LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ScheduleDAGFast.cpp
Go to the documentation of this file.
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "pre-RA-sched"
16 #include "InstrEmitter.h"
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/Support/Debug.h"
29 using namespace llvm;
30 
31 STATISTIC(NumUnfolds, "Number of nodes unfolded");
32 STATISTIC(NumDups, "Number of duplicated nodes");
33 STATISTIC(NumPRCopies, "Number of physical copies");
34 
35 static RegisterScheduler
36  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
38 static RegisterScheduler
39  linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
41 
42 
43 namespace {
44  /// FastPriorityQueue - A degenerate priority queue that considers
45  /// all nodes to have the same priority.
46  ///
47  struct FastPriorityQueue {
49 
50  bool empty() const { return Queue.empty(); }
51 
52  void push(SUnit *U) {
53  Queue.push_back(U);
54  }
55 
56  SUnit *pop() {
57  if (empty()) return NULL;
58  SUnit *V = Queue.back();
59  Queue.pop_back();
60  return V;
61  }
62  };
63 
64 //===----------------------------------------------------------------------===//
65 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
66 ///
67 class ScheduleDAGFast : public ScheduleDAGSDNodes {
68 private:
69  /// AvailableQueue - The priority queue to use for the available SUnits.
70  FastPriorityQueue AvailableQueue;
71 
72  /// LiveRegDefs - A set of physical registers and their definition
73  /// that are "live". These nodes must be scheduled before any other nodes that
74  /// modifies the registers can be scheduled.
75  unsigned NumLiveRegs;
76  std::vector<SUnit*> LiveRegDefs;
77  std::vector<unsigned> LiveRegCycles;
78 
79 public:
80  ScheduleDAGFast(MachineFunction &mf)
81  : ScheduleDAGSDNodes(mf) {}
82 
83  void Schedule();
84 
85  /// AddPred - adds a predecessor edge to SUnit SU.
86  /// This returns true if this is a new predecessor.
87  void AddPred(SUnit *SU, const SDep &D) {
88  SU->addPred(D);
89  }
90 
91  /// RemovePred - removes a predecessor edge from SUnit SU.
92  /// This returns true if an edge was removed.
93  void RemovePred(SUnit *SU, const SDep &D) {
94  SU->removePred(D);
95  }
96 
97 private:
98  void ReleasePred(SUnit *SU, SDep *PredEdge);
99  void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
100  void ScheduleNodeBottomUp(SUnit*, unsigned);
101  SUnit *CopyAndMoveSuccessors(SUnit*);
102  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
103  const TargetRegisterClass*,
104  const TargetRegisterClass*,
106  bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
107  void ListScheduleBottomUp();
108 
109  /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
110  bool forceUnitLatencies() const { return true; }
111 };
112 } // end anonymous namespace
113 
114 
115 /// Schedule - Schedule the DAG using list scheduling.
116 void ScheduleDAGFast::Schedule() {
117  DEBUG(dbgs() << "********** List Scheduling **********\n");
118 
119  NumLiveRegs = 0;
120  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
121  LiveRegCycles.resize(TRI->getNumRegs(), 0);
122 
123  // Build the scheduling graph.
124  BuildSchedGraph(NULL);
125 
126  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
127  SUnits[su].dumpAll(this));
128 
129  // Execute the actual scheduling loop.
130  ListScheduleBottomUp();
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Bottom-Up Scheduling
135 //===----------------------------------------------------------------------===//
136 
137 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
138 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
139 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
140  SUnit *PredSU = PredEdge->getSUnit();
141 
142 #ifndef NDEBUG
143  if (PredSU->NumSuccsLeft == 0) {
144  dbgs() << "*** Scheduling failed! ***\n";
145  PredSU->dump(this);
146  dbgs() << " has been released too many times!\n";
147  llvm_unreachable(0);
148  }
149 #endif
150  --PredSU->NumSuccsLeft;
151 
152  // If all the node's successors are scheduled, this node is ready
153  // to be scheduled. Ignore the special EntrySU node.
154  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
155  PredSU->isAvailable = true;
156  AvailableQueue.push(PredSU);
157  }
158 }
159 
160 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
161  // Bottom up: release predecessors
162  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
163  I != E; ++I) {
164  ReleasePred(SU, &*I);
165  if (I->isAssignedRegDep()) {
166  // This is a physical register dependency and it's impossible or
167  // expensive to copy the register. Make sure nothing that can
168  // clobber the register is scheduled between the predecessor and
169  // this node.
170  if (!LiveRegDefs[I->getReg()]) {
171  ++NumLiveRegs;
172  LiveRegDefs[I->getReg()] = I->getSUnit();
173  LiveRegCycles[I->getReg()] = CurCycle;
174  }
175  }
176  }
177 }
178 
179 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
180 /// count of its predecessors. If a predecessor pending count is zero, add it to
181 /// the Available queue.
182 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
183  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
184  DEBUG(SU->dump(this));
185 
186  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
187  SU->setHeightToAtLeast(CurCycle);
188  Sequence.push_back(SU);
189 
190  ReleasePredecessors(SU, CurCycle);
191 
192  // Release all the implicit physical register defs that are live.
193  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
194  I != E; ++I) {
195  if (I->isAssignedRegDep()) {
196  if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
197  assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
198  assert(LiveRegDefs[I->getReg()] == SU &&
199  "Physical register dependency violated?");
200  --NumLiveRegs;
201  LiveRegDefs[I->getReg()] = NULL;
202  LiveRegCycles[I->getReg()] = 0;
203  }
204  }
205  }
206 
207  SU->isScheduled = true;
208 }
209 
210 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
211 /// successors to the newly created node.
212 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
213  if (SU->getNode()->getGluedNode())
214  return NULL;
215 
216  SDNode *N = SU->getNode();
217  if (!N)
218  return NULL;
219 
220  SUnit *NewSU;
221  bool TryUnfold = false;
222  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
223  EVT VT = N->getValueType(i);
224  if (VT == MVT::Glue)
225  return NULL;
226  else if (VT == MVT::Other)
227  TryUnfold = true;
228  }
229  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
230  const SDValue &Op = N->getOperand(i);
231  EVT VT = Op.getNode()->getValueType(Op.getResNo());
232  if (VT == MVT::Glue)
233  return NULL;
234  }
235 
236  if (TryUnfold) {
237  SmallVector<SDNode*, 2> NewNodes;
238  if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
239  return NULL;
240 
241  DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
242  assert(NewNodes.size() == 2 && "Expected a load folding node!");
243 
244  N = NewNodes[1];
245  SDNode *LoadNode = NewNodes[0];
246  unsigned NumVals = N->getNumValues();
247  unsigned OldNumVals = SU->getNode()->getNumValues();
248  for (unsigned i = 0; i != NumVals; ++i)
249  DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
250  DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
251  SDValue(LoadNode, 1));
252 
253  SUnit *NewSU = newSUnit(N);
254  assert(N->getNodeId() == -1 && "Node already inserted!");
255  N->setNodeId(NewSU->NodeNum);
256 
257  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
258  for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
259  if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
260  NewSU->isTwoAddress = true;
261  break;
262  }
263  }
264  if (MCID.isCommutable())
265  NewSU->isCommutable = true;
266 
267  // LoadNode may already exist. This can happen when there is another
268  // load from the same location and producing the same type of value
269  // but it has different alignment or volatileness.
270  bool isNewLoad = true;
271  SUnit *LoadSU;
272  if (LoadNode->getNodeId() != -1) {
273  LoadSU = &SUnits[LoadNode->getNodeId()];
274  isNewLoad = false;
275  } else {
276  LoadSU = newSUnit(LoadNode);
277  LoadNode->setNodeId(LoadSU->NodeNum);
278  }
279 
280  SDep ChainPred;
281  SmallVector<SDep, 4> ChainSuccs;
282  SmallVector<SDep, 4> LoadPreds;
283  SmallVector<SDep, 4> NodePreds;
284  SmallVector<SDep, 4> NodeSuccs;
285  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
286  I != E; ++I) {
287  if (I->isCtrl())
288  ChainPred = *I;
289  else if (I->getSUnit()->getNode() &&
290  I->getSUnit()->getNode()->isOperandOf(LoadNode))
291  LoadPreds.push_back(*I);
292  else
293  NodePreds.push_back(*I);
294  }
295  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296  I != E; ++I) {
297  if (I->isCtrl())
298  ChainSuccs.push_back(*I);
299  else
300  NodeSuccs.push_back(*I);
301  }
302 
303  if (ChainPred.getSUnit()) {
304  RemovePred(SU, ChainPred);
305  if (isNewLoad)
306  AddPred(LoadSU, ChainPred);
307  }
308  for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
309  const SDep &Pred = LoadPreds[i];
310  RemovePred(SU, Pred);
311  if (isNewLoad) {
312  AddPred(LoadSU, Pred);
313  }
314  }
315  for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
316  const SDep &Pred = NodePreds[i];
317  RemovePred(SU, Pred);
318  AddPred(NewSU, Pred);
319  }
320  for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
321  SDep D = NodeSuccs[i];
322  SUnit *SuccDep = D.getSUnit();
323  D.setSUnit(SU);
324  RemovePred(SuccDep, D);
325  D.setSUnit(NewSU);
326  AddPred(SuccDep, D);
327  }
328  for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
329  SDep D = ChainSuccs[i];
330  SUnit *SuccDep = D.getSUnit();
331  D.setSUnit(SU);
332  RemovePred(SuccDep, D);
333  if (isNewLoad) {
334  D.setSUnit(LoadSU);
335  AddPred(SuccDep, D);
336  }
337  }
338  if (isNewLoad) {
339  SDep D(LoadSU, SDep::Barrier);
340  D.setLatency(LoadSU->Latency);
341  AddPred(NewSU, D);
342  }
343 
344  ++NumUnfolds;
345 
346  if (NewSU->NumSuccsLeft == 0) {
347  NewSU->isAvailable = true;
348  return NewSU;
349  }
350  SU = NewSU;
351  }
352 
353  DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
354  NewSU = Clone(SU);
355 
356  // New SUnit has the exact same predecessors.
357  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358  I != E; ++I)
359  if (!I->isArtificial())
360  AddPred(NewSU, *I);
361 
362  // Only copy scheduled successors. Cut them from old node's successor
363  // list and move them over.
365  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
366  I != E; ++I) {
367  if (I->isArtificial())
368  continue;
369  SUnit *SuccSU = I->getSUnit();
370  if (SuccSU->isScheduled) {
371  SDep D = *I;
372  D.setSUnit(NewSU);
373  AddPred(SuccSU, D);
374  D.setSUnit(SU);
375  DelDeps.push_back(std::make_pair(SuccSU, D));
376  }
377  }
378  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
379  RemovePred(DelDeps[i].first, DelDeps[i].second);
380 
381  ++NumDups;
382  return NewSU;
383 }
384 
385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
386 /// scheduled successors of the given SUnit to the last copy.
387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
388  const TargetRegisterClass *DestRC,
389  const TargetRegisterClass *SrcRC,
390  SmallVectorImpl<SUnit*> &Copies) {
391  SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(NULL));
392  CopyFromSU->CopySrcRC = SrcRC;
393  CopyFromSU->CopyDstRC = DestRC;
394 
395  SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(NULL));
396  CopyToSU->CopySrcRC = DestRC;
397  CopyToSU->CopyDstRC = SrcRC;
398 
399  // Only copy scheduled successors. Cut them from old node's successor
400  // list and move them over.
402  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403  I != E; ++I) {
404  if (I->isArtificial())
405  continue;
406  SUnit *SuccSU = I->getSUnit();
407  if (SuccSU->isScheduled) {
408  SDep D = *I;
409  D.setSUnit(CopyToSU);
410  AddPred(SuccSU, D);
411  DelDeps.push_back(std::make_pair(SuccSU, *I));
412  }
413  }
414  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
415  RemovePred(DelDeps[i].first, DelDeps[i].second);
416  }
417  SDep FromDep(SU, SDep::Data, Reg);
418  FromDep.setLatency(SU->Latency);
419  AddPred(CopyFromSU, FromDep);
420  SDep ToDep(CopyFromSU, SDep::Data, 0);
421  ToDep.setLatency(CopyFromSU->Latency);
422  AddPred(CopyToSU, ToDep);
423 
424  Copies.push_back(CopyFromSU);
425  Copies.push_back(CopyToSU);
426 
427  ++NumPRCopies;
428 }
429 
430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
431 /// definition of the specified node.
432 /// FIXME: Move to SelectionDAG?
433 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
434  const TargetInstrInfo *TII) {
435  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
436  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
437  unsigned NumRes = MCID.getNumDefs();
438  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
439  if (Reg == *ImpDef)
440  break;
441  ++NumRes;
442  }
443  return N->getValueType(NumRes);
444 }
445 
446 /// CheckForLiveRegDef - Return true and update live register vector if the
447 /// specified register def of the specified SUnit clobbers any "live" registers.
448 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
449  std::vector<SUnit*> &LiveRegDefs,
450  SmallSet<unsigned, 4> &RegAdded,
452  const TargetRegisterInfo *TRI) {
453  bool Added = false;
454  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
455  if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
456  if (RegAdded.insert(*AI)) {
457  LRegs.push_back(*AI);
458  Added = true;
459  }
460  }
461  }
462  return Added;
463 }
464 
465 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
466 /// scheduling of the given node to satisfy live physical register dependencies.
467 /// If the specific node is the last one that's available to schedule, do
468 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
469 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
471  if (NumLiveRegs == 0)
472  return false;
473 
474  SmallSet<unsigned, 4> RegAdded;
475  // If this node would clobber any "live" register, then it's not ready.
476  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
477  I != E; ++I) {
478  if (I->isAssignedRegDep()) {
479  CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
480  RegAdded, LRegs, TRI);
481  }
482  }
483 
484  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
485  if (Node->getOpcode() == ISD::INLINEASM) {
486  // Inline asm can clobber physical defs.
487  unsigned NumOps = Node->getNumOperands();
488  if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
489  --NumOps; // Ignore the glue operand.
490 
491  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
492  unsigned Flags =
493  cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
494  unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
495 
496  ++i; // Skip the ID value.
497  if (InlineAsm::isRegDefKind(Flags) ||
499  InlineAsm::isClobberKind(Flags)) {
500  // Check for def of register or earlyclobber register.
501  for (; NumVals; --NumVals, ++i) {
502  unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
504  CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
505  }
506  } else
507  i += NumVals;
508  }
509  continue;
510  }
511  if (!Node->isMachineOpcode())
512  continue;
513  const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
514  if (!MCID.ImplicitDefs)
515  continue;
516  for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
517  CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
518  }
519  }
520  return !LRegs.empty();
521 }
522 
523 
524 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
525 /// schedulers.
526 void ScheduleDAGFast::ListScheduleBottomUp() {
527  unsigned CurCycle = 0;
528 
529  // Release any predecessors of the special Exit node.
530  ReleasePredecessors(&ExitSU, CurCycle);
531 
532  // Add root to Available queue.
533  if (!SUnits.empty()) {
534  SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
535  assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
536  RootSU->isAvailable = true;
537  AvailableQueue.push(RootSU);
538  }
539 
540  // While Available queue is not empty, grab the node with the highest
541  // priority. If it is not ready put it back. Schedule the node.
542  SmallVector<SUnit*, 4> NotReady;
544  Sequence.reserve(SUnits.size());
545  while (!AvailableQueue.empty()) {
546  bool Delayed = false;
547  LRegsMap.clear();
548  SUnit *CurSU = AvailableQueue.pop();
549  while (CurSU) {
551  if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
552  break;
553  Delayed = true;
554  LRegsMap.insert(std::make_pair(CurSU, LRegs));
555 
556  CurSU->isPending = true; // This SU is not in AvailableQueue right now.
557  NotReady.push_back(CurSU);
558  CurSU = AvailableQueue.pop();
559  }
560 
561  // All candidates are delayed due to live physical reg dependencies.
562  // Try code duplication or inserting cross class copies
563  // to resolve it.
564  if (Delayed && !CurSU) {
565  if (!CurSU) {
566  // Try duplicating the nodes that produces these
567  // "expensive to copy" values to break the dependency. In case even
568  // that doesn't work, insert cross class copies.
569  SUnit *TrySU = NotReady[0];
570  SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
571  assert(LRegs.size() == 1 && "Can't handle this yet!");
572  unsigned Reg = LRegs[0];
573  SUnit *LRDef = LiveRegDefs[Reg];
574  EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
575  const TargetRegisterClass *RC =
576  TRI->getMinimalPhysRegClass(Reg, VT);
577  const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
578 
579  // If cross copy register class is the same as RC, then it must be
580  // possible copy the value directly. Do not try duplicate the def.
581  // If cross copy register class is not the same as RC, then it's
582  // possible to copy the value but it require cross register class copies
583  // and it is expensive.
584  // If cross copy register class is null, then it's not possible to copy
585  // the value at all.
586  SUnit *NewDef = 0;
587  if (DestRC != RC) {
588  NewDef = CopyAndMoveSuccessors(LRDef);
589  if (!DestRC && !NewDef)
590  report_fatal_error("Can't handle live physical "
591  "register dependency!");
592  }
593  if (!NewDef) {
594  // Issue copies, these can be expensive cross register class copies.
595  SmallVector<SUnit*, 2> Copies;
596  InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
597  DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
598  << " to SU #" << Copies.front()->NodeNum << "\n");
599  AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
600  NewDef = Copies.back();
601  }
602 
603  DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
604  << " to SU #" << TrySU->NodeNum << "\n");
605  LiveRegDefs[Reg] = NewDef;
606  AddPred(NewDef, SDep(TrySU, SDep::Artificial));
607  TrySU->isAvailable = false;
608  CurSU = NewDef;
609  }
610 
611  if (!CurSU) {
612  llvm_unreachable("Unable to resolve live physical register dependencies!");
613  }
614  }
615 
616  // Add the nodes that aren't ready back onto the available list.
617  for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
618  NotReady[i]->isPending = false;
619  // May no longer be available due to backtracking.
620  if (NotReady[i]->isAvailable)
621  AvailableQueue.push(NotReady[i]);
622  }
623  NotReady.clear();
624 
625  if (CurSU)
626  ScheduleNodeBottomUp(CurSU, CurCycle);
627  ++CurCycle;
628  }
629 
630  // Reverse the order since it is bottom up.
631  std::reverse(Sequence.begin(), Sequence.end());
632 
633 #ifndef NDEBUG
634  VerifyScheduledSequence(/*isBottomUp=*/true);
635 #endif
636 }
637 
638 
639 namespace {
640 //===----------------------------------------------------------------------===//
641 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
642 // DAG in topological order.
643 // IMPORTANT: this may not work for targets with phyreg dependency.
644 //
645 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
646 public:
647  ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
648 
649  void Schedule();
650 
651  MachineBasicBlock *EmitSchedule(MachineBasicBlock::iterator &InsertPos);
652 
653 private:
654  std::vector<SDNode*> Sequence;
655  DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
656 
657  void ScheduleNode(SDNode *N);
658 };
659 } // end anonymous namespace
660 
661 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
662  if (N->getNodeId() != 0)
663  llvm_unreachable(0);
664 
665  if (!N->isMachineOpcode() &&
666  (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
667  // These nodes do not need to be translated into MIs.
668  return;
669 
670  DEBUG(dbgs() << "\n*** Scheduling: ");
671  DEBUG(N->dump(DAG));
672  Sequence.push_back(N);
673 
674  unsigned NumOps = N->getNumOperands();
675  if (unsigned NumLeft = NumOps) {
676  SDNode *GluedOpN = 0;
677  do {
678  const SDValue &Op = N->getOperand(NumLeft-1);
679  SDNode *OpN = Op.getNode();
680 
681  if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
682  // Schedule glue operand right above N.
683  GluedOpN = OpN;
684  assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
685  OpN->setNodeId(0);
686  ScheduleNode(OpN);
687  continue;
688  }
689 
690  if (OpN == GluedOpN)
691  // Glue operand is already scheduled.
692  continue;
693 
694  DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
695  if (DI != GluedMap.end() && DI->second != N)
696  // Users of glues are counted against the glued users.
697  OpN = DI->second;
698 
699  unsigned Degree = OpN->getNodeId();
700  assert(Degree > 0 && "Predecessor over-released!");
701  OpN->setNodeId(--Degree);
702  if (Degree == 0)
703  ScheduleNode(OpN);
704  } while (--NumLeft);
705  }
706 }
707 
708 /// findGluedUser - Find the representative use of a glue value by walking
709 /// the use chain.
711  while (SDNode *Glued = N->getGluedUser())
712  N = Glued;
713  return N;
714 }
715 
716 void ScheduleDAGLinearize::Schedule() {
717  DEBUG(dbgs() << "********** DAG Linearization **********\n");
718 
720  unsigned DAGSize = 0;
721  for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
722  E = DAG->allnodes_end(); I != E; ++I) {
723  SDNode *N = I;
724 
725  // Use node id to record degree.
726  unsigned Degree = N->use_size();
727  N->setNodeId(Degree);
728  unsigned NumVals = N->getNumValues();
729  if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
730  N->hasAnyUseOfValue(NumVals-1)) {
731  SDNode *User = findGluedUser(N);
732  if (User) {
733  Glues.push_back(N);
734  GluedMap.insert(std::make_pair(N, User));
735  }
736  }
737 
738  if (N->isMachineOpcode() ||
739  (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
740  ++DAGSize;
741  }
742 
743  for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
744  SDNode *Glue = Glues[i];
745  SDNode *GUser = GluedMap[Glue];
746  unsigned Degree = Glue->getNodeId();
747  unsigned UDegree = GUser->getNodeId();
748 
749  // Glue user must be scheduled together with the glue operand. So other
750  // users of the glue operand must be treated as its users.
751  SDNode *ImmGUser = Glue->getGluedUser();
752  for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
753  ui != ue; ++ui)
754  if (*ui == ImmGUser)
755  --Degree;
756  GUser->setNodeId(UDegree + Degree);
757  Glue->setNodeId(1);
758  }
759 
760  Sequence.reserve(DAGSize);
761  ScheduleNode(DAG->getRoot().getNode());
762 }
763 
765 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
766  InstrEmitter Emitter(BB, InsertPos);
767  DenseMap<SDValue, unsigned> VRBaseMap;
768 
769  DEBUG({
770  dbgs() << "\n*** Final schedule ***\n";
771  });
772 
773  // FIXME: Handle dbg_values.
774  unsigned NumNodes = Sequence.size();
775  for (unsigned i = 0; i != NumNodes; ++i) {
776  SDNode *N = Sequence[NumNodes-i-1];
777  DEBUG(N->dump(DAG));
778  Emitter.EmitNode(N, false, false, VRBaseMap);
779  }
780 
781  DEBUG(dbgs() << '\n');
782 
783  InsertPos = Emitter.getInsertPos();
784  return Emitter.getBlock();
785 }
786 
787 //===----------------------------------------------------------------------===//
788 // Public Constructor Functions
789 //===----------------------------------------------------------------------===//
790 
793  return new ScheduleDAGFast(*IS->MF);
794 }
795 
798  return new ScheduleDAGLinearize(*IS->MF);
799 }
const uint16_t * getImplicitDefs() const
Definition: MCInstrDesc.h:523
void dump() const
dump - Dump this node, for debugging.
bool isCommutable() const
Definition: MCInstrDesc.h:411
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
bool isTwoAddress
Definition: ScheduleDAG.h:284
SDNode * getGluedNode() const
unsigned getOpcode() const
static bool isClobberKind(unsigned Flag)
Definition: InlineAsm.h:272
void setSUnit(SUnit *SU)
Definition: ScheduleDAG.h:165
unsigned getNumOperands() const
const SDValue & getOperand(unsigned Num) const
void removePred(const SDep &D)
void setNodeId(int Id)
setNodeId - Set unique node id.
const TargetRegisterClass * CopyDstRC
Definition: ScheduleDAG.h:306
EntryToken - This is the marker used to indicate the start of a region.
Definition: ISDOpcodes.h:45
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MachineFunction * MF
SmallVector< SDep, 4 > Preds
Definition: ScheduleDAG.h:263
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
bool isScheduled
Definition: ScheduleDAG.h:291
unsigned getHeight() const
Definition: ScheduleDAG.h:411
unsigned NumSuccsLeft
Definition: ScheduleDAG.h:276
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
Regular data dependence (aka true-dependence).
Definition: ScheduleDAG.h:49
static bool isRegDefEarlyClobberKind(unsigned Flag)
Definition: InlineAsm.h:269
unsigned getNumValues() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
ScheduleDAGSDNodes * createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel)
bool isPending
Definition: ScheduleDAG.h:289
bool insert(const T &V)
Definition: SmallSet.h:59
static bool isRegDefKind(unsigned Flag)
Definition: InlineAsm.h:266
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
SDNode * getNode() const
get the SDNode which holds the desired result
bundle_iterator< MachineInstr, instr_iterator > iterator
void setHeightToAtLeast(unsigned NewHeight)
bool isAvailable()
Definition: Compression.cpp:49
* if(!EatIfPresent(lltok::kw_thread_local)) return false
size_t use_size() const
SDNode * getNode() const
Definition: ScheduleDAG.h:368
unsigned short Latency
Definition: ScheduleDAG.h:280
STATISTIC(NumUnfolds,"Number of nodes unfolded")
static unsigned getNumOperandRegisters(unsigned Flag)
Definition: InlineAsm.h:278
use_iterator use_begin() const
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specific constraint if it is set. Returns -1 if it is not set...
Definition: MCInstrDesc.h:156
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
An unknown scheduling barrier.
Definition: ScheduleDAG.h:65
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
bool isCommutable
Definition: ScheduleDAG.h:285
SDNode * getGluedUser() const
const TargetRegisterClass * CopySrcRC
Definition: ScheduleDAG.h:307
static SDNode * findGluedUser(SDNode *N)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static RegisterScheduler fastDAGScheduler("fast","Fast suboptimal list scheduling", createFastDAGScheduler)
static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, const TargetInstrInfo *TII)
SUnit * getSUnit() const
Definition: ScheduleDAG.h:160
static use_iterator use_end()
void setLatency(unsigned Lat)
setLatency - Set the latency for this edge.
Definition: ScheduleDAG.h:155
bool isAvailable
Definition: ScheduleDAG.h:290
static bool isPhysicalRegister(unsigned Reg)
bool hasAnyUseOfValue(unsigned Value) const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, std::vector< SUnit * > &LiveRegDefs, SmallSet< unsigned, 4 > &RegAdded, SmallVectorImpl< unsigned > &LRegs, const TargetRegisterInfo *TRI)
static RegisterScheduler linearizeDAGScheduler("linearize","Linearize DAG, no scheduling", createDAGLinearizer)
int getNodeId() const
EVT getValueType() const
unsigned NodeNum
Definition: ScheduleDAG.h:271
const uint16_t * ImplicitDefs
Definition: MCInstrDesc.h:147
bool addPred(const SDep &D, bool Required=true)
Definition: ScheduleDAG.cpp:65
SmallVector< SDep, 4 > Succs
Definition: ScheduleDAG.h:264
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
Arbitrary strong DAG edge (no real dependence).
Definition: ScheduleDAG.h:68
ScheduleDAGSDNodes * createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel)
#define DEBUG(X)
Definition: Debug.h:97
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
void dump(const ScheduleDAG *G) const
SUnit - Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:249
bool isMachineOpcode() const
unsigned getMachineOpcode() const