LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SLPVectorizer.cpp
Go to the documentation of this file.
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 #define SV_NAME "slp-vectorizer"
19 #define DEBUG_TYPE "SLP"
20 
22 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/SetVector.h"
30 #include "llvm/Analysis/Verifier.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
43 #include <algorithm>
44 #include <map>
45 
46 using namespace llvm;
47 
48 static cl::opt<int>
49  SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50  cl::desc("Only vectorize if you gain more than this "
51  "number "));
52 
53 static cl::opt<bool>
54 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
55  cl::desc("Attempt to vectorize horizontal reductions"));
56 
58  "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
59  cl::desc(
60  "Attempt to vectorize horizontal reductions feeding into a store"));
61 
62 namespace {
63 
64 static const unsigned MinVecRegSize = 128;
65 
66 static const unsigned RecursionMaxDepth = 12;
67 
68 /// A helper class for numbering instructions in multiple blocks.
69 /// Numbers start at zero for each basic block.
70 struct BlockNumbering {
71 
72  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
73 
74  BlockNumbering() : BB(0), Valid(false) {}
75 
76  void numberInstructions() {
77  unsigned Loc = 0;
78  InstrIdx.clear();
79  InstrVec.clear();
80  // Number the instructions in the block.
81  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
82  InstrIdx[it] = Loc++;
83  InstrVec.push_back(it);
84  assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
85  }
86  Valid = true;
87  }
88 
89  int getIndex(Instruction *I) {
90  assert(I->getParent() == BB && "Invalid instruction");
91  if (!Valid)
92  numberInstructions();
93  assert(InstrIdx.count(I) && "Unknown instruction");
94  return InstrIdx[I];
95  }
96 
97  Instruction *getInstruction(unsigned loc) {
98  if (!Valid)
99  numberInstructions();
100  assert(InstrVec.size() > loc && "Invalid Index");
101  return InstrVec[loc];
102  }
103 
104  void forget() { Valid = false; }
105 
106 private:
107  /// The block we are numbering.
108  BasicBlock *BB;
109  /// Is the block numbered.
110  bool Valid;
111  /// Maps instructions to numbers and back.
113  /// Maps integers to Instructions.
115 };
116 
117 /// \returns the parent basic block if all of the instructions in \p VL
118 /// are in the same block or null otherwise.
119 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121  if (!I0)
122  return 0;
123  BasicBlock *BB = I0->getParent();
124  for (int i = 1, e = VL.size(); i < e; i++) {
125  Instruction *I = dyn_cast<Instruction>(VL[i]);
126  if (!I)
127  return 0;
128 
129  if (BB != I->getParent())
130  return 0;
131  }
132  return BB;
133 }
134 
135 /// \returns True if all of the values in \p VL are constants.
136 static bool allConstant(ArrayRef<Value *> VL) {
137  for (unsigned i = 0, e = VL.size(); i < e; ++i)
138  if (!isa<Constant>(VL[i]))
139  return false;
140  return true;
141 }
142 
143 /// \returns True if all of the values in \p VL are identical.
144 static bool isSplat(ArrayRef<Value *> VL) {
145  for (unsigned i = 1, e = VL.size(); i < e; ++i)
146  if (VL[i] != VL[0])
147  return false;
148  return true;
149 }
150 
151 /// \returns The opcode if all of the Instructions in \p VL have the same
152 /// opcode, or zero.
153 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
154  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
155  if (!I0)
156  return 0;
157  unsigned Opcode = I0->getOpcode();
158  for (int i = 1, e = VL.size(); i < e; i++) {
159  Instruction *I = dyn_cast<Instruction>(VL[i]);
160  if (!I || Opcode != I->getOpcode())
161  return 0;
162  }
163  return Opcode;
164 }
165 
166 /// \returns \p I after propagating metadata from \p VL.
167 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
168  Instruction *I0 = cast<Instruction>(VL[0]);
170  I0->getAllMetadataOtherThanDebugLoc(Metadata);
171 
172  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
173  unsigned Kind = Metadata[i].first;
174  MDNode *MD = Metadata[i].second;
175 
176  for (int i = 1, e = VL.size(); MD && i != e; i++) {
177  Instruction *I = cast<Instruction>(VL[i]);
178  MDNode *IMD = I->getMetadata(Kind);
179 
180  switch (Kind) {
181  default:
182  MD = 0; // Remove unknown metadata
183  break;
185  MD = MDNode::getMostGenericTBAA(MD, IMD);
186  break;
188  MD = MDNode::getMostGenericFPMath(MD, IMD);
189  break;
190  }
191  }
192  I->setMetadata(Kind, MD);
193  }
194  return I;
195 }
196 
197 /// \returns The type that all of the values in \p VL have or null if there
198 /// are different types.
199 static Type* getSameType(ArrayRef<Value *> VL) {
200  Type *Ty = VL[0]->getType();
201  for (int i = 1, e = VL.size(); i < e; i++)
202  if (VL[i]->getType() != Ty)
203  return 0;
204 
205  return Ty;
206 }
207 
208 /// \returns True if the ExtractElement instructions in VL can be vectorized
209 /// to use the original vector.
210 static bool CanReuseExtract(ArrayRef<Value *> VL) {
211  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
212  // Check if all of the extracts come from the same vector and from the
213  // correct offset.
214  Value *VL0 = VL[0];
215  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
216  Value *Vec = E0->getOperand(0);
217 
218  // We have to extract from the same vector type.
219  unsigned NElts = Vec->getType()->getVectorNumElements();
220 
221  if (NElts != VL.size())
222  return false;
223 
224  // Check that all of the indices extract from the correct offset.
226  if (!CI || CI->getZExtValue())
227  return false;
228 
229  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
230  ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
232 
233  if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
234  return false;
235  }
236 
237  return true;
238 }
239 
240 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
242  SmallVectorImpl<Value *> &Right) {
243 
244  SmallVector<Value *, 16> OrigLeft, OrigRight;
245 
246  bool AllSameOpcodeLeft = true;
247  bool AllSameOpcodeRight = true;
248  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
249  Instruction *I = cast<Instruction>(VL[i]);
250  Value *V0 = I->getOperand(0);
251  Value *V1 = I->getOperand(1);
252 
253  OrigLeft.push_back(V0);
254  OrigRight.push_back(V1);
255 
256  Instruction *I0 = dyn_cast<Instruction>(V0);
257  Instruction *I1 = dyn_cast<Instruction>(V1);
258 
259  // Check whether all operands on one side have the same opcode. In this case
260  // we want to preserve the original order and not make things worse by
261  // reordering.
262  AllSameOpcodeLeft = I0;
263  AllSameOpcodeRight = I1;
264 
265  if (i && AllSameOpcodeLeft) {
266  if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
267  if(P0->getOpcode() != I0->getOpcode())
268  AllSameOpcodeLeft = false;
269  } else
270  AllSameOpcodeLeft = false;
271  }
272  if (i && AllSameOpcodeRight) {
273  if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
274  if(P1->getOpcode() != I1->getOpcode())
275  AllSameOpcodeRight = false;
276  } else
277  AllSameOpcodeRight = false;
278  }
279 
280  // Sort two opcodes. In the code below we try to preserve the ability to use
281  // broadcast of values instead of individual inserts.
282  // vl1 = load
283  // vl2 = phi
284  // vr1 = load
285  // vr2 = vr2
286  // = vl1 x vr1
287  // = vl2 x vr2
288  // If we just sorted according to opcode we would leave the first line in
289  // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
290  // = vl1 x vr1
291  // = vr2 x vl2
292  // Because vr2 and vr1 are from the same load we loose the opportunity of a
293  // broadcast for the packed right side in the backend: we have [vr1, vl2]
294  // instead of [vr1, vr2=vr1].
295  if (I0 && I1) {
296  if(!i && I0->getOpcode() > I1->getOpcode()) {
297  Left.push_back(I1);
298  Right.push_back(I0);
299  } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
300  // Try not to destroy a broad cast for no apparent benefit.
301  Left.push_back(I1);
302  Right.push_back(I0);
303  } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) {
304  // Try preserve broadcasts.
305  Left.push_back(I1);
306  Right.push_back(I0);
307  } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
308  // Try preserve broadcasts.
309  Left.push_back(I1);
310  Right.push_back(I0);
311  } else {
312  Left.push_back(I0);
313  Right.push_back(I1);
314  }
315  continue;
316  }
317  // One opcode, put the instruction on the right.
318  if (I0) {
319  Left.push_back(V1);
320  Right.push_back(I0);
321  continue;
322  }
323  Left.push_back(V0);
324  Right.push_back(V1);
325  }
326 
327  bool LeftBroadcast = isSplat(Left);
328  bool RightBroadcast = isSplat(Right);
329 
330  // Don't reorder if the operands where good to begin with.
331  if (!(LeftBroadcast || RightBroadcast) &&
332  (AllSameOpcodeRight || AllSameOpcodeLeft)) {
333  Left = OrigLeft;
334  Right = OrigRight;
335  }
336 }
337 
338 /// Bottom Up SLP Vectorizer.
339 class BoUpSLP {
340 public:
341  typedef SmallVector<Value *, 8> ValueList;
342  typedef SmallVector<Instruction *, 16> InstrList;
343  typedef SmallPtrSet<Value *, 16> ValueSet;
344  typedef SmallVector<StoreInst *, 8> StoreList;
345 
346  BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
348  DominatorTree *Dt) :
349  F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
350  Builder(Se->getContext()) {
351  // Setup the block numbering utility for all of the blocks in the
352  // function.
353  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
354  BasicBlock *BB = it;
355  BlocksNumbers[BB] = BlockNumbering(BB);
356  }
357  }
358 
359  /// \brief Vectorize the tree that starts with the elements in \p VL.
360  /// Returns the vectorized root.
361  Value *vectorizeTree();
362 
363  /// \returns the vectorization cost of the subtree that starts at \p VL.
364  /// A negative number means that this is profitable.
365  int getTreeCost();
366 
367  /// Construct a vectorizable tree that starts at \p Roots and is possibly
368  /// used by a reduction of \p RdxOps.
369  void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
370 
371  /// Clear the internal data structures that are created by 'buildTree'.
372  void deleteTree() {
373  RdxOps = 0;
374  VectorizableTree.clear();
375  ScalarToTreeEntry.clear();
376  MustGather.clear();
377  ExternalUses.clear();
378  MemBarrierIgnoreList.clear();
379  }
380 
381  /// \returns true if the memory operations A and B are consecutive.
382  bool isConsecutiveAccess(Value *A, Value *B);
383 
384  /// \brief Perform LICM and CSE on the newly generated gather sequences.
385  void optimizeGatherSequence();
386 private:
387  struct TreeEntry;
388 
389  /// \returns the cost of the vectorizable entry.
390  int getEntryCost(TreeEntry *E);
391 
392  /// This is the recursive part of buildTree.
393  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
394 
395  /// Vectorize a single entry in the tree.
396  Value *vectorizeTree(TreeEntry *E);
397 
398  /// Vectorize a single entry in the tree, starting in \p VL.
399  Value *vectorizeTree(ArrayRef<Value *> VL);
400 
401  /// \returns the pointer to the vectorized value if \p VL is already
402  /// vectorized, or NULL. They may happen in cycles.
403  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
404 
405  /// \brief Take the pointer operand from the Load/Store instruction.
406  /// \returns NULL if this is not a valid Load/Store instruction.
407  static Value *getPointerOperand(Value *I);
408 
409  /// \brief Take the address space operand from the Load/Store instruction.
410  /// \returns -1 if this is not a valid Load/Store instruction.
411  static unsigned getAddressSpaceOperand(Value *I);
412 
413  /// \returns the scalarization cost for this type. Scalarization in this
414  /// context means the creation of vectors from a group of scalars.
415  int getGatherCost(Type *Ty);
416 
417  /// \returns the scalarization cost for this list of values. Assuming that
418  /// this subtree gets vectorized, we may need to extract the values from the
419  /// roots. This method calculates the cost of extracting the values.
420  int getGatherCost(ArrayRef<Value *> VL);
421 
422  /// \returns the AA location that is being access by the instruction.
423  AliasAnalysis::Location getLocation(Instruction *I);
424 
425  /// \brief Checks if it is possible to sink an instruction from
426  /// \p Src to \p Dst.
427  /// \returns the pointer to the barrier instruction if we can't sink.
428  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
429 
430  /// \returns the index of the last instruction in the BB from \p VL.
431  int getLastIndex(ArrayRef<Value *> VL);
432 
433  /// \returns the Instruction in the bundle \p VL.
434  Instruction *getLastInstruction(ArrayRef<Value *> VL);
435 
436  /// \brief Set the Builder insert point to one after the last instruction in
437  /// the bundle
438  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
439 
440  /// \returns a vector from a collection of scalars in \p VL.
441  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
442 
443  /// \returns whether the VectorizableTree is fully vectoriable and will
444  /// be beneficial even the tree height is tiny.
445  bool isFullyVectorizableTinyTree();
446 
447  struct TreeEntry {
448  TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
449  NeedToGather(0) {}
450 
451  /// \returns true if the scalars in VL are equal to this entry.
452  bool isSame(ArrayRef<Value *> VL) const {
453  assert(VL.size() == Scalars.size() && "Invalid size");
454  return std::equal(VL.begin(), VL.end(), Scalars.begin());
455  }
456 
457  /// A vector of scalars.
458  ValueList Scalars;
459 
460  /// The Scalars are vectorized into this value. It is initialized to Null.
461  Value *VectorizedValue;
462 
463  /// The index in the basic block of the last scalar.
464  int LastScalarIndex;
465 
466  /// Do we need to gather this sequence ?
467  bool NeedToGather;
468  };
469 
470  /// Create a new VectorizableTree entry.
471  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
472  VectorizableTree.push_back(TreeEntry());
473  int idx = VectorizableTree.size() - 1;
474  TreeEntry *Last = &VectorizableTree[idx];
475  Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
476  Last->NeedToGather = !Vectorized;
477  if (Vectorized) {
478  Last->LastScalarIndex = getLastIndex(VL);
479  for (int i = 0, e = VL.size(); i != e; ++i) {
480  assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
481  ScalarToTreeEntry[VL[i]] = idx;
482  }
483  } else {
484  Last->LastScalarIndex = 0;
485  MustGather.insert(VL.begin(), VL.end());
486  }
487  return Last;
488  }
489 
490  /// -- Vectorization State --
491  /// Holds all of the tree entries.
492  std::vector<TreeEntry> VectorizableTree;
493 
494  /// Maps a specific scalar to its tree entry.
495  SmallDenseMap<Value*, int> ScalarToTreeEntry;
496 
497  /// A list of scalars that we found that we need to keep as scalars.
498  ValueSet MustGather;
499 
500  /// This POD struct describes one external user in the vectorized tree.
501  struct ExternalUser {
502  ExternalUser (Value *S, llvm::User *U, int L) :
503  Scalar(S), User(U), Lane(L){};
504  // Which scalar in our function.
505  Value *Scalar;
506  // Which user that uses the scalar.
507  llvm::User *User;
508  // Which lane does the scalar belong to.
509  int Lane;
510  };
511  typedef SmallVector<ExternalUser, 16> UserList;
512 
513  /// A list of values that need to extracted out of the tree.
514  /// This list holds pairs of (Internal Scalar : External User).
515  UserList ExternalUses;
516 
517  /// A list of instructions to ignore while sinking
518  /// memory instructions. This map must be reset between runs of getCost.
519  ValueSet MemBarrierIgnoreList;
520 
521  /// Holds all of the instructions that we gathered.
522  SetVector<Instruction *> GatherSeq;
523 
524  /// Numbers instructions in different blocks.
526 
527  /// Reduction operators.
528  ValueSet *RdxOps;
529 
530  // Analysis and block reference.
531  Function *F;
532  ScalarEvolution *SE;
533  DataLayout *DL;
534  TargetTransformInfo *TTI;
535  AliasAnalysis *AA;
536  LoopInfo *LI;
537  DominatorTree *DT;
538  /// Instruction builder to construct the vectorized tree.
539  IRBuilder<> Builder;
540 };
541 
542 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
543  deleteTree();
544  RdxOps = Rdx;
545  if (!getSameType(Roots))
546  return;
547  buildTree_rec(Roots, 0);
548 
549  // Collect the values that we need to extract from the tree.
550  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
551  TreeEntry *Entry = &VectorizableTree[EIdx];
552 
553  // For each lane:
554  for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
555  Value *Scalar = Entry->Scalars[Lane];
556 
557  // No need to handle users of gathered values.
558  if (Entry->NeedToGather)
559  continue;
560 
561  for (Value::use_iterator User = Scalar->use_begin(),
562  UE = Scalar->use_end(); User != UE; ++User) {
563  DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
564 
565  bool Gathered = MustGather.count(*User);
566 
567  // Skip in-tree scalars that become vectors.
568  if (ScalarToTreeEntry.count(*User) && !Gathered) {
569  DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
570  **User << ".\n");
571  int Idx = ScalarToTreeEntry[*User]; (void) Idx;
572  assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
573  continue;
574  }
575  Instruction *UserInst = dyn_cast<Instruction>(*User);
576  if (!UserInst)
577  continue;
578 
579  // Ignore uses that are part of the reduction.
580  if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
581  continue;
582 
583  DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
584  Lane << " from " << *Scalar << ".\n");
585  ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
586  }
587  }
588  }
589 }
590 
591 
592 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
593  bool SameTy = getSameType(VL); (void)SameTy;
594  assert(SameTy && "Invalid types!");
595 
596  if (Depth == RecursionMaxDepth) {
597  DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
598  newTreeEntry(VL, false);
599  return;
600  }
601 
602  // Don't handle vectors.
603  if (VL[0]->getType()->isVectorTy()) {
604  DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
605  newTreeEntry(VL, false);
606  return;
607  }
608 
609  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
610  if (SI->getValueOperand()->getType()->isVectorTy()) {
611  DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
612  newTreeEntry(VL, false);
613  return;
614  }
615 
616  // If all of the operands are identical or constant we have a simple solution.
617  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
618  !getSameOpcode(VL)) {
619  DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
620  newTreeEntry(VL, false);
621  return;
622  }
623 
624  // We now know that this is a vector of instructions of the same type from
625  // the same block.
626 
627  // Check if this is a duplicate of another entry.
628  if (ScalarToTreeEntry.count(VL[0])) {
629  int Idx = ScalarToTreeEntry[VL[0]];
630  TreeEntry *E = &VectorizableTree[Idx];
631  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
632  DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
633  if (E->Scalars[i] != VL[i]) {
634  DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
635  newTreeEntry(VL, false);
636  return;
637  }
638  }
639  DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
640  return;
641  }
642 
643  // Check that none of the instructions in the bundle are already in the tree.
644  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
645  if (ScalarToTreeEntry.count(VL[i])) {
646  DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
647  ") is already in tree.\n");
648  newTreeEntry(VL, false);
649  return;
650  }
651  }
652 
653  // If any of the scalars appears in the table OR it is marked as a value that
654  // needs to stat scalar then we need to gather the scalars.
655  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
656  if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
657  DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
658  newTreeEntry(VL, false);
659  return;
660  }
661  }
662 
663  // Check that all of the users of the scalars that we want to vectorize are
664  // schedulable.
665  Instruction *VL0 = cast<Instruction>(VL[0]);
666  int MyLastIndex = getLastIndex(VL);
667  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
668 
669  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
670  Instruction *Scalar = cast<Instruction>(VL[i]);
671  DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
672  for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
673  U != UE; ++U) {
674  DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
675  Instruction *User = dyn_cast<Instruction>(*U);
676  if (!User) {
677  DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
678  newTreeEntry(VL, false);
679  return;
680  }
681 
682  // We don't care if the user is in a different basic block.
683  BasicBlock *UserBlock = User->getParent();
684  if (UserBlock != BB) {
685  DEBUG(dbgs() << "SLP: User from a different basic block "
686  << *User << ". \n");
687  continue;
688  }
689 
690  // If this is a PHINode within this basic block then we can place the
691  // extract wherever we want.
692  if (isa<PHINode>(*User)) {
693  DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
694  continue;
695  }
696 
697  // Check if this is a safe in-tree user.
698  if (ScalarToTreeEntry.count(User)) {
699  int Idx = ScalarToTreeEntry[User];
700  int VecLocation = VectorizableTree[Idx].LastScalarIndex;
701  if (VecLocation <= MyLastIndex) {
702  DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
703  newTreeEntry(VL, false);
704  return;
705  }
706  DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
707  VecLocation << " vector value (" << *Scalar << ") at #"
708  << MyLastIndex << ".\n");
709  continue;
710  }
711 
712  // This user is part of the reduction.
713  if (RdxOps && RdxOps->count(User))
714  continue;
715 
716  // Make sure that we can schedule this unknown user.
717  BlockNumbering &BN = BlocksNumbers[BB];
718  int UserIndex = BN.getIndex(User);
719  if (UserIndex < MyLastIndex) {
720 
721  DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
722  << *User << ". \n");
723  newTreeEntry(VL, false);
724  return;
725  }
726  }
727  }
728 
729  // Check that every instructions appears once in this bundle.
730  for (unsigned i = 0, e = VL.size(); i < e; ++i)
731  for (unsigned j = i+1; j < e; ++j)
732  if (VL[i] == VL[j]) {
733  DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
734  newTreeEntry(VL, false);
735  return;
736  }
737 
738  // Check that instructions in this bundle don't reference other instructions.
739  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
740  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
741  for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
742  U != UE; ++U) {
743  for (unsigned j = 0; j < e; ++j) {
744  if (i != j && *U == VL[j]) {
745  DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
746  newTreeEntry(VL, false);
747  return;
748  }
749  }
750  }
751  }
752 
753  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
754 
755  unsigned Opcode = getSameOpcode(VL);
756 
757  // Check if it is safe to sink the loads or the stores.
758  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
759  Instruction *Last = getLastInstruction(VL);
760 
761  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
762  if (VL[i] == Last)
763  continue;
764  Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
765  if (Barrier) {
766  DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
767  << "\n because of " << *Barrier << ". Gathering.\n");
768  newTreeEntry(VL, false);
769  return;
770  }
771  }
772  }
773 
774  switch (Opcode) {
775  case Instruction::PHI: {
776  PHINode *PH = dyn_cast<PHINode>(VL0);
777 
778  // Check for terminator values (e.g. invoke).
779  for (unsigned j = 0; j < VL.size(); ++j)
780  for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
781  TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
782  if (Term) {
783  DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
784  newTreeEntry(VL, false);
785  return;
786  }
787  }
788 
789  newTreeEntry(VL, true);
790  DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
791 
792  for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
793  ValueList Operands;
794  // Prepare the operand vector.
795  for (unsigned j = 0; j < VL.size(); ++j)
796  Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
797 
798  buildTree_rec(Operands, Depth + 1);
799  }
800  return;
801  }
803  bool Reuse = CanReuseExtract(VL);
804  if (Reuse) {
805  DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
806  }
807  newTreeEntry(VL, Reuse);
808  return;
809  }
810  case Instruction::Load: {
811  // Check if the loads are consecutive or of we need to swizzle them.
812  for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
813  LoadInst *L = cast<LoadInst>(VL[i]);
814  if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
815  newTreeEntry(VL, false);
816  DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
817  return;
818  }
819  }
820  newTreeEntry(VL, true);
821  DEBUG(dbgs() << "SLP: added a vector of loads.\n");
822  return;
823  }
824  case Instruction::ZExt:
825  case Instruction::SExt:
826  case Instruction::FPToUI:
827  case Instruction::FPToSI:
828  case Instruction::FPExt:
829  case Instruction::PtrToInt:
830  case Instruction::IntToPtr:
831  case Instruction::SIToFP:
832  case Instruction::UIToFP:
833  case Instruction::Trunc:
834  case Instruction::FPTrunc:
835  case Instruction::BitCast: {
836  Type *SrcTy = VL0->getOperand(0)->getType();
837  for (unsigned i = 0; i < VL.size(); ++i) {
838  Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
839  if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
840  newTreeEntry(VL, false);
841  DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
842  return;
843  }
844  }
845  newTreeEntry(VL, true);
846  DEBUG(dbgs() << "SLP: added a vector of casts.\n");
847 
848  for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
849  ValueList Operands;
850  // Prepare the operand vector.
851  for (unsigned j = 0; j < VL.size(); ++j)
852  Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
853 
854  buildTree_rec(Operands, Depth+1);
855  }
856  return;
857  }
858  case Instruction::ICmp:
859  case Instruction::FCmp: {
860  // Check that all of the compares have the same predicate.
861  CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
862  Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
863  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
864  CmpInst *Cmp = cast<CmpInst>(VL[i]);
865  if (Cmp->getPredicate() != P0 ||
866  Cmp->getOperand(0)->getType() != ComparedTy) {
867  newTreeEntry(VL, false);
868  DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
869  return;
870  }
871  }
872 
873  newTreeEntry(VL, true);
874  DEBUG(dbgs() << "SLP: added a vector of compares.\n");
875 
876  for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
877  ValueList Operands;
878  // Prepare the operand vector.
879  for (unsigned j = 0; j < VL.size(); ++j)
880  Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
881 
882  buildTree_rec(Operands, Depth+1);
883  }
884  return;
885  }
886  case Instruction::Select:
887  case Instruction::Add:
888  case Instruction::FAdd:
889  case Instruction::Sub:
890  case Instruction::FSub:
891  case Instruction::Mul:
892  case Instruction::FMul:
893  case Instruction::UDiv:
894  case Instruction::SDiv:
895  case Instruction::FDiv:
896  case Instruction::URem:
897  case Instruction::SRem:
898  case Instruction::FRem:
899  case Instruction::Shl:
900  case Instruction::LShr:
901  case Instruction::AShr:
902  case Instruction::And:
903  case Instruction::Or:
904  case Instruction::Xor: {
905  newTreeEntry(VL, true);
906  DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
907 
908  // Sort operands of the instructions so that each side is more likely to
909  // have the same opcode.
910  if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
911  ValueList Left, Right;
912  reorderInputsAccordingToOpcode(VL, Left, Right);
913  buildTree_rec(Left, Depth + 1);
914  buildTree_rec(Right, Depth + 1);
915  return;
916  }
917 
918  for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
919  ValueList Operands;
920  // Prepare the operand vector.
921  for (unsigned j = 0; j < VL.size(); ++j)
922  Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
923 
924  buildTree_rec(Operands, Depth+1);
925  }
926  return;
927  }
928  case Instruction::Store: {
929  // Check if the stores are consecutive or of we need to swizzle them.
930  for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
931  if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
932  newTreeEntry(VL, false);
933  DEBUG(dbgs() << "SLP: Non consecutive store.\n");
934  return;
935  }
936 
937  newTreeEntry(VL, true);
938  DEBUG(dbgs() << "SLP: added a vector of stores.\n");
939 
940  ValueList Operands;
941  for (unsigned j = 0; j < VL.size(); ++j)
942  Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
943 
944  // We can ignore these values because we are sinking them down.
945  MemBarrierIgnoreList.insert(VL.begin(), VL.end());
946  buildTree_rec(Operands, Depth + 1);
947  return;
948  }
949  default:
950  newTreeEntry(VL, false);
951  DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
952  return;
953  }
954 }
955 
956 int BoUpSLP::getEntryCost(TreeEntry *E) {
957  ArrayRef<Value*> VL = E->Scalars;
958 
959  Type *ScalarTy = VL[0]->getType();
960  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
961  ScalarTy = SI->getValueOperand()->getType();
962  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
963 
964  if (E->NeedToGather) {
965  if (allConstant(VL))
966  return 0;
967  if (isSplat(VL)) {
968  return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
969  }
970  return getGatherCost(E->Scalars);
971  }
972 
973  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
974  "Invalid VL");
975  Instruction *VL0 = cast<Instruction>(VL[0]);
976  unsigned Opcode = VL0->getOpcode();
977  switch (Opcode) {
978  case Instruction::PHI: {
979  return 0;
980  }
982  if (CanReuseExtract(VL))
983  return 0;
984  return getGatherCost(VecTy);
985  }
986  case Instruction::ZExt:
987  case Instruction::SExt:
988  case Instruction::FPToUI:
989  case Instruction::FPToSI:
990  case Instruction::FPExt:
991  case Instruction::PtrToInt:
992  case Instruction::IntToPtr:
993  case Instruction::SIToFP:
994  case Instruction::UIToFP:
995  case Instruction::Trunc:
996  case Instruction::FPTrunc:
997  case Instruction::BitCast: {
998  Type *SrcTy = VL0->getOperand(0)->getType();
999 
1000  // Calculate the cost of this instruction.
1001  int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1002  VL0->getType(), SrcTy);
1003 
1004  VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1005  int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1006  return VecCost - ScalarCost;
1007  }
1008  case Instruction::FCmp:
1009  case Instruction::ICmp:
1010  case Instruction::Select:
1011  case Instruction::Add:
1012  case Instruction::FAdd:
1013  case Instruction::Sub:
1014  case Instruction::FSub:
1015  case Instruction::Mul:
1016  case Instruction::FMul:
1017  case Instruction::UDiv:
1018  case Instruction::SDiv:
1019  case Instruction::FDiv:
1020  case Instruction::URem:
1021  case Instruction::SRem:
1022  case Instruction::FRem:
1023  case Instruction::Shl:
1024  case Instruction::LShr:
1025  case Instruction::AShr:
1026  case Instruction::And:
1027  case Instruction::Or:
1028  case Instruction::Xor: {
1029  // Calculate the cost of this instruction.
1030  int ScalarCost = 0;
1031  int VecCost = 0;
1032  if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1033  Opcode == Instruction::Select) {
1034  VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1035  ScalarCost = VecTy->getNumElements() *
1036  TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1037  VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1038  } else {
1039  // Certain instructions can be cheaper to vectorize if they have a
1040  // constant second vector operand.
1045 
1046  // Check whether all second operands are constant.
1047  for (unsigned i = 0; i < VL.size(); ++i)
1048  if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
1050  break;
1051  }
1052 
1053  ScalarCost =
1054  VecTy->getNumElements() *
1055  TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1056  VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1057  }
1058  return VecCost - ScalarCost;
1059  }
1060  case Instruction::Load: {
1061  // Cost of wide load - cost of scalar loads.
1062  int ScalarLdCost = VecTy->getNumElements() *
1063  TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1064  int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1065  return VecLdCost - ScalarLdCost;
1066  }
1067  case Instruction::Store: {
1068  // We know that we can merge the stores. Calculate the cost.
1069  int ScalarStCost = VecTy->getNumElements() *
1070  TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1071  int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1072  return VecStCost - ScalarStCost;
1073  }
1074  default:
1075  llvm_unreachable("Unknown instruction");
1076  }
1077 }
1078 
1079 bool BoUpSLP::isFullyVectorizableTinyTree() {
1080  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1081  VectorizableTree.size() << " is fully vectorizable .\n");
1082 
1083  // We only handle trees of height 2.
1084  if (VectorizableTree.size() != 2)
1085  return false;
1086 
1087  // Gathering cost would be too much for tiny trees.
1088  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1089  return false;
1090 
1091  return true;
1092 }
1093 
1094 int BoUpSLP::getTreeCost() {
1095  int Cost = 0;
1096  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1097  VectorizableTree.size() << ".\n");
1098 
1099  // We only vectorize tiny trees if it is fully vectorizable.
1100  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1101  if (!VectorizableTree.size()) {
1102  assert(!ExternalUses.size() && "We should not have any external users");
1103  }
1104  return INT_MAX;
1105  }
1106 
1107  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1108 
1109  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1110  int C = getEntryCost(&VectorizableTree[i]);
1111  DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1112  << *VectorizableTree[i].Scalars[0] << " .\n");
1113  Cost += C;
1114  }
1115 
1116  int ExtractCost = 0;
1117  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1118  I != E; ++I) {
1119 
1120  VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1121  ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1122  I->Lane);
1123  }
1124 
1125 
1126  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1127  return Cost + ExtractCost;
1128 }
1129 
1130 int BoUpSLP::getGatherCost(Type *Ty) {
1131  int Cost = 0;
1132  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1133  Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1134  return Cost;
1135 }
1136 
1137 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1138  // Find the type of the operands in VL.
1139  Type *ScalarTy = VL[0]->getType();
1140  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1141  ScalarTy = SI->getValueOperand()->getType();
1142  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1143  // Find the cost of inserting/extracting values from the vector.
1144  return getGatherCost(VecTy);
1145 }
1146 
1147 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1148  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1149  return AA->getLocation(SI);
1150  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1151  return AA->getLocation(LI);
1152  return AliasAnalysis::Location();
1153 }
1154 
1156  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1157  return LI->getPointerOperand();
1158  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1159  return SI->getPointerOperand();
1160  return 0;
1161 }
1162 
1163 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1164  if (LoadInst *L = dyn_cast<LoadInst>(I))
1165  return L->getPointerAddressSpace();
1166  if (StoreInst *S = dyn_cast<StoreInst>(I))
1167  return S->getPointerAddressSpace();
1168  return -1;
1169 }
1170 
1171 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1172  Value *PtrA = getPointerOperand(A);
1173  Value *PtrB = getPointerOperand(B);
1174  unsigned ASA = getAddressSpaceOperand(A);
1175  unsigned ASB = getAddressSpaceOperand(B);
1176 
1177  // Check that the address spaces match and that the pointers are valid.
1178  if (!PtrA || !PtrB || (ASA != ASB))
1179  return false;
1180 
1181  // Make sure that A and B are different pointers of the same type.
1182  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1183  return false;
1184 
1185  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1186  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1187  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1188 
1189  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1190  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1191  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1192 
1193  APInt OffsetDelta = OffsetB - OffsetA;
1194 
1195  // Check if they are based on the same pointer. That makes the offsets
1196  // sufficient.
1197  if (PtrA == PtrB)
1198  return OffsetDelta == Size;
1199 
1200  // Compute the necessary base pointer delta to have the necessary final delta
1201  // equal to the size.
1202  APInt BaseDelta = Size - OffsetDelta;
1203 
1204  // Otherwise compute the distance with SCEV between the base pointers.
1205  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1206  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1207  const SCEV *C = SE->getConstant(BaseDelta);
1208  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1209  return X == PtrSCEVB;
1210 }
1211 
1212 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1213  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1214  BasicBlock::iterator I = Src, E = Dst;
1215  /// Scan all of the instruction from SRC to DST and check if
1216  /// the source may alias.
1217  for (++I; I != E; ++I) {
1218  // Ignore store instructions that are marked as 'ignore'.
1219  if (MemBarrierIgnoreList.count(I))
1220  continue;
1221  if (Src->mayWriteToMemory()) /* Write */ {
1222  if (!I->mayReadOrWriteMemory())
1223  continue;
1224  } else /* Read */ {
1225  if (!I->mayWriteToMemory())
1226  continue;
1227  }
1228  AliasAnalysis::Location A = getLocation(&*I);
1229  AliasAnalysis::Location B = getLocation(Src);
1230 
1231  if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1232  return I;
1233  }
1234  return 0;
1235 }
1236 
1237 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1238  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1239  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1240  BlockNumbering &BN = BlocksNumbers[BB];
1241 
1242  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1243  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1244  MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1245  return MaxIdx;
1246 }
1247 
1248 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1249  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1250  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1251  BlockNumbering &BN = BlocksNumbers[BB];
1252 
1253  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1254  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1255  MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1256  Instruction *I = BN.getInstruction(MaxIdx);
1257  assert(I && "bad location");
1258  return I;
1259 }
1260 
1261 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1262  Instruction *VL0 = cast<Instruction>(VL[0]);
1263  Instruction *LastInst = getLastInstruction(VL);
1264  BasicBlock::iterator NextInst = LastInst;
1265  ++NextInst;
1266  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1267  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1268 }
1269 
1270 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1271  Value *Vec = UndefValue::get(Ty);
1272  // Generate the 'InsertElement' instruction.
1273  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1274  Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1275  if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1276  GatherSeq.insert(Insrt);
1277 
1278  // Add to our 'need-to-extract' list.
1279  if (ScalarToTreeEntry.count(VL[i])) {
1280  int Idx = ScalarToTreeEntry[VL[i]];
1281  TreeEntry *E = &VectorizableTree[Idx];
1282  // Find which lane we need to extract.
1283  int FoundLane = -1;
1284  for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1285  // Is this the lane of the scalar that we are looking for ?
1286  if (E->Scalars[Lane] == VL[i]) {
1287  FoundLane = Lane;
1288  break;
1289  }
1290  }
1291  assert(FoundLane >= 0 && "Could not find the correct lane");
1292  ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1293  }
1294  }
1295  }
1296 
1297  return Vec;
1298 }
1299 
1300 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1302  = ScalarToTreeEntry.find(VL[0]);
1303  if (Entry != ScalarToTreeEntry.end()) {
1304  int Idx = Entry->second;
1305  const TreeEntry *En = &VectorizableTree[Idx];
1306  if (En->isSame(VL) && En->VectorizedValue)
1307  return En->VectorizedValue;
1308  }
1309  return 0;
1310 }
1311 
1312 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1313  if (ScalarToTreeEntry.count(VL[0])) {
1314  int Idx = ScalarToTreeEntry[VL[0]];
1315  TreeEntry *E = &VectorizableTree[Idx];
1316  if (E->isSame(VL))
1317  return vectorizeTree(E);
1318  }
1319 
1320  Type *ScalarTy = VL[0]->getType();
1321  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1322  ScalarTy = SI->getValueOperand()->getType();
1323  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1324 
1325  return Gather(VL, VecTy);
1326 }
1327 
1328 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1329  IRBuilder<>::InsertPointGuard Guard(Builder);
1330 
1331  if (E->VectorizedValue) {
1332  DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1333  return E->VectorizedValue;
1334  }
1335 
1336  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1337  Type *ScalarTy = VL0->getType();
1338  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1339  ScalarTy = SI->getValueOperand()->getType();
1340  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1341 
1342  if (E->NeedToGather) {
1343  setInsertPointAfterBundle(E->Scalars);
1344  return Gather(E->Scalars, VecTy);
1345  }
1346 
1347  unsigned Opcode = VL0->getOpcode();
1348  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1349 
1350  switch (Opcode) {
1351  case Instruction::PHI: {
1352  PHINode *PH = dyn_cast<PHINode>(VL0);
1353  Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1354  Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1355  PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1356  E->VectorizedValue = NewPhi;
1357 
1358  // PHINodes may have multiple entries from the same block. We want to
1359  // visit every block once.
1360  SmallSet<BasicBlock*, 4> VisitedBBs;
1361 
1362  for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1363  ValueList Operands;
1364  BasicBlock *IBB = PH->getIncomingBlock(i);
1365 
1366  if (!VisitedBBs.insert(IBB)) {
1367  NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1368  continue;
1369  }
1370 
1371  // Prepare the operand vector.
1372  for (unsigned j = 0; j < E->Scalars.size(); ++j)
1373  Operands.push_back(cast<PHINode>(E->Scalars[j])->
1374  getIncomingValueForBlock(IBB));
1375 
1376  Builder.SetInsertPoint(IBB->getTerminator());
1377  Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1378  Value *Vec = vectorizeTree(Operands);
1379  NewPhi->addIncoming(Vec, IBB);
1380  }
1381 
1382  assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1383  "Invalid number of incoming values");
1384  return NewPhi;
1385  }
1386 
1388  if (CanReuseExtract(E->Scalars)) {
1389  Value *V = VL0->getOperand(0);
1390  E->VectorizedValue = V;
1391  return V;
1392  }
1393  return Gather(E->Scalars, VecTy);
1394  }
1395  case Instruction::ZExt:
1396  case Instruction::SExt:
1397  case Instruction::FPToUI:
1398  case Instruction::FPToSI:
1399  case Instruction::FPExt:
1400  case Instruction::PtrToInt:
1401  case Instruction::IntToPtr:
1402  case Instruction::SIToFP:
1403  case Instruction::UIToFP:
1404  case Instruction::Trunc:
1405  case Instruction::FPTrunc:
1406  case Instruction::BitCast: {
1407  ValueList INVL;
1408  for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1409  INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1410 
1411  setInsertPointAfterBundle(E->Scalars);
1412 
1413  Value *InVec = vectorizeTree(INVL);
1414 
1415  if (Value *V = alreadyVectorized(E->Scalars))
1416  return V;
1417 
1418  CastInst *CI = dyn_cast<CastInst>(VL0);
1419  Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1420  E->VectorizedValue = V;
1421  return V;
1422  }
1423  case Instruction::FCmp:
1424  case Instruction::ICmp: {
1425  ValueList LHSV, RHSV;
1426  for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1427  LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1428  RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1429  }
1430 
1431  setInsertPointAfterBundle(E->Scalars);
1432 
1433  Value *L = vectorizeTree(LHSV);
1434  Value *R = vectorizeTree(RHSV);
1435 
1436  if (Value *V = alreadyVectorized(E->Scalars))
1437  return V;
1438 
1439  CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1440  Value *V;
1441  if (Opcode == Instruction::FCmp)
1442  V = Builder.CreateFCmp(P0, L, R);
1443  else
1444  V = Builder.CreateICmp(P0, L, R);
1445 
1446  E->VectorizedValue = V;
1447  return V;
1448  }
1449  case Instruction::Select: {
1450  ValueList TrueVec, FalseVec, CondVec;
1451  for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1452  CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1453  TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1454  FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1455  }
1456 
1457  setInsertPointAfterBundle(E->Scalars);
1458 
1459  Value *Cond = vectorizeTree(CondVec);
1460  Value *True = vectorizeTree(TrueVec);
1461  Value *False = vectorizeTree(FalseVec);
1462 
1463  if (Value *V = alreadyVectorized(E->Scalars))
1464  return V;
1465 
1466  Value *V = Builder.CreateSelect(Cond, True, False);
1467  E->VectorizedValue = V;
1468  return V;
1469  }
1470  case Instruction::Add:
1471  case Instruction::FAdd:
1472  case Instruction::Sub:
1473  case Instruction::FSub:
1474  case Instruction::Mul:
1475  case Instruction::FMul:
1476  case Instruction::UDiv:
1477  case Instruction::SDiv:
1478  case Instruction::FDiv:
1479  case Instruction::URem:
1480  case Instruction::SRem:
1481  case Instruction::FRem:
1482  case Instruction::Shl:
1483  case Instruction::LShr:
1484  case Instruction::AShr:
1485  case Instruction::And:
1486  case Instruction::Or:
1487  case Instruction::Xor: {
1488  ValueList LHSVL, RHSVL;
1489  if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1490  reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1491  else
1492  for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1493  LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1494  RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1495  }
1496 
1497  setInsertPointAfterBundle(E->Scalars);
1498 
1499  Value *LHS = vectorizeTree(LHSVL);
1500  Value *RHS = vectorizeTree(RHSVL);
1501 
1502  if (LHS == RHS && isa<Instruction>(LHS)) {
1503  assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1504  }
1505 
1506  if (Value *V = alreadyVectorized(E->Scalars))
1507  return V;
1508 
1509  BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1510  Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1511  E->VectorizedValue = V;
1512 
1513  if (Instruction *I = dyn_cast<Instruction>(V))
1514  return propagateMetadata(I, E->Scalars);
1515 
1516  return V;
1517  }
1518  case Instruction::Load: {
1519  // Loads are inserted at the head of the tree because we don't want to
1520  // sink them all the way down past store instructions.
1521  setInsertPointAfterBundle(E->Scalars);
1522 
1523  LoadInst *LI = cast<LoadInst>(VL0);
1524  unsigned AS = LI->getPointerAddressSpace();
1525 
1526  Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1527  VecTy->getPointerTo(AS));
1528  unsigned Alignment = LI->getAlignment();
1529  LI = Builder.CreateLoad(VecPtr);
1530  LI->setAlignment(Alignment);
1531  E->VectorizedValue = LI;
1532  return propagateMetadata(LI, E->Scalars);
1533  }
1534  case Instruction::Store: {
1535  StoreInst *SI = cast<StoreInst>(VL0);
1536  unsigned Alignment = SI->getAlignment();
1537  unsigned AS = SI->getPointerAddressSpace();
1538 
1539  ValueList ValueOp;
1540  for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1541  ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1542 
1543  setInsertPointAfterBundle(E->Scalars);
1544 
1545  Value *VecValue = vectorizeTree(ValueOp);
1546  Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1547  VecTy->getPointerTo(AS));
1548  StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1549  S->setAlignment(Alignment);
1550  E->VectorizedValue = S;
1551  return propagateMetadata(S, E->Scalars);
1552  }
1553  default:
1554  llvm_unreachable("unknown inst");
1555  }
1556  return 0;
1557 }
1558 
1559 Value *BoUpSLP::vectorizeTree() {
1560  Builder.SetInsertPoint(F->getEntryBlock().begin());
1561  vectorizeTree(&VectorizableTree[0]);
1562 
1563  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1564 
1565  // Extract all of the elements with the external uses.
1566  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1567  it != e; ++it) {
1568  Value *Scalar = it->Scalar;
1569  llvm::User *User = it->User;
1570 
1571  // Skip users that we already RAUW. This happens when one instruction
1572  // has multiple uses of the same value.
1573  if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1574  Scalar->use_end())
1575  continue;
1576  assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1577 
1578  int Idx = ScalarToTreeEntry[Scalar];
1579  TreeEntry *E = &VectorizableTree[Idx];
1580  assert(!E->NeedToGather && "Extracting from a gather list");
1581 
1582  Value *Vec = E->VectorizedValue;
1583  assert(Vec && "Can't find vectorizable value");
1584 
1585  Value *Lane = Builder.getInt32(it->Lane);
1586  // Generate extracts for out-of-tree users.
1587  // Find the insertion point for the extractelement lane.
1588  if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1589  Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
1590  Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1591  User->replaceUsesOfWith(Scalar, Ex);
1592  } else if (isa<Instruction>(Vec)){
1593  if (PHINode *PH = dyn_cast<PHINode>(User)) {
1594  for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1595  if (PH->getIncomingValue(i) == Scalar) {
1596  Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1597  Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1598  PH->setOperand(i, Ex);
1599  }
1600  }
1601  } else {
1602  Builder.SetInsertPoint(cast<Instruction>(User));
1603  Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1604  User->replaceUsesOfWith(Scalar, Ex);
1605  }
1606  } else {
1607  Builder.SetInsertPoint(F->getEntryBlock().begin());
1608  Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1609  User->replaceUsesOfWith(Scalar, Ex);
1610  }
1611 
1612  DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1613  }
1614 
1615  // For each vectorized value:
1616  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1617  TreeEntry *Entry = &VectorizableTree[EIdx];
1618 
1619  // For each lane:
1620  for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1621  Value *Scalar = Entry->Scalars[Lane];
1622 
1623  // No need to handle users of gathered values.
1624  if (Entry->NeedToGather)
1625  continue;
1626 
1627  assert(Entry->VectorizedValue && "Can't find vectorizable value");
1628 
1629  Type *Ty = Scalar->getType();
1630  if (!Ty->isVoidTy()) {
1631  for (Value::use_iterator User = Scalar->use_begin(),
1632  UE = Scalar->use_end(); User != UE; ++User) {
1633  DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1634  assert(!MustGather.count(*User) &&
1635  "Replacing gathered value with undef");
1636 
1637  assert((ScalarToTreeEntry.count(*User) ||
1638  // It is legal to replace the reduction users by undef.
1639  (RdxOps && RdxOps->count(*User))) &&
1640  "Replacing out-of-tree value with undef");
1641  }
1642  Value *Undef = UndefValue::get(Ty);
1643  Scalar->replaceAllUsesWith(Undef);
1644  }
1645  DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1646  cast<Instruction>(Scalar)->eraseFromParent();
1647  }
1648  }
1649 
1650  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1651  BlocksNumbers[it].forget();
1652  }
1653  Builder.ClearInsertionPoint();
1654 
1655  return VectorizableTree[0].VectorizedValue;
1656 }
1657 
1658 class DTCmp {
1659  const DominatorTree *DT;
1660 
1661 public:
1662  DTCmp(const DominatorTree *DT) : DT(DT) {}
1663  bool operator()(const BasicBlock *A, const BasicBlock *B) const {
1664  return DT->properlyDominates(A, B);
1665  }
1666 };
1667 
1668 void BoUpSLP::optimizeGatherSequence() {
1669  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1670  << " gather sequences instructions.\n");
1671  // Keep a list of visited BBs to run CSE on. It is typically small.
1672  SmallPtrSet<BasicBlock *, 4> VisitedBBs;
1673  SmallVector<BasicBlock *, 4> CSEWorkList;
1674  // LICM InsertElementInst sequences.
1675  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1676  e = GatherSeq.end(); it != e; ++it) {
1678 
1679  if (!Insert)
1680  continue;
1681 
1682  if (VisitedBBs.insert(Insert->getParent()))
1683  CSEWorkList.push_back(Insert->getParent());
1684 
1685  // Check if this block is inside a loop.
1686  Loop *L = LI->getLoopFor(Insert->getParent());
1687  if (!L)
1688  continue;
1689 
1690  // Check if it has a preheader.
1691  BasicBlock *PreHeader = L->getLoopPreheader();
1692  if (!PreHeader)
1693  continue;
1694 
1695  // If the vector or the element that we insert into it are
1696  // instructions that are defined in this basic block then we can't
1697  // hoist this instruction.
1698  Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1699  Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1700  if (CurrVec && L->contains(CurrVec))
1701  continue;
1702  if (NewElem && L->contains(NewElem))
1703  continue;
1704 
1705  // We can hoist this instruction. Move it to the pre-header.
1706  Insert->moveBefore(PreHeader->getTerminator());
1707  }
1708 
1709  // Sort blocks by domination. This ensures we visit a block after all blocks
1710  // dominating it are visited.
1711  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
1712 
1713  // Perform O(N^2) search over the gather sequences and merge identical
1714  // instructions. TODO: We can further optimize this scan if we split the
1715  // instructions into different buckets based on the insert lane.
1717  for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1718  E = CSEWorkList.end();
1719  I != E; ++I) {
1720  assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
1721  "Worklist not sorted properly!");
1722  BasicBlock *BB = *I;
1723  // For all instructions in blocks containing gather sequences:
1724  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1725  Instruction *In = it++;
1726  if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
1727  !GatherSeq.count(In))
1728  continue;
1729 
1730  // Check if we can replace this instruction with any of the
1731  // visited instructions.
1732  for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1733  ve = Visited.end();
1734  v != ve; ++v) {
1735  if (In->isIdenticalTo(*v) &&
1736  DT->dominates((*v)->getParent(), In->getParent())) {
1737  In->replaceAllUsesWith(*v);
1738  In->eraseFromParent();
1739  In = 0;
1740  break;
1741  }
1742  }
1743  if (In) {
1744  assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1745  Visited.push_back(In);
1746  }
1747  }
1748  }
1749 }
1750 
1751 /// The SLPVectorizer Pass.
1752 struct SLPVectorizer : public FunctionPass {
1753  typedef SmallVector<StoreInst *, 8> StoreList;
1754  typedef MapVector<Value *, StoreList> StoreListMap;
1755 
1756  /// Pass identification, replacement for typeid
1757  static char ID;
1758 
1759  explicit SLPVectorizer() : FunctionPass(ID) {
1761  }
1762 
1763  ScalarEvolution *SE;
1764  DataLayout *DL;
1765  TargetTransformInfo *TTI;
1766  AliasAnalysis *AA;
1767  LoopInfo *LI;
1768  DominatorTree *DT;
1769 
1770  virtual bool runOnFunction(Function &F) {
1771  SE = &getAnalysis<ScalarEvolution>();
1772  DL = getAnalysisIfAvailable<DataLayout>();
1773  TTI = &getAnalysis<TargetTransformInfo>();
1774  AA = &getAnalysis<AliasAnalysis>();
1775  LI = &getAnalysis<LoopInfo>();
1776  DT = &getAnalysis<DominatorTree>();
1777 
1778  StoreRefs.clear();
1779  bool Changed = false;
1780 
1781  // If the target claims to have no vector registers don't attempt
1782  // vectorization.
1783  if (!TTI->getNumberOfRegisters(true))
1784  return false;
1785 
1786  // Must have DataLayout. We can't require it because some tests run w/o
1787  // triple.
1788  if (!DL)
1789  return false;
1790 
1791  // Don't vectorize when the attribute NoImplicitFloat is used.
1793  return false;
1794 
1795  DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1796 
1797  // Use the bollom up slp vectorizer to construct chains that start with
1798  // he store instructions.
1799  BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1800 
1801  // Scan the blocks in the function in post order.
1803  e = po_end(&F.getEntryBlock()); it != e; ++it) {
1804  BasicBlock *BB = *it;
1805 
1806  // Vectorize trees that end at stores.
1807  if (unsigned count = collectStores(BB, R)) {
1808  (void)count;
1809  DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1810  Changed |= vectorizeStoreChains(R);
1811  }
1812 
1813  // Vectorize trees that end at reductions.
1814  Changed |= vectorizeChainsInBlock(BB, R);
1815  }
1816 
1817  if (Changed) {
1818  R.optimizeGatherSequence();
1819  DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1820  DEBUG(verifyFunction(F));
1821  }
1822  return Changed;
1823  }
1824 
1825  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1828  AU.addRequired<AliasAnalysis>();
1830  AU.addRequired<LoopInfo>();
1831  AU.addRequired<DominatorTree>();
1832  AU.addPreserved<LoopInfo>();
1834  AU.setPreservesCFG();
1835  }
1836 
1837 private:
1838 
1839  /// \brief Collect memory references and sort them according to their base
1840  /// object. We sort the stores to their base objects to reduce the cost of the
1841  /// quadratic search on the stores. TODO: We can further reduce this cost
1842  /// if we flush the chain creation every time we run into a memory barrier.
1843  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1844 
1845  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1846  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1847 
1848  /// \brief Try to vectorize a list of operands.
1849  /// \returns true if a value was vectorized.
1850  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1851 
1852  /// \brief Try to vectorize a chain that may start at the operands of \V;
1853  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1854 
1855  /// \brief Vectorize the stores that were collected in StoreRefs.
1856  bool vectorizeStoreChains(BoUpSLP &R);
1857 
1858  /// \brief Scan the basic block and look for patterns that are likely to start
1859  /// a vectorization chain.
1860  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1861 
1862  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1863  BoUpSLP &R);
1864 
1865  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1866  BoUpSLP &R);
1867 private:
1868  StoreListMap StoreRefs;
1869 };
1870 
1871 /// \brief Check that the Values in the slice in VL array are still existant in
1872 /// the WeakVH array.
1873 /// Vectorization of part of the VL array may cause later values in the VL array
1874 /// to become invalid. We track when this has happened in the WeakVH array.
1875 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
1877  unsigned SliceBegin,
1878  unsigned SliceSize) {
1879  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
1880  if (VH[i] != VL[i])
1881  return true;
1882 
1883  return false;
1884 }
1885 
1886 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1887  int CostThreshold, BoUpSLP &R) {
1888  unsigned ChainLen = Chain.size();
1889  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1890  << "\n");
1891  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1892  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1893  unsigned VF = MinVecRegSize / Sz;
1894 
1895  if (!isPowerOf2_32(Sz) || VF < 2)
1896  return false;
1897 
1898  // Keep track of values that were delete by vectorizing in the loop below.
1899  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
1900 
1901  bool Changed = false;
1902  // Look for profitable vectorizable trees at all offsets, starting at zero.
1903  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1904  if (i + VF > e)
1905  break;
1906 
1907  // Check that a previous iteration of this loop did not delete the Value.
1908  if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
1909  continue;
1910 
1911  DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1912  << "\n");
1913  ArrayRef<Value *> Operands = Chain.slice(i, VF);
1914 
1915  R.buildTree(Operands);
1916 
1917  int Cost = R.getTreeCost();
1918 
1919  DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1920  if (Cost < CostThreshold) {
1921  DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1922  R.vectorizeTree();
1923 
1924  // Move to the next bundle.
1925  i += VF - 1;
1926  Changed = true;
1927  }
1928  }
1929 
1930  return Changed;
1931 }
1932 
1933 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1934  int costThreshold, BoUpSLP &R) {
1935  SetVector<Value *> Heads, Tails;
1936  SmallDenseMap<Value *, Value *> ConsecutiveChain;
1937 
1938  // We may run into multiple chains that merge into a single chain. We mark the
1939  // stores that we vectorized so that we don't visit the same store twice.
1940  BoUpSLP::ValueSet VectorizedStores;
1941  bool Changed = false;
1942 
1943  // Do a quadratic search on all of the given stores and find
1944  // all of the pairs of stores that follow each other.
1945  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1946  for (unsigned j = 0; j < e; ++j) {
1947  if (i == j)
1948  continue;
1949 
1950  if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1951  Tails.insert(Stores[j]);
1952  Heads.insert(Stores[i]);
1953  ConsecutiveChain[Stores[i]] = Stores[j];
1954  }
1955  }
1956  }
1957 
1958  // For stores that start but don't end a link in the chain:
1959  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1960  it != e; ++it) {
1961  if (Tails.count(*it))
1962  continue;
1963 
1964  // We found a store instr that starts a chain. Now follow the chain and try
1965  // to vectorize it.
1966  BoUpSLP::ValueList Operands;
1967  Value *I = *it;
1968  // Collect the chain into a list.
1969  while (Tails.count(I) || Heads.count(I)) {
1970  if (VectorizedStores.count(I))
1971  break;
1972  Operands.push_back(I);
1973  // Move to the next value in the chain.
1974  I = ConsecutiveChain[I];
1975  }
1976 
1977  bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1978 
1979  // Mark the vectorized stores so that we don't vectorize them again.
1980  if (Vectorized)
1981  VectorizedStores.insert(Operands.begin(), Operands.end());
1982  Changed |= Vectorized;
1983  }
1984 
1985  return Changed;
1986 }
1987 
1988 
1989 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1990  unsigned count = 0;
1991  StoreRefs.clear();
1992  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1993  StoreInst *SI = dyn_cast<StoreInst>(it);
1994  if (!SI)
1995  continue;
1996 
1997  // Don't touch volatile stores.
1998  if (!SI->isSimple())
1999  continue;
2000 
2001  // Check that the pointer points to scalars.
2002  Type *Ty = SI->getValueOperand()->getType();
2003  if (Ty->isAggregateType() || Ty->isVectorTy())
2004  return 0;
2005 
2006  // Find the base pointer.
2007  Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2008 
2009  // Save the store locations.
2010  StoreRefs[Ptr].push_back(SI);
2011  count++;
2012  }
2013  return count;
2014 }
2015 
2016 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2017  if (!A || !B)
2018  return false;
2019  Value *VL[] = { A, B };
2020  return tryToVectorizeList(VL, R);
2021 }
2022 
2023 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
2024  if (VL.size() < 2)
2025  return false;
2026 
2027  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2028 
2029  // Check that all of the parts are scalar instructions of the same type.
2030  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2031  if (!I0)
2032  return false;
2033 
2034  unsigned Opcode0 = I0->getOpcode();
2035 
2036  Type *Ty0 = I0->getType();
2037  unsigned Sz = DL->getTypeSizeInBits(Ty0);
2038  unsigned VF = MinVecRegSize / Sz;
2039 
2040  for (int i = 0, e = VL.size(); i < e; ++i) {
2041  Type *Ty = VL[i]->getType();
2042  if (Ty->isAggregateType() || Ty->isVectorTy())
2043  return false;
2044  Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2045  if (!Inst || Inst->getOpcode() != Opcode0)
2046  return false;
2047  }
2048 
2049  bool Changed = false;
2050 
2051  // Keep track of values that were delete by vectorizing in the loop below.
2052  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2053 
2054  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2055  unsigned OpsWidth = 0;
2056 
2057  if (i + VF > e)
2058  OpsWidth = e - i;
2059  else
2060  OpsWidth = VF;
2061 
2062  if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2063  break;
2064 
2065  // Check that a previous iteration of this loop did not delete the Value.
2066  if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2067  continue;
2068 
2069  DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2070  << "\n");
2071  ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2072 
2073  R.buildTree(Ops);
2074  int Cost = R.getTreeCost();
2075 
2076  if (Cost < -SLPCostThreshold) {
2077  DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
2078  R.vectorizeTree();
2079 
2080  // Move to the next bundle.
2081  i += VF - 1;
2082  Changed = true;
2083  }
2084  }
2085 
2086  return Changed;
2087 }
2088 
2089 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2090  if (!V)
2091  return false;
2092 
2093  // Try to vectorize V.
2094  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2095  return true;
2096 
2099  // Try to skip B.
2100  if (B && B->hasOneUse()) {
2101  BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2102  BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2103  if (tryToVectorizePair(A, B0, R)) {
2104  B->moveBefore(V);
2105  return true;
2106  }
2107  if (tryToVectorizePair(A, B1, R)) {
2108  B->moveBefore(V);
2109  return true;
2110  }
2111  }
2112 
2113  // Try to skip A.
2114  if (A && A->hasOneUse()) {
2117  if (tryToVectorizePair(A0, B, R)) {
2118  A->moveBefore(V);
2119  return true;
2120  }
2121  if (tryToVectorizePair(A1, B, R)) {
2122  A->moveBefore(V);
2123  return true;
2124  }
2125  }
2126  return 0;
2127 }
2128 
2129 /// \brief Generate a shuffle mask to be used in a reduction tree.
2130 ///
2131 /// \param VecLen The length of the vector to be reduced.
2132 /// \param NumEltsToRdx The number of elements that should be reduced in the
2133 /// vector.
2134 /// \param IsPairwise Whether the reduction is a pairwise or splitting
2135 /// reduction. A pairwise reduction will generate a mask of
2136 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
2137 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2138 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
2139 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2140  bool IsPairwise, bool IsLeft,
2141  IRBuilder<> &Builder) {
2142  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2143 
2144  SmallVector<Constant *, 32> ShuffleMask(
2145  VecLen, UndefValue::get(Builder.getInt32Ty()));
2146 
2147  if (IsPairwise)
2148  // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2149  for (unsigned i = 0; i != NumEltsToRdx; ++i)
2150  ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2151  else
2152  // Move the upper half of the vector to the lower half.
2153  for (unsigned i = 0; i != NumEltsToRdx; ++i)
2154  ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2155 
2156  return ConstantVector::get(ShuffleMask);
2157 }
2158 
2159 
2160 /// Model horizontal reductions.
2161 ///
2162 /// A horizontal reduction is a tree of reduction operations (currently add and
2163 /// fadd) that has operations that can be put into a vector as its leaf.
2164 /// For example, this tree:
2165 ///
2166 /// mul mul mul mul
2167 /// \ / \ /
2168 /// + +
2169 /// \ /
2170 /// +
2171 /// This tree has "mul" as its reduced values and "+" as its reduction
2172 /// operations. A reduction might be feeding into a store or a binary operation
2173 /// feeding a phi.
2174 /// ...
2175 /// \ /
2176 /// +
2177 /// |
2178 /// phi +=
2179 ///
2180 /// Or:
2181 /// ...
2182 /// \ /
2183 /// +
2184 /// |
2185 /// *p =
2186 ///
2187 class HorizontalReduction {
2188  SmallPtrSet<Value *, 16> ReductionOps;
2189  SmallVector<Value *, 32> ReducedVals;
2190 
2191  BinaryOperator *ReductionRoot;
2192  PHINode *ReductionPHI;
2193 
2194  /// The opcode of the reduction.
2195  unsigned ReductionOpcode;
2196  /// The opcode of the values we perform a reduction on.
2197  unsigned ReducedValueOpcode;
2198  /// The width of one full horizontal reduction operation.
2199  unsigned ReduxWidth;
2200  /// Should we model this reduction as a pairwise reduction tree or a tree that
2201  /// splits the vector in halves and adds those halves.
2202  bool IsPairwiseReduction;
2203 
2204 public:
2205  HorizontalReduction()
2206  : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2207  ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2208 
2209  /// \brief Try to find a reduction tree.
2210  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2211  DataLayout *DL) {
2212  assert((!Phi ||
2213  std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2214  "Thi phi needs to use the binary operator");
2215 
2216  // We could have a initial reductions that is not an add.
2217  // r *= v1 + v2 + v3 + v4
2218  // In such a case start looking for a tree rooted in the first '+'.
2219  if (Phi) {
2220  if (B->getOperand(0) == Phi) {
2221  Phi = 0;
2222  B = dyn_cast<BinaryOperator>(B->getOperand(1));
2223  } else if (B->getOperand(1) == Phi) {
2224  Phi = 0;
2225  B = dyn_cast<BinaryOperator>(B->getOperand(0));
2226  }
2227  }
2228 
2229  if (!B)
2230  return false;
2231 
2232  Type *Ty = B->getType();
2233  if (Ty->isVectorTy())
2234  return false;
2235 
2236  ReductionOpcode = B->getOpcode();
2237  ReducedValueOpcode = 0;
2238  ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2239  ReductionRoot = B;
2240  ReductionPHI = Phi;
2241 
2242  if (ReduxWidth < 4)
2243  return false;
2244 
2245  // We currently only support adds.
2246  if (ReductionOpcode != Instruction::Add &&
2247  ReductionOpcode != Instruction::FAdd)
2248  return false;
2249 
2250  // Post order traverse the reduction tree starting at B. We only handle true
2251  // trees containing only binary operators.
2253  Stack.push_back(std::make_pair(B, 0));
2254  while (!Stack.empty()) {
2255  BinaryOperator *TreeN = Stack.back().first;
2256  unsigned EdgeToVist = Stack.back().second++;
2257  bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2258 
2259  // Only handle trees in the current basic block.
2260  if (TreeN->getParent() != B->getParent())
2261  return false;
2262 
2263  // Each tree node needs to have one user except for the ultimate
2264  // reduction.
2265  if (!TreeN->hasOneUse() && TreeN != B)
2266  return false;
2267 
2268  // Postorder vist.
2269  if (EdgeToVist == 2 || IsReducedValue) {
2270  if (IsReducedValue) {
2271  // Make sure that the opcodes of the operations that we are going to
2272  // reduce match.
2273  if (!ReducedValueOpcode)
2274  ReducedValueOpcode = TreeN->getOpcode();
2275  else if (ReducedValueOpcode != TreeN->getOpcode())
2276  return false;
2277  ReducedVals.push_back(TreeN);
2278  } else {
2279  // We need to be able to reassociate the adds.
2280  if (!TreeN->isAssociative())
2281  return false;
2282  ReductionOps.insert(TreeN);
2283  }
2284  // Retract.
2285  Stack.pop_back();
2286  continue;
2287  }
2288 
2289  // Visit left or right.
2290  Value *NextV = TreeN->getOperand(EdgeToVist);
2291  BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2292  if (Next)
2293  Stack.push_back(std::make_pair(Next, 0));
2294  else if (NextV != Phi)
2295  return false;
2296  }
2297  return true;
2298  }
2299 
2300  /// \brief Attempt to vectorize the tree found by
2301  /// matchAssociativeReduction.
2302  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2303  if (ReducedVals.empty())
2304  return false;
2305 
2306  unsigned NumReducedVals = ReducedVals.size();
2307  if (NumReducedVals < ReduxWidth)
2308  return false;
2309 
2310  Value *VectorizedTree = 0;
2311  IRBuilder<> Builder(ReductionRoot);
2312  FastMathFlags Unsafe;
2313  Unsafe.setUnsafeAlgebra();
2314  Builder.SetFastMathFlags(Unsafe);
2315  unsigned i = 0;
2316 
2317  for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2318  ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2319  V.buildTree(ValsToReduce, &ReductionOps);
2320 
2321  // Estimate cost.
2322  int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2323  if (Cost >= -SLPCostThreshold)
2324  break;
2325 
2326  DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2327  << ". (HorRdx)\n");
2328 
2329  // Vectorize a tree.
2330  DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2331  Value *VectorizedRoot = V.vectorizeTree();
2332 
2333  // Emit a reduction.
2334  Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2335  if (VectorizedTree) {
2336  Builder.SetCurrentDebugLocation(Loc);
2337  VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2338  ReducedSubTree, "bin.rdx");
2339  } else
2340  VectorizedTree = ReducedSubTree;
2341  }
2342 
2343  if (VectorizedTree) {
2344  // Finish the reduction.
2345  for (; i < NumReducedVals; ++i) {
2346  Builder.SetCurrentDebugLocation(
2347  cast<Instruction>(ReducedVals[i])->getDebugLoc());
2348  VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2349  ReducedVals[i]);
2350  }
2351  // Update users.
2352  if (ReductionPHI) {
2353  assert(ReductionRoot != NULL && "Need a reduction operation");
2354  ReductionRoot->setOperand(0, VectorizedTree);
2355  ReductionRoot->setOperand(1, ReductionPHI);
2356  } else
2357  ReductionRoot->replaceAllUsesWith(VectorizedTree);
2358  }
2359  return VectorizedTree != 0;
2360  }
2361 
2362 private:
2363 
2364  /// \brief Calcuate the cost of a reduction.
2365  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2366  Type *ScalarTy = FirstReducedVal->getType();
2367  Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2368 
2369  int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2370  int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2371 
2372  IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2373  int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2374 
2375  int ScalarReduxCost =
2376  ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2377 
2378  DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2379  << " for reduction that starts with " << *FirstReducedVal
2380  << " (It is a "
2381  << (IsPairwiseReduction ? "pairwise" : "splitting")
2382  << " reduction)\n");
2383 
2384  return VecReduxCost - ScalarReduxCost;
2385  }
2386 
2387  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2388  Value *R, const Twine &Name = "") {
2389  if (Opcode == Instruction::FAdd)
2390  return Builder.CreateFAdd(L, R, Name);
2391  return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2392  }
2393 
2394  /// \brief Emit a horizontal reduction of the vectorized value.
2395  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2396  assert(VectorizedValue && "Need to have a vectorized tree node");
2397  Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2398  assert(isPowerOf2_32(ReduxWidth) &&
2399  "We only handle power-of-two reductions for now");
2400 
2401  Value *TmpVec = ValToReduce;
2402  for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2403  if (IsPairwiseReduction) {
2404  Value *LeftMask =
2405  createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2406  Value *RightMask =
2407  createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2408 
2409  Value *LeftShuf = Builder.CreateShuffleVector(
2410  TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2411  Value *RightShuf = Builder.CreateShuffleVector(
2412  TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2413  "rdx.shuf.r");
2414  TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2415  "bin.rdx");
2416  } else {
2417  Value *UpperHalf =
2418  createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2419  Value *Shuf = Builder.CreateShuffleVector(
2420  TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2421  TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2422  }
2423  }
2424 
2425  // The result is in the first element of the vector.
2426  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2427  }
2428 };
2429 
2430 /// \brief Recognize construction of vectors like
2431 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
2432 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
2433 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
2434 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
2435 ///
2436 /// Returns true if it matches
2437 ///
2438 static bool findBuildVector(InsertElementInst *IE,
2439  SmallVectorImpl<Value *> &Ops) {
2440  if (!isa<UndefValue>(IE->getOperand(0)))
2441  return false;
2442 
2443  while (true) {
2444  Ops.push_back(IE->getOperand(1));
2445 
2446  if (IE->use_empty())
2447  return false;
2448 
2450  if (!NextUse)
2451  return true;
2452 
2453  // If this isn't the final use, make sure the next insertelement is the only
2454  // use. It's OK if the final constructed vector is used multiple times
2455  if (!IE->hasOneUse())
2456  return false;
2457 
2458  IE = NextUse;
2459  }
2460 
2461  return false;
2462 }
2463 
2464 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2465  return V->getType() < V2->getType();
2466 }
2467 
2468 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2469  bool Changed = false;
2470  SmallVector<Value *, 4> Incoming;
2471  SmallSet<Value *, 16> VisitedInstrs;
2472 
2473  bool HaveVectorizedPhiNodes = true;
2474  while (HaveVectorizedPhiNodes) {
2475  HaveVectorizedPhiNodes = false;
2476 
2477  // Collect the incoming values from the PHIs.
2478  Incoming.clear();
2479  for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2480  ++instr) {
2481  PHINode *P = dyn_cast<PHINode>(instr);
2482  if (!P)
2483  break;
2484 
2485  if (!VisitedInstrs.count(P))
2486  Incoming.push_back(P);
2487  }
2488 
2489  // Sort by type.
2490  std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2491 
2492  // Try to vectorize elements base on their type.
2493  for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2494  E = Incoming.end();
2495  IncIt != E;) {
2496 
2497  // Look for the next elements with the same type.
2498  SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2499  while (SameTypeIt != E &&
2500  (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2501  VisitedInstrs.insert(*SameTypeIt);
2502  ++SameTypeIt;
2503  }
2504 
2505  // Try to vectorize them.
2506  unsigned NumElts = (SameTypeIt - IncIt);
2507  DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2508  if (NumElts > 1 &&
2509  tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2510  // Success start over because instructions might have been changed.
2511  HaveVectorizedPhiNodes = true;
2512  Changed = true;
2513  break;
2514  }
2515 
2516  // Start over at the next instruction of a differnt type (or the end).
2517  IncIt = SameTypeIt;
2518  }
2519  }
2520 
2521  VisitedInstrs.clear();
2522 
2523  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2524  // We may go through BB multiple times so skip the one we have checked.
2525  if (!VisitedInstrs.insert(it))
2526  continue;
2527 
2528  if (isa<DbgInfoIntrinsic>(it))
2529  continue;
2530 
2531  // Try to vectorize reductions that use PHINodes.
2532  if (PHINode *P = dyn_cast<PHINode>(it)) {
2533  // Check that the PHI is a reduction PHI.
2534  if (P->getNumIncomingValues() != 2)
2535  return Changed;
2536  Value *Rdx =
2537  (P->getIncomingBlock(0) == BB
2538  ? (P->getIncomingValue(0))
2539  : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2540  // Check if this is a Binary Operator.
2541  BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2542  if (!BI)
2543  continue;
2544 
2545  // Try to match and vectorize a horizontal reduction.
2546  HorizontalReduction HorRdx;
2547  if (ShouldVectorizeHor &&
2548  HorRdx.matchAssociativeReduction(P, BI, DL) &&
2549  HorRdx.tryToReduce(R, TTI)) {
2550  Changed = true;
2551  it = BB->begin();
2552  e = BB->end();
2553  continue;
2554  }
2555 
2556  Value *Inst = BI->getOperand(0);
2557  if (Inst == P)
2558  Inst = BI->getOperand(1);
2559 
2560  if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2561  // We would like to start over since some instructions are deleted
2562  // and the iterator may become invalid value.
2563  Changed = true;
2564  it = BB->begin();
2565  e = BB->end();
2566  continue;
2567  }
2568 
2569  continue;
2570  }
2571 
2572  // Try to vectorize horizontal reductions feeding into a store.
2574  if (StoreInst *SI = dyn_cast<StoreInst>(it))
2575  if (BinaryOperator *BinOp =
2576  dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2577  HorizontalReduction HorRdx;
2578  if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2579  HorRdx.tryToReduce(R, TTI)) ||
2580  tryToVectorize(BinOp, R))) {
2581  Changed = true;
2582  it = BB->begin();
2583  e = BB->end();
2584  continue;
2585  }
2586  }
2587 
2588  // Try to vectorize trees that start at compare instructions.
2589  if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2590  if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2591  Changed = true;
2592  // We would like to start over since some instructions are deleted
2593  // and the iterator may become invalid value.
2594  it = BB->begin();
2595  e = BB->end();
2596  continue;
2597  }
2598 
2599  for (int i = 0; i < 2; ++i) {
2600  if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2601  if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2602  Changed = true;
2603  // We would like to start over since some instructions are deleted
2604  // and the iterator may become invalid value.
2605  it = BB->begin();
2606  e = BB->end();
2607  }
2608  }
2609  }
2610  continue;
2611  }
2612 
2613  // Try to vectorize trees that start at insertelement instructions.
2614  if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2616  if (!findBuildVector(IE, Ops))
2617  continue;
2618 
2619  if (tryToVectorizeList(Ops, R)) {
2620  Changed = true;
2621  it = BB->begin();
2622  e = BB->end();
2623  }
2624 
2625  continue;
2626  }
2627  }
2628 
2629  return Changed;
2630 }
2631 
2632 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2633  bool Changed = false;
2634  // Attempt to sort and vectorize each of the store-groups.
2635  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2636  it != e; ++it) {
2637  if (it->second.size() < 2)
2638  continue;
2639 
2640  DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2641  << it->second.size() << ".\n");
2642 
2643  // Process the stores in chunks of 16.
2644  for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2645  unsigned Len = std::min<unsigned>(CE - CI, 16);
2646  ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2647  Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2648  }
2649  }
2650  return Changed;
2651 }
2652 
2653 } // end anonymous namespace
2654 
2655 char SLPVectorizer::ID = 0;
2656 static const char lv_name[] = "SLP Vectorizer";
2657 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2661 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2662 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2663 
2664 namespace llvm {
2665 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2666 }
Value * getValueOperand()
Definition: Instructions.h:343
use_iterator use_end()
Definition: Value.h:152
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
AnalysisUsage & addPreserved()
raw_ostream & errs()
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
Value * CreateFAdd(Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=0)
Definition: IRBuilder.h:629
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
void SetCurrentDebugLocation(const DebugLoc &L)
Set location information used by debugging information.
Definition: IRBuilder.h:118
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
iterator end() const
Definition: ArrayRef.h:98
bool isSimple() const
Definition: Instructions.h:338
virtual void getAnalysisUsage(AnalysisUsage &) const
Definition: Pass.cpp:75
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:818
static cl::opt< int > SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this ""number "))
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:1366
bool isSimple() const
Definition: Instructions.h:218
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:79
op_iterator op_begin()
Definition: User.h:116
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
void getAllMetadataOtherThanDebugLoc(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Definition: Instruction.h:162
iterator begin()
Definition: BasicBlock.h:193
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:310
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static Value * getPointerOperand(Instruction &Inst)
bool isIdenticalTo(const Instruction *I) const
Base class of casting instructions.
Definition: InstrTypes.h:387
#define llvm_unreachable(msg)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:923
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
po_iterator< T > po_begin(T G)
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset)
Strips like stripInBoundsConstantOffsets but also accumulates the constant offset stripped...
Definition: Value.cpp:397
#define false
Definition: ConvertUTF.c:64
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:351
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
void clear()
Definition: SmallSet.h:97
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
void SetFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition: IRBuilder.h:189
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
bool isAssociative() const
ArrayRef< T > slice(unsigned N) const
slice(n) - Chop off the first N elements of the array.
Definition: ArrayRef.h:134
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:69
bool insert(const T &V)
Definition: SmallSet.h:59
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
unsigned getNumIncomingValues() const
void replaceUsesOfWith(Value *From, Value *To)
Definition: User.cpp:26
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
static cl::opt< bool > ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions"))
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:834
unsigned getAlignment() const
Definition: Instructions.h:301
static cl::opt< bool > ShouldStartVectorizeHorAtStore("slp-vectorize-hor-store", cl::init(false), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions feeding into a store"))
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool isVectorTy() const
Definition: Type.h:229
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
void setUnsafeAlgebra()
Definition: Operator.h:206
op_iterator op_end()
Definition: User.h:118
bool verifyFunction(const Function &F, VerifierFailureAction action=AbortProcessAction)
Definition: Verifier.cpp:2417
BasicBlock * getIncomingBlock(unsigned i) const
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
iterator begin() const
Definition: ArrayRef.h:97
Value * getOperand(unsigned i) const
Definition: User.h:88
Value * getPointerOperand()
Definition: Instructions.h:223
bool isCommutative() const
Definition: Instruction.h:269
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
Location - A description of a memory location.
void setAlignment(unsigned Align)
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
static MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
Methods for metadata merging.
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
PointerType * getPointerTo(unsigned AddrSpace=0)
Definition: Type.cpp:756
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
bool mayWriteToMemory() const
#define SV_NAME
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
Class for constant integers.
Definition: Constants.h:51
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:1349
Value * getIncomingValue(unsigned i) const
unsigned getVectorNumElements() const
Definition: Type.cpp:214
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:276
void setPreservesCFG()
Definition: Pass.cpp:249
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:228
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
Class for arbitrary precision integers.
Definition: APInt.h:75
Value * getIncomingValueForBlock(const BasicBlock *BB) const
Instruction * use_back()
Definition: Instruction.h:49
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
bool count(const T &V) const
count - Return true if the element is in the set.
Definition: SmallSet.h:48
use_iterator use_begin()
Definition: Value.h:150
void initializeSLPVectorizerPass(PassRegistry &)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:156
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:200
bool isAggregateType() const
Definition: Type.h:270
po_iterator< T > po_end(T G)
unsigned getAlignment() const
Definition: Instructions.h:181
virtual unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const
Calculate the cost of performing a vector reduction.
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
User(Type *ty, unsigned vty, Use *OpList, unsigned NumOps)
Definition: User.h:52
const Value * Ptr
Ptr - The address of the start of the location.
Pass * createSLPVectorizerPass()
bool use_empty() const
Definition: Value.h:149
static const char lv_name[]
LLVM Value Representation.
Definition: Value.h:66
void setAlignment(unsigned Align)
vector_type::const_iterator iterator
Definition: SetVector.h:45
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
A vector that has set insertion semantics.
Definition: SetVector.h:37
static VectorType * get(Type *ElementType, unsigned NumElements)
Definition: Type.cpp:706
Disable implicit floating point insts.
Definition: Attributes.h:84
static const Function * getParent(const Value *V)
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
Broadcast element 0 to all other elements.
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:170
OperandValueKind
Additional information about an operand's possible values.
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info=OK_AnyValue, OperandValueKind Opd2Info=OK_AnyValue) const
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:408
Value * getPointerOperand()
Definition: Instructions.h:346
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140