LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PPCISelDAGToDAG.cpp
Go to the documentation of this file.
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "ppc-codegen"
16 #include "PPC.h"
18 #include "PPCTargetMachine.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/Support/Debug.h"
35 using namespace llvm;
36 
37 namespace llvm {
39 }
40 
41 namespace {
42  //===--------------------------------------------------------------------===//
43  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
44  /// instructions for SelectionDAG operations.
45  ///
46  class PPCDAGToDAGISel : public SelectionDAGISel {
47  const PPCTargetMachine &TM;
48  const PPCTargetLowering &PPCLowering;
49  const PPCSubtarget &PPCSubTarget;
50  unsigned GlobalBaseReg;
51  public:
52  explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
53  : SelectionDAGISel(tm), TM(tm),
54  PPCLowering(*TM.getTargetLowering()),
55  PPCSubTarget(*TM.getSubtargetImpl()) {
57  }
58 
59  virtual bool runOnMachineFunction(MachineFunction &MF) {
60  // Make sure we re-emit a set of the global base reg if necessary
61  GlobalBaseReg = 0;
63 
64  if (!PPCSubTarget.isSVR4ABI())
65  InsertVRSaveCode(MF);
66 
67  return true;
68  }
69 
70  virtual void PostprocessISelDAG();
71 
72  /// getI32Imm - Return a target constant with the specified value, of type
73  /// i32.
74  inline SDValue getI32Imm(unsigned Imm) {
75  return CurDAG->getTargetConstant(Imm, MVT::i32);
76  }
77 
78  /// getI64Imm - Return a target constant with the specified value, of type
79  /// i64.
80  inline SDValue getI64Imm(uint64_t Imm) {
81  return CurDAG->getTargetConstant(Imm, MVT::i64);
82  }
83 
84  /// getSmallIPtrImm - Return a target constant of pointer type.
85  inline SDValue getSmallIPtrImm(unsigned Imm) {
86  return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
87  }
88 
89  /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
90  /// with any number of 0s on either side. The 1s are allowed to wrap from
91  /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
92  /// 0x0F0F0000 is not, since all 1s are not contiguous.
93  static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
94 
95 
96  /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
97  /// rotate and mask opcode and mask operation.
98  static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
99  unsigned &SH, unsigned &MB, unsigned &ME);
100 
101  /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
102  /// base register. Return the virtual register that holds this value.
103  SDNode *getGlobalBaseReg();
104 
105  // Select - Convert the specified operand from a target-independent to a
106  // target-specific node if it hasn't already been changed.
107  SDNode *Select(SDNode *N);
108 
109  SDNode *SelectBitfieldInsert(SDNode *N);
110 
111  /// SelectCC - Select a comparison of the specified values with the
112  /// specified condition code, returning the CR# of the expression.
113  SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
114 
115  /// SelectAddrImm - Returns true if the address N can be represented by
116  /// a base register plus a signed 16-bit displacement [r+imm].
117  bool SelectAddrImm(SDValue N, SDValue &Disp,
118  SDValue &Base) {
119  return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
120  }
121 
122  /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
123  /// immediate field. Note that the operand at this point is already the
124  /// result of a prior SelectAddressRegImm call.
125  bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
126  if (N.getOpcode() == ISD::TargetConstant ||
128  Out = N;
129  return true;
130  }
131 
132  return false;
133  }
134 
135  /// SelectAddrIdx - Given the specified addressed, check to see if it can be
136  /// represented as an indexed [r+r] operation. Returns false if it can
137  /// be represented by [r+imm], which are preferred.
138  bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
139  return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
140  }
141 
142  /// SelectAddrIdxOnly - Given the specified addressed, force it to be
143  /// represented as an indexed [r+r] operation.
144  bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
145  return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
146  }
147 
148  /// SelectAddrImmX4 - Returns true if the address N can be represented by
149  /// a base register plus a signed 16-bit displacement that is a multiple of 4.
150  /// Suitable for use by STD and friends.
151  bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
152  return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
153  }
154 
155  // Select an address into a single register.
156  bool SelectAddr(SDValue N, SDValue &Base) {
157  Base = N;
158  return true;
159  }
160 
161  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
162  /// inline asm expressions. It is always correct to compute the value into
163  /// a register. The case of adding a (possibly relocatable) constant to a
164  /// register can be improved, but it is wrong to substitute Reg+Reg for
165  /// Reg in an asm, because the load or store opcode would have to change.
166  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
167  char ConstraintCode,
168  std::vector<SDValue> &OutOps) {
169  OutOps.push_back(Op);
170  return false;
171  }
172 
173  void InsertVRSaveCode(MachineFunction &MF);
174 
175  virtual const char *getPassName() const {
176  return "PowerPC DAG->DAG Pattern Instruction Selection";
177  }
178 
179 // Include the pieces autogenerated from the target description.
180 #include "PPCGenDAGISel.inc"
181 
182 private:
183  SDNode *SelectSETCC(SDNode *N);
184  };
185 }
186 
187 /// InsertVRSaveCode - Once the entire function has been instruction selected,
188 /// all virtual registers are created and all machine instructions are built,
189 /// check to see if we need to save/restore VRSAVE. If so, do it.
190 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
191  // Check to see if this function uses vector registers, which means we have to
192  // save and restore the VRSAVE register and update it with the regs we use.
193  //
194  // In this case, there will be virtual registers of vector type created
195  // by the scheduler. Detect them now.
196  bool HasVectorVReg = false;
197  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
199  if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
200  HasVectorVReg = true;
201  break;
202  }
203  }
204  if (!HasVectorVReg) return; // nothing to do.
205 
206  // If we have a vector register, we want to emit code into the entry and exit
207  // blocks to save and restore the VRSAVE register. We do this here (instead
208  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
209  //
210  // 1. This (trivially) reduces the load on the register allocator, by not
211  // having to represent the live range of the VRSAVE register.
212  // 2. This (more significantly) allows us to create a temporary virtual
213  // register to hold the saved VRSAVE value, allowing this temporary to be
214  // register allocated, instead of forcing it to be spilled to the stack.
215 
216  // Create two vregs - one to hold the VRSAVE register that is live-in to the
217  // function and one for the value after having bits or'd into it.
218  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
219  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
220 
221  const TargetInstrInfo &TII = *TM.getInstrInfo();
222  MachineBasicBlock &EntryBB = *Fn.begin();
223  DebugLoc dl;
224  // Emit the following code into the entry block:
225  // InVRSAVE = MFVRSAVE
226  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
227  // MTVRSAVE UpdatedVRSAVE
228  MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
229  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
230  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
231  UpdatedVRSAVE).addReg(InVRSAVE);
232  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
233 
234  // Find all return blocks, outputting a restore in each epilog.
235  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
236  if (!BB->empty() && BB->back().isReturn()) {
237  IP = BB->end(); --IP;
238 
239  // Skip over all terminator instructions, which are part of the return
240  // sequence.
242  while (I2 != BB->begin() && (--I2)->isTerminator())
243  IP = I2;
244 
245  // Emit: MTVRSAVE InVRSave
246  BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
247  }
248  }
249 }
250 
251 
252 /// getGlobalBaseReg - Output the instructions required to put the
253 /// base address to use for accessing globals into a register.
254 ///
255 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
256  if (!GlobalBaseReg) {
257  const TargetInstrInfo &TII = *TM.getInstrInfo();
258  // Insert the set of GlobalBaseReg into the first MBB of the function
259  MachineBasicBlock &FirstMBB = MF->front();
260  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
261  DebugLoc dl;
262 
263  if (PPCLowering.getPointerTy() == MVT::i32) {
264  GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
265  BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
266  BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
267  } else {
268  GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
269  BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
270  BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
271  }
272  }
273  return CurDAG->getRegister(GlobalBaseReg,
274  PPCLowering.getPointerTy()).getNode();
275 }
276 
277 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
278 /// or 64-bit immediate, and if the value can be accurately represented as a
279 /// sign extension from a 16-bit value. If so, this returns true and the
280 /// immediate.
281 static bool isIntS16Immediate(SDNode *N, short &Imm) {
282  if (N->getOpcode() != ISD::Constant)
283  return false;
284 
285  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
286  if (N->getValueType(0) == MVT::i32)
287  return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
288  else
289  return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
290 }
291 
292 static bool isIntS16Immediate(SDValue Op, short &Imm) {
293  return isIntS16Immediate(Op.getNode(), Imm);
294 }
295 
296 
297 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
298 /// operand. If so Imm will receive the 32-bit value.
299 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
300  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
301  Imm = cast<ConstantSDNode>(N)->getZExtValue();
302  return true;
303  }
304  return false;
305 }
306 
307 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
308 /// operand. If so Imm will receive the 64-bit value.
309 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
310  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
311  Imm = cast<ConstantSDNode>(N)->getZExtValue();
312  return true;
313  }
314  return false;
315 }
316 
317 // isInt32Immediate - This method tests to see if a constant operand.
318 // If so Imm will receive the 32 bit value.
319 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
320  return isInt32Immediate(N.getNode(), Imm);
321 }
322 
323 
324 // isOpcWithIntImmediate - This method tests to see if the node is a specific
325 // opcode and that it has a immediate integer right operand.
326 // If so Imm will receive the 32 bit value.
327 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
328  return N->getOpcode() == Opc
329  && isInt32Immediate(N->getOperand(1).getNode(), Imm);
330 }
331 
332 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
333  if (!Val)
334  return false;
335 
336  if (isShiftedMask_32(Val)) {
337  // look for the first non-zero bit
338  MB = countLeadingZeros(Val);
339  // look for the first zero bit after the run of ones
340  ME = countLeadingZeros((Val - 1) ^ Val);
341  return true;
342  } else {
343  Val = ~Val; // invert mask
344  if (isShiftedMask_32(Val)) {
345  // effectively look for the first zero bit
346  ME = countLeadingZeros(Val) - 1;
347  // effectively look for the first one bit after the run of zeros
348  MB = countLeadingZeros((Val - 1) ^ Val) + 1;
349  return true;
350  }
351  }
352  // no run present
353  return false;
354 }
355 
356 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
357  bool isShiftMask, unsigned &SH,
358  unsigned &MB, unsigned &ME) {
359  // Don't even go down this path for i64, since different logic will be
360  // necessary for rldicl/rldicr/rldimi.
361  if (N->getValueType(0) != MVT::i32)
362  return false;
363 
364  unsigned Shift = 32;
365  unsigned Indeterminant = ~0; // bit mask marking indeterminant results
366  unsigned Opcode = N->getOpcode();
367  if (N->getNumOperands() != 2 ||
368  !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
369  return false;
370 
371  if (Opcode == ISD::SHL) {
372  // apply shift left to mask if it comes first
373  if (isShiftMask) Mask = Mask << Shift;
374  // determine which bits are made indeterminant by shift
375  Indeterminant = ~(0xFFFFFFFFu << Shift);
376  } else if (Opcode == ISD::SRL) {
377  // apply shift right to mask if it comes first
378  if (isShiftMask) Mask = Mask >> Shift;
379  // determine which bits are made indeterminant by shift
380  Indeterminant = ~(0xFFFFFFFFu >> Shift);
381  // adjust for the left rotate
382  Shift = 32 - Shift;
383  } else if (Opcode == ISD::ROTL) {
384  Indeterminant = 0;
385  } else {
386  return false;
387  }
388 
389  // if the mask doesn't intersect any Indeterminant bits
390  if (Mask && !(Mask & Indeterminant)) {
391  SH = Shift & 31;
392  // make sure the mask is still a mask (wrap arounds may not be)
393  return isRunOfOnes(Mask, MB, ME);
394  }
395  return false;
396 }
397 
398 /// SelectBitfieldInsert - turn an or of two masked values into
399 /// the rotate left word immediate then mask insert (rlwimi) instruction.
400 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
401  SDValue Op0 = N->getOperand(0);
402  SDValue Op1 = N->getOperand(1);
403  SDLoc dl(N);
404 
405  APInt LKZ, LKO, RKZ, RKO;
406  CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
407  CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
408 
409  unsigned TargetMask = LKZ.getZExtValue();
410  unsigned InsertMask = RKZ.getZExtValue();
411 
412  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
413  unsigned Op0Opc = Op0.getOpcode();
414  unsigned Op1Opc = Op1.getOpcode();
415  unsigned Value, SH = 0;
416  TargetMask = ~TargetMask;
417  InsertMask = ~InsertMask;
418 
419  // If the LHS has a foldable shift and the RHS does not, then swap it to the
420  // RHS so that we can fold the shift into the insert.
421  if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
422  if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
423  Op0.getOperand(0).getOpcode() == ISD::SRL) {
424  if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
425  Op1.getOperand(0).getOpcode() != ISD::SRL) {
426  std::swap(Op0, Op1);
427  std::swap(Op0Opc, Op1Opc);
428  std::swap(TargetMask, InsertMask);
429  }
430  }
431  } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
432  if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
433  Op1.getOperand(0).getOpcode() != ISD::SRL) {
434  std::swap(Op0, Op1);
435  std::swap(Op0Opc, Op1Opc);
436  std::swap(TargetMask, InsertMask);
437  }
438  }
439 
440  unsigned MB, ME;
441  if (isRunOfOnes(InsertMask, MB, ME)) {
442  SDValue Tmp1, Tmp2;
443 
444  if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
445  isInt32Immediate(Op1.getOperand(1), Value)) {
446  Op1 = Op1.getOperand(0);
447  SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
448  }
449  if (Op1Opc == ISD::AND) {
450  unsigned SHOpc = Op1.getOperand(0).getOpcode();
451  if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
452  isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
453  // Note that Value must be in range here (less than 32) because
454  // otherwise there would not be any bits set in InsertMask.
455  Op1 = Op1.getOperand(0).getOperand(0);
456  SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
457  }
458  }
459 
460  SH &= 31;
461  SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
462  getI32Imm(ME) };
463  return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
464  }
465  }
466  return 0;
467 }
468 
469 /// SelectCC - Select a comparison of the specified values with the specified
470 /// condition code, returning the CR# of the expression.
471 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
472  ISD::CondCode CC, SDLoc dl) {
473  // Always select the LHS.
474  unsigned Opc;
475 
476  if (LHS.getValueType() == MVT::i32) {
477  unsigned Imm;
478  if (CC == ISD::SETEQ || CC == ISD::SETNE) {
479  if (isInt32Immediate(RHS, Imm)) {
480  // SETEQ/SETNE comparison with 16-bit immediate, fold it.
481  if (isUInt<16>(Imm))
482  return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
483  getI32Imm(Imm & 0xFFFF)), 0);
484  // If this is a 16-bit signed immediate, fold it.
485  if (isInt<16>((int)Imm))
486  return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
487  getI32Imm(Imm & 0xFFFF)), 0);
488 
489  // For non-equality comparisons, the default code would materialize the
490  // constant, then compare against it, like this:
491  // lis r2, 4660
492  // ori r2, r2, 22136
493  // cmpw cr0, r3, r2
494  // Since we are just comparing for equality, we can emit this instead:
495  // xoris r0,r3,0x1234
496  // cmplwi cr0,r0,0x5678
497  // beq cr0,L6
498  SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
499  getI32Imm(Imm >> 16)), 0);
500  return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
501  getI32Imm(Imm & 0xFFFF)), 0);
502  }
503  Opc = PPC::CMPLW;
504  } else if (ISD::isUnsignedIntSetCC(CC)) {
505  if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
506  return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
507  getI32Imm(Imm & 0xFFFF)), 0);
508  Opc = PPC::CMPLW;
509  } else {
510  short SImm;
511  if (isIntS16Immediate(RHS, SImm))
512  return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
513  getI32Imm((int)SImm & 0xFFFF)),
514  0);
515  Opc = PPC::CMPW;
516  }
517  } else if (LHS.getValueType() == MVT::i64) {
518  uint64_t Imm;
519  if (CC == ISD::SETEQ || CC == ISD::SETNE) {
520  if (isInt64Immediate(RHS.getNode(), Imm)) {
521  // SETEQ/SETNE comparison with 16-bit immediate, fold it.
522  if (isUInt<16>(Imm))
523  return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
524  getI32Imm(Imm & 0xFFFF)), 0);
525  // If this is a 16-bit signed immediate, fold it.
526  if (isInt<16>(Imm))
527  return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
528  getI32Imm(Imm & 0xFFFF)), 0);
529 
530  // For non-equality comparisons, the default code would materialize the
531  // constant, then compare against it, like this:
532  // lis r2, 4660
533  // ori r2, r2, 22136
534  // cmpd cr0, r3, r2
535  // Since we are just comparing for equality, we can emit this instead:
536  // xoris r0,r3,0x1234
537  // cmpldi cr0,r0,0x5678
538  // beq cr0,L6
539  if (isUInt<32>(Imm)) {
540  SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
541  getI64Imm(Imm >> 16)), 0);
542  return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
543  getI64Imm(Imm & 0xFFFF)), 0);
544  }
545  }
546  Opc = PPC::CMPLD;
547  } else if (ISD::isUnsignedIntSetCC(CC)) {
548  if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
549  return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
550  getI64Imm(Imm & 0xFFFF)), 0);
551  Opc = PPC::CMPLD;
552  } else {
553  short SImm;
554  if (isIntS16Immediate(RHS, SImm))
555  return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
556  getI64Imm(SImm & 0xFFFF)),
557  0);
558  Opc = PPC::CMPD;
559  }
560  } else if (LHS.getValueType() == MVT::f32) {
561  Opc = PPC::FCMPUS;
562  } else {
563  assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
564  Opc = PPC::FCMPUD;
565  }
566  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
567 }
568 
570  switch (CC) {
571  case ISD::SETUEQ:
572  case ISD::SETONE:
573  case ISD::SETOLE:
574  case ISD::SETOGE:
575  llvm_unreachable("Should be lowered by legalize!");
576  default: llvm_unreachable("Unknown condition!");
577  case ISD::SETOEQ:
578  case ISD::SETEQ: return PPC::PRED_EQ;
579  case ISD::SETUNE:
580  case ISD::SETNE: return PPC::PRED_NE;
581  case ISD::SETOLT:
582  case ISD::SETLT: return PPC::PRED_LT;
583  case ISD::SETULE:
584  case ISD::SETLE: return PPC::PRED_LE;
585  case ISD::SETOGT:
586  case ISD::SETGT: return PPC::PRED_GT;
587  case ISD::SETUGE:
588  case ISD::SETGE: return PPC::PRED_GE;
589  case ISD::SETO: return PPC::PRED_NU;
590  case ISD::SETUO: return PPC::PRED_UN;
591  // These two are invalid for floating point. Assume we have int.
592  case ISD::SETULT: return PPC::PRED_LT;
593  case ISD::SETUGT: return PPC::PRED_GT;
594  }
595 }
596 
597 /// getCRIdxForSetCC - Return the index of the condition register field
598 /// associated with the SetCC condition, and whether or not the field is
599 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
600 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
601  Invert = false;
602  switch (CC) {
603  default: llvm_unreachable("Unknown condition!");
604  case ISD::SETOLT:
605  case ISD::SETLT: return 0; // Bit #0 = SETOLT
606  case ISD::SETOGT:
607  case ISD::SETGT: return 1; // Bit #1 = SETOGT
608  case ISD::SETOEQ:
609  case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
610  case ISD::SETUO: return 3; // Bit #3 = SETUO
611  case ISD::SETUGE:
612  case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
613  case ISD::SETULE:
614  case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
615  case ISD::SETUNE:
616  case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
617  case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
618  case ISD::SETUEQ:
619  case ISD::SETOGE:
620  case ISD::SETOLE:
621  case ISD::SETONE:
622  llvm_unreachable("Invalid branch code: should be expanded by legalize");
623  // These are invalid for floating point. Assume integer.
624  case ISD::SETULT: return 0;
625  case ISD::SETUGT: return 1;
626  }
627 }
628 
629 // getVCmpInst: return the vector compare instruction for the specified
630 // vector type and condition code. Since this is for altivec specific code,
631 // only support the altivec types (v16i8, v8i16, v4i32, and v4f32).
632 static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC) {
633  switch (CC) {
634  case ISD::SETEQ:
635  case ISD::SETUEQ:
636  case ISD::SETNE:
637  case ISD::SETUNE:
638  if (VecVT == MVT::v16i8)
639  return PPC::VCMPEQUB;
640  else if (VecVT == MVT::v8i16)
641  return PPC::VCMPEQUH;
642  else if (VecVT == MVT::v4i32)
643  return PPC::VCMPEQUW;
644  // v4f32 != v4f32 could be translate to unordered not equal
645  else if (VecVT == MVT::v4f32)
646  return PPC::VCMPEQFP;
647  break;
648  case ISD::SETLT:
649  case ISD::SETGT:
650  case ISD::SETLE:
651  case ISD::SETGE:
652  if (VecVT == MVT::v16i8)
653  return PPC::VCMPGTSB;
654  else if (VecVT == MVT::v8i16)
655  return PPC::VCMPGTSH;
656  else if (VecVT == MVT::v4i32)
657  return PPC::VCMPGTSW;
658  else if (VecVT == MVT::v4f32)
659  return PPC::VCMPGTFP;
660  break;
661  case ISD::SETULT:
662  case ISD::SETUGT:
663  case ISD::SETUGE:
664  case ISD::SETULE:
665  if (VecVT == MVT::v16i8)
666  return PPC::VCMPGTUB;
667  else if (VecVT == MVT::v8i16)
668  return PPC::VCMPGTUH;
669  else if (VecVT == MVT::v4i32)
670  return PPC::VCMPGTUW;
671  break;
672  case ISD::SETOEQ:
673  if (VecVT == MVT::v4f32)
674  return PPC::VCMPEQFP;
675  break;
676  case ISD::SETOLT:
677  case ISD::SETOGT:
678  case ISD::SETOLE:
679  if (VecVT == MVT::v4f32)
680  return PPC::VCMPGTFP;
681  break;
682  case ISD::SETOGE:
683  if (VecVT == MVT::v4f32)
684  return PPC::VCMPGEFP;
685  break;
686  default:
687  break;
688  }
689  llvm_unreachable("Invalid integer vector compare condition");
690 }
691 
692 // getVCmpEQInst: return the equal compare instruction for the specified vector
693 // type. Since this is for altivec specific code, only support the altivec
694 // types (v16i8, v8i16, v4i32, and v4f32).
695 static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT) {
696  switch (VecVT) {
697  case MVT::v16i8:
698  return PPC::VCMPEQUB;
699  case MVT::v8i16:
700  return PPC::VCMPEQUH;
701  case MVT::v4i32:
702  return PPC::VCMPEQUW;
703  case MVT::v4f32:
704  return PPC::VCMPEQFP;
705  default:
706  llvm_unreachable("Invalid integer vector compare condition");
707  }
708 }
709 
710 
711 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
712  SDLoc dl(N);
713  unsigned Imm;
714  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
715  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
716  bool isPPC64 = (PtrVT == MVT::i64);
717 
718  if (isInt32Immediate(N->getOperand(1), Imm)) {
719  // We can codegen setcc op, imm very efficiently compared to a brcond.
720  // Check for those cases here.
721  // setcc op, 0
722  if (Imm == 0) {
723  SDValue Op = N->getOperand(0);
724  switch (CC) {
725  default: break;
726  case ISD::SETEQ: {
727  Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
728  SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
729  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
730  }
731  case ISD::SETNE: {
732  if (isPPC64) break;
733  SDValue AD =
734  SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
735  Op, getI32Imm(~0U)), 0);
736  return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
737  AD.getValue(1));
738  }
739  case ISD::SETLT: {
740  SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
741  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
742  }
743  case ISD::SETGT: {
744  SDValue T =
745  SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
746  T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
747  SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
748  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
749  }
750  }
751  } else if (Imm == ~0U) { // setcc op, -1
752  SDValue Op = N->getOperand(0);
753  switch (CC) {
754  default: break;
755  case ISD::SETEQ:
756  if (isPPC64) break;
757  Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
758  Op, getI32Imm(1)), 0);
759  return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
760  SDValue(CurDAG->getMachineNode(PPC::LI, dl,
761  MVT::i32,
762  getI32Imm(0)), 0),
763  Op.getValue(1));
764  case ISD::SETNE: {
765  if (isPPC64) break;
766  Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
767  SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
768  Op, getI32Imm(~0U));
769  return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
770  Op, SDValue(AD, 1));
771  }
772  case ISD::SETLT: {
773  SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
774  getI32Imm(1)), 0);
775  SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
776  Op), 0);
777  SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
778  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
779  }
780  case ISD::SETGT: {
781  SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
782  Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
783  0);
784  return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
785  getI32Imm(1));
786  }
787  }
788  }
789  }
790 
791  SDValue LHS = N->getOperand(0);
792  SDValue RHS = N->getOperand(1);
793 
794  // Altivec Vector compare instructions do not set any CR register by default and
795  // vector compare operations return the same type as the operands.
796  if (LHS.getValueType().isVector()) {
797  EVT VecVT = LHS.getValueType();
799  unsigned int VCmpInst = getVCmpInst(VT, CC);
800 
801  switch (CC) {
802  case ISD::SETEQ:
803  case ISD::SETOEQ:
804  case ISD::SETUEQ:
805  return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
806  case ISD::SETNE:
807  case ISD::SETONE:
808  case ISD::SETUNE: {
809  SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
810  return CurDAG->SelectNodeTo(N, PPC::VNOR, VecVT, VCmp, VCmp);
811  }
812  case ISD::SETLT:
813  case ISD::SETOLT:
814  case ISD::SETULT:
815  return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, RHS, LHS);
816  case ISD::SETGT:
817  case ISD::SETOGT:
818  case ISD::SETUGT:
819  return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
820  case ISD::SETGE:
821  case ISD::SETOGE:
822  case ISD::SETUGE: {
823  // Small optimization: Altivec provides a 'Vector Compare Greater Than
824  // or Equal To' instruction (vcmpgefp), so in this case there is no
825  // need for extra logic for the equal compare.
826  if (VecVT.getSimpleVT().isFloatingPoint()) {
827  return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
828  } else {
829  SDValue VCmpGT(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
830  unsigned int VCmpEQInst = getVCmpEQInst(VT);
831  SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
832  return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpGT, VCmpEQ);
833  }
834  }
835  case ISD::SETLE:
836  case ISD::SETOLE:
837  case ISD::SETULE: {
838  SDValue VCmpLE(CurDAG->getMachineNode(VCmpInst, dl, VecVT, RHS, LHS), 0);
839  unsigned int VCmpEQInst = getVCmpEQInst(VT);
840  SDValue VCmpEQ(CurDAG->getMachineNode(VCmpEQInst, dl, VecVT, LHS, RHS), 0);
841  return CurDAG->SelectNodeTo(N, PPC::VOR, VecVT, VCmpLE, VCmpEQ);
842  }
843  default:
844  llvm_unreachable("Invalid vector compare type: should be expanded by legalize");
845  }
846  }
847 
848  bool Inv;
849  unsigned Idx = getCRIdxForSetCC(CC, Inv);
850  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
851  SDValue IntCR;
852 
853  // Force the ccreg into CR7.
854  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
855 
856  SDValue InFlag(0, 0); // Null incoming flag value.
857  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
858  InFlag).getValue(1);
859 
860  IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
861  CCReg), 0);
862 
863  SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
864  getI32Imm(31), getI32Imm(31) };
865  if (!Inv)
866  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
867 
868  // Get the specified bit.
869  SDValue Tmp =
870  SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
871  return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
872 }
873 
874 
875 // Select - Convert the specified operand from a target-independent to a
876 // target-specific node if it hasn't already been changed.
878  SDLoc dl(N);
879  if (N->isMachineOpcode()) {
880  N->setNodeId(-1);
881  return NULL; // Already selected.
882  }
883 
884  switch (N->getOpcode()) {
885  default: break;
886 
887  case ISD::Constant: {
888  if (N->getValueType(0) == MVT::i64) {
889  // Get 64 bit value.
890  int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
891  // Assume no remaining bits.
892  unsigned Remainder = 0;
893  // Assume no shift required.
894  unsigned Shift = 0;
895 
896  // If it can't be represented as a 32 bit value.
897  if (!isInt<32>(Imm)) {
898  Shift = countTrailingZeros<uint64_t>(Imm);
899  int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
900 
901  // If the shifted value fits 32 bits.
902  if (isInt<32>(ImmSh)) {
903  // Go with the shifted value.
904  Imm = ImmSh;
905  } else {
906  // Still stuck with a 64 bit value.
907  Remainder = Imm;
908  Shift = 32;
909  Imm >>= 32;
910  }
911  }
912 
913  // Intermediate operand.
914  SDNode *Result;
915 
916  // Handle first 32 bits.
917  unsigned Lo = Imm & 0xFFFF;
918  unsigned Hi = (Imm >> 16) & 0xFFFF;
919 
920  // Simple value.
921  if (isInt<16>(Imm)) {
922  // Just the Lo bits.
923  Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
924  } else if (Lo) {
925  // Handle the Hi bits.
926  unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
927  Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
928  // And Lo bits.
929  Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
930  SDValue(Result, 0), getI32Imm(Lo));
931  } else {
932  // Just the Hi bits.
933  Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
934  }
935 
936  // If no shift, we're done.
937  if (!Shift) return Result;
938 
939  // Shift for next step if the upper 32-bits were not zero.
940  if (Imm) {
941  Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
942  SDValue(Result, 0),
943  getI32Imm(Shift),
944  getI32Imm(63 - Shift));
945  }
946 
947  // Add in the last bits as required.
948  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
949  Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
950  SDValue(Result, 0), getI32Imm(Hi));
951  }
952  if ((Lo = Remainder & 0xFFFF)) {
953  Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
954  SDValue(Result, 0), getI32Imm(Lo));
955  }
956 
957  return Result;
958  }
959  break;
960  }
961 
962  case ISD::SETCC:
963  return SelectSETCC(N);
965  return getGlobalBaseReg();
966 
967  case ISD::FrameIndex: {
968  int FI = cast<FrameIndexSDNode>(N)->getIndex();
969  SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
970  unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
971  if (N->hasOneUse())
972  return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
973  getSmallIPtrImm(0));
974  return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
975  getSmallIPtrImm(0));
976  }
977 
978  case PPCISD::MFOCRF: {
979  SDValue InFlag = N->getOperand(1);
980  return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
981  N->getOperand(0), InFlag);
982  }
983 
984  case ISD::SDIV: {
985  // FIXME: since this depends on the setting of the carry flag from the srawi
986  // we should really be making notes about that for the scheduler.
987  // FIXME: It sure would be nice if we could cheaply recognize the
988  // srl/add/sra pattern the dag combiner will generate for this as
989  // sra/addze rather than having to handle sdiv ourselves. oh well.
990  unsigned Imm;
991  if (isInt32Immediate(N->getOperand(1), Imm)) {
992  SDValue N0 = N->getOperand(0);
993  if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
994  SDNode *Op =
995  CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
996  N0, getI32Imm(Log2_32(Imm)));
997  return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
998  SDValue(Op, 0), SDValue(Op, 1));
999  } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
1000  SDNode *Op =
1001  CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
1002  N0, getI32Imm(Log2_32(-Imm)));
1003  SDValue PT =
1004  SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
1005  SDValue(Op, 0), SDValue(Op, 1)),
1006  0);
1007  return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
1008  }
1009  }
1010 
1011  // Other cases are autogenerated.
1012  break;
1013  }
1014 
1015  case ISD::LOAD: {
1016  // Handle preincrement loads.
1017  LoadSDNode *LD = cast<LoadSDNode>(N);
1018  EVT LoadedVT = LD->getMemoryVT();
1019 
1020  // Normal loads are handled by code generated from the .td file.
1021  if (LD->getAddressingMode() != ISD::PRE_INC)
1022  break;
1023 
1024  SDValue Offset = LD->getOffset();
1025  if (Offset.getOpcode() == ISD::TargetConstant ||
1026  Offset.getOpcode() == ISD::TargetGlobalAddress) {
1027 
1028  unsigned Opcode;
1029  bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1030  if (LD->getValueType(0) != MVT::i64) {
1031  // Handle PPC32 integer and normal FP loads.
1032  assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1033  switch (LoadedVT.getSimpleVT().SimpleTy) {
1034  default: llvm_unreachable("Invalid PPC load type!");
1035  case MVT::f64: Opcode = PPC::LFDU; break;
1036  case MVT::f32: Opcode = PPC::LFSU; break;
1037  case MVT::i32: Opcode = PPC::LWZU; break;
1038  case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
1039  case MVT::i1:
1040  case MVT::i8: Opcode = PPC::LBZU; break;
1041  }
1042  } else {
1043  assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1044  assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1045  switch (LoadedVT.getSimpleVT().SimpleTy) {
1046  default: llvm_unreachable("Invalid PPC load type!");
1047  case MVT::i64: Opcode = PPC::LDU; break;
1048  case MVT::i32: Opcode = PPC::LWZU8; break;
1049  case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
1050  case MVT::i1:
1051  case MVT::i8: Opcode = PPC::LBZU8; break;
1052  }
1053  }
1054 
1055  SDValue Chain = LD->getChain();
1056  SDValue Base = LD->getBasePtr();
1057  SDValue Ops[] = { Offset, Base, Chain };
1058  return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1059  PPCLowering.getPointerTy(),
1060  MVT::Other, Ops);
1061  } else {
1062  unsigned Opcode;
1063  bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
1064  if (LD->getValueType(0) != MVT::i64) {
1065  // Handle PPC32 integer and normal FP loads.
1066  assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
1067  switch (LoadedVT.getSimpleVT().SimpleTy) {
1068  default: llvm_unreachable("Invalid PPC load type!");
1069  case MVT::f64: Opcode = PPC::LFDUX; break;
1070  case MVT::f32: Opcode = PPC::LFSUX; break;
1071  case MVT::i32: Opcode = PPC::LWZUX; break;
1072  case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
1073  case MVT::i1:
1074  case MVT::i8: Opcode = PPC::LBZUX; break;
1075  }
1076  } else {
1077  assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
1078  assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
1079  "Invalid sext update load");
1080  switch (LoadedVT.getSimpleVT().SimpleTy) {
1081  default: llvm_unreachable("Invalid PPC load type!");
1082  case MVT::i64: Opcode = PPC::LDUX; break;
1083  case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
1084  case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
1085  case MVT::i1:
1086  case MVT::i8: Opcode = PPC::LBZUX8; break;
1087  }
1088  }
1089 
1090  SDValue Chain = LD->getChain();
1091  SDValue Base = LD->getBasePtr();
1092  SDValue Ops[] = { Base, Offset, Chain };
1093  return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
1094  PPCLowering.getPointerTy(),
1095  MVT::Other, Ops);
1096  }
1097  }
1098 
1099  case ISD::AND: {
1100  unsigned Imm, Imm2, SH, MB, ME;
1101  uint64_t Imm64;
1102 
1103  // If this is an and of a value rotated between 0 and 31 bits and then and'd
1104  // with a mask, emit rlwinm
1105  if (isInt32Immediate(N->getOperand(1), Imm) &&
1106  isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
1107  SDValue Val = N->getOperand(0).getOperand(0);
1108  SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1109  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1110  }
1111  // If this is just a masked value where the input is not handled above, and
1112  // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
1113  if (isInt32Immediate(N->getOperand(1), Imm) &&
1114  isRunOfOnes(Imm, MB, ME) &&
1115  N->getOperand(0).getOpcode() != ISD::ROTL) {
1116  SDValue Val = N->getOperand(0);
1117  SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
1118  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1119  }
1120  // If this is a 64-bit zero-extension mask, emit rldicl.
1121  if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
1122  isMask_64(Imm64)) {
1123  SDValue Val = N->getOperand(0);
1124  MB = 64 - CountTrailingOnes_64(Imm64);
1125  SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB) };
1126  return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops, 3);
1127  }
1128  // AND X, 0 -> 0, not "rlwinm 32".
1129  if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
1130  ReplaceUses(SDValue(N, 0), N->getOperand(1));
1131  return NULL;
1132  }
1133  // ISD::OR doesn't get all the bitfield insertion fun.
1134  // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1135  if (isInt32Immediate(N->getOperand(1), Imm) &&
1136  N->getOperand(0).getOpcode() == ISD::OR &&
1137  isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1138  unsigned MB, ME;
1139  Imm = ~(Imm^Imm2);
1140  if (isRunOfOnes(Imm, MB, ME)) {
1141  SDValue Ops[] = { N->getOperand(0).getOperand(0),
1142  N->getOperand(0).getOperand(1),
1143  getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1144  return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
1145  }
1146  }
1147 
1148  // Other cases are autogenerated.
1149  break;
1150  }
1151  case ISD::OR:
1152  if (N->getValueType(0) == MVT::i32)
1153  if (SDNode *I = SelectBitfieldInsert(N))
1154  return I;
1155 
1156  // Other cases are autogenerated.
1157  break;
1158  case ISD::SHL: {
1159  unsigned Imm, SH, MB, ME;
1160  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1161  isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1162  SDValue Ops[] = { N->getOperand(0).getOperand(0),
1163  getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1164  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1165  }
1166 
1167  // Other cases are autogenerated.
1168  break;
1169  }
1170  case ISD::SRL: {
1171  unsigned Imm, SH, MB, ME;
1172  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1173  isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1174  SDValue Ops[] = { N->getOperand(0).getOperand(0),
1175  getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1176  return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1177  }
1178 
1179  // Other cases are autogenerated.
1180  break;
1181  }
1182  case ISD::SELECT_CC: {
1183  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1184  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
1185  bool isPPC64 = (PtrVT == MVT::i64);
1186 
1187  // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
1188  if (!isPPC64)
1189  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1190  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1191  if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1192  if (N1C->isNullValue() && N3C->isNullValue() &&
1193  N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1194  // FIXME: Implement this optzn for PPC64.
1195  N->getValueType(0) == MVT::i32) {
1196  SDNode *Tmp =
1197  CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
1198  N->getOperand(0), getI32Imm(~0U));
1199  return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1200  SDValue(Tmp, 0), N->getOperand(0),
1201  SDValue(Tmp, 1));
1202  }
1203 
1204  SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1205  unsigned BROpc = getPredicateForSetCC(CC);
1206 
1207  unsigned SelectCCOp;
1208  if (N->getValueType(0) == MVT::i32)
1209  SelectCCOp = PPC::SELECT_CC_I4;
1210  else if (N->getValueType(0) == MVT::i64)
1211  SelectCCOp = PPC::SELECT_CC_I8;
1212  else if (N->getValueType(0) == MVT::f32)
1213  SelectCCOp = PPC::SELECT_CC_F4;
1214  else if (N->getValueType(0) == MVT::f64)
1215  SelectCCOp = PPC::SELECT_CC_F8;
1216  else
1217  SelectCCOp = PPC::SELECT_CC_VRRC;
1218 
1219  SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1220  getI32Imm(BROpc) };
1221  return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1222  }
1223  case PPCISD::BDNZ:
1224  case PPCISD::BDZ: {
1225  bool IsPPC64 = PPCSubTarget.isPPC64();
1226  SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
1227  return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
1228  (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1229  (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
1230  MVT::Other, Ops, 2);
1231  }
1232  case PPCISD::COND_BRANCH: {
1233  // Op #0 is the Chain.
1234  // Op #1 is the PPC::PRED_* number.
1235  // Op #2 is the CR#
1236  // Op #3 is the Dest MBB
1237  // Op #4 is the Flag.
1238  // Prevent PPC::PRED_* from being selected into LI.
1239  SDValue Pred =
1240  getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1241  SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1242  N->getOperand(0), N->getOperand(4) };
1243  return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1244  }
1245  case ISD::BR_CC: {
1246  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1247  SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1248  SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1249  N->getOperand(4), N->getOperand(0) };
1250  return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1251  }
1252  case ISD::BRIND: {
1253  // FIXME: Should custom lower this.
1254  SDValue Chain = N->getOperand(0);
1255  SDValue Target = N->getOperand(1);
1256  unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1257  unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
1258  Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
1259  Chain), 0);
1260  return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
1261  }
1262  case PPCISD::TOC_ENTRY: {
1263  assert (PPCSubTarget.isPPC64() && "Only supported for 64-bit ABI");
1264 
1265  // For medium and large code model, we generate two instructions as
1266  // described below. Otherwise we allow SelectCodeCommon to handle this,
1267  // selecting one of LDtoc, LDtocJTI, and LDtocCPT.
1268  CodeModel::Model CModel = TM.getCodeModel();
1269  if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
1270  break;
1271 
1272  // The first source operand is a TargetGlobalAddress or a
1273  // TargetJumpTable. If it is an externally defined symbol, a symbol
1274  // with common linkage, a function address, or a jump table address,
1275  // or if we are generating code for large code model, we generate:
1276  // LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
1277  // Otherwise we generate:
1278  // ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
1279  SDValue GA = N->getOperand(0);
1280  SDValue TOCbase = N->getOperand(1);
1281  SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
1282  TOCbase, GA);
1283 
1284  if (isa<JumpTableSDNode>(GA) || CModel == CodeModel::Large)
1285  return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1286  SDValue(Tmp, 0));
1287 
1288  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
1289  const GlobalValue *GValue = G->getGlobal();
1290  const GlobalAlias *GAlias = dyn_cast<GlobalAlias>(GValue);
1291  const GlobalValue *RealGValue = GAlias ?
1292  GAlias->resolveAliasedGlobal(false) : GValue;
1293  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(RealGValue);
1294  assert((GVar || isa<Function>(RealGValue)) &&
1295  "Unexpected global value subclass!");
1296 
1297  // An external variable is one without an initializer. For these,
1298  // for variables with common linkage, and for Functions, generate
1299  // the LDtocL form.
1300  if (!GVar || !GVar->hasInitializer() || RealGValue->hasCommonLinkage() ||
1301  RealGValue->hasAvailableExternallyLinkage())
1302  return CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA,
1303  SDValue(Tmp, 0));
1304  }
1305 
1306  return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
1307  SDValue(Tmp, 0), GA);
1308  }
1309  case PPCISD::VADD_SPLAT: {
1310  // This expands into one of three sequences, depending on whether
1311  // the first operand is odd or even, positive or negative.
1312  assert(isa<ConstantSDNode>(N->getOperand(0)) &&
1313  isa<ConstantSDNode>(N->getOperand(1)) &&
1314  "Invalid operand on VADD_SPLAT!");
1315 
1316  int Elt = N->getConstantOperandVal(0);
1317  int EltSize = N->getConstantOperandVal(1);
1318  unsigned Opc1, Opc2, Opc3;
1319  EVT VT;
1320 
1321  if (EltSize == 1) {
1322  Opc1 = PPC::VSPLTISB;
1323  Opc2 = PPC::VADDUBM;
1324  Opc3 = PPC::VSUBUBM;
1325  VT = MVT::v16i8;
1326  } else if (EltSize == 2) {
1327  Opc1 = PPC::VSPLTISH;
1328  Opc2 = PPC::VADDUHM;
1329  Opc3 = PPC::VSUBUHM;
1330  VT = MVT::v8i16;
1331  } else {
1332  assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
1333  Opc1 = PPC::VSPLTISW;
1334  Opc2 = PPC::VADDUWM;
1335  Opc3 = PPC::VSUBUWM;
1336  VT = MVT::v4i32;
1337  }
1338 
1339  if ((Elt & 1) == 0) {
1340  // Elt is even, in the range [-32,-18] + [16,30].
1341  //
1342  // Convert: VADD_SPLAT elt, size
1343  // Into: tmp = VSPLTIS[BHW] elt
1344  // VADDU[BHW]M tmp, tmp
1345  // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
1346  SDValue EltVal = getI32Imm(Elt >> 1);
1347  SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1348  SDValue TmpVal = SDValue(Tmp, 0);
1349  return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
1350 
1351  } else if (Elt > 0) {
1352  // Elt is odd and positive, in the range [17,31].
1353  //
1354  // Convert: VADD_SPLAT elt, size
1355  // Into: tmp1 = VSPLTIS[BHW] elt-16
1356  // tmp2 = VSPLTIS[BHW] -16
1357  // VSUBU[BHW]M tmp1, tmp2
1358  SDValue EltVal = getI32Imm(Elt - 16);
1359  SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1360  EltVal = getI32Imm(-16);
1361  SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1362  return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
1363  SDValue(Tmp2, 0));
1364 
1365  } else {
1366  // Elt is odd and negative, in the range [-31,-17].
1367  //
1368  // Convert: VADD_SPLAT elt, size
1369  // Into: tmp1 = VSPLTIS[BHW] elt+16
1370  // tmp2 = VSPLTIS[BHW] -16
1371  // VADDU[BHW]M tmp1, tmp2
1372  SDValue EltVal = getI32Imm(Elt + 16);
1373  SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1374  EltVal = getI32Imm(-16);
1375  SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
1376  return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
1377  SDValue(Tmp2, 0));
1378  }
1379  }
1380  }
1381 
1382  return SelectCode(N);
1383 }
1384 
1385 /// PostProcessISelDAG - Perform some late peephole optimizations
1386 /// on the DAG representation.
1387 void PPCDAGToDAGISel::PostprocessISelDAG() {
1388 
1389  // Skip peepholes at -O0.
1390  if (TM.getOptLevel() == CodeGenOpt::None)
1391  return;
1392 
1393  // These optimizations are currently supported only for 64-bit SVR4.
1394  if (PPCSubTarget.isDarwin() || !PPCSubTarget.isPPC64())
1395  return;
1396 
1397  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
1398  ++Position;
1399 
1400  while (Position != CurDAG->allnodes_begin()) {
1401  SDNode *N = --Position;
1402  // Skip dead nodes and any non-machine opcodes.
1403  if (N->use_empty() || !N->isMachineOpcode())
1404  continue;
1405 
1406  unsigned FirstOp;
1407  unsigned StorageOpcode = N->getMachineOpcode();
1408 
1409  switch (StorageOpcode) {
1410  default: continue;
1411 
1412  case PPC::LBZ:
1413  case PPC::LBZ8:
1414  case PPC::LD:
1415  case PPC::LFD:
1416  case PPC::LFS:
1417  case PPC::LHA:
1418  case PPC::LHA8:
1419  case PPC::LHZ:
1420  case PPC::LHZ8:
1421  case PPC::LWA:
1422  case PPC::LWZ:
1423  case PPC::LWZ8:
1424  FirstOp = 0;
1425  break;
1426 
1427  case PPC::STB:
1428  case PPC::STB8:
1429  case PPC::STD:
1430  case PPC::STFD:
1431  case PPC::STFS:
1432  case PPC::STH:
1433  case PPC::STH8:
1434  case PPC::STW:
1435  case PPC::STW8:
1436  FirstOp = 1;
1437  break;
1438  }
1439 
1440  // If this is a load or store with a zero offset, we may be able to
1441  // fold an add-immediate into the memory operation.
1442  if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
1443  N->getConstantOperandVal(FirstOp) != 0)
1444  continue;
1445 
1446  SDValue Base = N->getOperand(FirstOp + 1);
1447  if (!Base.isMachineOpcode())
1448  continue;
1449 
1450  unsigned Flags = 0;
1451  bool ReplaceFlags = true;
1452 
1453  // When the feeding operation is an add-immediate of some sort,
1454  // determine whether we need to add relocation information to the
1455  // target flags on the immediate operand when we fold it into the
1456  // load instruction.
1457  //
1458  // For something like ADDItocL, the relocation information is
1459  // inferred from the opcode; when we process it in the AsmPrinter,
1460  // we add the necessary relocation there. A load, though, can receive
1461  // relocation from various flavors of ADDIxxx, so we need to carry
1462  // the relocation information in the target flags.
1463  switch (Base.getMachineOpcode()) {
1464  default: continue;
1465 
1466  case PPC::ADDI8:
1467  case PPC::ADDI:
1468  // In some cases (such as TLS) the relocation information
1469  // is already in place on the operand, so copying the operand
1470  // is sufficient.
1471  ReplaceFlags = false;
1472  // For these cases, the immediate may not be divisible by 4, in
1473  // which case the fold is illegal for DS-form instructions. (The
1474  // other cases provide aligned addresses and are always safe.)
1475  if ((StorageOpcode == PPC::LWA ||
1476  StorageOpcode == PPC::LD ||
1477  StorageOpcode == PPC::STD) &&
1478  (!isa<ConstantSDNode>(Base.getOperand(1)) ||
1479  Base.getConstantOperandVal(1) % 4 != 0))
1480  continue;
1481  break;
1482  case PPC::ADDIdtprelL:
1483  Flags = PPCII::MO_DTPREL_LO;
1484  break;
1485  case PPC::ADDItlsldL:
1486  Flags = PPCII::MO_TLSLD_LO;
1487  break;
1488  case PPC::ADDItocL:
1489  Flags = PPCII::MO_TOC_LO;
1490  break;
1491  }
1492 
1493  // We found an opportunity. Reverse the operands from the add
1494  // immediate and substitute them into the load or store. If
1495  // needed, update the target flags for the immediate operand to
1496  // reflect the necessary relocation information.
1497  DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
1498  DEBUG(Base->dump(CurDAG));
1499  DEBUG(dbgs() << "\nN: ");
1500  DEBUG(N->dump(CurDAG));
1501  DEBUG(dbgs() << "\n");
1502 
1503  SDValue ImmOpnd = Base.getOperand(1);
1504 
1505  // If the relocation information isn't already present on the
1506  // immediate operand, add it now.
1507  if (ReplaceFlags) {
1508  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
1509  SDLoc dl(GA);
1510  const GlobalValue *GV = GA->getGlobal();
1511  // We can't perform this optimization for data whose alignment
1512  // is insufficient for the instruction encoding.
1513  if (GV->getAlignment() < 4 &&
1514  (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
1515  StorageOpcode == PPC::LWA)) {
1516  DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
1517  continue;
1518  }
1519  ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
1520  } else if (ConstantPoolSDNode *CP =
1521  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
1522  const Constant *C = CP->getConstVal();
1523  ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
1524  CP->getAlignment(),
1525  0, Flags);
1526  }
1527  }
1528 
1529  if (FirstOp == 1) // Store
1530  (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
1531  Base.getOperand(0), N->getOperand(3));
1532  else // Load
1533  (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
1534  N->getOperand(2));
1535 
1536  // The add-immediate may now be dead, in which case remove it.
1537  if (Base.getNode()->use_empty())
1538  CurDAG->RemoveDeadNode(Base.getNode());
1539  }
1540 }
1541 
1542 
1543 /// createPPCISelDag - This pass converts a legalized DAG into a
1544 /// PowerPC-specific DAG, ready for instruction scheduling.
1545 ///
1547  return new PPCDAGToDAGISel(TM);
1548 }
1549 
1551  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
1552  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, 0,
1553  false, false);
1554  Registry.registerPass(*PI, true);
1555 }
1556 
1559 }
1560 
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
bool use_empty() const
SDValue getValue(unsigned R) const
static PassRegistry * getPassRegistry()
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
void dump() const
dump - Dump this node, for debugging.
bool hasOneUse() const
static unsigned index2VirtReg(unsigned Index)
unsigned getAlignment() const
Definition: GlobalValue.h:79
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getOpcode() const
unsigned getNumOperands() const
static unsigned int getVCmpInst(MVT::SimpleValueType VecVT, ISD::CondCode CC)
static bool isInt32Immediate(SDNode *N, unsigned &Imm)
const SDValue & getOperand(unsigned Num) const
void setNodeId(int Id)
setNodeId - Set unique node id.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned &Imm)
const SDValue & getBasePtr() const
bool isUnsignedIntSetCC(CondCode Code)
Definition: ISDOpcodes.h:758
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
bool isShiftedMask_32(uint32_t Value)
Definition: MathExtras.h:342
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:661
unsigned CountTrailingOnes_64(uint64_t Value)
Definition: MathExtras.h:410
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
unsigned getMachineOpcode() const
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:120
#define G(x, y, z)
Definition: MD5.cpp:52
virtual bool runOnMachineFunction(MachineFunction &MF)
const MachineBasicBlock & front() const
static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME)
#define T
bool isMask_64(uint64_t Value)
Definition: MathExtras.h:335
GlobalValue * resolveAliasedGlobal(bool stopOnWeak=true)
Definition: Globals.cpp:247
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
SDNode * getNode() const
get the SDNode which holds the desired result
bundle_iterator< MachineInstr, instr_iterator > iterator
static bool isIntS16Immediate(SDNode *N, short &Imm)
const SDValue & getOperand(unsigned i) const
LLVM Constant Representation.
Definition: Constant.h:41
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC)
bool isFloatingPoint() const
isFloatingPoint - Return true if this is a FP, or a vector FP type.
Definition: ValueTypes.h:174
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static bool isInt64Immediate(SDNode *N, uint64_t &Imm)
unsigned getOpcode() const
void initializePPCDAGToDAGISelPass(PassRegistry &)
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
ISD::MemIndexedMode getAddressingMode() const
uint64_t getConstantOperandVal(unsigned Num) const
static unsigned int getVCmpEQInst(MVT::SimpleValueType VecVT)
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
const SDValue & getOffset() const
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:27
const SDValue & getChain() const
bool isMachineOpcode() const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
ISD::LoadExtType getExtensionType() const
bool hasInitializer() const
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isUInt< 32 >(uint64_t x)
Definition: MathExtras.h:302
uint64_t getConstantOperandVal(unsigned i) const
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:272
EVT getValueType() const
LLVM Value Representation.
Definition: Value.h:66
#define CALL_ONCE_INITIALIZATION(function)
Definition: PassSupport.h:133
bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:298
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert)
BasicBlockListType::iterator iterator
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
FunctionPass * createPPCISelDag(PPCTargetMachine &TM)
static void initializePassOnce(PassRegistry &Registry)
void registerPass(const PassInfo &PI, bool ShouldFree=false)
MVT getSimpleVT() const
Definition: ValueTypes.h:749
bool isMachineOpcode() const
unsigned getMachineOpcode() const