LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RegAllocGreedy.cpp
Go to the documentation of this file.
1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "AllocationOrder.h"
18 #include "InterferenceCache.h"
19 #include "LiveDebugVariables.h"
20 #include "RegAllocBase.h"
21 #include "SpillPlacement.h"
22 #include "Spiller.h"
23 #include "SplitKit.h"
24 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/Timer.h"
45 #include <queue>
46 
47 using namespace llvm;
48 
49 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
50 STATISTIC(NumLocalSplits, "Number of split local live ranges");
51 STATISTIC(NumEvicted, "Number of interferences evicted");
52 
54 SplitSpillMode("split-spill-mode", cl::Hidden,
55  cl::desc("Spill mode for splitting live ranges"),
56  cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
57  clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
58  clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
59  clEnumValEnd),
61 
62 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
64 
65 namespace {
66 class RAGreedy : public MachineFunctionPass,
67  public RegAllocBase,
68  private LiveRangeEdit::Delegate {
69 
70  // context
71  MachineFunction *MF;
72 
73  // analyses
74  SlotIndexes *Indexes;
76  MachineDominatorTree *DomTree;
78  EdgeBundles *Bundles;
79  SpillPlacement *SpillPlacer;
80  LiveDebugVariables *DebugVars;
81 
82  // state
83  OwningPtr<Spiller> SpillerInstance;
84  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
85  unsigned NextCascade;
86 
87  // Live ranges pass through a number of stages as we try to allocate them.
88  // Some of the stages may also create new live ranges:
89  //
90  // - Region splitting.
91  // - Per-block splitting.
92  // - Local splitting.
93  // - Spilling.
94  //
95  // Ranges produced by one of the stages skip the previous stages when they are
96  // dequeued. This improves performance because we can skip interference checks
97  // that are unlikely to give any results. It also guarantees that the live
98  // range splitting algorithm terminates, something that is otherwise hard to
99  // ensure.
100  enum LiveRangeStage {
101  /// Newly created live range that has never been queued.
102  RS_New,
103 
104  /// Only attempt assignment and eviction. Then requeue as RS_Split.
105  RS_Assign,
106 
107  /// Attempt live range splitting if assignment is impossible.
108  RS_Split,
109 
110  /// Attempt more aggressive live range splitting that is guaranteed to make
111  /// progress. This is used for split products that may not be making
112  /// progress.
113  RS_Split2,
114 
115  /// Live range will be spilled. No more splitting will be attempted.
116  RS_Spill,
117 
118  /// There is nothing more we can do to this live range. Abort compilation
119  /// if it can't be assigned.
120  RS_Done
121  };
122 
123 #ifndef NDEBUG
124  static const char *const StageName[];
125 #endif
126 
127  // RegInfo - Keep additional information about each live range.
128  struct RegInfo {
129  LiveRangeStage Stage;
130 
131  // Cascade - Eviction loop prevention. See canEvictInterference().
132  unsigned Cascade;
133 
134  RegInfo() : Stage(RS_New), Cascade(0) {}
135  };
136 
138 
139  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
140  return ExtraRegInfo[VirtReg.reg].Stage;
141  }
142 
143  void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
144  ExtraRegInfo.resize(MRI->getNumVirtRegs());
145  ExtraRegInfo[VirtReg.reg].Stage = Stage;
146  }
147 
148  template<typename Iterator>
149  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
150  ExtraRegInfo.resize(MRI->getNumVirtRegs());
151  for (;Begin != End; ++Begin) {
152  unsigned Reg = *Begin;
153  if (ExtraRegInfo[Reg].Stage == RS_New)
154  ExtraRegInfo[Reg].Stage = NewStage;
155  }
156  }
157 
158  /// Cost of evicting interference.
159  struct EvictionCost {
160  unsigned BrokenHints; ///< Total number of broken hints.
161  float MaxWeight; ///< Maximum spill weight evicted.
162 
163  EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
164 
165  bool isMax() const { return BrokenHints == ~0u; }
166 
167  bool operator<(const EvictionCost &O) const {
168  if (BrokenHints != O.BrokenHints)
169  return BrokenHints < O.BrokenHints;
170  return MaxWeight < O.MaxWeight;
171  }
172  };
173 
174  // splitting state.
177 
178  /// Cached per-block interference maps
179  InterferenceCache IntfCache;
180 
181  /// All basic blocks where the current register has uses.
183 
184  /// Global live range splitting candidate info.
185  struct GlobalSplitCandidate {
186  // Register intended for assignment, or 0.
187  unsigned PhysReg;
188 
189  // SplitKit interval index for this candidate.
190  unsigned IntvIdx;
191 
192  // Interference for PhysReg.
194 
195  // Bundles where this candidate should be live.
196  BitVector LiveBundles;
197  SmallVector<unsigned, 8> ActiveBlocks;
198 
199  void reset(InterferenceCache &Cache, unsigned Reg) {
200  PhysReg = Reg;
201  IntvIdx = 0;
202  Intf.setPhysReg(Cache, Reg);
203  LiveBundles.clear();
204  ActiveBlocks.clear();
205  }
206 
207  // Set B[i] = C for every live bundle where B[i] was NoCand.
208  unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
209  unsigned Count = 0;
210  for (int i = LiveBundles.find_first(); i >= 0;
211  i = LiveBundles.find_next(i))
212  if (B[i] == NoCand) {
213  B[i] = C;
214  Count++;
215  }
216  return Count;
217  }
218  };
219 
220  /// Candidate info for for each PhysReg in AllocationOrder.
221  /// This vector never shrinks, but grows to the size of the largest register
222  /// class.
224 
225  enum LLVM_ENUM_INT_TYPE(unsigned) { NoCand = ~0u };
226 
227  /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
228  /// NoCand which indicates the stack interval.
229  SmallVector<unsigned, 32> BundleCand;
230 
231 public:
232  RAGreedy();
233 
234  /// Return the pass name.
235  virtual const char* getPassName() const {
236  return "Greedy Register Allocator";
237  }
238 
239  /// RAGreedy analysis usage.
240  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
241  virtual void releaseMemory();
242  virtual Spiller &spiller() { return *SpillerInstance; }
243  virtual void enqueue(LiveInterval *LI);
244  virtual LiveInterval *dequeue();
245  virtual unsigned selectOrSplit(LiveInterval&,
247 
248  /// Perform register allocation.
249  virtual bool runOnMachineFunction(MachineFunction &mf);
250 
251  static char ID;
252 
253 private:
254  bool LRE_CanEraseVirtReg(unsigned);
255  void LRE_WillShrinkVirtReg(unsigned);
256  void LRE_DidCloneVirtReg(unsigned, unsigned);
257 
258  BlockFrequency calcSpillCost();
259  bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
260  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
261  void growRegion(GlobalSplitCandidate &Cand);
262  BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
263  bool calcCompactRegion(GlobalSplitCandidate&);
264  void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
265  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
266  unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
267  bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
268  bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
269  void evictInterference(LiveInterval&, unsigned,
271 
272  unsigned tryAssign(LiveInterval&, AllocationOrder&,
274  unsigned tryEvict(LiveInterval&, AllocationOrder&,
275  SmallVectorImpl<unsigned>&, unsigned = ~0u);
276  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
278  unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
280  unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
282  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
284  unsigned trySplit(LiveInterval&, AllocationOrder&,
286 };
287 } // end anonymous namespace
288 
289 char RAGreedy::ID = 0;
290 
291 #ifndef NDEBUG
292 const char *const RAGreedy::StageName[] = {
293  "RS_New",
294  "RS_Assign",
295  "RS_Split",
296  "RS_Split2",
297  "RS_Spill",
298  "RS_Done"
299 };
300 #endif
301 
302 // Hysteresis to use when comparing floats.
303 // This helps stabilize decisions based on float comparisons.
304 const float Hysteresis = 0.98f;
305 
306 
308  return new RAGreedy();
309 }
310 
311 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
325 }
326 
327 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
328  AU.setPreservesCFG();
335  AU.addRequired<SlotIndexes>();
339  AU.addRequired<LiveStacks>();
340  AU.addPreserved<LiveStacks>();
345  AU.addRequired<VirtRegMap>();
346  AU.addPreserved<VirtRegMap>();
349  AU.addRequired<EdgeBundles>();
351  MachineFunctionPass::getAnalysisUsage(AU);
352 }
353 
354 
355 //===----------------------------------------------------------------------===//
356 // LiveRangeEdit delegate methods
357 //===----------------------------------------------------------------------===//
358 
359 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
360  if (VRM->hasPhys(VirtReg)) {
361  Matrix->unassign(LIS->getInterval(VirtReg));
362  return true;
363  }
364  // Unassigned virtreg is probably in the priority queue.
365  // RegAllocBase will erase it after dequeueing.
366  return false;
367 }
368 
369 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
370  if (!VRM->hasPhys(VirtReg))
371  return;
372 
373  // Register is assigned, put it back on the queue for reassignment.
374  LiveInterval &LI = LIS->getInterval(VirtReg);
375  Matrix->unassign(LI);
376  enqueue(&LI);
377 }
378 
379 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
380  // Cloning a register we haven't even heard about yet? Just ignore it.
381  if (!ExtraRegInfo.inBounds(Old))
382  return;
383 
384  // LRE may clone a virtual register because dead code elimination causes it to
385  // be split into connected components. The new components are much smaller
386  // than the original, so they should get a new chance at being assigned.
387  // same stage as the parent.
388  ExtraRegInfo[Old].Stage = RS_Assign;
389  ExtraRegInfo.grow(New);
390  ExtraRegInfo[New] = ExtraRegInfo[Old];
391 }
392 
393 void RAGreedy::releaseMemory() {
394  SpillerInstance.reset(0);
395  ExtraRegInfo.clear();
396  GlobalCand.clear();
397 }
398 
399 void RAGreedy::enqueue(LiveInterval *LI) {
400  // Prioritize live ranges by size, assigning larger ranges first.
401  // The queue holds (size, reg) pairs.
402  const unsigned Size = LI->getSize();
403  const unsigned Reg = LI->reg;
404  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
405  "Can only enqueue virtual registers");
406  unsigned Prio;
407 
408  ExtraRegInfo.grow(Reg);
409  if (ExtraRegInfo[Reg].Stage == RS_New)
410  ExtraRegInfo[Reg].Stage = RS_Assign;
411 
412  if (ExtraRegInfo[Reg].Stage == RS_Split) {
413  // Unsplit ranges that couldn't be allocated immediately are deferred until
414  // everything else has been allocated.
415  Prio = Size;
416  } else {
417  if (ExtraRegInfo[Reg].Stage == RS_Assign && !LI->empty() &&
418  LIS->intervalIsInOneMBB(*LI)) {
419  // Allocate original local ranges in linear instruction order. Since they
420  // are singly defined, this produces optimal coloring in the absence of
421  // global interference and other constraints.
422  Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
423  }
424  else {
425  // Allocate global and split ranges in long->short order. Long ranges that
426  // don't fit should be spilled (or split) ASAP so they don't create
427  // interference. Mark a bit to prioritize global above local ranges.
428  Prio = (1u << 29) + Size;
429  }
430  // Mark a higher bit to prioritize global and local above RS_Split.
431  Prio |= (1u << 31);
432 
433  // Boost ranges that have a physical register hint.
434  if (VRM->hasKnownPreference(Reg))
435  Prio |= (1u << 30);
436  }
437  // The virtual register number is a tie breaker for same-sized ranges.
438  // Give lower vreg numbers higher priority to assign them first.
439  Queue.push(std::make_pair(Prio, ~Reg));
440 }
441 
442 LiveInterval *RAGreedy::dequeue() {
443  if (Queue.empty())
444  return 0;
445  LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
446  Queue.pop();
447  return LI;
448 }
449 
450 
451 //===----------------------------------------------------------------------===//
452 // Direct Assignment
453 //===----------------------------------------------------------------------===//
454 
455 /// tryAssign - Try to assign VirtReg to an available register.
456 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
457  AllocationOrder &Order,
458  SmallVectorImpl<unsigned> &NewVRegs) {
459  Order.rewind();
460  unsigned PhysReg;
461  while ((PhysReg = Order.next()))
462  if (!Matrix->checkInterference(VirtReg, PhysReg))
463  break;
464  if (!PhysReg || Order.isHint())
465  return PhysReg;
466 
467  // PhysReg is available, but there may be a better choice.
468 
469  // If we missed a simple hint, try to cheaply evict interference from the
470  // preferred register.
471  if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
472  if (Order.isHint(Hint)) {
473  DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
474  EvictionCost MaxCost(1);
475  if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
476  evictInterference(VirtReg, Hint, NewVRegs);
477  return Hint;
478  }
479  }
480 
481  // Try to evict interference from a cheaper alternative.
482  unsigned Cost = TRI->getCostPerUse(PhysReg);
483 
484  // Most registers have 0 additional cost.
485  if (!Cost)
486  return PhysReg;
487 
488  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
489  << '\n');
490  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
491  return CheapReg ? CheapReg : PhysReg;
492 }
493 
494 
495 //===----------------------------------------------------------------------===//
496 // Interference eviction
497 //===----------------------------------------------------------------------===//
498 
499 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
500  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
501  unsigned PhysReg;
502  while ((PhysReg = Order.next())) {
503  if (PhysReg == PrevReg)
504  continue;
505 
506  MCRegUnitIterator Units(PhysReg, TRI);
507  for (; Units.isValid(); ++Units) {
508  // Instantiate a "subquery", not to be confused with the Queries array.
509  LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
510  if (subQ.checkInterference())
511  break;
512  }
513  // If no units have interference, break out with the current PhysReg.
514  if (!Units.isValid())
515  break;
516  }
517  if (PhysReg)
518  DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
519  << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
520  << '\n');
521  return PhysReg;
522 }
523 
524 /// shouldEvict - determine if A should evict the assigned live range B. The
525 /// eviction policy defined by this function together with the allocation order
526 /// defined by enqueue() decides which registers ultimately end up being split
527 /// and spilled.
528 ///
529 /// Cascade numbers are used to prevent infinite loops if this function is a
530 /// cyclic relation.
531 ///
532 /// @param A The live range to be assigned.
533 /// @param IsHint True when A is about to be assigned to its preferred
534 /// register.
535 /// @param B The live range to be evicted.
536 /// @param BreaksHint True when B is already assigned to its preferred register.
537 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
538  LiveInterval &B, bool BreaksHint) {
539  bool CanSplit = getStage(B) < RS_Spill;
540 
541  // Be fairly aggressive about following hints as long as the evictee can be
542  // split.
543  if (CanSplit && IsHint && !BreaksHint)
544  return true;
545 
546  return A.weight > B.weight;
547 }
548 
549 /// canEvictInterference - Return true if all interferences between VirtReg and
550 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything
551 ///
552 /// @param VirtReg Live range that is about to be assigned.
553 /// @param PhysReg Desired register for assignment.
554 /// @param IsHint True when PhysReg is VirtReg's preferred register.
555 /// @param MaxCost Only look for cheaper candidates and update with new cost
556 /// when returning true.
557 /// @returns True when interference can be evicted cheaper than MaxCost.
558 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
559  bool IsHint, EvictionCost &MaxCost) {
560  // It is only possible to evict virtual register interference.
561  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
562  return false;
563 
564  bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
565 
566  // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
567  // involved in an eviction before. If a cascade number was assigned, deny
568  // evicting anything with the same or a newer cascade number. This prevents
569  // infinite eviction loops.
570  //
571  // This works out so a register without a cascade number is allowed to evict
572  // anything, and it can be evicted by anything.
573  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
574  if (!Cascade)
575  Cascade = NextCascade;
576 
577  EvictionCost Cost;
578  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
579  LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
580  // If there is 10 or more interferences, chances are one is heavier.
581  if (Q.collectInterferingVRegs(10) >= 10)
582  return false;
583 
584  // Check if any interfering live range is heavier than MaxWeight.
585  for (unsigned i = Q.interferingVRegs().size(); i; --i) {
586  LiveInterval *Intf = Q.interferingVRegs()[i - 1];
587  assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
588  "Only expecting virtual register interference from query");
589  // Never evict spill products. They cannot split or spill.
590  if (getStage(*Intf) == RS_Done)
591  return false;
592  // Once a live range becomes small enough, it is urgent that we find a
593  // register for it. This is indicated by an infinite spill weight. These
594  // urgent live ranges get to evict almost anything.
595  //
596  // Also allow urgent evictions of unspillable ranges from a strictly
597  // larger allocation order.
598  bool Urgent = !VirtReg.isSpillable() &&
599  (Intf->isSpillable() ||
600  RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
601  RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
602  // Only evict older cascades or live ranges without a cascade.
603  unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
604  if (Cascade <= IntfCascade) {
605  if (!Urgent)
606  return false;
607  // We permit breaking cascades for urgent evictions. It should be the
608  // last resort, though, so make it really expensive.
609  Cost.BrokenHints += 10;
610  }
611  // Would this break a satisfied hint?
612  bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
613  // Update eviction cost.
614  Cost.BrokenHints += BreaksHint;
615  Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
616  // Abort if this would be too expensive.
617  if (!(Cost < MaxCost))
618  return false;
619  if (Urgent)
620  continue;
621  // If !MaxCost.isMax(), then we're just looking for a cheap register.
622  // Evicting another local live range in this case could lead to suboptimal
623  // coloring.
624  if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
625  !canReassign(*Intf, PhysReg)) {
626  return false;
627  }
628  // Finally, apply the eviction policy for non-urgent evictions.
629  if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
630  return false;
631  }
632  }
633  MaxCost = Cost;
634  return true;
635 }
636 
637 /// evictInterference - Evict any interferring registers that prevent VirtReg
638 /// from being assigned to Physreg. This assumes that canEvictInterference
639 /// returned true.
640 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
641  SmallVectorImpl<unsigned> &NewVRegs) {
642  // Make sure that VirtReg has a cascade number, and assign that cascade
643  // number to every evicted register. These live ranges than then only be
644  // evicted by a newer cascade, preventing infinite loops.
645  unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
646  if (!Cascade)
647  Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
648 
649  DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
650  << " interference: Cascade " << Cascade << '\n');
651 
652  // Collect all interfering virtregs first.
654  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
655  LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
656  assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
658  Intfs.append(IVR.begin(), IVR.end());
659  }
660 
661  // Evict them second. This will invalidate the queries.
662  for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
663  LiveInterval *Intf = Intfs[i];
664  // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
665  if (!VRM->hasPhys(Intf->reg))
666  continue;
667  Matrix->unassign(*Intf);
668  assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
669  VirtReg.isSpillable() < Intf->isSpillable()) &&
670  "Cannot decrease cascade number, illegal eviction");
671  ExtraRegInfo[Intf->reg].Cascade = Cascade;
672  ++NumEvicted;
673  NewVRegs.push_back(Intf->reg);
674  }
675 }
676 
677 /// tryEvict - Try to evict all interferences for a physreg.
678 /// @param VirtReg Currently unassigned virtual register.
679 /// @param Order Physregs to try.
680 /// @return Physreg to assign VirtReg, or 0.
681 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
682  AllocationOrder &Order,
683  SmallVectorImpl<unsigned> &NewVRegs,
684  unsigned CostPerUseLimit) {
685  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
686 
687  // Keep track of the cheapest interference seen so far.
688  EvictionCost BestCost(~0u);
689  unsigned BestPhys = 0;
690  unsigned OrderLimit = Order.getOrder().size();
691 
692  // When we are just looking for a reduced cost per use, don't break any
693  // hints, and only evict smaller spill weights.
694  if (CostPerUseLimit < ~0u) {
695  BestCost.BrokenHints = 0;
696  BestCost.MaxWeight = VirtReg.weight;
697 
698  // Check of any registers in RC are below CostPerUseLimit.
699  const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
700  unsigned MinCost = RegClassInfo.getMinCost(RC);
701  if (MinCost >= CostPerUseLimit) {
702  DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
703  << ", no cheaper registers to be found.\n");
704  return 0;
705  }
706 
707  // It is normal for register classes to have a long tail of registers with
708  // the same cost. We don't need to look at them if they're too expensive.
709  if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
710  OrderLimit = RegClassInfo.getLastCostChange(RC);
711  DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
712  }
713  }
714 
715  Order.rewind();
716  while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
717  if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
718  continue;
719  // The first use of a callee-saved register in a function has cost 1.
720  // Don't start using a CSR when the CostPerUseLimit is low.
721  if (CostPerUseLimit == 1)
722  if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
723  if (!MRI->isPhysRegUsed(CSR)) {
724  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
725  << PrintReg(CSR, TRI) << '\n');
726  continue;
727  }
728 
729  if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
730  continue;
731 
732  // Best so far.
733  BestPhys = PhysReg;
734 
735  // Stop if the hint can be used.
736  if (Order.isHint())
737  break;
738  }
739 
740  if (!BestPhys)
741  return 0;
742 
743  evictInterference(VirtReg, BestPhys, NewVRegs);
744  return BestPhys;
745 }
746 
747 
748 //===----------------------------------------------------------------------===//
749 // Region Splitting
750 //===----------------------------------------------------------------------===//
751 
752 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
753 /// interference pattern in Physreg and its aliases. Add the constraints to
754 /// SpillPlacement and return the static cost of this split in Cost, assuming
755 /// that all preferences in SplitConstraints are met.
756 /// Return false if there are no bundles with positive bias.
757 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
758  BlockFrequency &Cost) {
759  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
760 
761  // Reset interference dependent info.
762  SplitConstraints.resize(UseBlocks.size());
763  BlockFrequency StaticCost = 0;
764  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
765  const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
766  SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
767 
768  BC.Number = BI.MBB->getNumber();
769  Intf.moveToBlock(BC.Number);
770  BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
771  BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
772  BC.ChangesValue = BI.FirstDef.isValid();
773 
774  if (!Intf.hasInterference())
775  continue;
776 
777  // Number of spill code instructions to insert.
778  unsigned Ins = 0;
779 
780  // Interference for the live-in value.
781  if (BI.LiveIn) {
782  if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
783  BC.Entry = SpillPlacement::MustSpill, ++Ins;
784  else if (Intf.first() < BI.FirstInstr)
785  BC.Entry = SpillPlacement::PrefSpill, ++Ins;
786  else if (Intf.first() < BI.LastInstr)
787  ++Ins;
788  }
789 
790  // Interference for the live-out value.
791  if (BI.LiveOut) {
792  if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
793  BC.Exit = SpillPlacement::MustSpill, ++Ins;
794  else if (Intf.last() > BI.LastInstr)
795  BC.Exit = SpillPlacement::PrefSpill, ++Ins;
796  else if (Intf.last() > BI.FirstInstr)
797  ++Ins;
798  }
799 
800  // Accumulate the total frequency of inserted spill code.
801  while (Ins--)
802  StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
803  }
804  Cost = StaticCost;
805 
806  // Add constraints for use-blocks. Note that these are the only constraints
807  // that may add a positive bias, it is downhill from here.
808  SpillPlacer->addConstraints(SplitConstraints);
809  return SpillPlacer->scanActiveBundles();
810 }
811 
812 
813 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
814 /// live-through blocks in Blocks.
815 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
816  ArrayRef<unsigned> Blocks) {
817  const unsigned GroupSize = 8;
818  SpillPlacement::BlockConstraint BCS[GroupSize];
819  unsigned TBS[GroupSize];
820  unsigned B = 0, T = 0;
821 
822  for (unsigned i = 0; i != Blocks.size(); ++i) {
823  unsigned Number = Blocks[i];
824  Intf.moveToBlock(Number);
825 
826  if (!Intf.hasInterference()) {
827  assert(T < GroupSize && "Array overflow");
828  TBS[T] = Number;
829  if (++T == GroupSize) {
830  SpillPlacer->addLinks(makeArrayRef(TBS, T));
831  T = 0;
832  }
833  continue;
834  }
835 
836  assert(B < GroupSize && "Array overflow");
837  BCS[B].Number = Number;
838 
839  // Interference for the live-in value.
840  if (Intf.first() <= Indexes->getMBBStartIdx(Number))
841  BCS[B].Entry = SpillPlacement::MustSpill;
842  else
843  BCS[B].Entry = SpillPlacement::PrefSpill;
844 
845  // Interference for the live-out value.
846  if (Intf.last() >= SA->getLastSplitPoint(Number))
847  BCS[B].Exit = SpillPlacement::MustSpill;
848  else
849  BCS[B].Exit = SpillPlacement::PrefSpill;
850 
851  if (++B == GroupSize) {
853  SpillPlacer->addConstraints(Array);
854  B = 0;
855  }
856  }
857 
859  SpillPlacer->addConstraints(Array);
860  SpillPlacer->addLinks(makeArrayRef(TBS, T));
861 }
862 
863 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
864  // Keep track of through blocks that have not been added to SpillPlacer.
865  BitVector Todo = SA->getThroughBlocks();
866  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
867  unsigned AddedTo = 0;
868 #ifndef NDEBUG
869  unsigned Visited = 0;
870 #endif
871 
872  for (;;) {
873  ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
874  // Find new through blocks in the periphery of PrefRegBundles.
875  for (int i = 0, e = NewBundles.size(); i != e; ++i) {
876  unsigned Bundle = NewBundles[i];
877  // Look at all blocks connected to Bundle in the full graph.
878  ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
879  for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
880  I != E; ++I) {
881  unsigned Block = *I;
882  if (!Todo.test(Block))
883  continue;
884  Todo.reset(Block);
885  // This is a new through block. Add it to SpillPlacer later.
886  ActiveBlocks.push_back(Block);
887 #ifndef NDEBUG
888  ++Visited;
889 #endif
890  }
891  }
892  // Any new blocks to add?
893  if (ActiveBlocks.size() == AddedTo)
894  break;
895 
896  // Compute through constraints from the interference, or assume that all
897  // through blocks prefer spilling when forming compact regions.
898  ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
899  if (Cand.PhysReg)
900  addThroughConstraints(Cand.Intf, NewBlocks);
901  else
902  // Provide a strong negative bias on through blocks to prevent unwanted
903  // liveness on loop backedges.
904  SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
905  AddedTo = ActiveBlocks.size();
906 
907  // Perhaps iterating can enable more bundles?
908  SpillPlacer->iterate();
909  }
910  DEBUG(dbgs() << ", v=" << Visited);
911 }
912 
913 /// calcCompactRegion - Compute the set of edge bundles that should be live
914 /// when splitting the current live range into compact regions. Compact
915 /// regions can be computed without looking at interference. They are the
916 /// regions formed by removing all the live-through blocks from the live range.
917 ///
918 /// Returns false if the current live range is already compact, or if the
919 /// compact regions would form single block regions anyway.
920 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
921  // Without any through blocks, the live range is already compact.
922  if (!SA->getNumThroughBlocks())
923  return false;
924 
925  // Compact regions don't correspond to any physreg.
926  Cand.reset(IntfCache, 0);
927 
928  DEBUG(dbgs() << "Compact region bundles");
929 
930  // Use the spill placer to determine the live bundles. GrowRegion pretends
931  // that all the through blocks have interference when PhysReg is unset.
932  SpillPlacer->prepare(Cand.LiveBundles);
933 
934  // The static split cost will be zero since Cand.Intf reports no interference.
935  BlockFrequency Cost;
936  if (!addSplitConstraints(Cand.Intf, Cost)) {
937  DEBUG(dbgs() << ", none.\n");
938  return false;
939  }
940 
941  growRegion(Cand);
942  SpillPlacer->finish();
943 
944  if (!Cand.LiveBundles.any()) {
945  DEBUG(dbgs() << ", none.\n");
946  return false;
947  }
948 
949  DEBUG({
950  for (int i = Cand.LiveBundles.find_first(); i>=0;
951  i = Cand.LiveBundles.find_next(i))
952  dbgs() << " EB#" << i;
953  dbgs() << ".\n";
954  });
955  return true;
956 }
957 
958 /// calcSpillCost - Compute how expensive it would be to split the live range in
959 /// SA around all use blocks instead of forming bundle regions.
960 BlockFrequency RAGreedy::calcSpillCost() {
961  BlockFrequency Cost = 0;
962  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
963  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
964  const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
965  unsigned Number = BI.MBB->getNumber();
966  // We normally only need one spill instruction - a load or a store.
967  Cost += SpillPlacer->getBlockFrequency(Number);
968 
969  // Unless the value is redefined in the block.
970  if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
971  Cost += SpillPlacer->getBlockFrequency(Number);
972  }
973  return Cost;
974 }
975 
976 /// calcGlobalSplitCost - Return the global split cost of following the split
977 /// pattern in LiveBundles. This cost should be added to the local cost of the
978 /// interference pattern in SplitConstraints.
979 ///
980 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
981  BlockFrequency GlobalCost = 0;
982  const BitVector &LiveBundles = Cand.LiveBundles;
983  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
984  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
985  const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
986  SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
987  bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
988  bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
989  unsigned Ins = 0;
990 
991  if (BI.LiveIn)
992  Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
993  if (BI.LiveOut)
994  Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
995  while (Ins--)
996  GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
997  }
998 
999  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1000  unsigned Number = Cand.ActiveBlocks[i];
1001  bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
1002  bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1003  if (!RegIn && !RegOut)
1004  continue;
1005  if (RegIn && RegOut) {
1006  // We need double spill code if this block has interference.
1007  Cand.Intf.moveToBlock(Number);
1008  if (Cand.Intf.hasInterference()) {
1009  GlobalCost += SpillPlacer->getBlockFrequency(Number);
1010  GlobalCost += SpillPlacer->getBlockFrequency(Number);
1011  }
1012  continue;
1013  }
1014  // live-in / stack-out or stack-in live-out.
1015  GlobalCost += SpillPlacer->getBlockFrequency(Number);
1016  }
1017  return GlobalCost;
1018 }
1019 
1020 /// splitAroundRegion - Split the current live range around the regions
1021 /// determined by BundleCand and GlobalCand.
1022 ///
1023 /// Before calling this function, GlobalCand and BundleCand must be initialized
1024 /// so each bundle is assigned to a valid candidate, or NoCand for the
1025 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1026 /// objects must be initialized for the current live range, and intervals
1027 /// created for the used candidates.
1028 ///
1029 /// @param LREdit The LiveRangeEdit object handling the current split.
1030 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1031 /// must appear in this list.
1032 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1033  ArrayRef<unsigned> UsedCands) {
1034  // These are the intervals created for new global ranges. We may create more
1035  // intervals for local ranges.
1036  const unsigned NumGlobalIntvs = LREdit.size();
1037  DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1038  assert(NumGlobalIntvs && "No global intervals configured");
1039 
1040  // Isolate even single instructions when dealing with a proper sub-class.
1041  // That guarantees register class inflation for the stack interval because it
1042  // is all copies.
1043  unsigned Reg = SA->getParent().reg;
1044  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1045 
1046  // First handle all the blocks with uses.
1047  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1048  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1049  const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1050  unsigned Number = BI.MBB->getNumber();
1051  unsigned IntvIn = 0, IntvOut = 0;
1052  SlotIndex IntfIn, IntfOut;
1053  if (BI.LiveIn) {
1054  unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1055  if (CandIn != NoCand) {
1056  GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1057  IntvIn = Cand.IntvIdx;
1058  Cand.Intf.moveToBlock(Number);
1059  IntfIn = Cand.Intf.first();
1060  }
1061  }
1062  if (BI.LiveOut) {
1063  unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1064  if (CandOut != NoCand) {
1065  GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1066  IntvOut = Cand.IntvIdx;
1067  Cand.Intf.moveToBlock(Number);
1068  IntfOut = Cand.Intf.last();
1069  }
1070  }
1071 
1072  // Create separate intervals for isolated blocks with multiple uses.
1073  if (!IntvIn && !IntvOut) {
1074  DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1075  if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1076  SE->splitSingleBlock(BI);
1077  continue;
1078  }
1079 
1080  if (IntvIn && IntvOut)
1081  SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1082  else if (IntvIn)
1083  SE->splitRegInBlock(BI, IntvIn, IntfIn);
1084  else
1085  SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1086  }
1087 
1088  // Handle live-through blocks. The relevant live-through blocks are stored in
1089  // the ActiveBlocks list with each candidate. We need to filter out
1090  // duplicates.
1091  BitVector Todo = SA->getThroughBlocks();
1092  for (unsigned c = 0; c != UsedCands.size(); ++c) {
1093  ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1094  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1095  unsigned Number = Blocks[i];
1096  if (!Todo.test(Number))
1097  continue;
1098  Todo.reset(Number);
1099 
1100  unsigned IntvIn = 0, IntvOut = 0;
1101  SlotIndex IntfIn, IntfOut;
1102 
1103  unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1104  if (CandIn != NoCand) {
1105  GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1106  IntvIn = Cand.IntvIdx;
1107  Cand.Intf.moveToBlock(Number);
1108  IntfIn = Cand.Intf.first();
1109  }
1110 
1111  unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1112  if (CandOut != NoCand) {
1113  GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1114  IntvOut = Cand.IntvIdx;
1115  Cand.Intf.moveToBlock(Number);
1116  IntfOut = Cand.Intf.last();
1117  }
1118  if (!IntvIn && !IntvOut)
1119  continue;
1120  SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1121  }
1122  }
1123 
1124  ++NumGlobalSplits;
1125 
1126  SmallVector<unsigned, 8> IntvMap;
1127  SE->finish(&IntvMap);
1128  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1129 
1130  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1131  unsigned OrigBlocks = SA->getNumLiveBlocks();
1132 
1133  // Sort out the new intervals created by splitting. We get four kinds:
1134  // - Remainder intervals should not be split again.
1135  // - Candidate intervals can be assigned to Cand.PhysReg.
1136  // - Block-local splits are candidates for local splitting.
1137  // - DCE leftovers should go back on the queue.
1138  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1139  LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1140 
1141  // Ignore old intervals from DCE.
1142  if (getStage(Reg) != RS_New)
1143  continue;
1144 
1145  // Remainder interval. Don't try splitting again, spill if it doesn't
1146  // allocate.
1147  if (IntvMap[i] == 0) {
1148  setStage(Reg, RS_Spill);
1149  continue;
1150  }
1151 
1152  // Global intervals. Allow repeated splitting as long as the number of live
1153  // blocks is strictly decreasing.
1154  if (IntvMap[i] < NumGlobalIntvs) {
1155  if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1156  DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1157  << " blocks as original.\n");
1158  // Don't allow repeated splitting as a safe guard against looping.
1159  setStage(Reg, RS_Split2);
1160  }
1161  continue;
1162  }
1163 
1164  // Other intervals are treated as new. This includes local intervals created
1165  // for blocks with multiple uses, and anything created by DCE.
1166  }
1167 
1168  if (VerifyEnabled)
1169  MF->verify(this, "After splitting live range around region");
1170 }
1171 
1172 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1173  SmallVectorImpl<unsigned> &NewVRegs) {
1174  unsigned NumCands = 0;
1175  unsigned BestCand = NoCand;
1176  BlockFrequency BestCost;
1177  SmallVector<unsigned, 8> UsedCands;
1178 
1179  // Check if we can split this live range around a compact region.
1180  bool HasCompact = calcCompactRegion(GlobalCand.front());
1181  if (HasCompact) {
1182  // Yes, keep GlobalCand[0] as the compact region candidate.
1183  NumCands = 1;
1184  BestCost = BlockFrequency::getMaxFrequency();
1185  } else {
1186  // No benefit from the compact region, our fallback will be per-block
1187  // splitting. Make sure we find a solution that is cheaper than spilling.
1188  BestCost = calcSpillCost();
1189  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1190  }
1191 
1192  Order.rewind();
1193  while (unsigned PhysReg = Order.next()) {
1194  // Discard bad candidates before we run out of interference cache cursors.
1195  // This will only affect register classes with a lot of registers (>32).
1196  if (NumCands == IntfCache.getMaxCursors()) {
1197  unsigned WorstCount = ~0u;
1198  unsigned Worst = 0;
1199  for (unsigned i = 0; i != NumCands; ++i) {
1200  if (i == BestCand || !GlobalCand[i].PhysReg)
1201  continue;
1202  unsigned Count = GlobalCand[i].LiveBundles.count();
1203  if (Count < WorstCount)
1204  Worst = i, WorstCount = Count;
1205  }
1206  --NumCands;
1207  GlobalCand[Worst] = GlobalCand[NumCands];
1208  if (BestCand == NumCands)
1209  BestCand = Worst;
1210  }
1211 
1212  if (GlobalCand.size() <= NumCands)
1213  GlobalCand.resize(NumCands+1);
1214  GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1215  Cand.reset(IntfCache, PhysReg);
1216 
1217  SpillPlacer->prepare(Cand.LiveBundles);
1218  BlockFrequency Cost;
1219  if (!addSplitConstraints(Cand.Intf, Cost)) {
1220  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1221  continue;
1222  }
1223  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1224  if (Cost >= BestCost) {
1225  DEBUG({
1226  if (BestCand == NoCand)
1227  dbgs() << " worse than no bundles\n";
1228  else
1229  dbgs() << " worse than "
1230  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1231  });
1232  continue;
1233  }
1234  growRegion(Cand);
1235 
1236  SpillPlacer->finish();
1237 
1238  // No live bundles, defer to splitSingleBlocks().
1239  if (!Cand.LiveBundles.any()) {
1240  DEBUG(dbgs() << " no bundles.\n");
1241  continue;
1242  }
1243 
1244  Cost += calcGlobalSplitCost(Cand);
1245  DEBUG({
1246  dbgs() << ", total = " << Cost << " with bundles";
1247  for (int i = Cand.LiveBundles.find_first(); i>=0;
1248  i = Cand.LiveBundles.find_next(i))
1249  dbgs() << " EB#" << i;
1250  dbgs() << ".\n";
1251  });
1252  if (Cost < BestCost) {
1253  BestCand = NumCands;
1254  BestCost = Cost;
1255  }
1256  ++NumCands;
1257  }
1258 
1259  // No solutions found, fall back to single block splitting.
1260  if (!HasCompact && BestCand == NoCand)
1261  return 0;
1262 
1263  // Prepare split editor.
1264  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1265  SE->reset(LREdit, SplitSpillMode);
1266 
1267  // Assign all edge bundles to the preferred candidate, or NoCand.
1268  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1269 
1270  // Assign bundles for the best candidate region.
1271  if (BestCand != NoCand) {
1272  GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1273  if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1274  UsedCands.push_back(BestCand);
1275  Cand.IntvIdx = SE->openIntv();
1276  DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1277  << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1278  (void)B;
1279  }
1280  }
1281 
1282  // Assign bundles for the compact region.
1283  if (HasCompact) {
1284  GlobalSplitCandidate &Cand = GlobalCand.front();
1285  assert(!Cand.PhysReg && "Compact region has no physreg");
1286  if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1287  UsedCands.push_back(0);
1288  Cand.IntvIdx = SE->openIntv();
1289  DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1290  << Cand.IntvIdx << ".\n");
1291  (void)B;
1292  }
1293  }
1294 
1295  splitAroundRegion(LREdit, UsedCands);
1296  return 0;
1297 }
1298 
1299 
1300 //===----------------------------------------------------------------------===//
1301 // Per-Block Splitting
1302 //===----------------------------------------------------------------------===//
1303 
1304 /// tryBlockSplit - Split a global live range around every block with uses. This
1305 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1306 /// they don't allocate.
1307 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1308  SmallVectorImpl<unsigned> &NewVRegs) {
1309  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1310  unsigned Reg = VirtReg.reg;
1311  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1312  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1313  SE->reset(LREdit, SplitSpillMode);
1314  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1315  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1316  const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1317  if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1318  SE->splitSingleBlock(BI);
1319  }
1320  // No blocks were split.
1321  if (LREdit.empty())
1322  return 0;
1323 
1324  // We did split for some blocks.
1325  SmallVector<unsigned, 8> IntvMap;
1326  SE->finish(&IntvMap);
1327 
1328  // Tell LiveDebugVariables about the new ranges.
1329  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1330 
1331  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1332 
1333  // Sort out the new intervals created by splitting. The remainder interval
1334  // goes straight to spilling, the new local ranges get to stay RS_New.
1335  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1336  LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1337  if (getStage(LI) == RS_New && IntvMap[i] == 0)
1338  setStage(LI, RS_Spill);
1339  }
1340 
1341  if (VerifyEnabled)
1342  MF->verify(this, "After splitting live range around basic blocks");
1343  return 0;
1344 }
1345 
1346 
1347 //===----------------------------------------------------------------------===//
1348 // Per-Instruction Splitting
1349 //===----------------------------------------------------------------------===//
1350 
1351 /// tryInstructionSplit - Split a live range around individual instructions.
1352 /// This is normally not worthwhile since the spiller is doing essentially the
1353 /// same thing. However, when the live range is in a constrained register
1354 /// class, it may help to insert copies such that parts of the live range can
1355 /// be moved to a larger register class.
1356 ///
1357 /// This is similar to spilling to a larger register class.
1358 unsigned
1359 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1360  SmallVectorImpl<unsigned> &NewVRegs) {
1361  // There is no point to this if there are no larger sub-classes.
1362  if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
1363  return 0;
1364 
1365  // Always enable split spill mode, since we're effectively spilling to a
1366  // register.
1367  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1368  SE->reset(LREdit, SplitEditor::SM_Size);
1369 
1370  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1371  if (Uses.size() <= 1)
1372  return 0;
1373 
1374  DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1375 
1376  // Split around every non-copy instruction.
1377  for (unsigned i = 0; i != Uses.size(); ++i) {
1378  if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1379  if (MI->isFullCopy()) {
1380  DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
1381  continue;
1382  }
1383  SE->openIntv();
1384  SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1385  SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
1386  SE->useIntv(SegStart, SegStop);
1387  }
1388 
1389  if (LREdit.empty()) {
1390  DEBUG(dbgs() << "All uses were copies.\n");
1391  return 0;
1392  }
1393 
1394  SmallVector<unsigned, 8> IntvMap;
1395  SE->finish(&IntvMap);
1396  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1397  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1398 
1399  // Assign all new registers to RS_Spill. This was the last chance.
1400  setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1401  return 0;
1402 }
1403 
1404 
1405 //===----------------------------------------------------------------------===//
1406 // Local Splitting
1407 //===----------------------------------------------------------------------===//
1408 
1409 
1410 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1411 /// in order to use PhysReg between two entries in SA->UseSlots.
1412 ///
1413 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1414 ///
1415 void RAGreedy::calcGapWeights(unsigned PhysReg,
1416  SmallVectorImpl<float> &GapWeight) {
1417  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1418  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1419  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1420  const unsigned NumGaps = Uses.size()-1;
1421 
1422  // Start and end points for the interference check.
1423  SlotIndex StartIdx =
1424  BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1425  SlotIndex StopIdx =
1426  BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1427 
1428  GapWeight.assign(NumGaps, 0.0f);
1429 
1430  // Add interference from each overlapping register.
1431  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1432  if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1433  .checkInterference())
1434  continue;
1435 
1436  // We know that VirtReg is a continuous interval from FirstInstr to
1437  // LastInstr, so we don't need InterferenceQuery.
1438  //
1439  // Interference that overlaps an instruction is counted in both gaps
1440  // surrounding the instruction. The exception is interference before
1441  // StartIdx and after StopIdx.
1442  //
1444  Matrix->getLiveUnions()[*Units] .find(StartIdx);
1445  for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1446  // Skip the gaps before IntI.
1447  while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1448  if (++Gap == NumGaps)
1449  break;
1450  if (Gap == NumGaps)
1451  break;
1452 
1453  // Update the gaps covered by IntI.
1454  const float weight = IntI.value()->weight;
1455  for (; Gap != NumGaps; ++Gap) {
1456  GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1457  if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1458  break;
1459  }
1460  if (Gap == NumGaps)
1461  break;
1462  }
1463  }
1464 
1465  // Add fixed interference.
1466  for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1467  const LiveRange &LR = LIS->getRegUnit(*Units);
1468  LiveRange::const_iterator I = LR.find(StartIdx);
1469  LiveRange::const_iterator E = LR.end();
1470 
1471  // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1472  for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1473  while (Uses[Gap+1].getBoundaryIndex() < I->start)
1474  if (++Gap == NumGaps)
1475  break;
1476  if (Gap == NumGaps)
1477  break;
1478 
1479  for (; Gap != NumGaps; ++Gap) {
1480  GapWeight[Gap] = llvm::huge_valf;
1481  if (Uses[Gap+1].getBaseIndex() >= I->end)
1482  break;
1483  }
1484  if (Gap == NumGaps)
1485  break;
1486  }
1487  }
1488 }
1489 
1490 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1491 /// basic block.
1492 ///
1493 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1494  SmallVectorImpl<unsigned> &NewVRegs) {
1495  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1496  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1497 
1498  // Note that it is possible to have an interval that is live-in or live-out
1499  // while only covering a single block - A phi-def can use undef values from
1500  // predecessors, and the block could be a single-block loop.
1501  // We don't bother doing anything clever about such a case, we simply assume
1502  // that the interval is continuous from FirstInstr to LastInstr. We should
1503  // make sure that we don't do anything illegal to such an interval, though.
1504 
1505  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1506  if (Uses.size() <= 2)
1507  return 0;
1508  const unsigned NumGaps = Uses.size()-1;
1509 
1510  DEBUG({
1511  dbgs() << "tryLocalSplit: ";
1512  for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1513  dbgs() << ' ' << Uses[i];
1514  dbgs() << '\n';
1515  });
1516 
1517  // If VirtReg is live across any register mask operands, compute a list of
1518  // gaps with register masks.
1519  SmallVector<unsigned, 8> RegMaskGaps;
1520  if (Matrix->checkRegMaskInterference(VirtReg)) {
1521  // Get regmask slots for the whole block.
1522  ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1523  DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1524  // Constrain to VirtReg's live range.
1525  unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1526  Uses.front().getRegSlot()) - RMS.begin();
1527  unsigned re = RMS.size();
1528  for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1529  // Look for Uses[i] <= RMS <= Uses[i+1].
1530  assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1531  if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1532  continue;
1533  // Skip a regmask on the same instruction as the last use. It doesn't
1534  // overlap the live range.
1535  if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1536  break;
1537  DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1538  RegMaskGaps.push_back(i);
1539  // Advance ri to the next gap. A regmask on one of the uses counts in
1540  // both gaps.
1541  while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1542  ++ri;
1543  }
1544  DEBUG(dbgs() << '\n');
1545  }
1546 
1547  // Since we allow local split results to be split again, there is a risk of
1548  // creating infinite loops. It is tempting to require that the new live
1549  // ranges have less instructions than the original. That would guarantee
1550  // convergence, but it is too strict. A live range with 3 instructions can be
1551  // split 2+3 (including the COPY), and we want to allow that.
1552  //
1553  // Instead we use these rules:
1554  //
1555  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1556  // noop split, of course).
1557  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1558  // the new ranges must have fewer instructions than before the split.
1559  // 3. New ranges with the same number of instructions are marked RS_Split2,
1560  // smaller ranges are marked RS_New.
1561  //
1562  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1563  // excessive splitting and infinite loops.
1564  //
1565  bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1566 
1567  // Best split candidate.
1568  unsigned BestBefore = NumGaps;
1569  unsigned BestAfter = 0;
1570  float BestDiff = 0;
1571 
1572  const float blockFreq =
1573  SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1574  (1.0f / BlockFrequency::getEntryFrequency());
1575  SmallVector<float, 8> GapWeight;
1576 
1577  Order.rewind();
1578  while (unsigned PhysReg = Order.next()) {
1579  // Keep track of the largest spill weight that would need to be evicted in
1580  // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1581  calcGapWeights(PhysReg, GapWeight);
1582 
1583  // Remove any gaps with regmask clobbers.
1584  if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1585  for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1586  GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1587 
1588  // Try to find the best sequence of gaps to close.
1589  // The new spill weight must be larger than any gap interference.
1590 
1591  // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1592  unsigned SplitBefore = 0, SplitAfter = 1;
1593 
1594  // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1595  // It is the spill weight that needs to be evicted.
1596  float MaxGap = GapWeight[0];
1597 
1598  for (;;) {
1599  // Live before/after split?
1600  const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1601  const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1602 
1603  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1604  << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1605  << " i=" << MaxGap);
1606 
1607  // Stop before the interval gets so big we wouldn't be making progress.
1608  if (!LiveBefore && !LiveAfter) {
1609  DEBUG(dbgs() << " all\n");
1610  break;
1611  }
1612  // Should the interval be extended or shrunk?
1613  bool Shrink = true;
1614 
1615  // How many gaps would the new range have?
1616  unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1617 
1618  // Legally, without causing looping?
1619  bool Legal = !ProgressRequired || NewGaps < NumGaps;
1620 
1621  if (Legal && MaxGap < llvm::huge_valf) {
1622  // Estimate the new spill weight. Each instruction reads or writes the
1623  // register. Conservatively assume there are no read-modify-write
1624  // instructions.
1625  //
1626  // Try to guess the size of the new interval.
1627  const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1628  Uses[SplitBefore].distance(Uses[SplitAfter]) +
1629  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1630  // Would this split be possible to allocate?
1631  // Never allocate all gaps, we wouldn't be making progress.
1632  DEBUG(dbgs() << " w=" << EstWeight);
1633  if (EstWeight * Hysteresis >= MaxGap) {
1634  Shrink = false;
1635  float Diff = EstWeight - MaxGap;
1636  if (Diff > BestDiff) {
1637  DEBUG(dbgs() << " (best)");
1638  BestDiff = Hysteresis * Diff;
1639  BestBefore = SplitBefore;
1640  BestAfter = SplitAfter;
1641  }
1642  }
1643  }
1644 
1645  // Try to shrink.
1646  if (Shrink) {
1647  if (++SplitBefore < SplitAfter) {
1648  DEBUG(dbgs() << " shrink\n");
1649  // Recompute the max when necessary.
1650  if (GapWeight[SplitBefore - 1] >= MaxGap) {
1651  MaxGap = GapWeight[SplitBefore];
1652  for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1653  MaxGap = std::max(MaxGap, GapWeight[i]);
1654  }
1655  continue;
1656  }
1657  MaxGap = 0;
1658  }
1659 
1660  // Try to extend the interval.
1661  if (SplitAfter >= NumGaps) {
1662  DEBUG(dbgs() << " end\n");
1663  break;
1664  }
1665 
1666  DEBUG(dbgs() << " extend\n");
1667  MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1668  }
1669  }
1670 
1671  // Didn't find any candidates?
1672  if (BestBefore == NumGaps)
1673  return 0;
1674 
1675  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1676  << '-' << Uses[BestAfter] << ", " << BestDiff
1677  << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1678 
1679  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1680  SE->reset(LREdit);
1681 
1682  SE->openIntv();
1683  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1684  SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1685  SE->useIntv(SegStart, SegStop);
1686  SmallVector<unsigned, 8> IntvMap;
1687  SE->finish(&IntvMap);
1688  DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1689 
1690  // If the new range has the same number of instructions as before, mark it as
1691  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1692  // leave the new intervals as RS_New so they can compete.
1693  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1694  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1695  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1696  if (NewGaps >= NumGaps) {
1697  DEBUG(dbgs() << "Tagging non-progress ranges: ");
1698  assert(!ProgressRequired && "Didn't make progress when it was required.");
1699  for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1700  if (IntvMap[i] == 1) {
1701  setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1702  DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1703  }
1704  DEBUG(dbgs() << '\n');
1705  }
1706  ++NumLocalSplits;
1707 
1708  return 0;
1709 }
1710 
1711 //===----------------------------------------------------------------------===//
1712 // Live Range Splitting
1713 //===----------------------------------------------------------------------===//
1714 
1715 /// trySplit - Try to split VirtReg or one of its interferences, making it
1716 /// assignable.
1717 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1718 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1719  SmallVectorImpl<unsigned>&NewVRegs) {
1720  // Ranges must be Split2 or less.
1721  if (getStage(VirtReg) >= RS_Spill)
1722  return 0;
1723 
1724  // Local intervals are handled separately.
1725  if (LIS->intervalIsInOneMBB(VirtReg)) {
1726  NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1727  SA->analyze(&VirtReg);
1728  unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1729  if (PhysReg || !NewVRegs.empty())
1730  return PhysReg;
1731  return tryInstructionSplit(VirtReg, Order, NewVRegs);
1732  }
1733 
1734  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1735 
1736  SA->analyze(&VirtReg);
1737 
1738  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1739  // coalescer. That may cause the range to become allocatable which means that
1740  // tryRegionSplit won't be making progress. This check should be replaced with
1741  // an assertion when the coalescer is fixed.
1742  if (SA->didRepairRange()) {
1743  // VirtReg has changed, so all cached queries are invalid.
1744  Matrix->invalidateVirtRegs();
1745  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1746  return PhysReg;
1747  }
1748 
1749  // First try to split around a region spanning multiple blocks. RS_Split2
1750  // ranges already made dubious progress with region splitting, so they go
1751  // straight to single block splitting.
1752  if (getStage(VirtReg) < RS_Split2) {
1753  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1754  if (PhysReg || !NewVRegs.empty())
1755  return PhysReg;
1756  }
1757 
1758  // Then isolate blocks.
1759  return tryBlockSplit(VirtReg, Order, NewVRegs);
1760 }
1761 
1762 
1763 //===----------------------------------------------------------------------===//
1764 // Main Entry Point
1765 //===----------------------------------------------------------------------===//
1766 
1767 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1768  SmallVectorImpl<unsigned> &NewVRegs) {
1769  // First try assigning a free register.
1770  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1771  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1772  return PhysReg;
1773 
1774  LiveRangeStage Stage = getStage(VirtReg);
1775  DEBUG(dbgs() << StageName[Stage]
1776  << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
1777 
1778  // Try to evict a less worthy live range, but only for ranges from the primary
1779  // queue. The RS_Split ranges already failed to do this, and they should not
1780  // get a second chance until they have been split.
1781  if (Stage != RS_Split)
1782  if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1783  return PhysReg;
1784 
1785  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1786 
1787  // The first time we see a live range, don't try to split or spill.
1788  // Wait until the second time, when all smaller ranges have been allocated.
1789  // This gives a better picture of the interference to split around.
1790  if (Stage < RS_Split) {
1791  setStage(VirtReg, RS_Split);
1792  DEBUG(dbgs() << "wait for second round\n");
1793  NewVRegs.push_back(VirtReg.reg);
1794  return 0;
1795  }
1796 
1797  // If we couldn't allocate a register from spilling, there is probably some
1798  // invalid inline assembly. The base class wil report it.
1799  if (Stage >= RS_Done || !VirtReg.isSpillable())
1800  return ~0u;
1801 
1802  // Try splitting VirtReg or interferences.
1803  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1804  if (PhysReg || !NewVRegs.empty())
1805  return PhysReg;
1806 
1807  // Finally spill VirtReg itself.
1808  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1809  LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1810  spiller().spill(LRE);
1811  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
1812 
1813  if (VerifyEnabled)
1814  MF->verify(this, "After spilling");
1815 
1816  // The live virtual register requesting allocation was spilled, so tell
1817  // the caller not to allocate anything during this round.
1818  return 0;
1819 }
1820 
1821 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1822  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1823  << "********** Function: " << mf.getName() << '\n');
1824 
1825  MF = &mf;
1826  if (VerifyEnabled)
1827  MF->verify(this, "Before greedy register allocator");
1828 
1829  RegAllocBase::init(getAnalysis<VirtRegMap>(),
1830  getAnalysis<LiveIntervals>(),
1831  getAnalysis<LiveRegMatrix>());
1832  Indexes = &getAnalysis<SlotIndexes>();
1833  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1834  DomTree = &getAnalysis<MachineDominatorTree>();
1835  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1836  Loops = &getAnalysis<MachineLoopInfo>();
1837  Bundles = &getAnalysis<EdgeBundles>();
1838  SpillPlacer = &getAnalysis<SpillPlacement>();
1839  DebugVars = &getAnalysis<LiveDebugVariables>();
1840 
1841  calculateSpillWeightsAndHints(*LIS, mf, *Loops, *MBFI);
1842 
1843  DEBUG(LIS->dump());
1844 
1845  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1846  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
1847  ExtraRegInfo.clear();
1848  ExtraRegInfo.resize(MRI->getNumVirtRegs());
1849  NextCascade = 1;
1850  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
1851  GlobalCand.resize(32); // This will grow as needed.
1852 
1853  allocatePhysRegs();
1854  releaseMemory();
1855  return true;
1856 }
void push_back(const T &Elt)
Definition: SmallVector.h:236
iterator begin() const
AnalysisUsage & addPreserved()
static PassRegistry * getPassRegistry()
const unsigned reg
Definition: LiveInterval.h:532
void rewind()
Start over from the beginning.
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
SlotIndex getBoundaryIndex() const
Definition: SlotIndexes.h:251
int getInstrDistance(SlotIndex other) const
Definition: SlotIndexes.h:223
SlotIndex getBaseIndex() const
Definition: SlotIndexes.h:244
void verify(Pass *p=NULL, const char *Banner=NULL) const
#define clEnumValEnd
Definition: CommandLine.h:472
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:112
void initializeLiveDebugVariablesPass(PassRegistry &)
ArrayRef< MCPhysReg > getOrder() const
Get the allocation order without reordered hints.
bool isSpillable() const
isSpillable - Can this interval be spilled?
Definition: LiveInterval.h:543
iterator end() const
Definition: ArrayRef.h:98
SlotIndex FirstDef
First non-phi valno->def, or SlotIndex().
Definition: SplitKit.h:71
ValuesClass< DataType > END_WITH_NULL values(const char *Arg, DataType Val, const char *Desc,...)
Definition: CommandLine.h:510
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
void initializeMachineLoopInfoPass(PassRegistry &)
void calculateSpillWeightsAndHints(LiveIntervals &LIS, MachineFunction &MF, const MachineLoopInfo &MLI, const MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo::NormalizingFn norm=normalizeSpillWeight)
Compute spill weights and allocation hints for all virtual register live intervals.
static float normalizeSpillWeight(float UseDefFreq, unsigned Size)
Normalize the spill weight of a live interval.
bool empty() const
Definition: LiveInterval.h:311
iterator end() const
Callback methods for LiveRangeEdit owners.
Definition: LiveRangeEdit.h:39
void initializeRegisterCoalescerPass(PassRegistry &)
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
Live Register Matrix
unsigned nextWithDups(unsigned Limit)
AnalysisUsage & addRequired()
Hexagon Hardware Loops
const float Hysteresis
const char * getName() const
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
iterator end()
Definition: LiveInterval.h:193
void assign(unsigned NumElts, const T &Elt)
Definition: SmallVector.h:470
enum LLVM_ENUM_INT_TYPE(uint32_t)
Definition: Dwarf.h:27
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
unsigned getSize() const
BorderConstraint Exit
Constraint on block exit.
MachineBasicBlock * MBB
Definition: SplitKit.h:68
const SmallVectorImpl< LiveInterval * > & interferingVRegs() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
#define T
const float huge_valf
Definition: MathExtras.h:612
BlockConstraint - Entry and exit constraints for a basic block.
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
SlotIndex LastInstr
Last instr accessing current reg.
Definition: SplitKit.h:70
unsigned get(unsigned idx) const
void initializeMachineDominatorTreePass(PassRegistry &)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
void initializeSlotIndexesPass(PassRegistry &)
bool isValid() const
Definition: SlotIndexes.h:160
* if(!EatIfPresent(lltok::kw_thread_local)) return false
void initializeLiveStacksPass(PassRegistry &)
Cursor - The primary query interface for the block interference cache.
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
void initializeLiveIntervalsPass(PassRegistry &)
unsigned Number
Basic block number (from MBB::getNumber()).
BitVector & reset()
Definition: BitVector.h:275
void resize(typename StorageT::size_type s)
Definition: IndexedMap.h:57
iterator begin() const
Definition: ArrayRef.h:97
bool empty() const
static cl::opt< SplitEditor::ComplementSpillMode > SplitSpillMode("split-spill-mode", cl::Hidden, cl::desc("Spill mode for splitting live ranges"), cl::values(clEnumValN(SplitEditor::SM_Partition,"default","Default"), clEnumValN(SplitEditor::SM_Size,"size","Optimize for size"), clEnumValN(SplitEditor::SM_Speed,"speed","Optimize for speed"), clEnumValEnd), cl::init(SplitEditor::SM_Partition))
void verify() const
Walk the range and assert if any invariants fail to hold.
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
BorderConstraint Entry
Constraint on block entry.
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:118
iterator find(SlotIndex Pos)
STATISTIC(NumGlobalSplits,"Number of split global live ranges")
SlotIndex FirstInstr
First instr accessing current reg.
Definition: SplitKit.h:69
bool test(unsigned Idx) const
Definition: BitVector.h:337
void setPreservesCFG()
Definition: Pass.cpp:249
bool hasInterference()
hasInterference - Return true if the current block has any interference.
void initializeSpillPlacementPass(PassRegistry &)
void initializeMachineSchedulerPass(PassRegistry &)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static RegisterRegAlloc greedyRegAlloc("greedy","greedy register allocator", createGreedyRegisterAllocator)
LiveSegments::iterator SegmentIter
bool LiveOut
Current reg is live out.
Definition: SplitKit.h:73
void moveToBlock(unsigned MBBNum)
moveTo - Move cursor to basic block MBBNum.
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:471
void initializeVirtRegMapPass(PassRegistry &)
Spiller * createInlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
Definition: LiveInterval.h:314
ArrayRef< unsigned > regs() const
void initializeLiveRegMatrixPass(PassRegistry &)
FunctionPass * createGreedyRegisterAllocator()
#define I(x, y, z)
Definition: MD5.cpp:54
unsigned collectInterferingVRegs(unsigned MaxInterferingRegs=UINT_MAX)
void resize(unsigned N)
Definition: SmallVector.h:401
SlotIndex getRegSlot(bool EC=false) const
Definition: SlotIndexes.h:257
bool isHint() const
Return true if the last register returned from next() was a preferred register.
#define DEBUG(X)
Definition: Debug.h:97
void initializeEdgeBundlesPass(PassRegistry &)
const MCRegisterInfo & MRI
StringRef getName() const
bool TimePassesIsEnabled
This is the storage for the -time-passes option.
Definition: IRReader.cpp:27
unsigned size() const
bool LiveIn
Current reg is live in.
Definition: SplitKit.h:72
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:92