LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RegisterCoalescer.cpp
Go to the documentation of this file.
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "regalloc"
17 #include "RegisterCoalescer.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
42 #include <algorithm>
43 #include <cmath>
44 using namespace llvm;
45 
46 STATISTIC(numJoins , "Number of interval joins performed");
47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
48 STATISTIC(numCommutes , "Number of instruction commuting performed");
49 STATISTIC(numExtends , "Number of copies extended");
50 STATISTIC(NumReMats , "Number of instructions re-materialized");
51 STATISTIC(NumInflated , "Number of register classes inflated");
52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
54 
55 static cl::opt<bool>
56 EnableJoining("join-liveintervals",
57  cl::desc("Coalesce copies (default=true)"),
58  cl::init(true));
59 
60 // Temporary flag to test critical edge unsplitting.
61 static cl::opt<bool>
62 EnableJoinSplits("join-splitedges",
63  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
64 
65 // Temporary flag to test global copy optimization.
67 EnableGlobalCopies("join-globalcopies",
68  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
70 
71 static cl::opt<bool>
72 VerifyCoalescing("verify-coalescing",
73  cl::desc("Verify machine instrs before and after register coalescing"),
74  cl::Hidden);
75 
76 namespace {
77  class RegisterCoalescer : public MachineFunctionPass,
78  private LiveRangeEdit::Delegate {
79  MachineFunction* MF;
81  const TargetMachine* TM;
82  const TargetRegisterInfo* TRI;
83  const TargetInstrInfo* TII;
84  LiveIntervals *LIS;
85  const MachineLoopInfo* Loops;
86  AliasAnalysis *AA;
87  RegisterClassInfo RegClassInfo;
88 
89  /// \brief True if the coalescer should aggressively coalesce global copies
90  /// in favor of keeping local copies.
91  bool JoinGlobalCopies;
92 
93  /// \brief True if the coalescer should aggressively coalesce fall-thru
94  /// blocks exclusively containing copies.
95  bool JoinSplitEdges;
96 
97  /// WorkList - Copy instructions yet to be coalesced.
99  SmallVector<MachineInstr*, 8> LocalWorkList;
100 
101  /// ErasedInstrs - Set of instruction pointers that have been erased, and
102  /// that may be present in WorkList.
103  SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
104 
105  /// Dead instructions that are about to be deleted.
107 
108  /// Virtual registers to be considered for register class inflation.
109  SmallVector<unsigned, 8> InflateRegs;
110 
111  /// Recursively eliminate dead defs in DeadDefs.
112  void eliminateDeadDefs();
113 
114  /// LiveRangeEdit callback.
115  void LRE_WillEraseInstruction(MachineInstr *MI);
116 
117  /// coalesceLocals - coalesce the LocalWorkList.
118  void coalesceLocals();
119 
120  /// joinAllIntervals - join compatible live intervals
121  void joinAllIntervals();
122 
123  /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
124  /// copies that cannot yet be coalesced into WorkList.
125  void copyCoalesceInMBB(MachineBasicBlock *MBB);
126 
127  /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
128  /// true if any progress was made.
129  bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
130 
131  /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
132  /// which are the src/dst of the copy instruction CopyMI. This returns
133  /// true if the copy was successfully coalesced away. If it is not
134  /// currently possible to coalesce this interval, but it may be possible if
135  /// other things get coalesced, then it returns true by reference in
136  /// 'Again'.
137  bool joinCopy(MachineInstr *TheCopy, bool &Again);
138 
139  /// joinIntervals - Attempt to join these two intervals. On failure, this
140  /// returns false. The output "SrcInt" will not have been modified, so we
141  /// can use this information below to update aliases.
142  bool joinIntervals(CoalescerPair &CP);
143 
144  /// Attempt joining two virtual registers. Return true on success.
145  bool joinVirtRegs(CoalescerPair &CP);
146 
147  /// Attempt joining with a reserved physreg.
148  bool joinReservedPhysReg(CoalescerPair &CP);
149 
150  /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
151  /// the source value number is defined by a copy from the destination reg
152  /// see if we can merge these two destination reg valno# into a single
153  /// value number, eliminating a copy.
154  bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
155 
156  /// hasOtherReachingDefs - Return true if there are definitions of IntB
157  /// other than BValNo val# that can reach uses of AValno val# of IntA.
158  bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
159  VNInfo *AValNo, VNInfo *BValNo);
160 
161  /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
162  /// If the source value number is defined by a commutable instruction and
163  /// its other operand is coalesced to the copy dest register, see if we
164  /// can transform the copy into a noop by commuting the definition.
165  bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
166 
167  /// reMaterializeTrivialDef - If the source of a copy is defined by a
168  /// trivial computation, replace the copy by rematerialize the definition.
169  bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
170  bool &IsDefCopy);
171 
172  /// canJoinPhys - Return true if a physreg copy should be joined.
173  bool canJoinPhys(const CoalescerPair &CP);
174 
175  /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
176  /// update the subregister number if it is not zero. If DstReg is a
177  /// physical register and the existing subregister number of the def / use
178  /// being updated is not zero, make sure to set it to the correct physical
179  /// subregister.
180  void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
181 
182  /// eliminateUndefCopy - Handle copies of undef values.
183  bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
184 
185  public:
186  static char ID; // Class identification, replacement for typeinfo
187  RegisterCoalescer() : MachineFunctionPass(ID) {
189  }
190 
191  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
192 
193  virtual void releaseMemory();
194 
195  /// runOnMachineFunction - pass entry point
196  virtual bool runOnMachineFunction(MachineFunction&);
197 
198  /// print - Implement the dump method.
199  virtual void print(raw_ostream &O, const Module* = 0) const;
200  };
201 } /// end anonymous namespace
202 
204 
205 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
206  "Simple Register Coalescing", false, false)
211 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
212  "Simple Register Coalescing", false, false)
213 
214 char RegisterCoalescer::ID = 0;
215 
216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
217  unsigned &Src, unsigned &Dst,
218  unsigned &SrcSub, unsigned &DstSub) {
219  if (MI->isCopy()) {
220  Dst = MI->getOperand(0).getReg();
221  DstSub = MI->getOperand(0).getSubReg();
222  Src = MI->getOperand(1).getReg();
223  SrcSub = MI->getOperand(1).getSubReg();
224  } else if (MI->isSubregToReg()) {
225  Dst = MI->getOperand(0).getReg();
226  DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
227  MI->getOperand(3).getImm());
228  Src = MI->getOperand(2).getReg();
229  SrcSub = MI->getOperand(2).getSubReg();
230  } else
231  return false;
232  return true;
233 }
234 
235 // Return true if this block should be vacated by the coalescer to eliminate
236 // branches. The important cases to handle in the coalescer are critical edges
237 // split during phi elimination which contain only copies. Simple blocks that
238 // contain non-branches should also be vacated, but this can be handled by an
239 // earlier pass similar to early if-conversion.
240 static bool isSplitEdge(const MachineBasicBlock *MBB) {
241  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
242  return false;
243 
244  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
245  MII != E; ++MII) {
246  if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
247  return false;
248  }
249  return true;
250 }
251 
253  SrcReg = DstReg = 0;
254  SrcIdx = DstIdx = 0;
255  NewRC = 0;
256  Flipped = CrossClass = false;
257 
258  unsigned Src, Dst, SrcSub, DstSub;
259  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
260  return false;
261  Partial = SrcSub || DstSub;
262 
263  // If one register is a physreg, it must be Dst.
266  return false;
267  std::swap(Src, Dst);
268  std::swap(SrcSub, DstSub);
269  Flipped = true;
270  }
271 
273 
275  // Eliminate DstSub on a physreg.
276  if (DstSub) {
277  Dst = TRI.getSubReg(Dst, DstSub);
278  if (!Dst) return false;
279  DstSub = 0;
280  }
281 
282  // Eliminate SrcSub by picking a corresponding Dst superregister.
283  if (SrcSub) {
284  Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
285  if (!Dst) return false;
286  SrcSub = 0;
287  } else if (!MRI.getRegClass(Src)->contains(Dst)) {
288  return false;
289  }
290  } else {
291  // Both registers are virtual.
292  const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
293  const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
294 
295  // Both registers have subreg indices.
296  if (SrcSub && DstSub) {
297  // Copies between different sub-registers are never coalescable.
298  if (Src == Dst && SrcSub != DstSub)
299  return false;
300 
301  NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
302  SrcIdx, DstIdx);
303  if (!NewRC)
304  return false;
305  } else if (DstSub) {
306  // SrcReg will be merged with a sub-register of DstReg.
307  SrcIdx = DstSub;
308  NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
309  } else if (SrcSub) {
310  // DstReg will be merged with a sub-register of SrcReg.
311  DstIdx = SrcSub;
312  NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
313  } else {
314  // This is a straight copy without sub-registers.
315  NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
316  }
317 
318  // The combined constraint may be impossible to satisfy.
319  if (!NewRC)
320  return false;
321 
322  // Prefer SrcReg to be a sub-register of DstReg.
323  // FIXME: Coalescer should support subregs symmetrically.
324  if (DstIdx && !SrcIdx) {
325  std::swap(Src, Dst);
326  std::swap(SrcIdx, DstIdx);
327  Flipped = !Flipped;
328  }
329 
330  CrossClass = NewRC != DstRC || NewRC != SrcRC;
331  }
332  // Check our invariants
333  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
334  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
335  "Cannot have a physical SubIdx");
336  SrcReg = Src;
337  DstReg = Dst;
338  return true;
339 }
340 
343  return false;
344  std::swap(SrcReg, DstReg);
345  std::swap(SrcIdx, DstIdx);
346  Flipped = !Flipped;
347  return true;
348 }
349 
351  if (!MI)
352  return false;
353  unsigned Src, Dst, SrcSub, DstSub;
354  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
355  return false;
356 
357  // Find the virtual register that is SrcReg.
358  if (Dst == SrcReg) {
359  std::swap(Src, Dst);
360  std::swap(SrcSub, DstSub);
361  } else if (Src != SrcReg) {
362  return false;
363  }
364 
365  // Now check that Dst matches DstReg.
368  return false;
369  assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
370  // DstSub could be set for a physreg from INSERT_SUBREG.
371  if (DstSub)
372  Dst = TRI.getSubReg(Dst, DstSub);
373  // Full copy of Src.
374  if (!SrcSub)
375  return DstReg == Dst;
376  // This is a partial register copy. Check that the parts match.
377  return TRI.getSubReg(DstReg, SrcSub) == Dst;
378  } else {
379  // DstReg is virtual.
380  if (DstReg != Dst)
381  return false;
382  // Registers match, do the subregisters line up?
383  return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
384  TRI.composeSubRegIndices(DstIdx, DstSub);
385  }
386 }
387 
388 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
389  AU.setPreservesCFG();
398 }
399 
400 void RegisterCoalescer::eliminateDeadDefs() {
401  SmallVector<unsigned, 8> NewRegs;
402  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
403 }
404 
405 // Callback from eliminateDeadDefs().
406 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
407  // MI may be in WorkList. Make sure we don't visit it.
408  ErasedInstrs.insert(MI);
409 }
410 
411 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
412 /// being the source and IntB being the dest, thus this defines a value number
413 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
414 /// see if we can merge these two pieces of B into a single value number,
415 /// eliminating a copy. For example:
416 ///
417 /// A3 = B0
418 /// ...
419 /// B1 = A3 <- this copy
420 ///
421 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
422 /// value number to be replaced with B0 (which simplifies the B liveinterval).
423 ///
424 /// This returns true if an interval was modified.
425 ///
426 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
427  MachineInstr *CopyMI) {
428  assert(!CP.isPartial() && "This doesn't work for partial copies.");
429  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
430 
431  LiveInterval &IntA =
432  LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
433  LiveInterval &IntB =
434  LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
435  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
436 
437  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
438  // the example above.
440  if (BS == IntB.end()) return false;
441  VNInfo *BValNo = BS->valno;
442 
443  // Get the location that B is defined at. Two options: either this value has
444  // an unknown definition point or it is defined at CopyIdx. If unknown, we
445  // can't process it.
446  if (BValNo->def != CopyIdx) return false;
447 
448  // AValNo is the value number in A that defines the copy, A3 in the example.
449  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
450  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
451  // The live segment might not exist after fun with physreg coalescing.
452  if (AS == IntA.end()) return false;
453  VNInfo *AValNo = AS->valno;
454 
455  // If AValNo is defined as a copy from IntB, we can potentially process this.
456  // Get the instruction that defines this value number.
457  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
458  // Don't allow any partial copies, even if isCoalescable() allows them.
459  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
460  return false;
461 
462  // Get the Segment in IntB that this value number starts with.
464  IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
465  if (ValS == IntB.end())
466  return false;
467 
468  // Make sure that the end of the live segment is inside the same block as
469  // CopyMI.
470  MachineInstr *ValSEndInst =
471  LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
472  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
473  return false;
474 
475  // Okay, we now know that ValS ends in the same block that the CopyMI
476  // live-range starts. If there are no intervening live segments between them
477  // in IntB, we can merge them.
478  if (ValS+1 != BS) return false;
479 
480  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
481 
482  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
483  // We are about to delete CopyMI, so need to remove it as the 'instruction
484  // that defines this value #'. Update the valnum with the new defining
485  // instruction #.
486  BValNo->def = FillerStart;
487 
488  // Okay, we can merge them. We need to insert a new liverange:
489  // [ValS.end, BS.begin) of either value number, then we merge the
490  // two value numbers.
491  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
492 
493  // Okay, merge "B1" into the same value number as "B0".
494  if (BValNo != ValS->valno)
495  IntB.MergeValueNumberInto(BValNo, ValS->valno);
496  DEBUG(dbgs() << " result = " << IntB << '\n');
497 
498  // If the source instruction was killing the source register before the
499  // merge, unset the isKill marker given the live range has been extended.
500  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
501  if (UIdx != -1) {
502  ValSEndInst->getOperand(UIdx).setIsKill(false);
503  }
504 
505  // Rewrite the copy. If the copy instruction was killing the destination
506  // register before the merge, find the last use and trim the live range. That
507  // will also add the isKill marker.
508  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
509  if (AS->end == CopyIdx)
510  LIS->shrinkToUses(&IntA);
511 
512  ++numExtends;
513  return true;
514 }
515 
516 /// hasOtherReachingDefs - Return true if there are definitions of IntB
517 /// other than BValNo val# that can reach uses of AValno val# of IntA.
518 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
519  LiveInterval &IntB,
520  VNInfo *AValNo,
521  VNInfo *BValNo) {
522  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
523  // the PHI values.
524  if (LIS->hasPHIKill(IntA, AValNo))
525  return true;
526 
527  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
528  AI != AE; ++AI) {
529  if (AI->valno != AValNo) continue;
531  std::upper_bound(IntB.begin(), IntB.end(), AI->start);
532  if (BI != IntB.begin())
533  --BI;
534  for (; BI != IntB.end() && AI->end >= BI->start; ++BI) {
535  if (BI->valno == BValNo)
536  continue;
537  if (BI->start <= AI->start && BI->end > AI->start)
538  return true;
539  if (BI->start > AI->start && BI->start < AI->end)
540  return true;
541  }
542  }
543  return false;
544 }
545 
546 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
547 /// IntA being the source and IntB being the dest, thus this defines a value
548 /// number in IntB. If the source value number (in IntA) is defined by a
549 /// commutable instruction and its other operand is coalesced to the copy dest
550 /// register, see if we can transform the copy into a noop by commuting the
551 /// definition. For example,
552 ///
553 /// A3 = op A2 B0<kill>
554 /// ...
555 /// B1 = A3 <- this copy
556 /// ...
557 /// = op A3 <- more uses
558 ///
559 /// ==>
560 ///
561 /// B2 = op B0 A2<kill>
562 /// ...
563 /// B1 = B2 <- now an identify copy
564 /// ...
565 /// = op B2 <- more uses
566 ///
567 /// This returns true if an interval was modified.
568 ///
569 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
570  MachineInstr *CopyMI) {
571  assert (!CP.isPhys());
572 
573  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
574 
575  LiveInterval &IntA =
576  LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
577  LiveInterval &IntB =
578  LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
579 
580  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
581  // the example above.
582  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
583  if (!BValNo || BValNo->def != CopyIdx)
584  return false;
585 
586  // AValNo is the value number in A that defines the copy, A3 in the example.
587  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
588  assert(AValNo && "COPY source not live");
589  if (AValNo->isPHIDef() || AValNo->isUnused())
590  return false;
591  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
592  if (!DefMI)
593  return false;
594  if (!DefMI->isCommutable())
595  return false;
596  // If DefMI is a two-address instruction then commuting it will change the
597  // destination register.
598  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
599  assert(DefIdx != -1);
600  unsigned UseOpIdx;
601  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
602  return false;
603  unsigned Op1, Op2, NewDstIdx;
604  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
605  return false;
606  if (Op1 == UseOpIdx)
607  NewDstIdx = Op2;
608  else if (Op2 == UseOpIdx)
609  NewDstIdx = Op1;
610  else
611  return false;
612 
613  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
614  unsigned NewReg = NewDstMO.getReg();
615  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
616  return false;
617 
618  // Make sure there are no other definitions of IntB that would reach the
619  // uses which the new definition can reach.
620  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
621  return false;
622 
623  // If some of the uses of IntA.reg is already coalesced away, return false.
624  // It's not possible to determine whether it's safe to perform the coalescing.
626  MRI->use_nodbg_begin(IntA.reg),
627  UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
628  MachineInstr *UseMI = &*UI;
629  SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
631  if (US == IntA.end() || US->valno != AValNo)
632  continue;
633  // If this use is tied to a def, we can't rewrite the register.
634  if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
635  return false;
636  }
637 
638  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
639  << *DefMI);
640 
641  // At this point we have decided that it is legal to do this
642  // transformation. Start by commuting the instruction.
643  MachineBasicBlock *MBB = DefMI->getParent();
644  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
645  if (!NewMI)
646  return false;
649  !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
650  return false;
651  if (NewMI != DefMI) {
652  LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
653  MachineBasicBlock::iterator Pos = DefMI;
654  MBB->insert(Pos, NewMI);
655  MBB->erase(DefMI);
656  }
657  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
658  NewMI->getOperand(OpIdx).setIsKill();
659 
660  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
661  // A = or A, B
662  // ...
663  // B = A
664  // ...
665  // C = A<kill>
666  // ...
667  // = B
668 
669  // Update uses of IntA of the specific Val# with IntB.
670  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
671  UE = MRI->use_end(); UI != UE;) {
672  MachineOperand &UseMO = UI.getOperand();
673  MachineInstr *UseMI = &*UI;
674  ++UI;
675  if (UseMI->isDebugValue()) {
676  // FIXME These don't have an instruction index. Not clear we have enough
677  // info to decide whether to do this replacement or not. For now do it.
678  UseMO.setReg(NewReg);
679  continue;
680  }
681  SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
683  if (US == IntA.end() || US->valno != AValNo)
684  continue;
685  // Kill flags are no longer accurate. They are recomputed after RA.
686  UseMO.setIsKill(false);
688  UseMO.substPhysReg(NewReg, *TRI);
689  else
690  UseMO.setReg(NewReg);
691  if (UseMI == CopyMI)
692  continue;
693  if (!UseMI->isCopy())
694  continue;
695  if (UseMI->getOperand(0).getReg() != IntB.reg ||
696  UseMI->getOperand(0).getSubReg())
697  continue;
698 
699  // This copy will become a noop. If it's defining a new val#, merge it into
700  // BValNo.
701  SlotIndex DefIdx = UseIdx.getRegSlot();
702  VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
703  if (!DVNI)
704  continue;
705  DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
706  assert(DVNI->def == DefIdx);
707  BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
708  ErasedInstrs.insert(UseMI);
709  LIS->RemoveMachineInstrFromMaps(UseMI);
710  UseMI->eraseFromParent();
711  }
712 
713  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
714  // is updated.
715  VNInfo *ValNo = BValNo;
716  ValNo->def = AValNo->def;
717  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
718  AI != AE; ++AI) {
719  if (AI->valno != AValNo) continue;
720  IntB.addSegment(LiveInterval::Segment(AI->start, AI->end, ValNo));
721  }
722  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
723 
724  IntA.removeValNo(AValNo);
725  DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
726  ++numCommutes;
727  return true;
728 }
729 
730 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
731 /// computation, replace the copy by rematerialize the definition.
732 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
733  MachineInstr *CopyMI,
734  bool &IsDefCopy) {
735  IsDefCopy = false;
736  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
737  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
738  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
739  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
741  return false;
742 
743  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
744  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
745  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
746  assert(ValNo && "CopyMI input register not live");
747  if (ValNo->isPHIDef() || ValNo->isUnused())
748  return false;
749  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
750  if (!DefMI)
751  return false;
752  if (DefMI->isCopyLike()) {
753  IsDefCopy = true;
754  return false;
755  }
756  if (!DefMI->isAsCheapAsAMove())
757  return false;
758  if (!TII->isTriviallyReMaterializable(DefMI, AA))
759  return false;
760  bool SawStore = false;
761  if (!DefMI->isSafeToMove(TII, AA, SawStore))
762  return false;
763  const MCInstrDesc &MCID = DefMI->getDesc();
764  if (MCID.getNumDefs() != 1)
765  return false;
766  // Only support subregister destinations when the def is read-undef.
767  MachineOperand &DstOperand = CopyMI->getOperand(0);
768  unsigned CopyDstReg = DstOperand.getReg();
769  if (DstOperand.getSubReg() && !DstOperand.isUndef())
770  return false;
771 
772  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
773  if (!DefMI->isImplicitDef()) {
775  unsigned NewDstReg = DstReg;
776 
777  unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
778  DefMI->getOperand(0).getSubReg());
779  if (NewDstIdx)
780  NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
781 
782  // Finally, make sure that the physical subregister that will be
783  // constructed later is permitted for the instruction.
784  if (!DefRC->contains(NewDstReg))
785  return false;
786  } else {
787  // Theoretically, some stack frame reference could exist. Just make sure
788  // it hasn't actually happened.
789  assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
790  "Only expect to deal with virtual or physical registers");
791  }
792  }
793 
794  MachineBasicBlock *MBB = CopyMI->getParent();
797  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
798  MachineInstr *NewMI = prior(MII);
799 
800  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
801  CopyMI->eraseFromParent();
802  ErasedInstrs.insert(CopyMI);
803 
804  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
805  // We need to remember these so we can add intervals once we insert
806  // NewMI into SlotIndexes.
807  SmallVector<unsigned, 4> NewMIImplDefs;
808  for (unsigned i = NewMI->getDesc().getNumOperands(),
809  e = NewMI->getNumOperands(); i != e; ++i) {
810  MachineOperand &MO = NewMI->getOperand(i);
811  if (MO.isReg()) {
812  assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
814  NewMIImplDefs.push_back(MO.getReg());
815  }
816  }
817 
819  unsigned NewIdx = NewMI->getOperand(0).getSubReg();
820  const TargetRegisterClass *RCForInst;
821  if (NewIdx)
822  RCForInst = TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), DefRC,
823  NewIdx);
824 
825  if (MRI->constrainRegClass(DstReg, DefRC)) {
826  // The materialized instruction is quite capable of setting DstReg
827  // directly, but it may still have a now-trivial subregister index which
828  // we should clear.
829  NewMI->getOperand(0).setSubReg(0);
830  } else if (NewIdx && RCForInst) {
831  // The subreg index on NewMI is essential; we still have to make sure
832  // DstReg:idx is in a class that NewMI can use.
833  MRI->constrainRegClass(DstReg, RCForInst);
834  } else {
835  // DstReg is actually incompatible with NewMI, we have to move to a
836  // super-reg's class. This could come from a sequence like:
837  // GR32 = MOV32r0
838  // GR8 = COPY GR32:sub_8
839  MRI->setRegClass(DstReg, CP.getNewRC());
840  updateRegDefsUses(DstReg, DstReg, DstIdx);
841  NewMI->getOperand(0).setSubReg(
842  TRI->composeSubRegIndices(SrcIdx, DefMI->getOperand(0).getSubReg()));
843  }
844  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
845  // The New instruction may be defining a sub-register of what's actually
846  // been asked for. If so it must implicitly define the whole thing.
848  "Only expect virtual or physical registers in remat");
849  NewMI->getOperand(0).setIsDead(true);
850  NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
851  true /*IsDef*/,
852  true /*IsImp*/,
853  false /*IsKill*/));
854  }
855 
856  if (NewMI->getOperand(0).getSubReg())
857  NewMI->getOperand(0).setIsUndef();
858 
859  // CopyMI may have implicit operands, transfer them over to the newly
860  // rematerialized instruction. And update implicit def interval valnos.
861  for (unsigned i = CopyMI->getDesc().getNumOperands(),
862  e = CopyMI->getNumOperands(); i != e; ++i) {
863  MachineOperand &MO = CopyMI->getOperand(i);
864  if (MO.isReg()) {
865  assert(MO.isImplicit() && "No explicit operands after implict operands.");
866  // Discard VReg implicit defs.
868  NewMI->addOperand(MO);
869  }
870  }
871  }
872 
873  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
874  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
875  unsigned Reg = NewMIImplDefs[i];
876  for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
877  if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
878  LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
879  }
880 
881  DEBUG(dbgs() << "Remat: " << *NewMI);
882  ++NumReMats;
883 
884  // The source interval can become smaller because we removed a use.
885  LIS->shrinkToUses(&SrcInt, &DeadDefs);
886  if (!DeadDefs.empty())
887  eliminateDeadDefs();
888 
889  return true;
890 }
891 
892 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
893 /// values, it only removes local variables. When we have a copy like:
894 ///
895 /// %vreg1 = COPY %vreg2<undef>
896 ///
897 /// We delete the copy and remove the corresponding value number from %vreg1.
898 /// Any uses of that value number are marked as <undef>.
899 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
900  const CoalescerPair &CP) {
901  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
902  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
903  if (SrcInt->liveAt(Idx))
904  return false;
905  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
906  if (DstInt->liveAt(Idx))
907  return false;
908 
909  // No intervals are live-in to CopyMI - it is undef.
910  if (CP.isFlipped())
911  DstInt = SrcInt;
912  SrcInt = 0;
913 
914  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
915  assert(DeadVNI && "No value defined in DstInt");
916  DstInt->removeValNo(DeadVNI);
917 
918  // Find new undef uses.
920  I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
921  I != E; ++I) {
922  MachineOperand &MO = I.getOperand();
923  if (MO.isDef() || MO.isUndef())
924  continue;
925  MachineInstr *MI = MO.getParent();
926  SlotIndex Idx = LIS->getInstructionIndex(MI);
927  if (DstInt->liveAt(Idx))
928  continue;
929  MO.setIsUndef(true);
930  DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
931  }
932  return true;
933 }
934 
935 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
936 /// update the subregister number if it is not zero. If DstReg is a
937 /// physical register and the existing subregister number of the def / use
938 /// being updated is not zero, make sure to set it to the correct physical
939 /// subregister.
940 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
941  unsigned DstReg,
942  unsigned SubIdx) {
943  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
944  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
945 
947  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
948  MachineInstr *UseMI = I.skipInstruction();) {
949  // Each instruction can only be rewritten once because sub-register
950  // composition is not always idempotent. When SrcReg != DstReg, rewriting
951  // the UseMI operands removes them from the SrcReg use-def chain, but when
952  // SrcReg is DstReg we could encounter UseMI twice if it has multiple
953  // operands mentioning the virtual register.
954  if (SrcReg == DstReg && !Visited.insert(UseMI))
955  continue;
956 
958  bool Reads, Writes;
959  tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
960 
961  // If SrcReg wasn't read, it may still be the case that DstReg is live-in
962  // because SrcReg is a sub-register.
963  if (DstInt && !Reads && SubIdx)
964  Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
965 
966  // Replace SrcReg with DstReg in all UseMI operands.
967  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
968  MachineOperand &MO = UseMI->getOperand(Ops[i]);
969 
970  // Adjust <undef> flags in case of sub-register joins. We don't want to
971  // turn a full def into a read-modify-write sub-register def and vice
972  // versa.
973  if (SubIdx && MO.isDef())
974  MO.setIsUndef(!Reads);
975 
976  if (DstIsPhys)
977  MO.substPhysReg(DstReg, *TRI);
978  else
979  MO.substVirtReg(DstReg, SubIdx, *TRI);
980  }
981 
982  DEBUG({
983  dbgs() << "\t\tupdated: ";
984  if (!UseMI->isDebugValue())
985  dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
986  dbgs() << *UseMI;
987  });
988  }
989 }
990 
991 /// canJoinPhys - Return true if a copy involving a physreg should be joined.
992 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
993  /// Always join simple intervals that are defined by a single copy from a
994  /// reserved register. This doesn't increase register pressure, so it is
995  /// always beneficial.
996  if (!MRI->isReserved(CP.getDstReg())) {
997  DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
998  return false;
999  }
1000 
1001  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1002  if (CP.isFlipped() && JoinVInt.containsOneValue())
1003  return true;
1004 
1005  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
1006  return false;
1007 }
1008 
1009 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1010 /// which are the src/dst of the copy instruction CopyMI. This returns true
1011 /// if the copy was successfully coalesced away. If it is not currently
1012 /// possible to coalesce this interval, but it may be possible if other
1013 /// things get coalesced, then it returns true by reference in 'Again'.
1014 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1015 
1016  Again = false;
1017  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1018 
1019  CoalescerPair CP(*TRI);
1020  if (!CP.setRegisters(CopyMI)) {
1021  DEBUG(dbgs() << "\tNot coalescable.\n");
1022  return false;
1023  }
1024 
1025  // Dead code elimination. This really should be handled by MachineDCE, but
1026  // sometimes dead copies slip through, and we can't generate invalid live
1027  // ranges.
1028  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1029  DEBUG(dbgs() << "\tCopy is dead.\n");
1030  DeadDefs.push_back(CopyMI);
1031  eliminateDeadDefs();
1032  return true;
1033  }
1034 
1035  // Eliminate undefs.
1036  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
1037  DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
1038  LIS->RemoveMachineInstrFromMaps(CopyMI);
1039  CopyMI->eraseFromParent();
1040  return false; // Not coalescable.
1041  }
1042 
1043  // Coalesced copies are normally removed immediately, but transformations
1044  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1045  // When that happens, just join the values and remove the copy.
1046  if (CP.getSrcReg() == CP.getDstReg()) {
1047  LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1048  DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1049  LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(CopyMI));
1050  if (VNInfo *DefVNI = LRQ.valueDefined()) {
1051  VNInfo *ReadVNI = LRQ.valueIn();
1052  assert(ReadVNI && "No value before copy and no <undef> flag.");
1053  assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1054  LI.MergeValueNumberInto(DefVNI, ReadVNI);
1055  DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1056  }
1057  LIS->RemoveMachineInstrFromMaps(CopyMI);
1058  CopyMI->eraseFromParent();
1059  return true;
1060  }
1061 
1062  // Enforce policies.
1063  if (CP.isPhys()) {
1064  DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1065  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1066  << '\n');
1067  if (!canJoinPhys(CP)) {
1068  // Before giving up coalescing, if definition of source is defined by
1069  // trivial computation, try rematerializing it.
1070  bool IsDefCopy;
1071  if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1072  return true;
1073  if (IsDefCopy)
1074  Again = true; // May be possible to coalesce later.
1075  return false;
1076  }
1077  } else {
1078  DEBUG({
1079  dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
1080  << " with ";
1081  if (CP.getDstIdx() && CP.getSrcIdx())
1082  dbgs() << PrintReg(CP.getDstReg()) << " in "
1083  << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1084  << PrintReg(CP.getSrcReg()) << " in "
1085  << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1086  else
1087  dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1088  << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1089  });
1090 
1091  // When possible, let DstReg be the larger interval.
1092  if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1093  LIS->getInterval(CP.getDstReg()).size())
1094  CP.flip();
1095  }
1096 
1097  // Okay, attempt to join these two intervals. On failure, this returns false.
1098  // Otherwise, if one of the intervals being joined is a physreg, this method
1099  // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1100  // been modified, so we can use this information below to update aliases.
1101  if (!joinIntervals(CP)) {
1102  // Coalescing failed.
1103 
1104  // If definition of source is defined by trivial computation, try
1105  // rematerializing it.
1106  bool IsDefCopy;
1107  if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1108  return true;
1109 
1110  // If we can eliminate the copy without merging the live segments, do so
1111  // now.
1112  if (!CP.isPartial() && !CP.isPhys()) {
1113  if (adjustCopiesBackFrom(CP, CopyMI) ||
1114  removeCopyByCommutingDef(CP, CopyMI)) {
1115  LIS->RemoveMachineInstrFromMaps(CopyMI);
1116  CopyMI->eraseFromParent();
1117  DEBUG(dbgs() << "\tTrivial!\n");
1118  return true;
1119  }
1120  }
1121 
1122  // Otherwise, we are unable to join the intervals.
1123  DEBUG(dbgs() << "\tInterference!\n");
1124  Again = true; // May be possible to coalesce later.
1125  return false;
1126  }
1127 
1128  // Coalescing to a virtual register that is of a sub-register class of the
1129  // other. Make sure the resulting register is set to the right register class.
1130  if (CP.isCrossClass()) {
1131  ++numCrossRCs;
1132  MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1133  }
1134 
1135  // Removing sub-register copies can ease the register class constraints.
1136  // Make sure we attempt to inflate the register class of DstReg.
1137  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1138  InflateRegs.push_back(CP.getDstReg());
1139 
1140  // CopyMI has been erased by joinIntervals at this point. Remove it from
1141  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1142  // to the work list. This keeps ErasedInstrs from growing needlessly.
1143  ErasedInstrs.erase(CopyMI);
1144 
1145  // Rewrite all SrcReg operands to DstReg.
1146  // Also update DstReg operands to include DstIdx if it is set.
1147  if (CP.getDstIdx())
1148  updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1149  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1150 
1151  // SrcReg is guaranteed to be the register whose live interval that is
1152  // being merged.
1153  LIS->removeInterval(CP.getSrcReg());
1154 
1155  // Update regalloc hint.
1156  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1157 
1158  DEBUG({
1159  dbgs() << "\tJoined. Result = ";
1160  if (CP.isPhys())
1161  dbgs() << PrintReg(CP.getDstReg(), TRI);
1162  else
1163  dbgs() << LIS->getInterval(CP.getDstReg());
1164  dbgs() << '\n';
1165  });
1166 
1167  ++numJoins;
1168  return true;
1169 }
1170 
1171 /// Attempt joining with a reserved physreg.
1172 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1173  assert(CP.isPhys() && "Must be a physreg copy");
1174  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
1175  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1176  DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1177 
1178  assert(CP.isFlipped() && RHS.containsOneValue() &&
1179  "Invalid join with reserved register");
1180 
1181  // Optimization for reserved registers like ESP. We can only merge with a
1182  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
1183  // The live range of the reserved register will look like a set of dead defs
1184  // - we don't properly track the live range of reserved registers.
1185 
1186  // Deny any overlapping intervals. This depends on all the reserved
1187  // register live ranges to look like dead defs.
1188  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
1189  if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1190  DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1191  return false;
1192  }
1193 
1194  // Skip any value computations, we are not adding new values to the
1195  // reserved register. Also skip merging the live ranges, the reserved
1196  // register live range doesn't need to be accurate as long as all the
1197  // defs are there.
1198 
1199  // Delete the identity copy.
1200  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
1201  LIS->RemoveMachineInstrFromMaps(CopyMI);
1202  CopyMI->eraseFromParent();
1203 
1204  // We don't track kills for reserved registers.
1205  MRI->clearKillFlags(CP.getSrcReg());
1206 
1207  return true;
1208 }
1209 
1210 //===----------------------------------------------------------------------===//
1211 // Interference checking and interval joining
1212 //===----------------------------------------------------------------------===//
1213 //
1214 // In the easiest case, the two live ranges being joined are disjoint, and
1215 // there is no interference to consider. It is quite common, though, to have
1216 // overlapping live ranges, and we need to check if the interference can be
1217 // resolved.
1218 //
1219 // The live range of a single SSA value forms a sub-tree of the dominator tree.
1220 // This means that two SSA values overlap if and only if the def of one value
1221 // is contained in the live range of the other value. As a special case, the
1222 // overlapping values can be defined at the same index.
1223 //
1224 // The interference from an overlapping def can be resolved in these cases:
1225 //
1226 // 1. Coalescable copies. The value is defined by a copy that would become an
1227 // identity copy after joining SrcReg and DstReg. The copy instruction will
1228 // be removed, and the value will be merged with the source value.
1229 //
1230 // There can be several copies back and forth, causing many values to be
1231 // merged into one. We compute a list of ultimate values in the joined live
1232 // range as well as a mappings from the old value numbers.
1233 //
1234 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1235 // predecessors have a live out value. It doesn't cause real interference,
1236 // and can be merged into the value it overlaps. Like a coalescable copy, it
1237 // can be erased after joining.
1238 //
1239 // 3. Copy of external value. The overlapping def may be a copy of a value that
1240 // is already in the other register. This is like a coalescable copy, but
1241 // the live range of the source register must be trimmed after erasing the
1242 // copy instruction:
1243 //
1244 // %src = COPY %ext
1245 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
1246 //
1247 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
1248 // defining one lane at a time:
1249 //
1250 // %dst:ssub0<def,read-undef> = FOO
1251 // %src = BAR
1252 // %dst:ssub1<def> = COPY %src
1253 //
1254 // The live range of %src overlaps the %dst value defined by FOO, but
1255 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1256 // which was undef anyway.
1257 //
1258 // The value mapping is more complicated in this case. The final live range
1259 // will have different value numbers for both FOO and BAR, but there is no
1260 // simple mapping from old to new values. It may even be necessary to add
1261 // new PHI values.
1262 //
1263 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1264 // is live, but never read. This can happen because we don't compute
1265 // individual live ranges per lane.
1266 //
1267 // %dst<def> = FOO
1268 // %src = BAR
1269 // %dst:ssub1<def> = COPY %src
1270 //
1271 // This kind of interference is only resolved locally. If the clobbered
1272 // lane value escapes the block, the join is aborted.
1273 
1274 namespace {
1275 /// Track information about values in a single virtual register about to be
1276 /// joined. Objects of this class are always created in pairs - one for each
1277 /// side of the CoalescerPair.
1278 class JoinVals {
1279  LiveInterval &LI;
1280 
1281  // Location of this register in the final joined register.
1282  // Either CP.DstIdx or CP.SrcIdx.
1283  unsigned SubIdx;
1284 
1285  // Values that will be present in the final live range.
1286  SmallVectorImpl<VNInfo*> &NewVNInfo;
1287 
1288  const CoalescerPair &CP;
1289  LiveIntervals *LIS;
1290  SlotIndexes *Indexes;
1291  const TargetRegisterInfo *TRI;
1292 
1293  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
1294  // This is suitable for passing to LiveInterval::join().
1295  SmallVector<int, 8> Assignments;
1296 
1297  // Conflict resolution for overlapping values.
1298  enum ConflictResolution {
1299  // No overlap, simply keep this value.
1300  CR_Keep,
1301 
1302  // Merge this value into OtherVNI and erase the defining instruction.
1303  // Used for IMPLICIT_DEF, coalescable copies, and copies from external
1304  // values.
1305  CR_Erase,
1306 
1307  // Merge this value into OtherVNI but keep the defining instruction.
1308  // This is for the special case where OtherVNI is defined by the same
1309  // instruction.
1310  CR_Merge,
1311 
1312  // Keep this value, and have it replace OtherVNI where possible. This
1313  // complicates value mapping since OtherVNI maps to two different values
1314  // before and after this def.
1315  // Used when clobbering undefined or dead lanes.
1316  CR_Replace,
1317 
1318  // Unresolved conflict. Visit later when all values have been mapped.
1319  CR_Unresolved,
1320 
1321  // Unresolvable conflict. Abort the join.
1322  CR_Impossible
1323  };
1324 
1325  // Per-value info for LI. The lane bit masks are all relative to the final
1326  // joined register, so they can be compared directly between SrcReg and
1327  // DstReg.
1328  struct Val {
1329  ConflictResolution Resolution;
1330 
1331  // Lanes written by this def, 0 for unanalyzed values.
1332  unsigned WriteLanes;
1333 
1334  // Lanes with defined values in this register. Other lanes are undef and
1335  // safe to clobber.
1336  unsigned ValidLanes;
1337 
1338  // Value in LI being redefined by this def.
1339  VNInfo *RedefVNI;
1340 
1341  // Value in the other live range that overlaps this def, if any.
1342  VNInfo *OtherVNI;
1343 
1344  // Is this value an IMPLICIT_DEF that can be erased?
1345  //
1346  // IMPLICIT_DEF values should only exist at the end of a basic block that
1347  // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1348  // safely erased if they are overlapping a live value in the other live
1349  // interval.
1350  //
1351  // Weird control flow graphs and incomplete PHI handling in
1352  // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1353  // longer live ranges. Such IMPLICIT_DEF values should be treated like
1354  // normal values.
1355  bool ErasableImplicitDef;
1356 
1357  // True when the live range of this value will be pruned because of an
1358  // overlapping CR_Replace value in the other live range.
1359  bool Pruned;
1360 
1361  // True once Pruned above has been computed.
1362  bool PrunedComputed;
1363 
1364  Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1365  RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
1366  Pruned(false), PrunedComputed(false) {}
1367 
1368  bool isAnalyzed() const { return WriteLanes != 0; }
1369  };
1370 
1371  // One entry per value number in LI.
1372  SmallVector<Val, 8> Vals;
1373 
1374  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
1375  VNInfo *stripCopies(VNInfo *VNI);
1376  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1377  void computeAssignment(unsigned ValNo, JoinVals &Other);
1378  bool taintExtent(unsigned, unsigned, JoinVals&,
1379  SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1380  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
1381  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1382 
1383 public:
1384  JoinVals(LiveInterval &li, unsigned subIdx,
1385  SmallVectorImpl<VNInfo*> &newVNInfo,
1386  const CoalescerPair &cp,
1387  LiveIntervals *lis,
1388  const TargetRegisterInfo *tri)
1389  : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
1390  Indexes(LIS->getSlotIndexes()), TRI(tri),
1391  Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
1392  {}
1393 
1394  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
1395  /// Returns false if any conflicts were impossible to resolve.
1396  bool mapValues(JoinVals &Other);
1397 
1398  /// Try to resolve conflicts that require all values to be mapped.
1399  /// Returns false if any conflicts were impossible to resolve.
1400  bool resolveConflicts(JoinVals &Other);
1401 
1402  /// Prune the live range of values in Other.LI where they would conflict with
1403  /// CR_Replace values in LI. Collect end points for restoring the live range
1404  /// after joining.
1405  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
1406 
1407  /// Erase any machine instructions that have been coalesced away.
1408  /// Add erased instructions to ErasedInstrs.
1409  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1410  /// the erased instrs.
1411  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1412  SmallVectorImpl<unsigned> &ShrinkRegs);
1413 
1414  /// Get the value assignments suitable for passing to LiveInterval::join.
1415  const int *getAssignments() const { return Assignments.data(); }
1416 };
1417 } // end anonymous namespace
1418 
1419 /// Compute the bitmask of lanes actually written by DefMI.
1420 /// Set Redef if there are any partial register definitions that depend on the
1421 /// previous value of the register.
1422 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
1423  unsigned L = 0;
1424  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1425  if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
1426  continue;
1427  L |= TRI->getSubRegIndexLaneMask(
1428  TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1429  if (MO->readsReg())
1430  Redef = true;
1431  }
1432  return L;
1433 }
1434 
1435 /// Find the ultimate value that VNI was copied from.
1436 VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
1437  while (!VNI->isPHIDef()) {
1438  MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
1439  assert(MI && "No defining instruction");
1440  if (!MI->isFullCopy())
1441  break;
1442  unsigned Reg = MI->getOperand(1).getReg();
1444  break;
1445  LiveQueryResult LRQ = LIS->getInterval(Reg).Query(VNI->def);
1446  if (!LRQ.valueIn())
1447  break;
1448  VNI = LRQ.valueIn();
1449  }
1450  return VNI;
1451 }
1452 
1453 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1454 /// Return a conflict resolution when possible, but leave the hard cases as
1455 /// CR_Unresolved.
1456 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1457 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1458 /// The recursion always goes upwards in the dominator tree, making loops
1459 /// impossible.
1460 JoinVals::ConflictResolution
1461 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1462  Val &V = Vals[ValNo];
1463  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1464  VNInfo *VNI = LI.getValNumInfo(ValNo);
1465  if (VNI->isUnused()) {
1466  V.WriteLanes = ~0u;
1467  return CR_Keep;
1468  }
1469 
1470  // Get the instruction defining this value, compute the lanes written.
1471  const MachineInstr *DefMI = 0;
1472  if (VNI->isPHIDef()) {
1473  // Conservatively assume that all lanes in a PHI are valid.
1474  V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1475  } else {
1476  DefMI = Indexes->getInstructionFromIndex(VNI->def);
1477  bool Redef = false;
1478  V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1479 
1480  // If this is a read-modify-write instruction, there may be more valid
1481  // lanes than the ones written by this instruction.
1482  // This only covers partial redef operands. DefMI may have normal use
1483  // operands reading the register. They don't contribute valid lanes.
1484  //
1485  // This adds ssub1 to the set of valid lanes in %src:
1486  //
1487  // %src:ssub1<def> = FOO
1488  //
1489  // This leaves only ssub1 valid, making any other lanes undef:
1490  //
1491  // %src:ssub1<def,read-undef> = FOO %src:ssub2
1492  //
1493  // The <read-undef> flag on the def operand means that old lane values are
1494  // not important.
1495  if (Redef) {
1496  V.RedefVNI = LI.Query(VNI->def).valueIn();
1497  assert(V.RedefVNI && "Instruction is reading nonexistent value");
1498  computeAssignment(V.RedefVNI->id, Other);
1499  V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1500  }
1501 
1502  // An IMPLICIT_DEF writes undef values.
1503  if (DefMI->isImplicitDef()) {
1504  // We normally expect IMPLICIT_DEF values to be live only until the end
1505  // of their block. If the value is really live longer and gets pruned in
1506  // another block, this flag is cleared again.
1507  V.ErasableImplicitDef = true;
1508  V.ValidLanes &= ~V.WriteLanes;
1509  }
1510  }
1511 
1512  // Find the value in Other that overlaps VNI->def, if any.
1513  LiveQueryResult OtherLRQ = Other.LI.Query(VNI->def);
1514 
1515  // It is possible that both values are defined by the same instruction, or
1516  // the values are PHIs defined in the same block. When that happens, the two
1517  // values should be merged into one, but not into any preceding value.
1518  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1519  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1520  assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1521 
1522  // One value stays, the other is merged. Keep the earlier one, or the first
1523  // one we see.
1524  if (OtherVNI->def < VNI->def)
1525  Other.computeAssignment(OtherVNI->id, *this);
1526  else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1527  // This is an early-clobber def overlapping a live-in value in the other
1528  // register. Not mergeable.
1529  V.OtherVNI = OtherLRQ.valueIn();
1530  return CR_Impossible;
1531  }
1532  V.OtherVNI = OtherVNI;
1533  Val &OtherV = Other.Vals[OtherVNI->id];
1534  // Keep this value, check for conflicts when analyzing OtherVNI.
1535  if (!OtherV.isAnalyzed())
1536  return CR_Keep;
1537  // Both sides have been analyzed now.
1538  // Allow overlapping PHI values. Any real interference would show up in a
1539  // predecessor, the PHI itself can't introduce any conflicts.
1540  if (VNI->isPHIDef())
1541  return CR_Merge;
1542  if (V.ValidLanes & OtherV.ValidLanes)
1543  // Overlapping lanes can't be resolved.
1544  return CR_Impossible;
1545  else
1546  return CR_Merge;
1547  }
1548 
1549  // No simultaneous def. Is Other live at the def?
1550  V.OtherVNI = OtherLRQ.valueIn();
1551  if (!V.OtherVNI)
1552  // No overlap, no conflict.
1553  return CR_Keep;
1554 
1555  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1556 
1557  // We have overlapping values, or possibly a kill of Other.
1558  // Recursively compute assignments up the dominator tree.
1559  Other.computeAssignment(V.OtherVNI->id, *this);
1560  Val &OtherV = Other.Vals[V.OtherVNI->id];
1561 
1562  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1563  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1564  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1565  // technically.
1566  //
1567  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1568  // to erase the IMPLICIT_DEF instruction.
1569  if (OtherV.ErasableImplicitDef && DefMI &&
1570  DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1571  DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1572  << " extends into BB#" << DefMI->getParent()->getNumber()
1573  << ", keeping it.\n");
1574  OtherV.ErasableImplicitDef = false;
1575  }
1576 
1577  // Allow overlapping PHI values. Any real interference would show up in a
1578  // predecessor, the PHI itself can't introduce any conflicts.
1579  if (VNI->isPHIDef())
1580  return CR_Replace;
1581 
1582  // Check for simple erasable conflicts.
1583  if (DefMI->isImplicitDef())
1584  return CR_Erase;
1585 
1586  // Include the non-conflict where DefMI is a coalescable copy that kills
1587  // OtherVNI. We still want the copy erased and value numbers merged.
1588  if (CP.isCoalescable(DefMI)) {
1589  // Some of the lanes copied from OtherVNI may be undef, making them undef
1590  // here too.
1591  V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
1592  return CR_Erase;
1593  }
1594 
1595  // This may not be a real conflict if DefMI simply kills Other and defines
1596  // VNI.
1597  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
1598  return CR_Keep;
1599 
1600  // Handle the case where VNI and OtherVNI can be proven to be identical:
1601  //
1602  // %other = COPY %ext
1603  // %this = COPY %ext <-- Erase this copy
1604  //
1605  if (DefMI->isFullCopy() && !CP.isPartial() &&
1606  stripCopies(VNI) == stripCopies(V.OtherVNI))
1607  return CR_Erase;
1608 
1609  // If the lanes written by this instruction were all undef in OtherVNI, it is
1610  // still safe to join the live ranges. This can't be done with a simple value
1611  // mapping, though - OtherVNI will map to multiple values:
1612  //
1613  // 1 %dst:ssub0 = FOO <-- OtherVNI
1614  // 2 %src = BAR <-- VNI
1615  // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy.
1616  // 4 BAZ %dst<kill>
1617  // 5 QUUX %src<kill>
1618  //
1619  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
1620  // handles this complex value mapping.
1621  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
1622  return CR_Replace;
1623 
1624  // If the other live range is killed by DefMI and the live ranges are still
1625  // overlapping, it must be because we're looking at an early clobber def:
1626  //
1627  // %dst<def,early-clobber> = ASM %src<kill>
1628  //
1629  // In this case, it is illegal to merge the two live ranges since the early
1630  // clobber def would clobber %src before it was read.
1631  if (OtherLRQ.isKill()) {
1632  // This case where the def doesn't overlap the kill is handled above.
1633  assert(VNI->def.isEarlyClobber() &&
1634  "Only early clobber defs can overlap a kill");
1635  return CR_Impossible;
1636  }
1637 
1638  // VNI is clobbering live lanes in OtherVNI, but there is still the
1639  // possibility that no instructions actually read the clobbered lanes.
1640  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
1641  // Otherwise Other.LI wouldn't be live here.
1642  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
1643  return CR_Impossible;
1644 
1645  // We need to verify that no instructions are reading the clobbered lanes. To
1646  // save compile time, we'll only check that locally. Don't allow the tainted
1647  // value to escape the basic block.
1648  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1649  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
1650  return CR_Impossible;
1651 
1652  // There are still some things that could go wrong besides clobbered lanes
1653  // being read, for example OtherVNI may be only partially redefined in MBB,
1654  // and some clobbered lanes could escape the block. Save this analysis for
1655  // resolveConflicts() when all values have been mapped. We need to know
1656  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
1657  // that now - the recursive analyzeValue() calls must go upwards in the
1658  // dominator tree.
1659  return CR_Unresolved;
1660 }
1661 
1662 /// Compute the value assignment for ValNo in LI.
1663 /// This may be called recursively by analyzeValue(), but never for a ValNo on
1664 /// the stack.
1665 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
1666  Val &V = Vals[ValNo];
1667  if (V.isAnalyzed()) {
1668  // Recursion should always move up the dominator tree, so ValNo is not
1669  // supposed to reappear before it has been assigned.
1670  assert(Assignments[ValNo] != -1 && "Bad recursion?");
1671  return;
1672  }
1673  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
1674  case CR_Erase:
1675  case CR_Merge:
1676  // Merge this ValNo into OtherVNI.
1677  assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
1678  assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
1679  Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
1680  DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
1681  << LI.getValNumInfo(ValNo)->def << " into "
1682  << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
1683  << V.OtherVNI->def << " --> @"
1684  << NewVNInfo[Assignments[ValNo]]->def << '\n');
1685  break;
1686  case CR_Replace:
1687  case CR_Unresolved:
1688  // The other value is going to be pruned if this join is successful.
1689  assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
1690  Other.Vals[V.OtherVNI->id].Pruned = true;
1691  // Fall through.
1692  default:
1693  // This value number needs to go in the final joined live range.
1694  Assignments[ValNo] = NewVNInfo.size();
1695  NewVNInfo.push_back(LI.getValNumInfo(ValNo));
1696  break;
1697  }
1698 }
1699 
1700 bool JoinVals::mapValues(JoinVals &Other) {
1701  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1702  computeAssignment(i, Other);
1703  if (Vals[i].Resolution == CR_Impossible) {
1704  DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
1705  << '@' << LI.getValNumInfo(i)->def << '\n');
1706  return false;
1707  }
1708  }
1709  return true;
1710 }
1711 
1712 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
1713 /// the extent of the tainted lanes in the block.
1714 ///
1715 /// Multiple values in Other.LI can be affected since partial redefinitions can
1716 /// preserve previously tainted lanes.
1717 ///
1718 /// 1 %dst = VLOAD <-- Define all lanes in %dst
1719 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
1720 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
1721 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1722 ///
1723 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1724 /// entry to TaintedVals.
1725 ///
1726 /// Returns false if the tainted lanes extend beyond the basic block.
1727 bool JoinVals::
1728 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
1729  SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
1730  VNInfo *VNI = LI.getValNumInfo(ValNo);
1731  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1732  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
1733 
1734  // Scan Other.LI from VNI.def to MBBEnd.
1735  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
1736  assert(OtherI != Other.LI.end() && "No conflict?");
1737  do {
1738  // OtherI is pointing to a tainted value. Abort the join if the tainted
1739  // lanes escape the block.
1740  SlotIndex End = OtherI->end;
1741  if (End >= MBBEnd) {
1742  DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
1743  << OtherI->valno->id << '@' << OtherI->start << '\n');
1744  return false;
1745  }
1746  DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
1747  << OtherI->valno->id << '@' << OtherI->start
1748  << " to " << End << '\n');
1749  // A dead def is not a problem.
1750  if (End.isDead())
1751  break;
1752  TaintExtent.push_back(std::make_pair(End, TaintedLanes));
1753 
1754  // Check for another def in the MBB.
1755  if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
1756  break;
1757 
1758  // Lanes written by the new def are no longer tainted.
1759  const Val &OV = Other.Vals[OtherI->valno->id];
1760  TaintedLanes &= ~OV.WriteLanes;
1761  if (!OV.RedefVNI)
1762  break;
1763  } while (TaintedLanes);
1764  return true;
1765 }
1766 
1767 /// Return true if MI uses any of the given Lanes from Reg.
1768 /// This does not include partial redefinitions of Reg.
1769 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
1770  unsigned Lanes) {
1771  if (MI->isDebugValue())
1772  return false;
1773  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
1774  if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
1775  continue;
1776  if (!MO->readsReg())
1777  continue;
1778  if (Lanes & TRI->getSubRegIndexLaneMask(
1779  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
1780  return true;
1781  }
1782  return false;
1783 }
1784 
1785 bool JoinVals::resolveConflicts(JoinVals &Other) {
1786  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1787  Val &V = Vals[i];
1788  assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
1789  if (V.Resolution != CR_Unresolved)
1790  continue;
1791  DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
1792  << '@' << LI.getValNumInfo(i)->def << '\n');
1793  ++NumLaneConflicts;
1794  assert(V.OtherVNI && "Inconsistent conflict resolution.");
1795  VNInfo *VNI = LI.getValNumInfo(i);
1796  const Val &OtherV = Other.Vals[V.OtherVNI->id];
1797 
1798  // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
1799  // join, those lanes will be tainted with a wrong value. Get the extent of
1800  // the tainted lanes.
1801  unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
1803  if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
1804  // Tainted lanes would extend beyond the basic block.
1805  return false;
1806 
1807  assert(!TaintExtent.empty() && "There should be at least one conflict.");
1808 
1809  // Now look at the instructions from VNI->def to TaintExtent (inclusive).
1810  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
1811  MachineBasicBlock::iterator MI = MBB->begin();
1812  if (!VNI->isPHIDef()) {
1813  MI = Indexes->getInstructionFromIndex(VNI->def);
1814  // No need to check the instruction defining VNI for reads.
1815  ++MI;
1816  }
1817  assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
1818  "Interference ends on VNI->def. Should have been handled earlier");
1819  MachineInstr *LastMI =
1820  Indexes->getInstructionFromIndex(TaintExtent.front().first);
1821  assert(LastMI && "Range must end at a proper instruction");
1822  unsigned TaintNum = 0;
1823  for(;;) {
1824  assert(MI != MBB->end() && "Bad LastMI");
1825  if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
1826  DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
1827  return false;
1828  }
1829  // LastMI is the last instruction to use the current value.
1830  if (&*MI == LastMI) {
1831  if (++TaintNum == TaintExtent.size())
1832  break;
1833  LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
1834  assert(LastMI && "Range must end at a proper instruction");
1835  TaintedLanes = TaintExtent[TaintNum].second;
1836  }
1837  ++MI;
1838  }
1839 
1840  // The tainted lanes are unused.
1841  V.Resolution = CR_Replace;
1842  ++NumLaneResolves;
1843  }
1844  return true;
1845 }
1846 
1847 // Determine if ValNo is a copy of a value number in LI or Other.LI that will
1848 // be pruned:
1849 //
1850 // %dst = COPY %src
1851 // %src = COPY %dst <-- This value to be pruned.
1852 // %dst = COPY %src <-- This value is a copy of a pruned value.
1853 //
1854 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
1855  Val &V = Vals[ValNo];
1856  if (V.Pruned || V.PrunedComputed)
1857  return V.Pruned;
1858 
1859  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
1860  return V.Pruned;
1861 
1862  // Follow copies up the dominator tree and check if any intermediate value
1863  // has been pruned.
1864  V.PrunedComputed = true;
1865  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
1866  return V.Pruned;
1867 }
1868 
1869 void JoinVals::pruneValues(JoinVals &Other,
1870  SmallVectorImpl<SlotIndex> &EndPoints) {
1871  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1872  SlotIndex Def = LI.getValNumInfo(i)->def;
1873  switch (Vals[i].Resolution) {
1874  case CR_Keep:
1875  break;
1876  case CR_Replace: {
1877  // This value takes precedence over the value in Other.LI.
1878  LIS->pruneValue(&Other.LI, Def, &EndPoints);
1879  // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
1880  // instructions are only inserted to provide a live-out value for PHI
1881  // predecessors, so the instruction should simply go away once its value
1882  // has been replaced.
1883  Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
1884  bool EraseImpDef = OtherV.ErasableImplicitDef &&
1885  OtherV.Resolution == CR_Keep;
1886  if (!Def.isBlock()) {
1887  // Remove <def,read-undef> flags. This def is now a partial redef.
1888  // Also remove <def,dead> flags since the joined live range will
1889  // continue past this instruction.
1890  for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
1891  MO.isValid(); ++MO)
1892  if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
1893  MO->setIsUndef(EraseImpDef);
1894  MO->setIsDead(false);
1895  }
1896  // This value will reach instructions below, but we need to make sure
1897  // the live range also reaches the instruction at Def.
1898  if (!EraseImpDef)
1899  EndPoints.push_back(Def);
1900  }
1901  DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
1902  << ": " << Other.LI << '\n');
1903  break;
1904  }
1905  case CR_Erase:
1906  case CR_Merge:
1907  if (isPrunedValue(i, Other)) {
1908  // This value is ultimately a copy of a pruned value in LI or Other.LI.
1909  // We can no longer trust the value mapping computed by
1910  // computeAssignment(), the value that was originally copied could have
1911  // been replaced.
1912  LIS->pruneValue(&LI, Def, &EndPoints);
1913  DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
1914  << Def << ": " << LI << '\n');
1915  }
1916  break;
1917  case CR_Unresolved:
1918  case CR_Impossible:
1919  llvm_unreachable("Unresolved conflicts");
1920  }
1921  }
1922 }
1923 
1924 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
1925  SmallVectorImpl<unsigned> &ShrinkRegs) {
1926  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
1927  // Get the def location before markUnused() below invalidates it.
1928  SlotIndex Def = LI.getValNumInfo(i)->def;
1929  switch (Vals[i].Resolution) {
1930  case CR_Keep:
1931  // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
1932  // longer. The IMPLICIT_DEF instructions are only inserted by
1933  // PHIElimination to guarantee that all PHI predecessors have a value.
1934  if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
1935  break;
1936  // Remove value number i from LI. Note that this VNInfo is still present
1937  // in NewVNInfo, so it will appear as an unused value number in the final
1938  // joined interval.
1939  LI.getValNumInfo(i)->markUnused();
1940  LI.removeValNo(LI.getValNumInfo(i));
1941  DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
1942  // FALL THROUGH.
1943 
1944  case CR_Erase: {
1945  MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1946  assert(MI && "No instruction to erase");
1947  if (MI->isCopy()) {
1948  unsigned Reg = MI->getOperand(1).getReg();
1950  Reg != CP.getSrcReg() && Reg != CP.getDstReg())
1951  ShrinkRegs.push_back(Reg);
1952  }
1953  ErasedInstrs.insert(MI);
1954  DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
1955  LIS->RemoveMachineInstrFromMaps(MI);
1956  MI->eraseFromParent();
1957  break;
1958  }
1959  default:
1960  break;
1961  }
1962  }
1963 }
1964 
1965 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
1966  SmallVector<VNInfo*, 16> NewVNInfo;
1967  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1968  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
1969  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
1970  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
1971 
1972  DEBUG(dbgs() << "\t\tRHS = " << RHS
1973  << "\n\t\tLHS = " << LHS
1974  << '\n');
1975 
1976  // First compute NewVNInfo and the simple value mappings.
1977  // Detect impossible conflicts early.
1978  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
1979  return false;
1980 
1981  // Some conflicts can only be resolved after all values have been mapped.
1982  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
1983  return false;
1984 
1985  // All clear, the live ranges can be merged.
1986 
1987  // The merging algorithm in LiveInterval::join() can't handle conflicting
1988  // value mappings, so we need to remove any live ranges that overlap a
1989  // CR_Replace resolution. Collect a set of end points that can be used to
1990  // restore the live range after joining.
1991  SmallVector<SlotIndex, 8> EndPoints;
1992  LHSVals.pruneValues(RHSVals, EndPoints);
1993  RHSVals.pruneValues(LHSVals, EndPoints);
1994 
1995  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
1996  // registers to require trimming.
1997  SmallVector<unsigned, 8> ShrinkRegs;
1998  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
1999  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2000  while (!ShrinkRegs.empty())
2001  LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2002 
2003  // Join RHS into LHS.
2004  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2005 
2006  // Kill flags are going to be wrong if the live ranges were overlapping.
2007  // Eventually, we should simply clear all kill flags when computing live
2008  // ranges. They are reinserted after register allocation.
2009  MRI->clearKillFlags(LHS.reg);
2010  MRI->clearKillFlags(RHS.reg);
2011 
2012  if (EndPoints.empty())
2013  return true;
2014 
2015  // Recompute the parts of the live range we had to remove because of
2016  // CR_Replace conflicts.
2017  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2018  << " points: " << LHS << '\n');
2019  LIS->extendToIndices(LHS, EndPoints);
2020  return true;
2021 }
2022 
2023 /// joinIntervals - Attempt to join these two intervals. On failure, this
2024 /// returns false.
2025 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2026  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2027 }
2028 
2029 namespace {
2030 // Information concerning MBB coalescing priority.
2031 struct MBBPriorityInfo {
2032  MachineBasicBlock *MBB;
2033  unsigned Depth;
2034  bool IsSplit;
2035 
2036  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2037  : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2038 };
2039 }
2040 
2041 // C-style comparator that sorts first based on the loop depth of the basic
2042 // block (the unsigned), and then on the MBB number.
2043 //
2044 // EnableGlobalCopies assumes that the primary sort key is loop depth.
2045 static int compareMBBPriority(const MBBPriorityInfo *LHS,
2046  const MBBPriorityInfo *RHS) {
2047  // Deeper loops first
2048  if (LHS->Depth != RHS->Depth)
2049  return LHS->Depth > RHS->Depth ? -1 : 1;
2050 
2051  // Try to unsplit critical edges next.
2052  if (LHS->IsSplit != RHS->IsSplit)
2053  return LHS->IsSplit ? -1 : 1;
2054 
2055  // Prefer blocks that are more connected in the CFG. This takes care of
2056  // the most difficult copies first while intervals are short.
2057  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2058  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2059  if (cl != cr)
2060  return cl > cr ? -1 : 1;
2061 
2062  // As a last resort, sort by block number.
2063  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2064 }
2065 
2066 /// \returns true if the given copy uses or defines a local live range.
2067 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2068  if (!Copy->isCopy())
2069  return false;
2070 
2071  if (Copy->getOperand(1).isUndef())
2072  return false;
2073 
2074  unsigned SrcReg = Copy->getOperand(1).getReg();
2075  unsigned DstReg = Copy->getOperand(0).getReg();
2078  return false;
2079 
2080  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2081  || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2082 }
2083 
2084 // Try joining WorkList copies starting from index From.
2085 // Null out any successful joins.
2086 bool RegisterCoalescer::
2087 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2088  bool Progress = false;
2089  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2090  if (!CurrList[i])
2091  continue;
2092  // Skip instruction pointers that have already been erased, for example by
2093  // dead code elimination.
2094  if (ErasedInstrs.erase(CurrList[i])) {
2095  CurrList[i] = 0;
2096  continue;
2097  }
2098  bool Again = false;
2099  bool Success = joinCopy(CurrList[i], Again);
2100  Progress |= Success;
2101  if (Success || !Again)
2102  CurrList[i] = 0;
2103  }
2104  return Progress;
2105 }
2106 
2107 void
2108 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2109  DEBUG(dbgs() << MBB->getName() << ":\n");
2110 
2111  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2112  // yet, it might invalidate the iterator.
2113  const unsigned PrevSize = WorkList.size();
2114  if (JoinGlobalCopies) {
2115  // Coalesce copies bottom-up to coalesce local defs before local uses. They
2116  // are not inherently easier to resolve, but slightly preferable until we
2117  // have local live range splitting. In particular this is required by
2118  // cmp+jmp macro fusion.
2119  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2120  MII != E; ++MII) {
2121  if (!MII->isCopyLike())
2122  continue;
2123  if (isLocalCopy(&(*MII), LIS))
2124  LocalWorkList.push_back(&(*MII));
2125  else
2126  WorkList.push_back(&(*MII));
2127  }
2128  }
2129  else {
2130  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2131  MII != E; ++MII)
2132  if (MII->isCopyLike())
2133  WorkList.push_back(MII);
2134  }
2135  // Try coalescing the collected copies immediately, and remove the nulls.
2136  // This prevents the WorkList from getting too large since most copies are
2137  // joinable on the first attempt.
2139  CurrList(WorkList.begin() + PrevSize, WorkList.end());
2140  if (copyCoalesceWorkList(CurrList))
2141  WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2142  (MachineInstr*)0), WorkList.end());
2143 }
2144 
2145 void RegisterCoalescer::coalesceLocals() {
2146  copyCoalesceWorkList(LocalWorkList);
2147  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2148  if (LocalWorkList[j])
2149  WorkList.push_back(LocalWorkList[j]);
2150  }
2151  LocalWorkList.clear();
2152 }
2153 
2154 void RegisterCoalescer::joinAllIntervals() {
2155  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2156  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2157 
2158  std::vector<MBBPriorityInfo> MBBs;
2159  MBBs.reserve(MF->size());
2160  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2161  MachineBasicBlock *MBB = I;
2162  MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2163  JoinSplitEdges && isSplitEdge(MBB)));
2164  }
2165  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2166 
2167  // Coalesce intervals in MBB priority order.
2168  unsigned CurrDepth = UINT_MAX;
2169  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2170  // Try coalescing the collected local copies for deeper loops.
2171  if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2172  coalesceLocals();
2173  CurrDepth = MBBs[i].Depth;
2174  }
2175  copyCoalesceInMBB(MBBs[i].MBB);
2176  }
2177  coalesceLocals();
2178 
2179  // Joining intervals can allow other intervals to be joined. Iteratively join
2180  // until we make no progress.
2181  while (copyCoalesceWorkList(WorkList))
2182  /* empty */ ;
2183 }
2184 
2185 void RegisterCoalescer::releaseMemory() {
2186  ErasedInstrs.clear();
2187  WorkList.clear();
2188  DeadDefs.clear();
2189  InflateRegs.clear();
2190 }
2191 
2192 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2193  MF = &fn;
2194  MRI = &fn.getRegInfo();
2195  TM = &fn.getTarget();
2196  TRI = TM->getRegisterInfo();
2197  TII = TM->getInstrInfo();
2198  LIS = &getAnalysis<LiveIntervals>();
2199  AA = &getAnalysis<AliasAnalysis>();
2200  Loops = &getAnalysis<MachineLoopInfo>();
2201 
2202  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
2204  JoinGlobalCopies = ST.useMachineScheduler();
2205  else
2206  JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2207 
2208  // The MachineScheduler does not currently require JoinSplitEdges. This will
2209  // either be enabled unconditionally or replaced by a more general live range
2210  // splitting optimization.
2211  JoinSplitEdges = EnableJoinSplits;
2212 
2213  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2214  << "********** Function: " << MF->getName() << '\n');
2215 
2216  if (VerifyCoalescing)
2217  MF->verify(this, "Before register coalescing");
2218 
2219  RegClassInfo.runOnMachineFunction(fn);
2220 
2221  // Join (coalesce) intervals if requested.
2222  if (EnableJoining)
2223  joinAllIntervals();
2224 
2225  // After deleting a lot of copies, register classes may be less constrained.
2226  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2227  // DPR inflation.
2228  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2229  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2230  InflateRegs.end());
2231  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2232  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2233  unsigned Reg = InflateRegs[i];
2234  if (MRI->reg_nodbg_empty(Reg))
2235  continue;
2236  if (MRI->recomputeRegClass(Reg, *TM)) {
2237  DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2238  << MRI->getRegClass(Reg)->getName() << '\n');
2239  ++NumInflated;
2240  }
2241  }
2242 
2243  DEBUG(dump());
2244  if (VerifyCoalescing)
2245  MF->verify(this, "After register coalescing");
2246  return true;
2247 }
2248 
2249 /// print - Implement the dump method.
2250 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2251  LIS->print(O, m);
2252 }
bool isFullCopy() const
Definition: MachineInstr.h:672
bool isImplicit() const
unsigned succ_size() const
static bool isSplitEdge(const MachineBasicBlock *MBB)
void push_back(const T &Elt)
Definition: SmallVector.h:236
const MachineFunction * getParent() const
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=0) const
Definition: MachineInstr.h:862
instr_iterator erase(instr_iterator I)
AnalysisUsage & addPreserved()
MachineInstr * getParent()
static PassRegistry * getPassRegistry()
Segments::iterator iterator
Definition: LiveInterval.h:191
int remove(const char *path);
const unsigned reg
Definition: LiveInterval.h:532
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:52
unsigned getDstReg() const
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
INITIALIZE_PASS_BEGIN(RegisterCoalescer,"simple-register-coalescing","Simple Register Coalescing", false, false) INITIALIZE_PASS_END(RegisterCoalescer
static cl::opt< bool > VerifyCoalescing("verify-coalescing", cl::desc("Verify machine instrs before and after register coalescing"), cl::Hidden)
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
char & MachineDominatorsID
MachineDominators - This pass is a machine dominators analysis pass.
void setIsUndef(bool Val=true)
bool isDead() const
static bool isVirtualRegister(unsigned Reg)
static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, unsigned &Src, unsigned &Dst, unsigned &SrcSub, unsigned &DstSub)
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS)
STATISTIC(numJoins,"Number of interval joins performed")
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
char & RegisterCoalescerID
RegisterCoalescer - This pass merges live ranges to eliminate copies.
bool isKill() const
Definition: LiveInterval.h:107
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
const TargetRegisterClass * getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B) const
void setIsDead(bool Val=true)
SlotIndex endPoint() const
Definition: LiveInterval.h:136
void markUnused()
Mark this value as unused.
Definition: LiveInterval.h:79
void substVirtReg(unsigned Reg, unsigned SubIdx, const TargetRegisterInfo &)
unsigned getNumValNums() const
Definition: LiveInterval.h:246
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:350
Callback methods for LiveRangeEdit owners.
Definition: LiveRangeEdit.h:39
void initializeRegisterCoalescerPass(PassRegistry &)
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
bool allDefsAreDead() const
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Hexagon Hardware Loops
bool isCrossClass() const
MachineBasicBlock * intervalIsInOneMBB(const LiveInterval &LI) const
const HexagonInstrInfo * TII
const char * getName() const
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false)
INITIALIZE_PASS(DeadMachineInstructionElim,"dead-mi-elimination","Remove dead machine instructions", false, false) bool DeadMachineInstructionElim bool SawStore
bool isFlipped() const
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
iterator end()
Definition: LiveInterval.h:193
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
bool isReg() const
isReg - Tests if this is a MO_Register operand.
static cl::opt< bool > EnableJoinSplits("join-splitedges", cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden)
const TargetRegisterClass * getRegClass(unsigned Reg) const
bool isUndef() const
bool isBlock() const
isBlock - Returns true if this is a block boundary slot.
Definition: SlotIndexes.h:229
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:76
bool isDead() const
isDead - Returns true if this is a dead def kill slot.
Definition: SlotIndexes.h:239
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
VNInfo * MergeValueNumberInto(VNInfo *V1, VNInfo *V2)
iterator addSegment(Segment S)
Definition: LiveInterval.h:403
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const
bool isCopyLike() const
Definition: MachineInstr.h:678
virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const
AnalysisUsage & addPreservedID(const void *ID)
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
bool setRegisters(const MachineInstr *)
SlotIndex getPrevSlot() const
Definition: SlotIndexes.h:292
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bool isDebugValue() const
Definition: MachineInstr.h:639
bool isImplicitDef() const
Definition: MachineInstr.h:650
const TargetRegisterClass * getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const
bundle_iterator< MachineInstr, instr_iterator > iterator
void removeValNo(VNInfo *ValNo)
const TargetRegisterClass * getNewRC() const
getNewRC - Return the register class of the coalesced register.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
void array_pod_sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:289
LiveQueryResult Query(SlotIndex Idx) const
Definition: LiveInterval.h:441
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
static int compareMBBPriority(const MBBPriorityInfo *LHS, const MBBPriorityInfo *RHS)
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
bool isAsCheapAsAMove(QueryType Type=AllInBundle) const
Definition: MachineInstr.h:560
const MCInstrInfo & MII
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
unsigned getSubReg(unsigned Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo...
bool overlaps(const LiveRange &other) const
Definition: LiveInterval.h:377
bool isCopy() const
Definition: MachineInstr.h:669
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
void substPhysReg(unsigned Reg, const TargetRegisterInfo &)
VNInfo * valueDefined() const
Definition: LiveInterval.h:124
std::pair< bool, bool > readsWritesVirtualRegister(unsigned Reg, SmallVectorImpl< unsigned > *Ops=0) const
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
unsigned getSubReg() const
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:330
bool isPHIDef() const
Definition: LiveInterval.h:73
static cl::opt< cl::boolOrDefault > EnableGlobalCopies("join-globalcopies", cl::desc("Coalesce copies that span blocks (default=subtarget)"), cl::init(cl::BOU_UNSET), cl::Hidden)
void setIsKill(bool Val=true)
const char * getName() const
static cl::opt< bool > EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true))
bool isPhys() const
isPhys - Return true if DstReg is a physical register.
bool erase(PtrType Ptr)
Definition: SmallPtrSet.h:259
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
void addOperand(MachineFunction &MF, const MachineOperand &Op)
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:206
simple register Simple Register false
simple register coalescing
Promote Memory to Register
Definition: Mem2Reg.cpp:54
int findRegisterUseOperandIdx(unsigned Reg, bool isKill=false, const TargetRegisterInfo *TRI=NULL) const
void setPreservesCFG()
Definition: Pass.cpp:249
LiveInterval & getInterval(unsigned Reg)
bool isCoalescable(const MachineInstr *) const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
StringRef getName() const
unsigned getDstIdx() const
bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, bool &SawStore) const
VNInfo * getValNumInfo(unsigned ValNo)
Definition: LiveInterval.h:250
bool containsOneValue() const
Definition: LiveInterval.h:244
unsigned getSrcIdx() const
bundle_iterator< const MachineInstr, const_instr_iterator > const_iterator
static bool isPhysicalRegister(unsigned Reg)
MachineRegisterInfo & getRegInfo()
virtual void getAnalysisUsage(AnalysisUsage &AU) const
void setReg(unsigned Reg)
#define I(x, y, z)
Definition: MD5.cpp:54
void setSubReg(unsigned subReg)
int findRegisterDefOperandIdx(unsigned Reg, bool isDead=false, bool Overlap=false, const TargetRegisterInfo *TRI=NULL) const
const TargetMachine & getTarget() const
instr_iterator insert(instr_iterator I, MachineInstr *M)
SlotIndex getRegSlot(bool EC=false) const
Definition: SlotIndexes.h:257
iterator begin()
Definition: LiveInterval.h:192
unsigned getReg() const
getReg - Returns the register number.
bool isCommutable(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:502
bool isPartial() const
void eliminateDeadDefs(SmallVectorImpl< MachineInstr * > &Dead, ArrayRef< unsigned > RegsBeingSpilled=None)
simple register Simple Register Coalescing
unsigned getSrcReg() const
getSrcReg - Return the virtual register that will be coalesced away.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
BasicBlockListType::iterator iterator
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
unsigned composeSubRegIndices(unsigned a, unsigned b) const
void join(LiveRange &Other, const int *ValNoAssignments, const int *RHSValNoAssignments, SmallVectorImpl< VNInfo * > &NewVNInfo)
const MCRegisterInfo & MRI
iterator FindSegmentContaining(SlotIndex Idx)
Definition: LiveInterval.h:365
bool readsReg() const
VNInfo * valueIn() const
Definition: LiveInterval.h:100
bool useMachineScheduler() const
Temporary API to test migration to MI scheduler.
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:92
tier< T1, T2 > tie(T1 &f, T2 &s)
Definition: STLExtras.h:216
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx=0) const
Definition: MachineInstr.h:850
unsigned pred_size() const
bool contains(unsigned Reg) const