LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PHIElimination.cpp
Go to the documentation of this file.
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "phielim"
17 #include "llvm/CodeGen/Passes.h"
18 #include "PHIEliminationUtils.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/Function.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/Debug.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 static cl::opt<bool>
39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40  cl::Hidden, cl::desc("Disable critical edge splitting "
41  "during PHI elimination"));
42 
43 static cl::opt<bool>
44 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45  cl::Hidden, cl::desc("Split all critical edges during "
46  "PHI elimination"));
47 
48 namespace {
49  class PHIElimination : public MachineFunctionPass {
50  MachineRegisterInfo *MRI; // Machine register information
51  LiveVariables *LV;
52  LiveIntervals *LIS;
53 
54  public:
55  static char ID; // Pass identification, replacement for typeid
56  PHIElimination() : MachineFunctionPass(ID) {
58  }
59 
60  virtual bool runOnMachineFunction(MachineFunction &Fn);
61  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62 
63  private:
64  /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65  /// in predecessor basic blocks.
66  ///
67  bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68  void LowerPHINode(MachineBasicBlock &MBB,
69  MachineBasicBlock::iterator LastPHIIt);
70 
71  /// analyzePHINodes - Gather information about the PHI nodes in
72  /// here. In particular, we want to map the number of uses of a virtual
73  /// register which is used in a PHI node. We map that to the BB the
74  /// vreg is coming from. This is used later to determine when the vreg
75  /// is killed in the BB.
76  ///
77  void analyzePHINodes(const MachineFunction& Fn);
78 
79  /// Split critical edges where necessary for good coalescer performance.
80  bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81  MachineLoopInfo *MLI);
82 
83  // These functions are temporary abstractions around LiveVariables and
84  // LiveIntervals, so they can go away when LiveVariables does.
85  bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86  bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87 
88  typedef std::pair<unsigned, unsigned> BBVRegPair;
89  typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90 
91  VRegPHIUse VRegPHIUseCount;
92 
93  // Defs of PHI sources which are implicit_def.
95 
96  // Map reusable lowered PHI node -> incoming join register.
97  typedef DenseMap<MachineInstr*, unsigned,
98  MachineInstrExpressionTrait> LoweredPHIMap;
99  LoweredPHIMap LoweredPHIs;
100  };
101 }
102 
103 STATISTIC(NumLowered, "Number of phis lowered");
104 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105 STATISTIC(NumReused, "Number of reused lowered phis");
106 
107 char PHIElimination::ID = 0;
109 
110 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111  "Eliminate PHI nodes for register allocation",
112  false, false)
114 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115  "Eliminate PHI nodes for register allocation", false, false)
116 
117 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<SlotIndexes>();
120  AU.addPreserved<LiveIntervals>();
121  AU.addPreserved<MachineDominatorTree>();
122  AU.addPreserved<MachineLoopInfo>();
124 }
125 
126 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127  MRI = &MF.getRegInfo();
128  LV = getAnalysisIfAvailable<LiveVariables>();
129  LIS = getAnalysisIfAvailable<LiveIntervals>();
130 
131  bool Changed = false;
132 
133  // This pass takes the function out of SSA form.
134  MRI->leaveSSA();
135 
136  // Split critical edges to help the coalescer. This does not yet support
137  // updating LiveIntervals, so we disable it.
138  if (!DisableEdgeSplitting && (LV || LIS)) {
139  MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141  Changed |= SplitPHIEdges(MF, *I, MLI);
142  }
143 
144  // Populate VRegPHIUseCount
145  analyzePHINodes(MF);
146 
147  // Eliminate PHI instructions by inserting copies into predecessor blocks.
148  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149  Changed |= EliminatePHINodes(MF, *I);
150 
151  // Remove dead IMPLICIT_DEF instructions.
152  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153  E = ImpDefs.end(); I != E; ++I) {
154  MachineInstr *DefMI = *I;
155  unsigned DefReg = DefMI->getOperand(0).getReg();
156  if (MRI->use_nodbg_empty(DefReg)) {
157  if (LIS)
158  LIS->RemoveMachineInstrFromMaps(DefMI);
159  DefMI->eraseFromParent();
160  }
161  }
162 
163  // Clean up the lowered PHI instructions.
164  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165  I != E; ++I) {
166  if (LIS)
167  LIS->RemoveMachineInstrFromMaps(I->first);
168  MF.DeleteMachineInstr(I->first);
169  }
170 
171  LoweredPHIs.clear();
172  ImpDefs.clear();
173  VRegPHIUseCount.clear();
174 
175  return Changed;
176 }
177 
178 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
179 /// predecessor basic blocks.
180 ///
181 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
182  MachineBasicBlock &MBB) {
183  if (MBB.empty() || !MBB.front().isPHI())
184  return false; // Quick exit for basic blocks without PHIs.
185 
186  // Get an iterator to the first instruction after the last PHI node (this may
187  // also be the end of the basic block).
188  MachineBasicBlock::iterator LastPHIIt =
189  prior(MBB.SkipPHIsAndLabels(MBB.begin()));
190 
191  while (MBB.front().isPHI())
192  LowerPHINode(MBB, LastPHIIt);
193 
194  return true;
195 }
196 
197 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
198 /// This includes registers with no defs.
199 static bool isImplicitlyDefined(unsigned VirtReg,
200  const MachineRegisterInfo *MRI) {
201  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
202  DE = MRI->def_end(); DI != DE; ++DI)
203  if (!DI->isImplicitDef())
204  return false;
205  return true;
206 }
207 
208 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
209 /// are implicit_def's.
211  const MachineRegisterInfo *MRI) {
212  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
213  if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
214  return false;
215  return true;
216 }
217 
218 
219 /// LowerPHINode - Lower the PHI node at the top of the specified block,
220 ///
221 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
222  MachineBasicBlock::iterator LastPHIIt) {
223  ++NumLowered;
224 
225  MachineBasicBlock::iterator AfterPHIsIt = llvm::next(LastPHIIt);
226 
227  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
228  MachineInstr *MPhi = MBB.remove(MBB.begin());
229 
230  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
231  unsigned DestReg = MPhi->getOperand(0).getReg();
232  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
233  bool isDead = MPhi->getOperand(0).isDead();
234 
235  // Create a new register for the incoming PHI arguments.
236  MachineFunction &MF = *MBB.getParent();
237  unsigned IncomingReg = 0;
238  bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
239 
240  // Insert a register to register copy at the top of the current block (but
241  // after any remaining phi nodes) which copies the new incoming register
242  // into the phi node destination.
243  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
245  // If all sources of a PHI node are implicit_def, just emit an
246  // implicit_def instead of a copy.
247  BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
248  TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
249  else {
250  // Can we reuse an earlier PHI node? This only happens for critical edges,
251  // typically those created by tail duplication.
252  unsigned &entry = LoweredPHIs[MPhi];
253  if (entry) {
254  // An identical PHI node was already lowered. Reuse the incoming register.
255  IncomingReg = entry;
256  reusedIncoming = true;
257  ++NumReused;
258  DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
259  } else {
260  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
261  entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
262  }
263  BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
264  TII->get(TargetOpcode::COPY), DestReg)
265  .addReg(IncomingReg);
266  }
267 
268  // Update live variable information if there is any.
269  if (LV) {
270  MachineInstr *PHICopy = prior(AfterPHIsIt);
271 
272  if (IncomingReg) {
273  LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
274 
275  // Increment use count of the newly created virtual register.
276  LV->setPHIJoin(IncomingReg);
277 
278  // When we are reusing the incoming register, it may already have been
279  // killed in this block. The old kill will also have been inserted at
280  // AfterPHIsIt, so it appears before the current PHICopy.
281  if (reusedIncoming)
282  if (MachineInstr *OldKill = VI.findKill(&MBB)) {
283  DEBUG(dbgs() << "Remove old kill from " << *OldKill);
284  LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
285  DEBUG(MBB.dump());
286  }
287 
288  // Add information to LiveVariables to know that the incoming value is
289  // killed. Note that because the value is defined in several places (once
290  // each for each incoming block), the "def" block and instruction fields
291  // for the VarInfo is not filled in.
292  LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
293  }
294 
295  // Since we are going to be deleting the PHI node, if it is the last use of
296  // any registers, or if the value itself is dead, we need to move this
297  // information over to the new copy we just inserted.
298  LV->removeVirtualRegistersKilled(MPhi);
299 
300  // If the result is dead, update LV.
301  if (isDead) {
302  LV->addVirtualRegisterDead(DestReg, PHICopy);
303  LV->removeVirtualRegisterDead(DestReg, MPhi);
304  }
305  }
306 
307  // Update LiveIntervals for the new copy or implicit def.
308  if (LIS) {
309  MachineInstr *NewInstr = prior(AfterPHIsIt);
310  SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
311 
312  SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
313  if (IncomingReg) {
314  // Add the region from the beginning of MBB to the copy instruction to
315  // IncomingReg's live interval.
316  LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
317  VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
318  if (!IncomingVNI)
319  IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
320  LIS->getVNInfoAllocator());
321  IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
322  DestCopyIndex.getRegSlot(),
323  IncomingVNI));
324  }
325 
326  LiveInterval &DestLI = LIS->getInterval(DestReg);
327  assert(DestLI.begin() != DestLI.end() &&
328  "PHIs should have nonempty LiveIntervals.");
329  if (DestLI.endIndex().isDead()) {
330  // A dead PHI's live range begins and ends at the start of the MBB, but
331  // the lowered copy, which will still be dead, needs to begin and end at
332  // the copy instruction.
333  VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
334  assert(OrigDestVNI && "PHI destination should be live at block entry.");
335  DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
336  DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
337  LIS->getVNInfoAllocator());
338  DestLI.removeValNo(OrigDestVNI);
339  } else {
340  // Otherwise, remove the region from the beginning of MBB to the copy
341  // instruction from DestReg's live interval.
342  DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
343  VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
344  assert(DestVNI && "PHI destination should be live at its definition.");
345  DestVNI->def = DestCopyIndex.getRegSlot();
346  }
347  }
348 
349  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
350  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
351  --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
352  MPhi->getOperand(i).getReg())];
353 
354  // Now loop over all of the incoming arguments, changing them to copy into the
355  // IncomingReg register in the corresponding predecessor basic block.
356  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
357  for (int i = NumSrcs - 1; i >= 0; --i) {
358  unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
359  unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
360  bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
361  isImplicitlyDefined(SrcReg, MRI);
362  assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
363  "Machine PHI Operands must all be virtual registers!");
364 
365  // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
366  // path the PHI.
367  MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
368 
369  // Check to make sure we haven't already emitted the copy for this block.
370  // This can happen because PHI nodes may have multiple entries for the same
371  // basic block.
372  if (!MBBsInsertedInto.insert(&opBlock))
373  continue; // If the copy has already been emitted, we're done.
374 
375  // Find a safe location to insert the copy, this may be the first terminator
376  // in the block (or end()).
377  MachineBasicBlock::iterator InsertPos =
378  findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
379 
380  // Insert the copy.
381  MachineInstr *NewSrcInstr = 0;
382  if (!reusedIncoming && IncomingReg) {
383  if (SrcUndef) {
384  // The source register is undefined, so there is no need for a real
385  // COPY, but we still need to ensure joint dominance by defs.
386  // Insert an IMPLICIT_DEF instruction.
387  NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
389  IncomingReg);
390 
391  // Clean up the old implicit-def, if there even was one.
392  if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
393  if (DefMI->isImplicitDef())
394  ImpDefs.insert(DefMI);
395  } else {
396  NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
397  TII->get(TargetOpcode::COPY), IncomingReg)
398  .addReg(SrcReg, 0, SrcSubReg);
399  }
400  }
401 
402  // We only need to update the LiveVariables kill of SrcReg if this was the
403  // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
404  // out of the predecessor. We can also ignore undef sources.
405  if (LV && !SrcUndef &&
406  !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
407  !LV->isLiveOut(SrcReg, opBlock)) {
408  // We want to be able to insert a kill of the register if this PHI (aka,
409  // the copy we just inserted) is the last use of the source value. Live
410  // variable analysis conservatively handles this by saying that the value
411  // is live until the end of the block the PHI entry lives in. If the value
412  // really is dead at the PHI copy, there will be no successor blocks which
413  // have the value live-in.
414 
415  // Okay, if we now know that the value is not live out of the block, we
416  // can add a kill marker in this block saying that it kills the incoming
417  // value!
418 
419  // In our final twist, we have to decide which instruction kills the
420  // register. In most cases this is the copy, however, terminator
421  // instructions at the end of the block may also use the value. In this
422  // case, we should mark the last such terminator as being the killing
423  // block, not the copy.
424  MachineBasicBlock::iterator KillInst = opBlock.end();
425  MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
426  for (MachineBasicBlock::iterator Term = FirstTerm;
427  Term != opBlock.end(); ++Term) {
428  if (Term->readsRegister(SrcReg))
429  KillInst = Term;
430  }
431 
432  if (KillInst == opBlock.end()) {
433  // No terminator uses the register.
434 
435  if (reusedIncoming || !IncomingReg) {
436  // We may have to rewind a bit if we didn't insert a copy this time.
437  KillInst = FirstTerm;
438  while (KillInst != opBlock.begin()) {
439  --KillInst;
440  if (KillInst->isDebugValue())
441  continue;
442  if (KillInst->readsRegister(SrcReg))
443  break;
444  }
445  } else {
446  // We just inserted this copy.
447  KillInst = prior(InsertPos);
448  }
449  }
450  assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
451 
452  // Finally, mark it killed.
453  LV->addVirtualRegisterKilled(SrcReg, KillInst);
454 
455  // This vreg no longer lives all of the way through opBlock.
456  unsigned opBlockNum = opBlock.getNumber();
457  LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
458  }
459 
460  if (LIS) {
461  if (NewSrcInstr) {
462  LIS->InsertMachineInstrInMaps(NewSrcInstr);
463  LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
464  }
465 
466  if (!SrcUndef &&
467  !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
468  LiveInterval &SrcLI = LIS->getInterval(SrcReg);
469 
470  bool isLiveOut = false;
471  for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
472  SE = opBlock.succ_end(); SI != SE; ++SI) {
473  SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
474  VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
475 
476  // Definitions by other PHIs are not truly live-in for our purposes.
477  if (VNI && VNI->def != startIdx) {
478  isLiveOut = true;
479  break;
480  }
481  }
482 
483  if (!isLiveOut) {
484  MachineBasicBlock::iterator KillInst = opBlock.end();
485  MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
486  for (MachineBasicBlock::iterator Term = FirstTerm;
487  Term != opBlock.end(); ++Term) {
488  if (Term->readsRegister(SrcReg))
489  KillInst = Term;
490  }
491 
492  if (KillInst == opBlock.end()) {
493  // No terminator uses the register.
494 
495  if (reusedIncoming || !IncomingReg) {
496  // We may have to rewind a bit if we didn't just insert a copy.
497  KillInst = FirstTerm;
498  while (KillInst != opBlock.begin()) {
499  --KillInst;
500  if (KillInst->isDebugValue())
501  continue;
502  if (KillInst->readsRegister(SrcReg))
503  break;
504  }
505  } else {
506  // We just inserted this copy.
507  KillInst = prior(InsertPos);
508  }
509  }
510  assert(KillInst->readsRegister(SrcReg) &&
511  "Cannot find kill instruction");
512 
513  SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
514  SrcLI.removeSegment(LastUseIndex.getRegSlot(),
515  LIS->getMBBEndIdx(&opBlock));
516  }
517  }
518  }
519  }
520 
521  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
522  if (reusedIncoming || !IncomingReg) {
523  if (LIS)
524  LIS->RemoveMachineInstrFromMaps(MPhi);
525  MF.DeleteMachineInstr(MPhi);
526  }
527 }
528 
529 /// analyzePHINodes - Gather information about the PHI nodes in here. In
530 /// particular, we want to map the number of uses of a virtual register which is
531 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
532 /// used later to determine when the vreg is killed in the BB.
533 ///
534 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
535  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
536  I != E; ++I)
537  for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
538  BBI != BBE && BBI->isPHI(); ++BBI)
539  for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
540  ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
541  BBI->getOperand(i).getReg())];
542 }
543 
544 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
545  MachineBasicBlock &MBB,
546  MachineLoopInfo *MLI) {
547  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
548  return false; // Quick exit for basic blocks without PHIs.
549 
550  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
551  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
552 
553  bool Changed = false;
554  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
555  BBI != BBE && BBI->isPHI(); ++BBI) {
556  for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
557  unsigned Reg = BBI->getOperand(i).getReg();
558  MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
559  // Is there a critical edge from PreMBB to MBB?
560  if (PreMBB->succ_size() == 1)
561  continue;
562 
563  // Avoid splitting backedges of loops. It would introduce small
564  // out-of-line blocks into the loop which is very bad for code placement.
565  if (PreMBB == &MBB && !SplitAllCriticalEdges)
566  continue;
567  const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
568  if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
569  continue;
570 
571  // LV doesn't consider a phi use live-out, so isLiveOut only returns true
572  // when the source register is live-out for some other reason than a phi
573  // use. That means the copy we will insert in PreMBB won't be a kill, and
574  // there is a risk it may not be coalesced away.
575  //
576  // If the copy would be a kill, there is no need to split the edge.
577  if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
578  continue;
579 
580  DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
581  << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
582  << ": " << *BBI);
583 
584  // If Reg is not live-in to MBB, it means it must be live-in to some
585  // other PreMBB successor, and we can avoid the interference by splitting
586  // the edge.
587  //
588  // If Reg *is* live-in to MBB, the interference is inevitable and a copy
589  // is likely to be left after coalescing. If we are looking at a loop
590  // exiting edge, split it so we won't insert code in the loop, otherwise
591  // don't bother.
592  bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
593 
594  // Check for a loop exiting edge.
595  if (!ShouldSplit && CurLoop != PreLoop) {
596  DEBUG({
597  dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
598  if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
599  if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
600  });
601  // This edge could be entering a loop, exiting a loop, or it could be
602  // both: Jumping directly form one loop to the header of a sibling
603  // loop.
604  // Split unless this edge is entering CurLoop from an outer loop.
605  ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
606  }
607  if (!ShouldSplit)
608  continue;
609  if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
610  DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
611  continue;
612  }
613  Changed = true;
614  ++NumCriticalEdgesSplit;
615  }
616  }
617  return Changed;
618 }
619 
620 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
621  assert((LV || LIS) &&
622  "isLiveIn() requires either LiveVariables or LiveIntervals");
623  if (LIS)
624  return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
625  else
626  return LV->isLiveIn(Reg, *MBB);
627 }
628 
629 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
630  assert((LV || LIS) &&
631  "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
632  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
633  // so that a register used only in a PHI is not live out of the block. In
634  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
635  // in the predecessor basic block, so that a register used only in a PHI is live
636  // out of the block.
637  if (LIS) {
638  const LiveInterval &LI = LIS->getInterval(Reg);
640  SE = MBB->succ_end(); SI != SE; ++SI) {
641  if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
642  return true;
643  }
644  return false;
645  } else {
646  return LV->isLiveOut(Reg, *MBB);
647  }
648 }
unsigned succ_size() const
const MachineFunction * getParent() const
static PassRegistry * getPassRegistry()
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:52
MachineBasicBlock * getMBB() const
unsigned createVirtualRegister(const TargetRegisterClass *RegClass)
bool isDead() const
static bool isVirtualRegister(unsigned Reg)
MachineBasicBlock::iterator findPHICopyInsertPoint(MachineBasicBlock *MBB, MachineBasicBlock *SuccMBB, unsigned SrcReg)
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
phi node Eliminate PHI nodes for register false
static cl::opt< bool > DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), cl::Hidden, cl::desc("Disable critical edge splitting ""during PHI elimination"))
static bool isImplicitlyDefined(unsigned VirtReg, const MachineRegisterInfo *MRI)
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:350
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
const HexagonInstrInfo * TII
bool isPHI() const
Definition: MachineInstr.h:648
iterator end()
Definition: LiveInterval.h:193
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
const TargetRegisterClass * getRegClass(unsigned Reg) const
std::vector< MachineBasicBlock * >::iterator succ_iterator
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P)
bool isUndef() const
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
Definition: SlotIndexes.h:262
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:239
iterator addSegment(Segment S)
Definition: LiveInterval.h:403
bool isImplicitDef() const
Definition: MachineInstr.h:650
char & PHIEliminationID
MachineLoop * getLoopFor(const MachineBasicBlock *BB) const
bundle_iterator< MachineInstr, instr_iterator > iterator
void removeValNo(VNInfo *ValNo)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
iterator SkipPHIsAndLabels(iterator I)
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
unsigned getSubReg() const
void DeleteMachineInstr(MachineInstr *MI)
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:330
void initializePHIEliminationPass(PassRegistry &)
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
phi node elimination
void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
virtual const TargetInstrInfo * getInstrInfo() const
MachineInstr * remove(MachineInstr *I)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
INITIALIZE_PASS_BEGIN(PHIElimination,"phi-node-elimination","Eliminate PHI nodes for register allocation", false, false) INITIALIZE_PASS_END(PHIElimination
def_iterator def_begin(unsigned RegNo) const
phi node Eliminate PHI nodes for register allocation
MachineInstr * findKill(const MachineBasicBlock *MBB) const
findKill - Find a kill instruction in MBB. Return NULL if none is found.
bundle_iterator< const MachineInstr, const_instr_iterator > const_iterator
MachineRegisterInfo & getRegInfo()
VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator)
virtual void getAnalysisUsage(AnalysisUsage &AU) const
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
SlotIndex endIndex() const
Definition: LiveInterval.h:321
#define I(x, y, z)
Definition: MD5.cpp:54
const TargetMachine & getTarget() const
SlotIndex getRegSlot(bool EC=false) const
Definition: SlotIndexes.h:257
iterator begin()
Definition: LiveInterval.h:192
unsigned getReg() const
getReg - Returns the register number.
VNInfo * getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator)
Definition: LiveInterval.h:264
static def_iterator def_end()
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, const MachineRegisterInfo *MRI)
STATISTIC(NumLowered,"Number of phis lowered")
BasicBlockListType::iterator iterator
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
const MCRegisterInfo & MRI
static cl::opt< bool > SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), cl::Hidden, cl::desc("Split all critical edges during ""PHI elimination"))
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:92
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244