost" empty such that generated intrinsic functions can be moved across
280 // the preheader and be placed at the end of the precondition block without
281 // the concern of breaking data dependence.
282 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
283  if (BranchInst *Br = getBranch(BB)) {
284  return Br->isUnconditional() && BB->size() == 1;
285  }
286  return false;
287 }
288 
289 Value *LIRUtil::getBrCondtion(BasicBlock *BB) {
290  BranchInst *Br = getBranch(BB);
291  return Br ? Br->getCondition() : 0;
292 }
293 
294 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
295  if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
296  BranchInst *Br = getBranch(BB);
297  return Br && Br->isConditional() ? BB : 0;
298  }
299  return 0;
300 }
301 
302 //===----------------------------------------------------------------------===//
303 //
304 // Implementation of NclPopcountRecognize
305 //
306 //===----------------------------------------------------------------------===//
307 
308 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
309  LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(0) {
310 }
311 
312 bool NclPopcountRecognize::preliminaryScreen() {
313  const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
314  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
315  return false;
316 
317  // Counting population are usually conducted by few arithmetic instructions.
318  // Such instructions can be easilly "absorbed" by vacant slots in a
319  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
320  // in a compact loop.
321 
322  // Give up if the loop has multiple blocks or multiple backedges.
323  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
324  return false;
325 
326  BasicBlock *LoopBody = *(CurLoop->block_begin());
327  if (LoopBody->size() >= 20) {
328  // The loop is too big, bail out.
329  return false;
330  }
331 
332  // It should have a preheader containing nothing but a goto instruction.
333  BasicBlock *PreHead = CurLoop->getLoopPreheader();
334  if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
335  return false;
336 
337  // It should have a precondition block where the generated popcount instrinsic
338  // function will be inserted.
339  PreCondBB = LIRUtil::getPrecondBb(PreHead);
340  if (!PreCondBB)
341  return false;
342 
343  return true;
344 }
345 
346 Value *NclPopcountRecognize::matchCondition (BranchInst *Br,
347  BasicBlock *LoopEntry) const {
348  if (!Br || !Br->isConditional())
349  return 0;
350 
351  ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
352  if (!Cond)
353  return 0;
354 
355  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
356  if (!CmpZero || !CmpZero->isZero())
357  return 0;
358 
359  ICmpInst::Predicate Pred = Cond->getPredicate();
360  if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
361  (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
362  return Cond->getOperand(0);
363 
364  return 0;
365 }
366 
367 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
368  PHINode *&CntPhi,
369  Value *&Var) const {
370  // Following code tries to detect this idiom:
371  //
372  // if (x0 != 0)
373  // goto loop-exit // the precondition of the loop
374  // cnt0 = init-val;
375  // do {
376  // x1 = phi (x0, x2);
377  // cnt1 = phi(cnt0, cnt2);
378  //
379  // cnt2 = cnt1 + 1;
380  // ...
381  // x2 = x1 & (x1 - 1);
382  // ...
383  // } while(x != 0);
384  //
385  // loop-exit:
386  //
387 
388  // step 1: Check to see if the look-back branch match this pattern:
389  // "if (a!=0) goto loop-entry".
390  BasicBlock *LoopEntry;
391  Instruction *DefX2, *CountInst;
392  Value *VarX1, *VarX0;
393  PHINode *PhiX, *CountPhi;
394 
395  DefX2 = CountInst = 0;
396  VarX1 = VarX0 = 0;
397  PhiX = CountPhi = 0;
398  LoopEntry = *(CurLoop->block_begin());
399 
400  // step 1: Check if the loop-back branch is in desirable form.
401  {
402  if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
403  DefX2 = dyn_cast<Instruction>(T);
404  else
405  return false;
406  }
407 
408  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
409  {
410  if (!DefX2 || DefX2->getOpcode() != Instruction::And)
411  return false;
412 
413  BinaryOperator *SubOneOp;
414 
415  if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
416  VarX1 = DefX2->getOperand(1);
417  else {
418  VarX1 = DefX2->getOperand(0);
419  SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
420  }
421  if (!SubOneOp)
422  return false;
423 
424  Instruction *SubInst = cast<Instruction>(SubOneOp);
425  ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
426  if (!Dec ||
427  !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
428  (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
429  return false;
430  }
431  }
432 
433  // step 3: Check the recurrence of variable X
434  {
435  PhiX = dyn_cast<PHINode>(VarX1);
436  if (!PhiX ||
437  (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
438  return false;
439  }
440  }
441 
442  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
443  {
444  CountInst = NULL;
445  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
446  IterE = LoopEntry->end(); Iter != IterE; Iter++) {
447  Instruction *Inst = Iter;
448  if (Inst->getOpcode() != Instruction::Add)
449  continue;
450 
451  ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
452  if (!Inc || !Inc->isOne())
453  continue;
454 
455  PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
456  if (!Phi || Phi->getParent() != LoopEntry)
457  continue;
458 
459  // Check if the result of the instruction is live of the loop.
460  bool LiveOutLoop = false;
461  for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
462  I != E; I++) {
463  if ((cast<Instruction>(*I))->getParent() != LoopEntry) {
464  LiveOutLoop = true; break;
465  }
466  }
467 
468  if (LiveOutLoop) {
469  CountInst = Inst;
470  CountPhi = Phi;
471  break;
472  }
473  }
474 
475  if (!CountInst)
476  return false;
477  }
478 
479  // step 5: check if the precondition is in this form:
480  // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
481  {
482  BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
483  Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
484  if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
485  return false;
486 
487  CntInst = CountInst;
488  CntPhi = CountPhi;
489  Var = T;
490  }
491 
492  return true;
493 }
494 
495 void NclPopcountRecognize::transform(Instruction *CntInst,
496  PHINode *CntPhi, Value *Var) {
497 
498  ScalarEvolution *SE = LIR.getScalarEvolution();
499  TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
500  BasicBlock *PreHead = CurLoop->getLoopPreheader();
501  BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
502  const DebugLoc DL = CntInst->getDebugLoc();
503 
504  // Assuming before transformation, the loop is following:
505  // if (x) // the precondition
506  // do { cnt++; x &= x - 1; } while(x);
507 
508  // Step 1: Insert the ctpop instruction at the end of the precondition block
509  IRBuilderTy Builder(PreCondBr);
510  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
511  {
512  PopCnt = createPopcntIntrinsic(Builder, Var, DL);
513  NewCount = PopCntZext =
514  Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
515 
516  if (NewCount != PopCnt)
517  (cast<Instruction>(NewCount))->setDebugLoc(DL);
518 
519  // TripCnt is exactly the number of iterations the loop has
520  TripCnt = NewCount;
521 
522  // If the popoulation counter's initial value is not zero, insert Add Inst.
523  Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
524  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
525  if (!InitConst || !InitConst->isZero()) {
526  NewCount = Builder.CreateAdd(NewCount, CntInitVal);
527  (cast<Instruction>(NewCount))->setDebugLoc(DL);
528  }
529  }
530 
531  // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
532  // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
533  // function would be partial dead code, and downstream passes will drag
534  // it back from the precondition block to the preheader.
535  {
536  ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
537 
538  Value *Opnd0 = PopCntZext;
539  Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
540  if (PreCond->getOperand(0) != Var)
541  std::swap(Opnd0, Opnd1);
542 
543  ICmpInst *NewPreCond =
544  cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
545  PreCond->replaceAllUsesWith(NewPreCond);
546 
547  deleteDeadInstruction(PreCond, *SE, TLI);
548  }
549 
550  // Step 3: Note that the population count is exactly the trip count of the
551  // loop in question, which enble us to to convert the loop from noncountable
552  // loop into a countable one. The benefit is twofold:
553  //
554  // - If the loop only counts population, the entire loop become dead after
555  // the transformation. It is lots easier to prove a countable loop dead
556  // than to prove a noncountable one. (In some C dialects, a infite loop
557  // isn't dead even if it computes nothing useful. In general, DCE needs
558  // to prove a noncountable loop finite before safely delete it.)
559  //
560  // - If the loop also performs something else, it remains alive.
561  // Since it is transformed to countable form, it can be aggressively
562  // optimized by some optimizations which are in general not applicable
563  // to a noncountable loop.
564  //
565  // After this step, this loop (conceptually) would look like following:
566  // newcnt = __builtin_ctpop(x);
567  // t = newcnt;
568  // if (x)
569  // do { cnt++; x &= x-1; t--) } while (t > 0);
570  BasicBlock *Body = *(CurLoop->block_begin());
571  {
572  BranchInst *LbBr = LIRUtil::getBranch(Body);
573  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
574  Type *Ty = TripCnt->getType();
575 
576  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
577 
578  Builder.SetInsertPoint(LbCond);
579  Value *Opnd1 = cast<Value>(TcPhi);
580  Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
581  Instruction *TcDec =
582  cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
583 
584  TcPhi->addIncoming(TripCnt, PreHead);
585  TcPhi->addIncoming(TcDec, Body);
586 
587  CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
588  CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
589  LbCond->setPredicate(Pred);
590  LbCond->setOperand(0, TcDec);
591  LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
592  }
593 
594  // Step 4: All the references to the original population counter outside
595  // the loop are replaced with the NewCount -- the value returned from
596  // __builtin_ctpop().
597  {
598  SmallVector<Value *, 4> CntUses;
599  for (Value::use_iterator I = CntInst->use_begin(), E = CntInst->use_end();
600  I != E; I++) {
601  if (cast<Instruction>(*I)->getParent() != Body)
602  CntUses.push_back(*I);
603  }
604  for (unsigned Idx = 0; Idx < CntUses.size(); Idx++) {
605  (cast<Instruction>(CntUses[Idx]))->replaceUsesOfWith(CntInst, NewCount);
606  }
607  }
608 
609  // step 5: Forget the "non-computable" trip-count SCEV associated with the
610  // loop. The loop would otherwise not be deleted even if it becomes empty.
611  SE->forgetLoop(CurLoop);
612 }
613 
614 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
615  Value *Val, DebugLoc DL) {
616  Value *Ops[] = { Val };
617  Type *Tys[] = { Val->getType() };
618 
619  Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
621  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
622  CI->setDebugLoc(DL);
623 
624  return CI;
625 }
626 
627 /// recognize - detect population count idiom in a non-countable loop. If
628 /// detected, transform the relevant code to popcount intrinsic function
629 /// call, and return true; otherwise, return false.
630 bool NclPopcountRecognize::recognize() {
631 
632  if (!LIR.getTargetTransformInfo())
633  return false;
634 
635  LIR.getScalarEvolution();
636 
637  if (!preliminaryScreen())
638  return false;
639 
640  Instruction *CntInst;
641  PHINode *CntPhi;
642  Value *Val;
643  if (!detectIdiom(CntInst, CntPhi, Val))
644  return false;
645 
646  transform(CntInst, CntPhi, Val);
647  return true;
648 }
649 
650 //===----------------------------------------------------------------------===//
651 //
652 // Implementation of LoopIdiomRecognize
653 //
654 //===----------------------------------------------------------------------===//
655 
656 bool LoopIdiomRecognize::runOnCountableLoop() {
657  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
658  if (isa<SCEVCouldNotCompute>(BECount)) return false;
659 
660  // If this loop executes exactly one time, then it should be peeled, not
661  // optimized by this pass.
662  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
663  if (BECst->getValue()->getValue() == 0)
664  return false;
665 
666  // We require target data for now.
667  if (!getDataLayout())
668  return false;
669 
670  // set DT
671  (void)getDominatorTree();
672 
673  LoopInfo &LI = getAnalysis<LoopInfo>();
674  TLI = &getAnalysis<TargetLibraryInfo>();
675 
676  // set TLI
677  (void)getTargetLibraryInfo();
678 
679  SmallVector<BasicBlock*, 8> ExitBlocks;
680  CurLoop->getUniqueExitBlocks(ExitBlocks);
681 
682  DEBUG(dbgs() << "loop-idiom Scanning: F["
683  << CurLoop->getHeader()->getParent()->getName()
684  << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
685 
686  bool MadeChange = false;
687  // Scan all the blocks in the loop that are not in subloops.
688  for (Loop::block_iterator BI = CurLoop->block_begin(),
689  E = CurLoop->block_end(); BI != E; ++BI) {
690  // Ignore blocks in subloops.
691  if (LI.getLoopFor(*BI) != CurLoop)
692  continue;
693 
694  MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
695  }
696  return MadeChange;
697 }
698 
699 bool LoopIdiomRecognize::runOnNoncountableLoop() {
700  NclPopcountRecognize Popcount(*this);
701  if (Popcount.recognize())
702  return true;
703 
704  return false;
705 }
706 
707 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
708  CurLoop = L;
709 
710  // If the loop could not be converted to canonical form, it must have an
711  // indirectbr in it, just give up.
712  if (!L->getLoopPreheader())
713  return false;
714 
715  // Disable loop idiom recognition if the function's name is a common idiom.
716  StringRef Name = L->getHeader()->getParent()->getName();
717  if (Name == "memset" || Name == "memcpy")
718  return false;
719 
720  SE = &getAnalysis<ScalarEvolution>();
722  return runOnCountableLoop();
723  return runOnNoncountableLoop();
724 }
725 
726 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
727 /// with the specified backedge count. This block is known to be in the current
728 /// loop and not in any subloops.
729 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
730  SmallVectorImpl<BasicBlock*> &ExitBlocks) {
731  // We can only promote stores in this block if they are unconditionally
732  // executed in the loop. For a block to be unconditionally executed, it has
733  // to dominate all the exit blocks of the loop. Verify this now.
734  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
735  if (!DT->dominates(BB, ExitBlocks[i]))
736  return false;
737 
738  bool MadeChange = false;
739  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
740  Instruction *Inst = I++;
741  // Look for store instructions, which may be optimized to memset/memcpy.
742  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
743  WeakVH InstPtr(I);
744  if (!processLoopStore(SI, BECount)) continue;
745  MadeChange = true;
746 
747  // If processing the store invalidated our iterator, start over from the
748  // top of the block.
749  if (InstPtr == 0)
750  I = BB->begin();
751  continue;
752  }
753 
754  // Look for memset instructions, which may be optimized to a larger memset.
755  if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
756  WeakVH InstPtr(I);
757  if (!processLoopMemSet(MSI, BECount)) continue;
758  MadeChange = true;
759 
760  // If processing the memset invalidated our iterator, start over from the
761  // top of the block.
762  if (InstPtr == 0)
763  I = BB->begin();
764  continue;
765  }
766  }
767 
768  return MadeChange;
769 }
770 
771 
772 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
773 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
774  if (!SI->isSimple()) return false;
775 
776  Value *StoredVal = SI->getValueOperand();
777  Value *StorePtr = SI->getPointerOperand();
778 
779  // Reject stores that are so large that they overflow an unsigned.
780  uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
781  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
782  return false;
783 
784  // See if the pointer expression is an AddRec like {base,+,1} on the current
785  // loop, which indicates a strided store. If we have something else, it's a
786  // random store we can't handle.
787  const SCEVAddRecExpr *StoreEv =
788  dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
789  if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
790  return false;
791 
792  // Check to see if the stride matches the size of the store. If so, then we
793  // know that every byte is touched in the loop.
794  unsigned StoreSize = (unsigned)SizeInBits >> 3;
795  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
796 
797  if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) {
798  // TODO: Could also handle negative stride here someday, that will require
799  // the validity check in mayLoopAccessLocation to be updated though.
800  // Enable this to print exact negative strides.
801  if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
802  dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
803  dbgs() << "BB: " << *SI->getParent();
804  }
805 
806  return false;
807  }
808 
809  // See if we can optimize just this store in isolation.
810  if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
811  StoredVal, SI, StoreEv, BECount))
812  return true;
813 
814  // If the stored value is a strided load in the same loop with the same stride
815  // this this may be transformable into a memcpy. This kicks in for stuff like
816  // for (i) A[i] = B[i];
817  if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
818  const SCEVAddRecExpr *LoadEv =
819  dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
820  if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
821  StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
822  if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
823  return true;
824  }
825  //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
826 
827  return false;
828 }
829 
830 /// processLoopMemSet - See if this memset can be promoted to a large memset.
831 bool LoopIdiomRecognize::
832 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
833  // We can only handle non-volatile memsets with a constant size.
834  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
835 
836  // If we're not allowed to hack on memset, we fail.
837  if (!TLI->has(LibFunc::memset))
838  return false;
839 
840  Value *Pointer = MSI->getDest();
841 
842  // See if the pointer expression is an AddRec like {base,+,1} on the current
843  // loop, which indicates a strided store. If we have something else, it's a
844  // random store we can't handle.
845  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
846  if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
847  return false;
848 
849  // Reject memsets that are so large that they overflow an unsigned.
850  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
851  if ((SizeInBytes >> 32) != 0)
852  return false;
853 
854  // Check to see if the stride matches the size of the memset. If so, then we
855  // know that every byte is touched in the loop.
856  const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
857 
858  // TODO: Could also handle negative stride here someday, that will require the
859  // validity check in mayLoopAccessLocation to be updated though.
860  if (Stride == 0 || MSI->getLength() != Stride->getValue())
861  return false;
862 
863  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
864  MSI->getAlignment(), MSI->getValue(),
865  MSI, Ev, BECount);
866 }
867 
868 
869 /// mayLoopAccessLocation - Return true if the specified loop might access the
870 /// specified pointer location, which is a loop-strided access. The 'Access'
871 /// argument specifies what the verboten forms of access are (read or write).
873  Loop *L, const SCEV *BECount,
874  unsigned StoreSize, AliasAnalysis &AA,
875  Instruction *IgnoredStore) {
876  // Get the location that may be stored across the loop. Since the access is
877  // strided positively through memory, we say that the modified location starts
878  // at the pointer and has infinite size.
879  uint64_t AccessSize = AliasAnalysis::UnknownSize;
880 
881  // If the loop iterates a fixed number of times, we can refine the access size
882  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
883  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
884  AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
885 
886  // TODO: For this to be really effective, we have to dive into the pointer
887  // operand in the store. Store to &A[i] of 100 will always return may alias
888  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
889  // which will then no-alias a store to &A[100].
890  AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
891 
892  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
893  ++BI)
894  for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
895  if (&*I != IgnoredStore &&
896  (AA.getModRefInfo(I, StoreLoc) & Access))
897  return true;
898 
899  return false;
900 }
901 
902 /// getMemSetPatternValue - If a strided store of the specified value is safe to
903 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
904 /// be passed in. Otherwise, return null.
905 ///
906 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
907 /// just replicate their input array and then pass on to memset_pattern16.
909  // If the value isn't a constant, we can't promote it to being in a constant
910  // array. We could theoretically do a store to an alloca or something, but
911  // that doesn't seem worthwhile.
912  Constant *C = dyn_cast<Constant>(V);
913  if (C == 0) return 0;
914 
915  // Only handle simple values that are a power of two bytes in size.
916  uint64_t Size = TD.getTypeSizeInBits(V->getType());
917  if (Size == 0 || (Size & 7) || (Size & (Size-1)))
918  return 0;
919 
920  // Don't care enough about darwin/ppc to implement this.
921  if (TD.isBigEndian())
922  return 0;
923 
924  // Convert to size in bytes.
925  Size /= 8;
926 
927  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
928  // if the top and bottom are the same (e.g. for vectors and large integers).
929  if (Size > 16) return 0;
930 
931  // If the constant is exactly 16 bytes, just use it.
932  if (Size == 16) return C;
933 
934  // Otherwise, we'll use an array of the constants.
935  unsigned ArraySize = 16/Size;
936  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
937  return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
938 }
939 
940 
941 /// processLoopStridedStore - We see a strided store of some value. If we can
942 /// transform this into a memset or memset_pattern in the loop preheader, do so.
943 bool LoopIdiomRecognize::
944 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
945  unsigned StoreAlignment, Value *StoredVal,
946  Instruction *TheStore, const SCEVAddRecExpr *Ev,
947  const SCEV *BECount) {
948 
949  // If the stored value is a byte-wise value (like i32 -1), then it may be
950  // turned into a memset of i8 -1, assuming that all the consecutive bytes
951  // are stored. A store of i32 0x01020304 can never be turned into a memset,
952  // but it can be turned into memset_pattern if the target supports it.
953  Value *SplatValue = isBytewiseValue(StoredVal);
954  Constant *PatternValue = 0;
955 
956  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
957 
958  // If we're allowed to form a memset, and the stored value would be acceptable
959  // for memset, use it.
960  if (SplatValue && TLI->has(LibFunc::memset) &&
961  // Verify that the stored value is loop invariant. If not, we can't
962  // promote the memset.
963  CurLoop->isLoopInvariant(SplatValue)) {
964  // Keep and use SplatValue.
965  PatternValue = 0;
966  } else if (DestAS == 0 &&
967  TLI->has(LibFunc::memset_pattern16) &&
968  (PatternValue = getMemSetPatternValue(StoredVal, *TD))) {
969  // Don't create memset_pattern16s with address spaces.
970  // It looks like we can use PatternValue!
971  SplatValue = 0;
972  } else {
973  // Otherwise, this isn't an idiom we can transform. For example, we can't
974  // do anything with a 3-byte store.
975  return false;
976  }
977 
978  // The trip count of the loop and the base pointer of the addrec SCEV is
979  // guaranteed to be loop invariant, which means that it should dominate the
980  // header. This allows us to insert code for it in the preheader.
981  BasicBlock *Preheader = CurLoop->getLoopPreheader();
982  IRBuilder<> Builder(Preheader->getTerminator());
983  SCEVExpander Expander(*SE, "loop-idiom");
984 
985  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
986 
987  // Okay, we have a strided store "p[i]" of a splattable value. We can turn
988  // this into a memset in the loop preheader now if we want. However, this
989  // would be unsafe to do if there is anything else in the loop that may read
990  // or write to the aliased location. Check for any overlap by generating the
991  // base pointer and checking the region.
992  Value *BasePtr =
993  Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
994  Preheader->getTerminator());
995 
996  if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
997  CurLoop, BECount,
998  StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
999  Expander.clear();
1000  // If we generated new code for the base pointer, clean up.
1001  deleteIfDeadInstruction(BasePtr, *SE, TLI);
1002  return false;
1003  }
1004 
1005  // Okay, everything looks good, insert the memset.
1006 
1007  // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
1008  // pointer size if it isn't already.
1009  Type *IntPtr = Builder.getIntPtrTy(TD, DestAS);
1010  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1011 
1012  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
1013  SCEV::FlagNUW);
1014  if (StoreSize != 1) {
1015  NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
1016  SCEV::FlagNUW);
1017  }
1018 
1019  Value *NumBytes =
1020  Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
1021 
1022  CallInst *NewCall;
1023  if (SplatValue) {
1024  NewCall = Builder.CreateMemSet(BasePtr,
1025  SplatValue,
1026  NumBytes,
1027  StoreAlignment);
1028  } else {
1029  // Everything is emitted in default address space
1030  Type *Int8PtrTy = DestInt8PtrTy;
1031 
1032  Module *M = TheStore->getParent()->getParent()->getParent();
1033  Value *MSP = M->getOrInsertFunction("memset_pattern16",
1034  Builder.getVoidTy(),
1035  Int8PtrTy,
1036  Int8PtrTy,
1037  IntPtr,
1038  (void*)0);
1039 
1040  // Otherwise we should form a memset_pattern16. PatternValue is known to be
1041  // an constant array of 16-bytes. Plop the value into a mergable global.
1042  GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1043  GlobalValue::InternalLinkage,
1044  PatternValue, ".memset_pattern");
1045  GV->setUnnamedAddr(true); // Ok to merge these.
1046  GV->setAlignment(16);
1047  Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1048  NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1049  }
1050 
1051  DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1052  << " from store to: " << *Ev << " at: " << *TheStore << "\n");
1053  NewCall->setDebugLoc(TheStore->getDebugLoc());
1054 
1055  // Okay, the memset has been formed. Zap the original store and anything that
1056  // feeds into it.
1057  deleteDeadInstruction(TheStore, *SE, TLI);
1058  ++NumMemSet;
1059  return true;
1060 }
1061 
1062 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1063 /// same-strided load.
1064 bool LoopIdiomRecognize::
1065 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1066  const SCEVAddRecExpr *StoreEv,
1067  const SCEVAddRecExpr *LoadEv,
1068  const SCEV *BECount) {
1069  // If we're not allowed to form memcpy, we fail.
1070  if (!TLI->has(LibFunc::memcpy))
1071  return false;
1072 
1073  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1074 
1075  // The trip count of the loop and the base pointer of the addrec SCEV is
1076  // guaranteed to be loop invariant, which means that it should dominate the
1077  // header. This allows us to insert code for it in the preheader.
1078  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1079  IRBuilder<> Builder(Preheader->getTerminator());
1080  SCEVExpander Expander(*SE, "loop-idiom");
1081 
1082  // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1083  // this into a memcpy in the loop preheader now if we want. However, this
1084  // would be unsafe to do if there is anything else in the loop that may read
1085  // or write the memory region we're storing to. This includes the load that
1086  // feeds the stores. Check for an alias by generating the base address and
1087  // checking everything.
1088  Value *StoreBasePtr =
1089  Expander.expandCodeFor(StoreEv->getStart(),
1090  Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1091  Preheader->getTerminator());
1092 
1093  if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1094  CurLoop, BECount, StoreSize,
1095  getAnalysis<AliasAnalysis>(), SI)) {
1096  Expander.clear();
1097  // If we generated new code for the base pointer, clean up.
1098  deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1099  return false;
1100  }
1101 
1102  // For a memcpy, we have to make sure that the input array is not being
1103  // mutated by the loop.
1104  Value *LoadBasePtr =
1105  Expander.expandCodeFor(LoadEv->getStart(),
1106  Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1107  Preheader->getTerminator());
1108 
1109  if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1110  StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1111  Expander.clear();
1112  // If we generated new code for the base pointer, clean up.
1113  deleteIfDeadInstruction(LoadBasePtr, *SE, TLI);
1114  deleteIfDeadInstruction(StoreBasePtr, *SE, TLI);
1115  return false;
1116  }
1117 
1118  // Okay, everything is safe, we can transform this!
1119 
1120 
1121  // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
1122  // pointer size if it isn't already.
1123  Type *IntPtrTy = Builder.getIntPtrTy(TD, SI->getPointerAddressSpace());
1124  BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
1125 
1126  const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
1127  SCEV::FlagNUW);
1128  if (StoreSize != 1)
1129  NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
1130  SCEV::FlagNUW);
1131 
1132  Value *NumBytes =
1133  Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1134 
1135  CallInst *NewCall =
1136  Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1137  std::min(SI->getAlignment(), LI->getAlignment()));
1138  NewCall->setDebugLoc(SI->getDebugLoc());
1139 
1140  DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"
1141  << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1142  << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1143 
1144 
1145  // Okay, the memset has been formed. Zap the original store and anything that
1146  // feeds into it.
1147  deleteDeadInstruction(SI, *SE, TLI);
1148  ++NumMemCpy;
1149  return true;
1150 }
unsigned getAlignment() const
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
getPopcntSupport - Return hardware support for population count.
Value * getValueOperand()
Definition: Instructions.h:343
use_iterator use_end()
Definition: Value.h:152
AnalysisUsage & addPreserved()
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
const SCEV * getConstant(ConstantInt *V)
Value * isBytewiseValue(Value *V)
ModRefResult getModRefInfo(const Instruction *I, const Location &Loc)
STATISTIC(NumMemSet,"Number of memset's formed from loop stores")
bool isVolatile() const
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
Value * getValue() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
bool isSimple() const
Definition: Instructions.h:338
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: Type.cpp:218
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const SCEV * getStart() const
iterator begin()
Definition: BasicBlock.h:193
static bool mayLoopAccessLocation(Value *Ptr, AliasAnalysis::ModRefResult Access, Loop *L, const SCEV *BECount, unsigned StoreSize, AliasAnalysis &AA, Instruction *IgnoredStore)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:351
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
#define T
BasicBlock * getSuccessor(unsigned i) const
AnalysisUsage & addPreservedID(const void *ID)
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
Loop * getLoopFor(const BasicBlock *BB) const
Definition: LoopInfo.h:618
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void memset_pattern16(void *b, const void *pattern16, size_t len);
unsigned getAlignment() const
Definition: Instructions.h:301
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
Constant * getOrInsertFunction(StringRef Name, FunctionType *T, AttributeSet AttributeList)
Definition: Module.cpp:138
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
LLVM Constant Representation.
Definition: Constant.h:41
const SCEV * getOperand(unsigned i) const
static Constant * getMemSetPatternValue(Value *V, const DataLayout &TD)
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
char & LCSSAID
Definition: LCSSA.cpp:94
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
Represent an integer comparison operator.
Definition: Instructions.h:911
Value * getOperand(unsigned i) const
Definition: User.h:88
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
Location - A description of a memory location.
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
char & LoopSimplifyID
bool isConditional() const
static void deleteIfDeadInstruction(Value *V, ScalarEvolution &SE, const TargetLibraryInfo *TLI)
static void deleteDeadInstruction(Instruction *I, ScalarEvolution &SE, const TargetLibraryInfo *TLI)
loop Recognize loop false
Class for constant integers.
Definition: Constants.h:51
Value * getDest() const
iterator end()
Definition: BasicBlock.h:195
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:262
void setAlignment(unsigned Align)
Definition: Globals.cpp:58
Type * getType() const
Definition: Value.h:111
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:27
void setUnnamedAddr(bool Val)
Definition: GlobalValue.h:85
Value * getLength() const
bool isZero() const
Definition: Constants.h:160
ConstantInt * getValue() const
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:228
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:719
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
loop Recognize loop idioms
loop idiom
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Pass * createLoopIdiomPass()
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
block_iterator block_end() const
Definition: LoopInfo.h:141
use_iterator use_begin()
Definition: Value.h:150
Value * getCondition() const
void forgetLoop(const Loop *L)
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
const Loop * getLoop() const
size_t size() const
Definition: BasicBlock.h:203
void initializeLoopIdiomRecognizePass(PassRegistry &)
const SCEV * getBackedgeTakenCount(const Loop *L)
bool use_empty() const
Definition: Value.h:149
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
const SCEV * getSCEV(Value *V)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
#define DEBUG(X)
Definition: Debug.h:97
block_iterator block_begin() const
Definition: LoopInfo.h:140
const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty)
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize,"loop-idiom","Recognize loop idioms", false, false) INITIALIZE_PASS_END(LoopIdiomRecognize
bool isBigEndian() const
Definition: DataLayout.h:196
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Value * getPointerOperand()
Definition: Instructions.h:346
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168