LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MachineVerifier.cpp
Go to the documentation of this file.
1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
49 using namespace llvm;
50 
51 namespace {
52  struct MachineVerifier {
53 
54  MachineVerifier(Pass *pass, const char *b) :
55  PASS(pass),
56  Banner(b),
57  OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
58  {}
59 
60  bool runOnMachineFunction(MachineFunction &MF);
61 
62  Pass *const PASS;
63  const char *Banner;
64  const char *const OutFileName;
65  raw_ostream *OS;
66  const MachineFunction *MF;
67  const TargetMachine *TM;
68  const TargetInstrInfo *TII;
69  const TargetRegisterInfo *TRI;
70  const MachineRegisterInfo *MRI;
71 
72  unsigned foundErrors;
73 
74  typedef SmallVector<unsigned, 16> RegVector;
75  typedef SmallVector<const uint32_t*, 4> RegMaskVector;
76  typedef DenseSet<unsigned> RegSet;
79 
80  const MachineInstr *FirstTerminator;
81  BlockSet FunctionBlocks;
82 
83  BitVector regsReserved;
84  RegSet regsLive;
85  RegVector regsDefined, regsDead, regsKilled;
86  RegMaskVector regMasks;
87  RegSet regsLiveInButUnused;
88 
89  SlotIndex lastIndex;
90 
91  // Add Reg and any sub-registers to RV
92  void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
93  RV.push_back(Reg);
95  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
96  RV.push_back(*SubRegs);
97  }
98 
99  struct BBInfo {
100  // Is this MBB reachable from the MF entry point?
101  bool reachable;
102 
103  // Vregs that must be live in because they are used without being
104  // defined. Map value is the user.
105  RegMap vregsLiveIn;
106 
107  // Regs killed in MBB. They may be defined again, and will then be in both
108  // regsKilled and regsLiveOut.
109  RegSet regsKilled;
110 
111  // Regs defined in MBB and live out. Note that vregs passing through may
112  // be live out without being mentioned here.
113  RegSet regsLiveOut;
114 
115  // Vregs that pass through MBB untouched. This set is disjoint from
116  // regsKilled and regsLiveOut.
117  RegSet vregsPassed;
118 
119  // Vregs that must pass through MBB because they are needed by a successor
120  // block. This set is disjoint from regsLiveOut.
121  RegSet vregsRequired;
122 
123  // Set versions of block's predecessor and successor lists.
124  BlockSet Preds, Succs;
125 
126  BBInfo() : reachable(false) {}
127 
128  // Add register to vregsPassed if it belongs there. Return true if
129  // anything changed.
130  bool addPassed(unsigned Reg) {
132  return false;
133  if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
134  return false;
135  return vregsPassed.insert(Reg).second;
136  }
137 
138  // Same for a full set.
139  bool addPassed(const RegSet &RS) {
140  bool changed = false;
141  for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
142  if (addPassed(*I))
143  changed = true;
144  return changed;
145  }
146 
147  // Add register to vregsRequired if it belongs there. Return true if
148  // anything changed.
149  bool addRequired(unsigned Reg) {
151  return false;
152  if (regsLiveOut.count(Reg))
153  return false;
154  return vregsRequired.insert(Reg).second;
155  }
156 
157  // Same for a full set.
158  bool addRequired(const RegSet &RS) {
159  bool changed = false;
160  for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
161  if (addRequired(*I))
162  changed = true;
163  return changed;
164  }
165 
166  // Same for a full map.
167  bool addRequired(const RegMap &RM) {
168  bool changed = false;
169  for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
170  if (addRequired(I->first))
171  changed = true;
172  return changed;
173  }
174 
175  // Live-out registers are either in regsLiveOut or vregsPassed.
176  bool isLiveOut(unsigned Reg) const {
177  return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
178  }
179  };
180 
181  // Extra register info per MBB.
183 
184  bool isReserved(unsigned Reg) {
185  return Reg < regsReserved.size() && regsReserved.test(Reg);
186  }
187 
188  bool isAllocatable(unsigned Reg) {
189  return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
190  }
191 
192  // Analysis information if available
193  LiveVariables *LiveVars;
194  LiveIntervals *LiveInts;
195  LiveStacks *LiveStks;
196  SlotIndexes *Indexes;
197 
198  void visitMachineFunctionBefore();
199  void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
200  void visitMachineBundleBefore(const MachineInstr *MI);
201  void visitMachineInstrBefore(const MachineInstr *MI);
202  void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
203  void visitMachineInstrAfter(const MachineInstr *MI);
204  void visitMachineBundleAfter(const MachineInstr *MI);
205  void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
206  void visitMachineFunctionAfter();
207 
208  void report(const char *msg, const MachineFunction *MF);
209  void report(const char *msg, const MachineBasicBlock *MBB);
210  void report(const char *msg, const MachineInstr *MI);
211  void report(const char *msg, const MachineOperand *MO, unsigned MONum);
212  void report(const char *msg, const MachineFunction *MF,
213  const LiveInterval &LI);
214  void report(const char *msg, const MachineBasicBlock *MBB,
215  const LiveInterval &LI);
216  void report(const char *msg, const MachineFunction *MF,
217  const LiveRange &LR);
218  void report(const char *msg, const MachineBasicBlock *MBB,
219  const LiveRange &LR);
220 
221  void verifyInlineAsm(const MachineInstr *MI);
222 
223  void checkLiveness(const MachineOperand *MO, unsigned MONum);
224  void markReachable(const MachineBasicBlock *MBB);
225  void calcRegsPassed();
226  void checkPHIOps(const MachineBasicBlock *MBB);
227 
228  void calcRegsRequired();
229  void verifyLiveVariables();
230  void verifyLiveIntervals();
231  void verifyLiveInterval(const LiveInterval&);
232  void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
233  void verifyLiveRangeSegment(const LiveRange&,
234  const LiveRange::const_iterator I, unsigned);
235  void verifyLiveRange(const LiveRange&, unsigned);
236 
237  void verifyStackFrame();
238  };
239 
240  struct MachineVerifierPass : public MachineFunctionPass {
241  static char ID; // Pass ID, replacement for typeid
242  const char *const Banner;
243 
244  MachineVerifierPass(const char *b = 0)
245  : MachineFunctionPass(ID), Banner(b) {
247  }
248 
249  void getAnalysisUsage(AnalysisUsage &AU) const {
250  AU.setPreservesAll();
252  }
253 
254  bool runOnMachineFunction(MachineFunction &MF) {
255  MF.verify(this, Banner);
256  return false;
257  }
258  };
259 
260 }
261 
262 char MachineVerifierPass::ID = 0;
263 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
264  "Verify generated machine code", false, false)
265 
266 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
267  return new MachineVerifierPass(Banner);
268 }
269 
270 void MachineFunction::verify(Pass *p, const char *Banner) const {
271  MachineVerifier(p, Banner)
272  .runOnMachineFunction(const_cast<MachineFunction&>(*this));
273 }
274 
275 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
276  raw_ostream *OutFile = 0;
277  if (OutFileName) {
278  std::string ErrorInfo;
279  OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, sys::fs::F_Append);
280  if (!ErrorInfo.empty()) {
281  errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
282  exit(1);
283  }
284 
285  OS = OutFile;
286  } else {
287  OS = &errs();
288  }
289 
290  foundErrors = 0;
291 
292  this->MF = &MF;
293  TM = &MF.getTarget();
294  TII = TM->getInstrInfo();
295  TRI = TM->getRegisterInfo();
296  MRI = &MF.getRegInfo();
297 
298  LiveVars = NULL;
299  LiveInts = NULL;
300  LiveStks = NULL;
301  Indexes = NULL;
302  if (PASS) {
303  LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
304  // We don't want to verify LiveVariables if LiveIntervals is available.
305  if (!LiveInts)
306  LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
307  LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
308  Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
309  }
310 
311  visitMachineFunctionBefore();
312  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
313  MFI!=MFE; ++MFI) {
314  visitMachineBasicBlockBefore(MFI);
315  // Keep track of the current bundle header.
316  const MachineInstr *CurBundle = 0;
317  // Do we expect the next instruction to be part of the same bundle?
318  bool InBundle = false;
319 
320  for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
321  MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
322  if (MBBI->getParent() != MFI) {
323  report("Bad instruction parent pointer", MFI);
324  *OS << "Instruction: " << *MBBI;
325  continue;
326  }
327 
328  // Check for consistent bundle flags.
329  if (InBundle && !MBBI->isBundledWithPred())
330  report("Missing BundledPred flag, "
331  "BundledSucc was set on predecessor", MBBI);
332  if (!InBundle && MBBI->isBundledWithPred())
333  report("BundledPred flag is set, "
334  "but BundledSucc not set on predecessor", MBBI);
335 
336  // Is this a bundle header?
337  if (!MBBI->isInsideBundle()) {
338  if (CurBundle)
339  visitMachineBundleAfter(CurBundle);
340  CurBundle = MBBI;
341  visitMachineBundleBefore(CurBundle);
342  } else if (!CurBundle)
343  report("No bundle header", MBBI);
344  visitMachineInstrBefore(MBBI);
345  for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
346  visitMachineOperand(&MBBI->getOperand(I), I);
347  visitMachineInstrAfter(MBBI);
348 
349  // Was this the last bundled instruction?
350  InBundle = MBBI->isBundledWithSucc();
351  }
352  if (CurBundle)
353  visitMachineBundleAfter(CurBundle);
354  if (InBundle)
355  report("BundledSucc flag set on last instruction in block", &MFI->back());
356  visitMachineBasicBlockAfter(MFI);
357  }
358  visitMachineFunctionAfter();
359 
360  if (OutFile)
361  delete OutFile;
362  else if (foundErrors)
363  report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
364 
365  // Clean up.
366  regsLive.clear();
367  regsDefined.clear();
368  regsDead.clear();
369  regsKilled.clear();
370  regMasks.clear();
371  regsLiveInButUnused.clear();
372  MBBInfoMap.clear();
373 
374  return false; // no changes
375 }
376 
377 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
378  assert(MF);
379  *OS << '\n';
380  if (!foundErrors++) {
381  if (Banner)
382  *OS << "# " << Banner << '\n';
383  MF->print(*OS, Indexes);
384  }
385  *OS << "*** Bad machine code: " << msg << " ***\n"
386  << "- function: " << MF->getName() << "\n";
387 }
388 
389 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
390  assert(MBB);
391  report(msg, MBB->getParent());
392  *OS << "- basic block: BB#" << MBB->getNumber()
393  << ' ' << MBB->getName()
394  << " (" << (const void*)MBB << ')';
395  if (Indexes)
396  *OS << " [" << Indexes->getMBBStartIdx(MBB)
397  << ';' << Indexes->getMBBEndIdx(MBB) << ')';
398  *OS << '\n';
399 }
400 
401 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
402  assert(MI);
403  report(msg, MI->getParent());
404  *OS << "- instruction: ";
405  if (Indexes && Indexes->hasIndex(MI))
406  *OS << Indexes->getInstructionIndex(MI) << '\t';
407  MI->print(*OS, TM);
408 }
409 
410 void MachineVerifier::report(const char *msg,
411  const MachineOperand *MO, unsigned MONum) {
412  assert(MO);
413  report(msg, MO->getParent());
414  *OS << "- operand " << MONum << ": ";
415  MO->print(*OS, TM);
416  *OS << "\n";
417 }
418 
419 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
420  const LiveInterval &LI) {
421  report(msg, MF);
422  *OS << "- interval: " << LI << '\n';
423 }
424 
425 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
426  const LiveInterval &LI) {
427  report(msg, MBB);
428  *OS << "- interval: " << LI << '\n';
429 }
430 
431 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
432  const LiveRange &LR) {
433  report(msg, MBB);
434  *OS << "- liverange: " << LR << "\n";
435 }
436 
437 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
438  const LiveRange &LR) {
439  report(msg, MF);
440  *OS << "- liverange: " << LR << "\n";
441 }
442 
443 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
444  BBInfo &MInfo = MBBInfoMap[MBB];
445  if (!MInfo.reachable) {
446  MInfo.reachable = true;
448  SuE = MBB->succ_end(); SuI != SuE; ++SuI)
449  markReachable(*SuI);
450  }
451 }
452 
453 void MachineVerifier::visitMachineFunctionBefore() {
454  lastIndex = SlotIndex();
455  regsReserved = MRI->getReservedRegs();
456 
457  // A sub-register of a reserved register is also reserved
458  for (int Reg = regsReserved.find_first(); Reg>=0;
459  Reg = regsReserved.find_next(Reg)) {
460  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
461  // FIXME: This should probably be:
462  // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
463  regsReserved.set(*SubRegs);
464  }
465  }
466 
467  markReachable(&MF->front());
468 
469  // Build a set of the basic blocks in the function.
470  FunctionBlocks.clear();
472  I = MF->begin(), E = MF->end(); I != E; ++I) {
473  FunctionBlocks.insert(I);
474  BBInfo &MInfo = MBBInfoMap[I];
475 
476  MInfo.Preds.insert(I->pred_begin(), I->pred_end());
477  if (MInfo.Preds.size() != I->pred_size())
478  report("MBB has duplicate entries in its predecessor list.", I);
479 
480  MInfo.Succs.insert(I->succ_begin(), I->succ_end());
481  if (MInfo.Succs.size() != I->succ_size())
482  report("MBB has duplicate entries in its successor list.", I);
483  }
484 
485  // Check that the register use lists are sane.
486  MRI->verifyUseLists();
487 
488  verifyStackFrame();
489 }
490 
491 // Does iterator point to a and b as the first two elements?
493  const MachineBasicBlock *a, const MachineBasicBlock *b) {
494  if (*i == a)
495  return *++i == b;
496  if (*i == b)
497  return *++i == a;
498  return false;
499 }
500 
501 void
502 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
503  FirstTerminator = 0;
504 
505  if (MRI->isSSA()) {
506  // If this block has allocatable physical registers live-in, check that
507  // it is an entry block or landing pad.
509  LE = MBB->livein_end();
510  LI != LE; ++LI) {
511  unsigned reg = *LI;
512  if (isAllocatable(reg) && !MBB->isLandingPad() &&
513  MBB != MBB->getParent()->begin()) {
514  report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
515  }
516  }
517  }
518 
519  // Count the number of landing pad successors.
520  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
522  E = MBB->succ_end(); I != E; ++I) {
523  if ((*I)->isLandingPad())
524  LandingPadSuccs.insert(*I);
525  if (!FunctionBlocks.count(*I))
526  report("MBB has successor that isn't part of the function.", MBB);
527  if (!MBBInfoMap[*I].Preds.count(MBB)) {
528  report("Inconsistent CFG", MBB);
529  *OS << "MBB is not in the predecessor list of the successor BB#"
530  << (*I)->getNumber() << ".\n";
531  }
532  }
533 
534  // Check the predecessor list.
536  E = MBB->pred_end(); I != E; ++I) {
537  if (!FunctionBlocks.count(*I))
538  report("MBB has predecessor that isn't part of the function.", MBB);
539  if (!MBBInfoMap[*I].Succs.count(MBB)) {
540  report("Inconsistent CFG", MBB);
541  *OS << "MBB is not in the successor list of the predecessor BB#"
542  << (*I)->getNumber() << ".\n";
543  }
544  }
545 
546  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
547  const BasicBlock *BB = MBB->getBasicBlock();
548  if (LandingPadSuccs.size() > 1 &&
549  !(AsmInfo &&
551  BB && isa<SwitchInst>(BB->getTerminator())))
552  report("MBB has more than one landing pad successor", MBB);
553 
554  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
555  MachineBasicBlock *TBB = 0, *FBB = 0;
557  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
558  TBB, FBB, Cond)) {
559  // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
560  // check whether its answers match up with reality.
561  if (!TBB && !FBB) {
562  // Block falls through to its successor.
564  ++MBBI;
565  if (MBBI == MF->end()) {
566  // It's possible that the block legitimately ends with a noreturn
567  // call or an unreachable, in which case it won't actually fall
568  // out the bottom of the function.
569  } else if (MBB->succ_size() == LandingPadSuccs.size()) {
570  // It's possible that the block legitimately ends with a noreturn
571  // call or an unreachable, in which case it won't actuall fall
572  // out of the block.
573  } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
574  report("MBB exits via unconditional fall-through but doesn't have "
575  "exactly one CFG successor!", MBB);
576  } else if (!MBB->isSuccessor(MBBI)) {
577  report("MBB exits via unconditional fall-through but its successor "
578  "differs from its CFG successor!", MBB);
579  }
580  if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
581  !TII->isPredicated(getBundleStart(&MBB->back()))) {
582  report("MBB exits via unconditional fall-through but ends with a "
583  "barrier instruction!", MBB);
584  }
585  if (!Cond.empty()) {
586  report("MBB exits via unconditional fall-through but has a condition!",
587  MBB);
588  }
589  } else if (TBB && !FBB && Cond.empty()) {
590  // Block unconditionally branches somewhere.
591  if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
592  report("MBB exits via unconditional branch but doesn't have "
593  "exactly one CFG successor!", MBB);
594  } else if (!MBB->isSuccessor(TBB)) {
595  report("MBB exits via unconditional branch but the CFG "
596  "successor doesn't match the actual successor!", MBB);
597  }
598  if (MBB->empty()) {
599  report("MBB exits via unconditional branch but doesn't contain "
600  "any instructions!", MBB);
601  } else if (!getBundleStart(&MBB->back())->isBarrier()) {
602  report("MBB exits via unconditional branch but doesn't end with a "
603  "barrier instruction!", MBB);
604  } else if (!getBundleStart(&MBB->back())->isTerminator()) {
605  report("MBB exits via unconditional branch but the branch isn't a "
606  "terminator instruction!", MBB);
607  }
608  } else if (TBB && !FBB && !Cond.empty()) {
609  // Block conditionally branches somewhere, otherwise falls through.
611  ++MBBI;
612  if (MBBI == MF->end()) {
613  report("MBB conditionally falls through out of function!", MBB);
614  } else if (MBB->succ_size() == 1) {
615  // A conditional branch with only one successor is weird, but allowed.
616  if (&*MBBI != TBB)
617  report("MBB exits via conditional branch/fall-through but only has "
618  "one CFG successor!", MBB);
619  else if (TBB != *MBB->succ_begin())
620  report("MBB exits via conditional branch/fall-through but the CFG "
621  "successor don't match the actual successor!", MBB);
622  } else if (MBB->succ_size() != 2) {
623  report("MBB exits via conditional branch/fall-through but doesn't have "
624  "exactly two CFG successors!", MBB);
625  } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
626  report("MBB exits via conditional branch/fall-through but the CFG "
627  "successors don't match the actual successors!", MBB);
628  }
629  if (MBB->empty()) {
630  report("MBB exits via conditional branch/fall-through but doesn't "
631  "contain any instructions!", MBB);
632  } else if (getBundleStart(&MBB->back())->isBarrier()) {
633  report("MBB exits via conditional branch/fall-through but ends with a "
634  "barrier instruction!", MBB);
635  } else if (!getBundleStart(&MBB->back())->isTerminator()) {
636  report("MBB exits via conditional branch/fall-through but the branch "
637  "isn't a terminator instruction!", MBB);
638  }
639  } else if (TBB && FBB) {
640  // Block conditionally branches somewhere, otherwise branches
641  // somewhere else.
642  if (MBB->succ_size() == 1) {
643  // A conditional branch with only one successor is weird, but allowed.
644  if (FBB != TBB)
645  report("MBB exits via conditional branch/branch through but only has "
646  "one CFG successor!", MBB);
647  else if (TBB != *MBB->succ_begin())
648  report("MBB exits via conditional branch/branch through but the CFG "
649  "successor don't match the actual successor!", MBB);
650  } else if (MBB->succ_size() != 2) {
651  report("MBB exits via conditional branch/branch but doesn't have "
652  "exactly two CFG successors!", MBB);
653  } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
654  report("MBB exits via conditional branch/branch but the CFG "
655  "successors don't match the actual successors!", MBB);
656  }
657  if (MBB->empty()) {
658  report("MBB exits via conditional branch/branch but doesn't "
659  "contain any instructions!", MBB);
660  } else if (!getBundleStart(&MBB->back())->isBarrier()) {
661  report("MBB exits via conditional branch/branch but doesn't end with a "
662  "barrier instruction!", MBB);
663  } else if (!getBundleStart(&MBB->back())->isTerminator()) {
664  report("MBB exits via conditional branch/branch but the branch "
665  "isn't a terminator instruction!", MBB);
666  }
667  if (Cond.empty()) {
668  report("MBB exits via conditinal branch/branch but there's no "
669  "condition!", MBB);
670  }
671  } else {
672  report("AnalyzeBranch returned invalid data!", MBB);
673  }
674  }
675 
676  regsLive.clear();
678  E = MBB->livein_end(); I != E; ++I) {
680  report("MBB live-in list contains non-physical register", MBB);
681  continue;
682  }
683  for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
684  SubRegs.isValid(); ++SubRegs)
685  regsLive.insert(*SubRegs);
686  }
687  regsLiveInButUnused = regsLive;
688 
689  const MachineFrameInfo *MFI = MF->getFrameInfo();
690  assert(MFI && "Function has no frame info");
691  BitVector PR = MFI->getPristineRegs(MBB);
692  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
693  for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
694  SubRegs.isValid(); ++SubRegs)
695  regsLive.insert(*SubRegs);
696  }
697 
698  regsKilled.clear();
699  regsDefined.clear();
700 
701  if (Indexes)
702  lastIndex = Indexes->getMBBStartIdx(MBB);
703 }
704 
705 // This function gets called for all bundle headers, including normal
706 // stand-alone unbundled instructions.
707 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
708  if (Indexes && Indexes->hasIndex(MI)) {
709  SlotIndex idx = Indexes->getInstructionIndex(MI);
710  if (!(idx > lastIndex)) {
711  report("Instruction index out of order", MI);
712  *OS << "Last instruction was at " << lastIndex << '\n';
713  }
714  lastIndex = idx;
715  }
716 
717  // Ensure non-terminators don't follow terminators.
718  // Ignore predicated terminators formed by if conversion.
719  // FIXME: If conversion shouldn't need to violate this rule.
720  if (MI->isTerminator() && !TII->isPredicated(MI)) {
721  if (!FirstTerminator)
722  FirstTerminator = MI;
723  } else if (FirstTerminator) {
724  report("Non-terminator instruction after the first terminator", MI);
725  *OS << "First terminator was:\t" << *FirstTerminator;
726  }
727 }
728 
729 // The operands on an INLINEASM instruction must follow a template.
730 // Verify that the flag operands make sense.
731 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
732  // The first two operands on INLINEASM are the asm string and global flags.
733  if (MI->getNumOperands() < 2) {
734  report("Too few operands on inline asm", MI);
735  return;
736  }
737  if (!MI->getOperand(0).isSymbol())
738  report("Asm string must be an external symbol", MI);
739  if (!MI->getOperand(1).isImm())
740  report("Asm flags must be an immediate", MI);
741  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
742  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
743  if (!isUInt<5>(MI->getOperand(1).getImm()))
744  report("Unknown asm flags", &MI->getOperand(1), 1);
745 
746  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
747 
748  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
749  unsigned NumOps;
750  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
751  const MachineOperand &MO = MI->getOperand(OpNo);
752  // There may be implicit ops after the fixed operands.
753  if (!MO.isImm())
754  break;
755  NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
756  }
757 
758  if (OpNo > MI->getNumOperands())
759  report("Missing operands in last group", MI);
760 
761  // An optional MDNode follows the groups.
762  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
763  ++OpNo;
764 
765  // All trailing operands must be implicit registers.
766  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
767  const MachineOperand &MO = MI->getOperand(OpNo);
768  if (!MO.isReg() || !MO.isImplicit())
769  report("Expected implicit register after groups", &MO, OpNo);
770  }
771 }
772 
773 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
774  const MCInstrDesc &MCID = MI->getDesc();
775  if (MI->getNumOperands() < MCID.getNumOperands()) {
776  report("Too few operands", MI);
777  *OS << MCID.getNumOperands() << " operands expected, but "
778  << MI->getNumOperands() << " given.\n";
779  }
780 
781  // Check the tied operands.
782  if (MI->isInlineAsm())
783  verifyInlineAsm(MI);
784 
785  // Check the MachineMemOperands for basic consistency.
787  E = MI->memoperands_end(); I != E; ++I) {
788  if ((*I)->isLoad() && !MI->mayLoad())
789  report("Missing mayLoad flag", MI);
790  if ((*I)->isStore() && !MI->mayStore())
791  report("Missing mayStore flag", MI);
792  }
793 
794  // Debug values must not have a slot index.
795  // Other instructions must have one, unless they are inside a bundle.
796  if (LiveInts) {
797  bool mapped = !LiveInts->isNotInMIMap(MI);
798  if (MI->isDebugValue()) {
799  if (mapped)
800  report("Debug instruction has a slot index", MI);
801  } else if (MI->isInsideBundle()) {
802  if (mapped)
803  report("Instruction inside bundle has a slot index", MI);
804  } else {
805  if (!mapped)
806  report("Missing slot index", MI);
807  }
808  }
809 
810  StringRef ErrorInfo;
811  if (!TII->verifyInstruction(MI, ErrorInfo))
812  report(ErrorInfo.data(), MI);
813 }
814 
815 void
816 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
817  const MachineInstr *MI = MO->getParent();
818  const MCInstrDesc &MCID = MI->getDesc();
819 
820  // The first MCID.NumDefs operands must be explicit register defines
821  if (MONum < MCID.getNumDefs()) {
822  const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
823  if (!MO->isReg())
824  report("Explicit definition must be a register", MO, MONum);
825  else if (!MO->isDef() && !MCOI.isOptionalDef())
826  report("Explicit definition marked as use", MO, MONum);
827  else if (MO->isImplicit())
828  report("Explicit definition marked as implicit", MO, MONum);
829  } else if (MONum < MCID.getNumOperands()) {
830  const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
831  // Don't check if it's the last operand in a variadic instruction. See,
832  // e.g., LDM_RET in the arm back end.
833  if (MO->isReg() &&
834  !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
835  if (MO->isDef() && !MCOI.isOptionalDef())
836  report("Explicit operand marked as def", MO, MONum);
837  if (MO->isImplicit())
838  report("Explicit operand marked as implicit", MO, MONum);
839  }
840 
841  int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
842  if (TiedTo != -1) {
843  if (!MO->isReg())
844  report("Tied use must be a register", MO, MONum);
845  else if (!MO->isTied())
846  report("Operand should be tied", MO, MONum);
847  else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
848  report("Tied def doesn't match MCInstrDesc", MO, MONum);
849  } else if (MO->isReg() && MO->isTied())
850  report("Explicit operand should not be tied", MO, MONum);
851  } else {
852  // ARM adds %reg0 operands to indicate predicates. We'll allow that.
853  if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
854  report("Extra explicit operand on non-variadic instruction", MO, MONum);
855  }
856 
857  switch (MO->getType()) {
859  const unsigned Reg = MO->getReg();
860  if (!Reg)
861  return;
862  if (MRI->tracksLiveness() && !MI->isDebugValue())
863  checkLiveness(MO, MONum);
864 
865  // Verify the consistency of tied operands.
866  if (MO->isTied()) {
867  unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
868  const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
869  if (!OtherMO.isReg())
870  report("Must be tied to a register", MO, MONum);
871  if (!OtherMO.isTied())
872  report("Missing tie flags on tied operand", MO, MONum);
873  if (MI->findTiedOperandIdx(OtherIdx) != MONum)
874  report("Inconsistent tie links", MO, MONum);
875  if (MONum < MCID.getNumDefs()) {
876  if (OtherIdx < MCID.getNumOperands()) {
877  if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
878  report("Explicit def tied to explicit use without tie constraint",
879  MO, MONum);
880  } else {
881  if (!OtherMO.isImplicit())
882  report("Explicit def should be tied to implicit use", MO, MONum);
883  }
884  }
885  }
886 
887  // Verify two-address constraints after leaving SSA form.
888  unsigned DefIdx;
889  if (!MRI->isSSA() && MO->isUse() &&
890  MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
891  Reg != MI->getOperand(DefIdx).getReg())
892  report("Two-address instruction operands must be identical", MO, MONum);
893 
894  // Check register classes.
895  if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
896  unsigned SubIdx = MO->getSubReg();
897 
899  if (SubIdx) {
900  report("Illegal subregister index for physical register", MO, MONum);
901  return;
902  }
903  if (const TargetRegisterClass *DRC =
904  TII->getRegClass(MCID, MONum, TRI, *MF)) {
905  if (!DRC->contains(Reg)) {
906  report("Illegal physical register for instruction", MO, MONum);
907  *OS << TRI->getName(Reg) << " is not a "
908  << DRC->getName() << " register.\n";
909  }
910  }
911  } else {
912  // Virtual register.
913  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
914  if (SubIdx) {
915  const TargetRegisterClass *SRC =
916  TRI->getSubClassWithSubReg(RC, SubIdx);
917  if (!SRC) {
918  report("Invalid subregister index for virtual register", MO, MONum);
919  *OS << "Register class " << RC->getName()
920  << " does not support subreg index " << SubIdx << "\n";
921  return;
922  }
923  if (RC != SRC) {
924  report("Invalid register class for subregister index", MO, MONum);
925  *OS << "Register class " << RC->getName()
926  << " does not fully support subreg index " << SubIdx << "\n";
927  return;
928  }
929  }
930  if (const TargetRegisterClass *DRC =
931  TII->getRegClass(MCID, MONum, TRI, *MF)) {
932  if (SubIdx) {
933  const TargetRegisterClass *SuperRC =
934  TRI->getLargestLegalSuperClass(RC);
935  if (!SuperRC) {
936  report("No largest legal super class exists.", MO, MONum);
937  return;
938  }
939  DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
940  if (!DRC) {
941  report("No matching super-reg register class.", MO, MONum);
942  return;
943  }
944  }
945  if (!RC->hasSuperClassEq(DRC)) {
946  report("Illegal virtual register for instruction", MO, MONum);
947  *OS << "Expected a " << DRC->getName() << " register, but got a "
948  << RC->getName() << " register\n";
949  }
950  }
951  }
952  }
953  break;
954  }
955 
957  regMasks.push_back(MO->getRegMask());
958  break;
959 
961  if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
962  report("PHI operand is not in the CFG", MO, MONum);
963  break;
964 
966  if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
967  LiveInts && !LiveInts->isNotInMIMap(MI)) {
968  LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
969  SlotIndex Idx = LiveInts->getInstructionIndex(MI);
970  if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
971  report("Instruction loads from dead spill slot", MO, MONum);
972  *OS << "Live stack: " << LI << '\n';
973  }
974  if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
975  report("Instruction stores to dead spill slot", MO, MONum);
976  *OS << "Live stack: " << LI << '\n';
977  }
978  }
979  break;
980 
981  default:
982  break;
983  }
984 }
985 
986 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
987  const MachineInstr *MI = MO->getParent();
988  const unsigned Reg = MO->getReg();
989 
990  // Both use and def operands can read a register.
991  if (MO->readsReg()) {
992  regsLiveInButUnused.erase(Reg);
993 
994  if (MO->isKill())
995  addRegWithSubRegs(regsKilled, Reg);
996 
997  // Check that LiveVars knows this kill.
998  if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
999  MO->isKill()) {
1000  LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1001  if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1002  report("Kill missing from LiveVariables", MO, MONum);
1003  }
1004 
1005  // Check LiveInts liveness and kill.
1006  if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1007  SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1008  // Check the cached regunit intervals.
1009  if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1010  for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1011  if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1012  LiveQueryResult LRQ = LR->Query(UseIdx);
1013  if (!LRQ.valueIn()) {
1014  report("No live segment at use", MO, MONum);
1015  *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1016  << ' ' << *LR << '\n';
1017  }
1018  if (MO->isKill() && !LRQ.isKill()) {
1019  report("Live range continues after kill flag", MO, MONum);
1020  *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1021  }
1022  }
1023  }
1024  }
1025 
1027  if (LiveInts->hasInterval(Reg)) {
1028  // This is a virtual register interval.
1029  const LiveInterval &LI = LiveInts->getInterval(Reg);
1030  LiveQueryResult LRQ = LI.Query(UseIdx);
1031  if (!LRQ.valueIn()) {
1032  report("No live segment at use", MO, MONum);
1033  *OS << UseIdx << " is not live in " << LI << '\n';
1034  }
1035  // Check for extra kill flags.
1036  // Note that we allow missing kill flags for now.
1037  if (MO->isKill() && !LRQ.isKill()) {
1038  report("Live range continues after kill flag", MO, MONum);
1039  *OS << "Live range: " << LI << '\n';
1040  }
1041  } else {
1042  report("Virtual register has no live interval", MO, MONum);
1043  }
1044  }
1045  }
1046 
1047  // Use of a dead register.
1048  if (!regsLive.count(Reg)) {
1050  // Reserved registers may be used even when 'dead'.
1051  if (!isReserved(Reg))
1052  report("Using an undefined physical register", MO, MONum);
1053  } else if (MRI->def_empty(Reg)) {
1054  report("Reading virtual register without a def", MO, MONum);
1055  } else {
1056  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1057  // We don't know which virtual registers are live in, so only complain
1058  // if vreg was killed in this MBB. Otherwise keep track of vregs that
1059  // must be live in. PHI instructions are handled separately.
1060  if (MInfo.regsKilled.count(Reg))
1061  report("Using a killed virtual register", MO, MONum);
1062  else if (!MI->isPHI())
1063  MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1064  }
1065  }
1066  }
1067 
1068  if (MO->isDef()) {
1069  // Register defined.
1070  // TODO: verify that earlyclobber ops are not used.
1071  if (MO->isDead())
1072  addRegWithSubRegs(regsDead, Reg);
1073  else
1074  addRegWithSubRegs(regsDefined, Reg);
1075 
1076  // Verify SSA form.
1077  if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1078  llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
1079  report("Multiple virtual register defs in SSA form", MO, MONum);
1080 
1081  // Check LiveInts for a live segment, but only for virtual registers.
1082  if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1083  !LiveInts->isNotInMIMap(MI)) {
1084  SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1085  DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1086  if (LiveInts->hasInterval(Reg)) {
1087  const LiveInterval &LI = LiveInts->getInterval(Reg);
1088  if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1089  assert(VNI && "NULL valno is not allowed");
1090  if (VNI->def != DefIdx) {
1091  report("Inconsistent valno->def", MO, MONum);
1092  *OS << "Valno " << VNI->id << " is not defined at "
1093  << DefIdx << " in " << LI << '\n';
1094  }
1095  } else {
1096  report("No live segment at def", MO, MONum);
1097  *OS << DefIdx << " is not live in " << LI << '\n';
1098  }
1099  // Check that, if the dead def flag is present, LiveInts agree.
1100  if (MO->isDead()) {
1101  LiveQueryResult LRQ = LI.Query(DefIdx);
1102  if (!LRQ.isDeadDef()) {
1103  report("Live range continues after dead def flag", MO, MONum);
1104  *OS << "Live range: " << LI << '\n';
1105  }
1106  }
1107  } else {
1108  report("Virtual register has no Live interval", MO, MONum);
1109  }
1110  }
1111  }
1112 }
1113 
1114 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1115 }
1116 
1117 // This function gets called after visiting all instructions in a bundle. The
1118 // argument points to the bundle header.
1119 // Normal stand-alone instructions are also considered 'bundles', and this
1120 // function is called for all of them.
1121 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1122  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1123  set_union(MInfo.regsKilled, regsKilled);
1124  set_subtract(regsLive, regsKilled); regsKilled.clear();
1125  // Kill any masked registers.
1126  while (!regMasks.empty()) {
1127  const uint32_t *Mask = regMasks.pop_back_val();
1128  for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1131  regsDead.push_back(*I);
1132  }
1133  set_subtract(regsLive, regsDead); regsDead.clear();
1134  set_union(regsLive, regsDefined); regsDefined.clear();
1135 }
1136 
1137 void
1138 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1139  MBBInfoMap[MBB].regsLiveOut = regsLive;
1140  regsLive.clear();
1141 
1142  if (Indexes) {
1143  SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1144  if (!(stop > lastIndex)) {
1145  report("Block ends before last instruction index", MBB);
1146  *OS << "Block ends at " << stop
1147  << " last instruction was at " << lastIndex << '\n';
1148  }
1149  lastIndex = stop;
1150  }
1151 }
1152 
1153 // Calculate the largest possible vregsPassed sets. These are the registers that
1154 // can pass through an MBB live, but may not be live every time. It is assumed
1155 // that all vregsPassed sets are empty before the call.
1156 void MachineVerifier::calcRegsPassed() {
1157  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1158  // have any vregsPassed.
1160  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1161  MFI != MFE; ++MFI) {
1162  const MachineBasicBlock &MBB(*MFI);
1163  BBInfo &MInfo = MBBInfoMap[&MBB];
1164  if (!MInfo.reachable)
1165  continue;
1167  SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1168  BBInfo &SInfo = MBBInfoMap[*SuI];
1169  if (SInfo.addPassed(MInfo.regsLiveOut))
1170  todo.insert(*SuI);
1171  }
1172  }
1173 
1174  // Iteratively push vregsPassed to successors. This will converge to the same
1175  // final state regardless of DenseSet iteration order.
1176  while (!todo.empty()) {
1177  const MachineBasicBlock *MBB = *todo.begin();
1178  todo.erase(MBB);
1179  BBInfo &MInfo = MBBInfoMap[MBB];
1181  SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1182  if (*SuI == MBB)
1183  continue;
1184  BBInfo &SInfo = MBBInfoMap[*SuI];
1185  if (SInfo.addPassed(MInfo.vregsPassed))
1186  todo.insert(*SuI);
1187  }
1188  }
1189 }
1190 
1191 // Calculate the set of virtual registers that must be passed through each basic
1192 // block in order to satisfy the requirements of successor blocks. This is very
1193 // similar to calcRegsPassed, only backwards.
1194 void MachineVerifier::calcRegsRequired() {
1195  // First push live-in regs to predecessors' vregsRequired.
1197  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1198  MFI != MFE; ++MFI) {
1199  const MachineBasicBlock &MBB(*MFI);
1200  BBInfo &MInfo = MBBInfoMap[&MBB];
1202  PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1203  BBInfo &PInfo = MBBInfoMap[*PrI];
1204  if (PInfo.addRequired(MInfo.vregsLiveIn))
1205  todo.insert(*PrI);
1206  }
1207  }
1208 
1209  // Iteratively push vregsRequired to predecessors. This will converge to the
1210  // same final state regardless of DenseSet iteration order.
1211  while (!todo.empty()) {
1212  const MachineBasicBlock *MBB = *todo.begin();
1213  todo.erase(MBB);
1214  BBInfo &MInfo = MBBInfoMap[MBB];
1216  PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1217  if (*PrI == MBB)
1218  continue;
1219  BBInfo &SInfo = MBBInfoMap[*PrI];
1220  if (SInfo.addRequired(MInfo.vregsRequired))
1221  todo.insert(*PrI);
1222  }
1223  }
1224 }
1225 
1226 // Check PHI instructions at the beginning of MBB. It is assumed that
1227 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1228 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1230  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1231  BBI != BBE && BBI->isPHI(); ++BBI) {
1232  seen.clear();
1233 
1234  for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1235  unsigned Reg = BBI->getOperand(i).getReg();
1236  const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1237  if (!Pre->isSuccessor(MBB))
1238  continue;
1239  seen.insert(Pre);
1240  BBInfo &PrInfo = MBBInfoMap[Pre];
1241  if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1242  report("PHI operand is not live-out from predecessor",
1243  &BBI->getOperand(i), i);
1244  }
1245 
1246  // Did we see all predecessors?
1248  PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1249  if (!seen.count(*PrI)) {
1250  report("Missing PHI operand", BBI);
1251  *OS << "BB#" << (*PrI)->getNumber()
1252  << " is a predecessor according to the CFG.\n";
1253  }
1254  }
1255  }
1256 }
1257 
1258 void MachineVerifier::visitMachineFunctionAfter() {
1259  calcRegsPassed();
1260 
1261  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1262  MFI != MFE; ++MFI) {
1263  BBInfo &MInfo = MBBInfoMap[MFI];
1264 
1265  // Skip unreachable MBBs.
1266  if (!MInfo.reachable)
1267  continue;
1268 
1269  checkPHIOps(MFI);
1270  }
1271 
1272  // Now check liveness info if available
1273  calcRegsRequired();
1274 
1275  // Check for killed virtual registers that should be live out.
1276  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1277  MFI != MFE; ++MFI) {
1278  BBInfo &MInfo = MBBInfoMap[MFI];
1279  for (RegSet::iterator
1280  I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1281  ++I)
1282  if (MInfo.regsKilled.count(*I)) {
1283  report("Virtual register killed in block, but needed live out.", MFI);
1284  *OS << "Virtual register " << PrintReg(*I)
1285  << " is used after the block.\n";
1286  }
1287  }
1288 
1289  if (!MF->empty()) {
1290  BBInfo &MInfo = MBBInfoMap[&MF->front()];
1291  for (RegSet::iterator
1292  I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1293  ++I)
1294  report("Virtual register def doesn't dominate all uses.",
1295  MRI->getVRegDef(*I));
1296  }
1297 
1298  if (LiveVars)
1299  verifyLiveVariables();
1300  if (LiveInts)
1301  verifyLiveIntervals();
1302 }
1303 
1304 void MachineVerifier::verifyLiveVariables() {
1305  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1306  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1307  unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1308  LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1309  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1310  MFI != MFE; ++MFI) {
1311  BBInfo &MInfo = MBBInfoMap[MFI];
1312 
1313  // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1314  if (MInfo.vregsRequired.count(Reg)) {
1315  if (!VI.AliveBlocks.test(MFI->getNumber())) {
1316  report("LiveVariables: Block missing from AliveBlocks", MFI);
1317  *OS << "Virtual register " << PrintReg(Reg)
1318  << " must be live through the block.\n";
1319  }
1320  } else {
1321  if (VI.AliveBlocks.test(MFI->getNumber())) {
1322  report("LiveVariables: Block should not be in AliveBlocks", MFI);
1323  *OS << "Virtual register " << PrintReg(Reg)
1324  << " is not needed live through the block.\n";
1325  }
1326  }
1327  }
1328  }
1329 }
1330 
1331 void MachineVerifier::verifyLiveIntervals() {
1332  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1333  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1334  unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1335 
1336  // Spilling and splitting may leave unused registers around. Skip them.
1337  if (MRI->reg_nodbg_empty(Reg))
1338  continue;
1339 
1340  if (!LiveInts->hasInterval(Reg)) {
1341  report("Missing live interval for virtual register", MF);
1342  *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1343  continue;
1344  }
1345 
1346  const LiveInterval &LI = LiveInts->getInterval(Reg);
1347  assert(Reg == LI.reg && "Invalid reg to interval mapping");
1348  verifyLiveInterval(LI);
1349  }
1350 
1351  // Verify all the cached regunit intervals.
1352  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1353  if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1354  verifyLiveRange(*LR, i);
1355 }
1356 
1357 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1358  const VNInfo *VNI,
1359  unsigned Reg) {
1360  if (VNI->isUnused())
1361  return;
1362 
1363  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1364 
1365  if (!DefVNI) {
1366  report("Valno not live at def and not marked unused", MF, LR);
1367  *OS << "Valno #" << VNI->id << '\n';
1368  return;
1369  }
1370 
1371  if (DefVNI != VNI) {
1372  report("Live segment at def has different valno", MF, LR);
1373  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1374  << " where valno #" << DefVNI->id << " is live\n";
1375  return;
1376  }
1377 
1378  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1379  if (!MBB) {
1380  report("Invalid definition index", MF, LR);
1381  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1382  << " in " << LR << '\n';
1383  return;
1384  }
1385 
1386  if (VNI->isPHIDef()) {
1387  if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1388  report("PHIDef value is not defined at MBB start", MBB, LR);
1389  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1390  << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1391  }
1392  return;
1393  }
1394 
1395  // Non-PHI def.
1396  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1397  if (!MI) {
1398  report("No instruction at def index", MBB, LR);
1399  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1400  return;
1401  }
1402 
1403  if (Reg != 0) {
1404  bool hasDef = false;
1405  bool isEarlyClobber = false;
1406  for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1407  if (!MOI->isReg() || !MOI->isDef())
1408  continue;
1410  if (MOI->getReg() != Reg)
1411  continue;
1412  } else {
1413  if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1414  !TRI->hasRegUnit(MOI->getReg(), Reg))
1415  continue;
1416  }
1417  hasDef = true;
1418  if (MOI->isEarlyClobber())
1419  isEarlyClobber = true;
1420  }
1421 
1422  if (!hasDef) {
1423  report("Defining instruction does not modify register", MI);
1424  *OS << "Valno #" << VNI->id << " in " << LR << '\n';
1425  }
1426 
1427  // Early clobber defs begin at USE slots, but other defs must begin at
1428  // DEF slots.
1429  if (isEarlyClobber) {
1430  if (!VNI->def.isEarlyClobber()) {
1431  report("Early clobber def must be at an early-clobber slot", MBB, LR);
1432  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1433  }
1434  } else if (!VNI->def.isRegister()) {
1435  report("Non-PHI, non-early clobber def must be at a register slot",
1436  MBB, LR);
1437  *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1438  }
1439  }
1440 }
1441 
1442 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1444  unsigned Reg) {
1445  const LiveRange::Segment &S = *I;
1446  const VNInfo *VNI = S.valno;
1447  assert(VNI && "Live segment has no valno");
1448 
1449  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1450  report("Foreign valno in live segment", MF, LR);
1451  *OS << S << " has a bad valno\n";
1452  }
1453 
1454  if (VNI->isUnused()) {
1455  report("Live segment valno is marked unused", MF, LR);
1456  *OS << S << '\n';
1457  }
1458 
1459  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1460  if (!MBB) {
1461  report("Bad start of live segment, no basic block", MF, LR);
1462  *OS << S << '\n';
1463  return;
1464  }
1465  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1466  if (S.start != MBBStartIdx && S.start != VNI->def) {
1467  report("Live segment must begin at MBB entry or valno def", MBB, LR);
1468  *OS << S << '\n';
1469  }
1470 
1471  const MachineBasicBlock *EndMBB =
1472  LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1473  if (!EndMBB) {
1474  report("Bad end of live segment, no basic block", MF, LR);
1475  *OS << S << '\n';
1476  return;
1477  }
1478 
1479  // No more checks for live-out segments.
1480  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1481  return;
1482 
1483  // RegUnit intervals are allowed dead phis.
1484  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1485  S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1486  return;
1487 
1488  // The live segment is ending inside EndMBB
1489  const MachineInstr *MI =
1490  LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1491  if (!MI) {
1492  report("Live segment doesn't end at a valid instruction", EndMBB, LR);
1493  *OS << S << '\n';
1494  return;
1495  }
1496 
1497  // The block slot must refer to a basic block boundary.
1498  if (S.end.isBlock()) {
1499  report("Live segment ends at B slot of an instruction", EndMBB, LR);
1500  *OS << S << '\n';
1501  }
1502 
1503  if (S.end.isDead()) {
1504  // Segment ends on the dead slot.
1505  // That means there must be a dead def.
1506  if (!SlotIndex::isSameInstr(S.start, S.end)) {
1507  report("Live segment ending at dead slot spans instructions", EndMBB, LR);
1508  *OS << S << '\n';
1509  }
1510  }
1511 
1512  // A live segment can only end at an early-clobber slot if it is being
1513  // redefined by an early-clobber def.
1514  if (S.end.isEarlyClobber()) {
1515  if (I+1 == LR.end() || (I+1)->start != S.end) {
1516  report("Live segment ending at early clobber slot must be "
1517  "redefined by an EC def in the same instruction", EndMBB, LR);
1518  *OS << S << '\n';
1519  }
1520  }
1521 
1522  // The following checks only apply to virtual registers. Physreg liveness
1523  // is too weird to check.
1525  // A live segment can end with either a redefinition, a kill flag on a
1526  // use, or a dead flag on a def.
1527  bool hasRead = false;
1528  for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1529  if (!MOI->isReg() || MOI->getReg() != Reg)
1530  continue;
1531  if (MOI->readsReg())
1532  hasRead = true;
1533  }
1534  if (!S.end.isDead()) {
1535  if (!hasRead) {
1536  report("Instruction ending live segment doesn't read the register", MI);
1537  *OS << S << " in " << LR << '\n';
1538  }
1539  }
1540  }
1541 
1542  // Now check all the basic blocks in this live segment.
1544  // Is this live segment the beginning of a non-PHIDef VN?
1545  if (S.start == VNI->def && !VNI->isPHIDef()) {
1546  // Not live-in to any blocks.
1547  if (MBB == EndMBB)
1548  return;
1549  // Skip this block.
1550  ++MFI;
1551  }
1552  for (;;) {
1553  assert(LiveInts->isLiveInToMBB(LR, MFI));
1554  // We don't know how to track physregs into a landing pad.
1556  MFI->isLandingPad()) {
1557  if (&*MFI == EndMBB)
1558  break;
1559  ++MFI;
1560  continue;
1561  }
1562 
1563  // Is VNI a PHI-def in the current block?
1564  bool IsPHI = VNI->isPHIDef() &&
1565  VNI->def == LiveInts->getMBBStartIdx(MFI);
1566 
1567  // Check that VNI is live-out of all predecessors.
1568  for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1569  PE = MFI->pred_end(); PI != PE; ++PI) {
1570  SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1571  const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1572 
1573  // All predecessors must have a live-out value.
1574  if (!PVNI) {
1575  report("Register not marked live out of predecessor", *PI, LR);
1576  *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1577  << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1578  << PEnd << '\n';
1579  continue;
1580  }
1581 
1582  // Only PHI-defs can take different predecessor values.
1583  if (!IsPHI && PVNI != VNI) {
1584  report("Different value live out of predecessor", *PI, LR);
1585  *OS << "Valno #" << PVNI->id << " live out of BB#"
1586  << (*PI)->getNumber() << '@' << PEnd
1587  << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1588  << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1589  }
1590  }
1591  if (&*MFI == EndMBB)
1592  break;
1593  ++MFI;
1594  }
1595 }
1596 
1597 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
1598  for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
1599  I != E; ++I)
1600  verifyLiveRangeValue(LR, *I, Reg);
1601 
1602  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1603  verifyLiveRangeSegment(LR, I, Reg);
1604 }
1605 
1606 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1607  verifyLiveRange(LI, LI.reg);
1608 
1609  // Check the LI only has one connected component.
1611  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1612  unsigned NumComp = ConEQ.Classify(&LI);
1613  if (NumComp > 1) {
1614  report("Multiple connected components in live interval", MF, LI);
1615  for (unsigned comp = 0; comp != NumComp; ++comp) {
1616  *OS << comp << ": valnos";
1618  E = LI.vni_end(); I!=E; ++I)
1619  if (comp == ConEQ.getEqClass(*I))
1620  *OS << ' ' << (*I)->id;
1621  *OS << '\n';
1622  }
1623  }
1624  }
1625 }
1626 
1627 namespace {
1628  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1629  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1630  // value is zero.
1631  // We use a bool plus an integer to capture the stack state.
1632  struct StackStateOfBB {
1633  StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1634  ExitIsSetup(false) { }
1635  StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1636  EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1637  ExitIsSetup(ExitSetup) { }
1638  // Can be negative, which means we are setting up a frame.
1639  int EntryValue;
1640  int ExitValue;
1641  bool EntryIsSetup;
1642  bool ExitIsSetup;
1643  };
1644 }
1645 
1646 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1647 /// by a FrameDestroy <n>, stack adjustments are identical on all
1648 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
1649 void MachineVerifier::verifyStackFrame() {
1650  int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
1651  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1652 
1654  SPState.resize(MF->getNumBlockIDs());
1656 
1657  // Visit the MBBs in DFS order.
1658  for (df_ext_iterator<const MachineFunction*,
1660  DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1661  DFI != DFE; ++DFI) {
1662  const MachineBasicBlock *MBB = *DFI;
1663 
1664  StackStateOfBB BBState;
1665  // Check the exit state of the DFS stack predecessor.
1666  if (DFI.getPathLength() >= 2) {
1667  const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1668  assert(Reachable.count(StackPred) &&
1669  "DFS stack predecessor is already visited.\n");
1670  BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1671  BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1672  BBState.ExitValue = BBState.EntryValue;
1673  BBState.ExitIsSetup = BBState.EntryIsSetup;
1674  }
1675 
1676  // Update stack state by checking contents of MBB.
1677  for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
1678  I != E; ++I) {
1679  if (I->getOpcode() == FrameSetupOpcode) {
1680  // The first operand of a FrameOpcode should be i32.
1681  int Size = I->getOperand(0).getImm();
1682  assert(Size >= 0 &&
1683  "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1684 
1685  if (BBState.ExitIsSetup)
1686  report("FrameSetup is after another FrameSetup", I);
1687  BBState.ExitValue -= Size;
1688  BBState.ExitIsSetup = true;
1689  }
1690 
1691  if (I->getOpcode() == FrameDestroyOpcode) {
1692  // The first operand of a FrameOpcode should be i32.
1693  int Size = I->getOperand(0).getImm();
1694  assert(Size >= 0 &&
1695  "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1696 
1697  if (!BBState.ExitIsSetup)
1698  report("FrameDestroy is not after a FrameSetup", I);
1699  int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1700  BBState.ExitValue;
1701  if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1702  report("FrameDestroy <n> is after FrameSetup <m>", I);
1703  *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
1704  << AbsSPAdj << ">.\n";
1705  }
1706  BBState.ExitValue += Size;
1707  BBState.ExitIsSetup = false;
1708  }
1709  }
1710  SPState[MBB->getNumber()] = BBState;
1711 
1712  // Make sure the exit state of any predecessor is consistent with the entry
1713  // state.
1715  E = MBB->pred_end(); I != E; ++I) {
1716  if (Reachable.count(*I) &&
1717  (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1718  SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1719  report("The exit stack state of a predecessor is inconsistent.", MBB);
1720  *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1721  << SPState[(*I)->getNumber()].ExitValue << ", "
1722  << SPState[(*I)->getNumber()].ExitIsSetup
1723  << "), while BB#" << MBB->getNumber() << " has entry state ("
1724  << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1725  }
1726  }
1727 
1728  // Make sure the entry state of any successor is consistent with the exit
1729  // state.
1731  E = MBB->succ_end(); I != E; ++I) {
1732  if (Reachable.count(*I) &&
1733  (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1734  SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1735  report("The entry stack state of a successor is inconsistent.", MBB);
1736  *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1737  << SPState[(*I)->getNumber()].EntryValue << ", "
1738  << SPState[(*I)->getNumber()].EntryIsSetup
1739  << "), while BB#" << MBB->getNumber() << " has exit state ("
1740  << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1741  }
1742  }
1743 
1744  // Make sure a basic block with return ends with zero stack adjustment.
1745  if (!MBB->empty() && MBB->back().isReturn()) {
1746  if (BBState.ExitIsSetup)
1747  report("A return block ends with a FrameSetup.", MBB);
1748  if (BBState.ExitValue)
1749  report("A return block ends with a nonzero stack adjustment.", MBB);
1750  }
1751  }
1752 }
bool isInsideBundle() const
Definition: MachineInstr.h:210
bool isImplicit() const
unsigned succ_size() const
const MachineFunction * getParent() const
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=0) const
Definition: MachineInstr.h:862
int find_first() const
Definition: BitVector.h:159
raw_ostream & errs()
MachineInstr * getParent()
static PassRegistry * getPassRegistry()
const unsigned reg
Definition: LiveInterval.h:532
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:52
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
MachineBasicBlock * getMBB() const
static unsigned index2VirtReg(unsigned Index)
void verify(Pass *p=NULL, const char *Banner=NULL) const
void print(raw_ostream &OS, SlotIndexes *=0) const
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
int find_next(unsigned Prev) const
Definition: BitVector.h:173
vni_iterator vni_begin()
Definition: LiveInterval.h:200
std::vector< unsigned >::const_iterator livein_iterator
bool mayStore(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:479
bool isDead() const
static bool isVirtualRegister(unsigned Reg)
static bool matchPair(MachineBasicBlock::const_succ_iterator i, const MachineBasicBlock *a, const MachineBasicBlock *b)
bool isTied() const
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool isKill() const
Definition: LiveInterval.h:107
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
ExceptionHandling::ExceptionsType getExceptionHandlingType() const
Definition: MCAsmInfo.h:519
bool hasSuperClassEq(const TargetRegisterClass *RC) const
virtual bool isPredicated(const MachineInstr *MI) const
bool isRegister() const
Definition: SlotIndexes.h:236
bool isMetadata() const
isMetadata - Tests if this is a MO_Metadata operand.
unsigned getNumValNums() const
Definition: LiveInterval.h:246
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:350
bool isTerminator(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:366
bool isEarlyClobber() const
isEarlyClobber - Returns true if this is an early-clobber slot.
Definition: SlotIndexes.h:232
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
void initializeMachineVerifierPassPass(PassRegistry &)
livein_iterator livein_begin() const
bool test(unsigned Idx)
void clear()
clear - Clear all bits.
Definition: BitVector.h:205
unsigned getNumBlockIDs() const
const HexagonInstrInfo * TII
const char * getName() const
AnalysisType * getAnalysisIfAvailable() const
bool isPHI() const
Definition: MachineInstr.h:648
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
iterator end()
Definition: LiveInterval.h:193
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool mayLoad(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:465
Abstract Stack Frame Information.
bool isBlock() const
isBlock - Returns true if this is a block boundary slot.
Definition: SlotIndexes.h:229
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
Definition: SlotIndexes.h:262
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:76
const MachineBasicBlock & front() const
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:239
bool isKill() const
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
const char * data() const
Definition: StringRef.h:107
int64_t getImm() const
VNInfoList::const_iterator const_vni_iterator
Definition: LiveInterval.h:203
INITIALIZE_PASS(MachineVerifierPass,"machineverifier","Verify generated machine code", false, false) FunctionPass *llvm
const BasicBlock * getBasicBlock() const
SlotIndex getPrevSlot() const
Definition: SlotIndexes.h:292
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bool isDebugValue() const
Definition: MachineInstr.h:639
mmo_iterator memoperands_end() const
Definition: MachineInstr.h:292
bool isDeadDef() const
Return true if this instruction has a dead def.
Definition: LiveInterval.h:112
bool isEarlyClobber() const
unsigned findTiedOperandIdx(unsigned OpIdx) const
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:345
LiveQueryResult Query(SlotIndex Idx) const
Definition: LiveInterval.h:441
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
df_ext_iterator< T, SetTy > df_ext_end(const T &G, SetTy &S)
bool isOptionalDef() const
Definition: MCInstrDesc.h:87
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
livein_iterator livein_end() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
Abstract Stack Frame Index.
static unsigned getNumOperandRegisters(unsigned Flag)
Definition: InlineAsm.h:278
Two Address instruction pass
df_ext_iterator< T, SetTy > df_ext_begin(const T &G, SetTy &S)
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isVariadic(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:328
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
unsigned getSubReg() const
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:330
bool isPHIDef() const
Definition: LiveInterval.h:73
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specific constraint if it is set. Returns -1 if it is not set...
Definition: MCInstrDesc.h:156
std::vector< MachineBasicBlock * >::const_iterator const_pred_iterator
BitVector getPristineRegs(const MachineBasicBlock *MBB) const
std::vector< MachineInstr * > Kills
Definition: LiveVariables.h:89
unsigned id
The ID number of this value.
Definition: LiveInterval.h:49
bool erase(PtrType Ptr)
Definition: SmallPtrSet.h:259
const uint32_t * getRegMask() const
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:206
bool isInlineAsm() const
Definition: MachineInstr.h:651
FunctionPass * createMachineVerifierPass(const char *Banner=0)
bool isSuccessor(const MachineBasicBlock *MBB) const
unsigned size() const
Definition: SmallPtrSet.h:75
MachineFrameInfo * getFrameInfo()
void print(raw_ostream &OS, const TargetMachine *TM=0, bool SkipOpers=false) const
static bool clobbersPhysReg(const uint32_t *RegMask, unsigned PhysReg)
StringRef getName() const
MachineInstr * getBundleStart(MachineInstr *MI)
VNInfo * getValNumInfo(unsigned ValNo)
Definition: LiveInterval.h:250
void set_subtract(S1Ty &S1, const S2Ty &S2)
Definition: SetOperations.h:63
MachineOperandType getType() const
bundle_iterator< const MachineInstr, const_instr_iterator > const_iterator
static bool isPhysicalRegister(unsigned Reg)
MachineRegisterInfo & getRegInfo()
virtual void getAnalysisUsage(AnalysisUsage &AU) const
void print(raw_ostream &os, const TargetMachine *TM=0) const
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
void resize(unsigned N)
Definition: SmallVector.h:401
const TargetMachine & getTarget() const
Mask of preserved registers.
SlotIndex getRegSlot(bool EC=false) const
Definition: SlotIndexes.h:257
iterator begin()
Definition: LiveInterval.h:192
unsigned getReg() const
getReg - Returns the register number.
bool isValid() const
isValid - Returns true until all the operands have been visited.
std::vector< MachineBasicBlock * >::const_iterator const_succ_iterator
iterator begin() const
Definition: SmallPtrSet.h:276
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
const MCRegisterInfo & MRI
bool readsReg() const
StringRef getName() const
VNInfo * valueIn() const
Definition: LiveInterval.h:100
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:92
char *getenv(const char *name);
vni_iterator vni_end()
Definition: LiveInterval.h:201
bool set_union(S1Ty &S1, const S2Ty &S2)
Definition: SetOperations.h:23
MachineBasicBlock reference.
VNInfo * getVNInfoBefore(SlotIndex Idx) const
Definition: LiveInterval.h:358
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:291