LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
GVN.cpp
Go to the documentation of this file.
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global value numbering to eliminate fully redundant
11 // instructions. It also performs simple dead load elimination.
12 //
13 // Note that this pass does the value numbering itself; it does not use the
14 // ValueNumbering analysis passes.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "gvn"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/Hashing.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/CFG.h"
31 #include "llvm/Analysis/Loads.h"
36 #include "llvm/Assembly/Writer.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/Debug.h"
50 #include <vector>
51 using namespace llvm;
52 using namespace PatternMatch;
53 
54 STATISTIC(NumGVNInstr, "Number of instructions deleted");
55 STATISTIC(NumGVNLoad, "Number of loads deleted");
56 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
57 STATISTIC(NumGVNBlocks, "Number of blocks merged");
58 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
59 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
60 STATISTIC(NumPRELoad, "Number of loads PRE'd");
61 
62 static cl::opt<bool> EnablePRE("enable-pre",
63  cl::init(true), cl::Hidden);
64 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
65 
66 // Maximum allowed recursion depth.
67 static cl::opt<uint32_t>
68 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
69  cl::desc("Max recurse depth (default = 1000)"));
70 
71 //===----------------------------------------------------------------------===//
72 // ValueTable Class
73 //===----------------------------------------------------------------------===//
74 
75 /// This class holds the mapping between values and value numbers. It is used
76 /// as an efficient mechanism to determine the expression-wise equivalence of
77 /// two values.
78 namespace {
79  struct Expression {
80  uint32_t opcode;
81  Type *type;
83 
84  Expression(uint32_t o = ~2U) : opcode(o) { }
85 
86  bool operator==(const Expression &other) const {
87  if (opcode != other.opcode)
88  return false;
89  if (opcode == ~0U || opcode == ~1U)
90  return true;
91  if (type != other.type)
92  return false;
93  if (varargs != other.varargs)
94  return false;
95  return true;
96  }
97 
98  friend hash_code hash_value(const Expression &Value) {
99  return hash_combine(Value.opcode, Value.type,
100  hash_combine_range(Value.varargs.begin(),
101  Value.varargs.end()));
102  }
103  };
104 
105  class ValueTable {
106  DenseMap<Value*, uint32_t> valueNumbering;
107  DenseMap<Expression, uint32_t> expressionNumbering;
108  AliasAnalysis *AA;
110  DominatorTree *DT;
111 
112  uint32_t nextValueNumber;
113 
114  Expression create_expression(Instruction* I);
115  Expression create_cmp_expression(unsigned Opcode,
117  Value *LHS, Value *RHS);
118  Expression create_extractvalue_expression(ExtractValueInst* EI);
119  uint32_t lookup_or_add_call(CallInst* C);
120  public:
121  ValueTable() : nextValueNumber(1) { }
122  uint32_t lookup_or_add(Value *V);
123  uint32_t lookup(Value *V) const;
124  uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
125  Value *LHS, Value *RHS);
126  void add(Value *V, uint32_t num);
127  void clear();
128  void erase(Value *v);
129  void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
130  AliasAnalysis *getAliasAnalysis() const { return AA; }
131  void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
132  void setDomTree(DominatorTree* D) { DT = D; }
133  uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
134  void verifyRemoved(const Value *) const;
135  };
136 }
137 
138 namespace llvm {
139 template <> struct DenseMapInfo<Expression> {
140  static inline Expression getEmptyKey() {
141  return ~0U;
142  }
143 
144  static inline Expression getTombstoneKey() {
145  return ~1U;
146  }
147 
148  static unsigned getHashValue(const Expression e) {
149  using llvm::hash_value;
150  return static_cast<unsigned>(hash_value(e));
151  }
152  static bool isEqual(const Expression &LHS, const Expression &RHS) {
153  return LHS == RHS;
154  }
155 };
156 
157 }
158 
159 //===----------------------------------------------------------------------===//
160 // ValueTable Internal Functions
161 //===----------------------------------------------------------------------===//
162 
163 Expression ValueTable::create_expression(Instruction *I) {
164  Expression e;
165  e.type = I->getType();
166  e.opcode = I->getOpcode();
167  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
168  OI != OE; ++OI)
169  e.varargs.push_back(lookup_or_add(*OI));
170  if (I->isCommutative()) {
171  // Ensure that commutative instructions that only differ by a permutation
172  // of their operands get the same value number by sorting the operand value
173  // numbers. Since all commutative instructions have two operands it is more
174  // efficient to sort by hand rather than using, say, std::sort.
175  assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
176  if (e.varargs[0] > e.varargs[1])
177  std::swap(e.varargs[0], e.varargs[1]);
178  }
179 
180  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
181  // Sort the operand value numbers so x<y and y>x get the same value number.
182  CmpInst::Predicate Predicate = C->getPredicate();
183  if (e.varargs[0] > e.varargs[1]) {
184  std::swap(e.varargs[0], e.varargs[1]);
185  Predicate = CmpInst::getSwappedPredicate(Predicate);
186  }
187  e.opcode = (C->getOpcode() << 8) | Predicate;
188  } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
189  for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
190  II != IE; ++II)
191  e.varargs.push_back(*II);
192  }
193 
194  return e;
195 }
196 
197 Expression ValueTable::create_cmp_expression(unsigned Opcode,
198  CmpInst::Predicate Predicate,
199  Value *LHS, Value *RHS) {
200  assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
201  "Not a comparison!");
202  Expression e;
203  e.type = CmpInst::makeCmpResultType(LHS->getType());
204  e.varargs.push_back(lookup_or_add(LHS));
205  e.varargs.push_back(lookup_or_add(RHS));
206 
207  // Sort the operand value numbers so x<y and y>x get the same value number.
208  if (e.varargs[0] > e.varargs[1]) {
209  std::swap(e.varargs[0], e.varargs[1]);
210  Predicate = CmpInst::getSwappedPredicate(Predicate);
211  }
212  e.opcode = (Opcode << 8) | Predicate;
213  return e;
214 }
215 
216 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
217  assert(EI != 0 && "Not an ExtractValueInst?");
218  Expression e;
219  e.type = EI->getType();
220  e.opcode = 0;
221 
223  if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
224  // EI might be an extract from one of our recognised intrinsics. If it
225  // is we'll synthesize a semantically equivalent expression instead on
226  // an extract value expression.
227  switch (I->getIntrinsicID()) {
230  e.opcode = Instruction::Add;
231  break;
234  e.opcode = Instruction::Sub;
235  break;
238  e.opcode = Instruction::Mul;
239  break;
240  default:
241  break;
242  }
243 
244  if (e.opcode != 0) {
245  // Intrinsic recognized. Grab its args to finish building the expression.
246  assert(I->getNumArgOperands() == 2 &&
247  "Expect two args for recognised intrinsics.");
248  e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
249  e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
250  return e;
251  }
252  }
253 
254  // Not a recognised intrinsic. Fall back to producing an extract value
255  // expression.
256  e.opcode = EI->getOpcode();
257  for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
258  OI != OE; ++OI)
259  e.varargs.push_back(lookup_or_add(*OI));
260 
261  for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
262  II != IE; ++II)
263  e.varargs.push_back(*II);
264 
265  return e;
266 }
267 
268 //===----------------------------------------------------------------------===//
269 // ValueTable External Functions
270 //===----------------------------------------------------------------------===//
271 
272 /// add - Insert a value into the table with a specified value number.
273 void ValueTable::add(Value *V, uint32_t num) {
274  valueNumbering.insert(std::make_pair(V, num));
275 }
276 
277 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
278  if (AA->doesNotAccessMemory(C)) {
279  Expression exp = create_expression(C);
280  uint32_t &e = expressionNumbering[exp];
281  if (!e) e = nextValueNumber++;
282  valueNumbering[C] = e;
283  return e;
284  } else if (AA->onlyReadsMemory(C)) {
285  Expression exp = create_expression(C);
286  uint32_t &e = expressionNumbering[exp];
287  if (!e) {
288  e = nextValueNumber++;
289  valueNumbering[C] = e;
290  return e;
291  }
292  if (!MD) {
293  e = nextValueNumber++;
294  valueNumbering[C] = e;
295  return e;
296  }
297 
298  MemDepResult local_dep = MD->getDependency(C);
299 
300  if (!local_dep.isDef() && !local_dep.isNonLocal()) {
301  valueNumbering[C] = nextValueNumber;
302  return nextValueNumber++;
303  }
304 
305  if (local_dep.isDef()) {
306  CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
307 
308  if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
309  valueNumbering[C] = nextValueNumber;
310  return nextValueNumber++;
311  }
312 
313  for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
314  uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
315  uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
316  if (c_vn != cd_vn) {
317  valueNumbering[C] = nextValueNumber;
318  return nextValueNumber++;
319  }
320  }
321 
322  uint32_t v = lookup_or_add(local_cdep);
323  valueNumbering[C] = v;
324  return v;
325  }
326 
327  // Non-local case.
329  MD->getNonLocalCallDependency(CallSite(C));
330  // FIXME: Move the checking logic to MemDep!
331  CallInst* cdep = 0;
332 
333  // Check to see if we have a single dominating call instruction that is
334  // identical to C.
335  for (unsigned i = 0, e = deps.size(); i != e; ++i) {
336  const NonLocalDepEntry *I = &deps[i];
337  if (I->getResult().isNonLocal())
338  continue;
339 
340  // We don't handle non-definitions. If we already have a call, reject
341  // instruction dependencies.
342  if (!I->getResult().isDef() || cdep != 0) {
343  cdep = 0;
344  break;
345  }
346 
347  CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
348  // FIXME: All duplicated with non-local case.
349  if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
350  cdep = NonLocalDepCall;
351  continue;
352  }
353 
354  cdep = 0;
355  break;
356  }
357 
358  if (!cdep) {
359  valueNumbering[C] = nextValueNumber;
360  return nextValueNumber++;
361  }
362 
363  if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
364  valueNumbering[C] = nextValueNumber;
365  return nextValueNumber++;
366  }
367  for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
368  uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
369  uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
370  if (c_vn != cd_vn) {
371  valueNumbering[C] = nextValueNumber;
372  return nextValueNumber++;
373  }
374  }
375 
376  uint32_t v = lookup_or_add(cdep);
377  valueNumbering[C] = v;
378  return v;
379 
380  } else {
381  valueNumbering[C] = nextValueNumber;
382  return nextValueNumber++;
383  }
384 }
385 
386 /// lookup_or_add - Returns the value number for the specified value, assigning
387 /// it a new number if it did not have one before.
388 uint32_t ValueTable::lookup_or_add(Value *V) {
389  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
390  if (VI != valueNumbering.end())
391  return VI->second;
392 
393  if (!isa<Instruction>(V)) {
394  valueNumbering[V] = nextValueNumber;
395  return nextValueNumber++;
396  }
397 
398  Instruction* I = cast<Instruction>(V);
399  Expression exp;
400  switch (I->getOpcode()) {
401  case Instruction::Call:
402  return lookup_or_add_call(cast<CallInst>(I));
403  case Instruction::Add:
404  case Instruction::FAdd:
405  case Instruction::Sub:
406  case Instruction::FSub:
407  case Instruction::Mul:
408  case Instruction::FMul:
409  case Instruction::UDiv:
410  case Instruction::SDiv:
411  case Instruction::FDiv:
412  case Instruction::URem:
413  case Instruction::SRem:
414  case Instruction::FRem:
415  case Instruction::Shl:
416  case Instruction::LShr:
417  case Instruction::AShr:
418  case Instruction::And:
419  case Instruction::Or:
420  case Instruction::Xor:
421  case Instruction::ICmp:
422  case Instruction::FCmp:
423  case Instruction::Trunc:
424  case Instruction::ZExt:
425  case Instruction::SExt:
426  case Instruction::FPToUI:
427  case Instruction::FPToSI:
428  case Instruction::UIToFP:
429  case Instruction::SIToFP:
430  case Instruction::FPTrunc:
431  case Instruction::FPExt:
432  case Instruction::PtrToInt:
433  case Instruction::IntToPtr:
434  case Instruction::BitCast:
435  case Instruction::Select:
437  case Instruction::InsertElement:
438  case Instruction::ShuffleVector:
439  case Instruction::InsertValue:
440  case Instruction::GetElementPtr:
441  exp = create_expression(I);
442  break;
443  case Instruction::ExtractValue:
444  exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
445  break;
446  default:
447  valueNumbering[V] = nextValueNumber;
448  return nextValueNumber++;
449  }
450 
451  uint32_t& e = expressionNumbering[exp];
452  if (!e) e = nextValueNumber++;
453  valueNumbering[V] = e;
454  return e;
455 }
456 
457 /// lookup - Returns the value number of the specified value. Fails if
458 /// the value has not yet been numbered.
459 uint32_t ValueTable::lookup(Value *V) const {
460  DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
461  assert(VI != valueNumbering.end() && "Value not numbered?");
462  return VI->second;
463 }
464 
465 /// lookup_or_add_cmp - Returns the value number of the given comparison,
466 /// assigning it a new number if it did not have one before. Useful when
467 /// we deduced the result of a comparison, but don't immediately have an
468 /// instruction realizing that comparison to hand.
469 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
470  CmpInst::Predicate Predicate,
471  Value *LHS, Value *RHS) {
472  Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
473  uint32_t& e = expressionNumbering[exp];
474  if (!e) e = nextValueNumber++;
475  return e;
476 }
477 
478 /// clear - Remove all entries from the ValueTable.
479 void ValueTable::clear() {
480  valueNumbering.clear();
481  expressionNumbering.clear();
482  nextValueNumber = 1;
483 }
484 
485 /// erase - Remove a value from the value numbering.
486 void ValueTable::erase(Value *V) {
487  valueNumbering.erase(V);
488 }
489 
490 /// verifyRemoved - Verify that the value is removed from all internal data
491 /// structures.
492 void ValueTable::verifyRemoved(const Value *V) const {
494  I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
495  assert(I->first != V && "Inst still occurs in value numbering map!");
496  }
497 }
498 
499 //===----------------------------------------------------------------------===//
500 // GVN Pass
501 //===----------------------------------------------------------------------===//
502 
503 namespace {
504  class GVN;
505  struct AvailableValueInBlock {
506  /// BB - The basic block in question.
507  BasicBlock *BB;
508  enum ValType {
509  SimpleVal, // A simple offsetted value that is accessed.
510  LoadVal, // A value produced by a load.
511  MemIntrin, // A memory intrinsic which is loaded from.
512  UndefVal // A UndefValue representing a value from dead block (which
513  // is not yet physically removed from the CFG).
514  };
515 
516  /// V - The value that is live out of the block.
518 
519  /// Offset - The byte offset in Val that is interesting for the load query.
520  unsigned Offset;
521 
522  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
523  unsigned Offset = 0) {
524  AvailableValueInBlock Res;
525  Res.BB = BB;
526  Res.Val.setPointer(V);
527  Res.Val.setInt(SimpleVal);
528  Res.Offset = Offset;
529  return Res;
530  }
531 
532  static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
533  unsigned Offset = 0) {
534  AvailableValueInBlock Res;
535  Res.BB = BB;
536  Res.Val.setPointer(MI);
537  Res.Val.setInt(MemIntrin);
538  Res.Offset = Offset;
539  return Res;
540  }
541 
542  static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
543  unsigned Offset = 0) {
544  AvailableValueInBlock Res;
545  Res.BB = BB;
546  Res.Val.setPointer(LI);
547  Res.Val.setInt(LoadVal);
548  Res.Offset = Offset;
549  return Res;
550  }
551 
552  static AvailableValueInBlock getUndef(BasicBlock *BB) {
553  AvailableValueInBlock Res;
554  Res.BB = BB;
555  Res.Val.setPointer(0);
556  Res.Val.setInt(UndefVal);
557  Res.Offset = 0;
558  return Res;
559  }
560 
561  bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
562  bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
563  bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
564  bool isUndefValue() const { return Val.getInt() == UndefVal; }
565 
566  Value *getSimpleValue() const {
567  assert(isSimpleValue() && "Wrong accessor");
568  return Val.getPointer();
569  }
570 
571  LoadInst *getCoercedLoadValue() const {
572  assert(isCoercedLoadValue() && "Wrong accessor");
573  return cast<LoadInst>(Val.getPointer());
574  }
575 
576  MemIntrinsic *getMemIntrinValue() const {
577  assert(isMemIntrinValue() && "Wrong accessor");
578  return cast<MemIntrinsic>(Val.getPointer());
579  }
580 
581  /// MaterializeAdjustedValue - Emit code into this block to adjust the value
582  /// defined here to the specified type. This handles various coercion cases.
583  Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const;
584  };
585 
586  class GVN : public FunctionPass {
587  bool NoLoads;
589  DominatorTree *DT;
590  const DataLayout *TD;
591  const TargetLibraryInfo *TLI;
592  SetVector<BasicBlock *> DeadBlocks;
593 
594  ValueTable VN;
595 
596  /// LeaderTable - A mapping from value numbers to lists of Value*'s that
597  /// have that value number. Use findLeader to query it.
598  struct LeaderTableEntry {
599  Value *Val;
600  const BasicBlock *BB;
601  LeaderTableEntry *Next;
602  };
604  BumpPtrAllocator TableAllocator;
605 
606  SmallVector<Instruction*, 8> InstrsToErase;
607 
608  typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
609  typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
610  typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
611 
612  public:
613  static char ID; // Pass identification, replacement for typeid
614  explicit GVN(bool noloads = false)
615  : FunctionPass(ID), NoLoads(noloads), MD(0) {
617  }
618 
619  bool runOnFunction(Function &F);
620 
621  /// markInstructionForDeletion - This removes the specified instruction from
622  /// our various maps and marks it for deletion.
623  void markInstructionForDeletion(Instruction *I) {
624  VN.erase(I);
625  InstrsToErase.push_back(I);
626  }
627 
628  const DataLayout *getDataLayout() const { return TD; }
629  DominatorTree &getDominatorTree() const { return *DT; }
630  AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
631  MemoryDependenceAnalysis &getMemDep() const { return *MD; }
632  private:
633  /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for
634  /// its value number.
635  void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
636  LeaderTableEntry &Curr = LeaderTable[N];
637  if (!Curr.Val) {
638  Curr.Val = V;
639  Curr.BB = BB;
640  return;
641  }
642 
643  LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
644  Node->Val = V;
645  Node->BB = BB;
646  Node->Next = Curr.Next;
647  Curr.Next = Node;
648  }
649 
650  /// removeFromLeaderTable - Scan the list of values corresponding to a given
651  /// value number, and remove the given instruction if encountered.
652  void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
653  LeaderTableEntry* Prev = 0;
654  LeaderTableEntry* Curr = &LeaderTable[N];
655 
656  while (Curr->Val != I || Curr->BB != BB) {
657  Prev = Curr;
658  Curr = Curr->Next;
659  }
660 
661  if (Prev) {
662  Prev->Next = Curr->Next;
663  } else {
664  if (!Curr->Next) {
665  Curr->Val = 0;
666  Curr->BB = 0;
667  } else {
668  LeaderTableEntry* Next = Curr->Next;
669  Curr->Val = Next->Val;
670  Curr->BB = Next->BB;
671  Curr->Next = Next->Next;
672  }
673  }
674  }
675 
676  // List of critical edges to be split between iterations.
678 
679  // This transformation requires dominator postdominator info
680  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
683  if (!NoLoads)
686 
689  }
690 
691 
692  // Helper fuctions of redundant load elimination
693  bool processLoad(LoadInst *L);
694  bool processNonLocalLoad(LoadInst *L);
695  void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
696  AvailValInBlkVect &ValuesPerBlock,
697  UnavailBlkVect &UnavailableBlocks);
698  bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
699  UnavailBlkVect &UnavailableBlocks);
700 
701  // Other helper routines
702  bool processInstruction(Instruction *I);
703  bool processBlock(BasicBlock *BB);
705  bool iterateOnFunction(Function &F);
706  bool performPRE(Function &F);
707  Value *findLeader(const BasicBlock *BB, uint32_t num);
708  void cleanupGlobalSets();
709  void verifyRemoved(const Instruction *I) const;
710  bool splitCriticalEdges();
711  BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
712  unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
713  const BasicBlockEdge &Root);
714  bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
715  bool processFoldableCondBr(BranchInst *BI);
716  void addDeadBlock(BasicBlock *BB);
717  void assignValNumForDeadCode();
718  };
719 
720  char GVN::ID = 0;
721 }
722 
723 // createGVNPass - The public interface to this file...
725  return new GVN(NoLoads);
726 }
727 
728 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
733 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
734 
735 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
737  errs() << "{\n";
739  E = d.end(); I != E; ++I) {
740  errs() << I->first << "\n";
741  I->second->dump();
742  }
743  errs() << "}\n";
744 }
745 #endif
746 
747 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
748 /// we're analyzing is fully available in the specified block. As we go, keep
749 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
750 /// map is actually a tri-state map with the following values:
751 /// 0) we know the block *is not* fully available.
752 /// 1) we know the block *is* fully available.
753 /// 2) we do not know whether the block is fully available or not, but we are
754 /// currently speculating that it will be.
755 /// 3) we are speculating for this block and have used that to speculate for
756 /// other blocks.
758  DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
759  uint32_t RecurseDepth) {
760  if (RecurseDepth > MaxRecurseDepth)
761  return false;
762 
763  // Optimistically assume that the block is fully available and check to see
764  // if we already know about this block in one lookup.
765  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
766  FullyAvailableBlocks.insert(std::make_pair(BB, 2));
767 
768  // If the entry already existed for this block, return the precomputed value.
769  if (!IV.second) {
770  // If this is a speculative "available" value, mark it as being used for
771  // speculation of other blocks.
772  if (IV.first->second == 2)
773  IV.first->second = 3;
774  return IV.first->second != 0;
775  }
776 
777  // Otherwise, see if it is fully available in all predecessors.
778  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
779 
780  // If this block has no predecessors, it isn't live-in here.
781  if (PI == PE)
782  goto SpeculationFailure;
783 
784  for (; PI != PE; ++PI)
785  // If the value isn't fully available in one of our predecessors, then it
786  // isn't fully available in this block either. Undo our previous
787  // optimistic assumption and bail out.
788  if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
789  goto SpeculationFailure;
790 
791  return true;
792 
793 // SpeculationFailure - If we get here, we found out that this is not, after
794 // all, a fully-available block. We have a problem if we speculated on this and
795 // used the speculation to mark other blocks as available.
796 SpeculationFailure:
797  char &BBVal = FullyAvailableBlocks[BB];
798 
799  // If we didn't speculate on this, just return with it set to false.
800  if (BBVal == 2) {
801  BBVal = 0;
802  return false;
803  }
804 
805  // If we did speculate on this value, we could have blocks set to 1 that are
806  // incorrect. Walk the (transitive) successors of this block and mark them as
807  // 0 if set to one.
808  SmallVector<BasicBlock*, 32> BBWorklist;
809  BBWorklist.push_back(BB);
810 
811  do {
812  BasicBlock *Entry = BBWorklist.pop_back_val();
813  // Note that this sets blocks to 0 (unavailable) if they happen to not
814  // already be in FullyAvailableBlocks. This is safe.
815  char &EntryVal = FullyAvailableBlocks[Entry];
816  if (EntryVal == 0) continue; // Already unavailable.
817 
818  // Mark as unavailable.
819  EntryVal = 0;
820 
821  for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
822  BBWorklist.push_back(*I);
823  } while (!BBWorklist.empty());
824 
825  return false;
826 }
827 
828 
829 /// CanCoerceMustAliasedValueToLoad - Return true if
830 /// CoerceAvailableValueToLoadType will succeed.
831 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
832  Type *LoadTy,
833  const DataLayout &TD) {
834  // If the loaded or stored value is an first class array or struct, don't try
835  // to transform them. We need to be able to bitcast to integer.
836  if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
837  StoredVal->getType()->isStructTy() ||
838  StoredVal->getType()->isArrayTy())
839  return false;
840 
841  // The store has to be at least as big as the load.
842  if (TD.getTypeSizeInBits(StoredVal->getType()) <
843  TD.getTypeSizeInBits(LoadTy))
844  return false;
845 
846  return true;
847 }
848 
849 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
850 /// then a load from a must-aliased pointer of a different type, try to coerce
851 /// the stored value. LoadedTy is the type of the load we want to replace and
852 /// InsertPt is the place to insert new instructions.
853 ///
854 /// If we can't do it, return null.
856  Type *LoadedTy,
857  Instruction *InsertPt,
858  const DataLayout &TD) {
859  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
860  return 0;
861 
862  // If this is already the right type, just return it.
863  Type *StoredValTy = StoredVal->getType();
864 
865  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
866  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
867 
868  // If the store and reload are the same size, we can always reuse it.
869  if (StoreSize == LoadSize) {
870  // Pointer to Pointer -> use bitcast.
871  if (StoredValTy->getScalarType()->isPointerTy() &&
872  LoadedTy->getScalarType()->isPointerTy())
873  return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
874 
875  // Convert source pointers to integers, which can be bitcast.
876  if (StoredValTy->getScalarType()->isPointerTy()) {
877  StoredValTy = TD.getIntPtrType(StoredValTy);
878  StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
879  }
880 
881  Type *TypeToCastTo = LoadedTy;
882  if (TypeToCastTo->getScalarType()->isPointerTy())
883  TypeToCastTo = TD.getIntPtrType(TypeToCastTo);
884 
885  if (StoredValTy != TypeToCastTo)
886  StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
887 
888  // Cast to pointer if the load needs a pointer type.
889  if (LoadedTy->getScalarType()->isPointerTy())
890  StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
891 
892  return StoredVal;
893  }
894 
895  // If the loaded value is smaller than the available value, then we can
896  // extract out a piece from it. If the available value is too small, then we
897  // can't do anything.
898  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
899 
900  // Convert source pointers to integers, which can be manipulated.
901  if (StoredValTy->getScalarType()->isPointerTy()) {
902  StoredValTy = TD.getIntPtrType(StoredValTy);
903  StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
904  }
905 
906  // Convert vectors and fp to integer, which can be manipulated.
907  if (!StoredValTy->isIntegerTy()) {
908  StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
909  StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
910  }
911 
912  // If this is a big-endian system, we need to shift the value down to the low
913  // bits so that a truncate will work.
914  if (TD.isBigEndian()) {
915  Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
916  StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
917  }
918 
919  // Truncate the integer to the right size now.
920  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
921  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
922 
923  if (LoadedTy == NewIntTy)
924  return StoredVal;
925 
926  // If the result is a pointer, inttoptr.
927  if (LoadedTy->getScalarType()->isPointerTy())
928  return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
929 
930  // Otherwise, bitcast.
931  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
932 }
933 
934 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
935 /// memdep query of a load that ends up being a clobbering memory write (store,
936 /// memset, memcpy, memmove). This means that the write *may* provide bits used
937 /// by the load but we can't be sure because the pointers don't mustalias.
938 ///
939 /// Check this case to see if there is anything more we can do before we give
940 /// up. This returns -1 if we have to give up, or a byte number in the stored
941 /// value of the piece that feeds the load.
942 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
943  Value *WritePtr,
944  uint64_t WriteSizeInBits,
945  const DataLayout &TD) {
946  // If the loaded or stored value is a first class array or struct, don't try
947  // to transform them. We need to be able to bitcast to integer.
948  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
949  return -1;
950 
951  int64_t StoreOffset = 0, LoadOffset = 0;
952  Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr,StoreOffset,&TD);
953  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, &TD);
954  if (StoreBase != LoadBase)
955  return -1;
956 
957  // If the load and store are to the exact same address, they should have been
958  // a must alias. AA must have gotten confused.
959  // FIXME: Study to see if/when this happens. One case is forwarding a memset
960  // to a load from the base of the memset.
961 #if 0
962  if (LoadOffset == StoreOffset) {
963  dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
964  << "Base = " << *StoreBase << "\n"
965  << "Store Ptr = " << *WritePtr << "\n"
966  << "Store Offs = " << StoreOffset << "\n"
967  << "Load Ptr = " << *LoadPtr << "\n";
968  abort();
969  }
970 #endif
971 
972  // If the load and store don't overlap at all, the store doesn't provide
973  // anything to the load. In this case, they really don't alias at all, AA
974  // must have gotten confused.
975  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
976 
977  if ((WriteSizeInBits & 7) | (LoadSize & 7))
978  return -1;
979  uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes.
980  LoadSize >>= 3;
981 
982 
983  bool isAAFailure = false;
984  if (StoreOffset < LoadOffset)
985  isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
986  else
987  isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
988 
989  if (isAAFailure) {
990 #if 0
991  dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
992  << "Base = " << *StoreBase << "\n"
993  << "Store Ptr = " << *WritePtr << "\n"
994  << "Store Offs = " << StoreOffset << "\n"
995  << "Load Ptr = " << *LoadPtr << "\n";
996  abort();
997 #endif
998  return -1;
999  }
1000 
1001  // If the Load isn't completely contained within the stored bits, we don't
1002  // have all the bits to feed it. We could do something crazy in the future
1003  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1004  // valuable.
1005  if (StoreOffset > LoadOffset ||
1006  StoreOffset+StoreSize < LoadOffset+LoadSize)
1007  return -1;
1008 
1009  // Okay, we can do this transformation. Return the number of bytes into the
1010  // store that the load is.
1011  return LoadOffset-StoreOffset;
1012 }
1013 
1014 /// AnalyzeLoadFromClobberingStore - This function is called when we have a
1015 /// memdep query of a load that ends up being a clobbering store.
1016 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
1017  StoreInst *DepSI,
1018  const DataLayout &TD) {
1019  // Cannot handle reading from store of first-class aggregate yet.
1020  if (DepSI->getValueOperand()->getType()->isStructTy() ||
1021  DepSI->getValueOperand()->getType()->isArrayTy())
1022  return -1;
1023 
1024  Value *StorePtr = DepSI->getPointerOperand();
1025  uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType());
1026  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1027  StorePtr, StoreSize, TD);
1028 }
1029 
1030 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a
1031 /// memdep query of a load that ends up being clobbered by another load. See if
1032 /// the other load can feed into the second load.
1033 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
1034  LoadInst *DepLI, const DataLayout &TD){
1035  // Cannot handle reading from store of first-class aggregate yet.
1036  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
1037  return -1;
1038 
1039  Value *DepPtr = DepLI->getPointerOperand();
1040  uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType());
1041  int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD);
1042  if (R != -1) return R;
1043 
1044  // If we have a load/load clobber an DepLI can be widened to cover this load,
1045  // then we should widen it!
1046  int64_t LoadOffs = 0;
1047  const Value *LoadBase =
1048  GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, &TD);
1049  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1050 
1051  unsigned Size = MemoryDependenceAnalysis::
1052  getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD);
1053  if (Size == 0) return -1;
1054 
1055  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD);
1056 }
1057 
1058 
1059 
1060 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
1061  MemIntrinsic *MI,
1062  const DataLayout &TD) {
1063  // If the mem operation is a non-constant size, we can't handle it.
1064  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
1065  if (SizeCst == 0) return -1;
1066  uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
1067 
1068  // If this is memset, we just need to see if the offset is valid in the size
1069  // of the memset..
1070  if (MI->getIntrinsicID() == Intrinsic::memset)
1071  return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
1072  MemSizeInBits, TD);
1073 
1074  // If we have a memcpy/memmove, the only case we can handle is if this is a
1075  // copy from constant memory. In that case, we can read directly from the
1076  // constant memory.
1077  MemTransferInst *MTI = cast<MemTransferInst>(MI);
1078 
1079  Constant *Src = dyn_cast<Constant>(MTI->getSource());
1080  if (Src == 0) return -1;
1081 
1083  if (GV == 0 || !GV->isConstant()) return -1;
1084 
1085  // See if the access is within the bounds of the transfer.
1086  int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
1087  MI->getDest(), MemSizeInBits, TD);
1088  if (Offset == -1)
1089  return Offset;
1090 
1091  unsigned AS = Src->getType()->getPointerAddressSpace();
1092  // Otherwise, see if we can constant fold a load from the constant with the
1093  // offset applied as appropriate.
1094  Src = ConstantExpr::getBitCast(Src,
1095  Type::getInt8PtrTy(Src->getContext(), AS));
1096  Constant *OffsetCst =
1097  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1098  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1099  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1100  if (ConstantFoldLoadFromConstPtr(Src, &TD))
1101  return Offset;
1102  return -1;
1103 }
1104 
1105 
1106 /// GetStoreValueForLoad - This function is called when we have a
1107 /// memdep query of a load that ends up being a clobbering store. This means
1108 /// that the store provides bits used by the load but we the pointers don't
1109 /// mustalias. Check this case to see if there is anything more we can do
1110 /// before we give up.
1111 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1112  Type *LoadTy,
1113  Instruction *InsertPt, const DataLayout &TD){
1114  LLVMContext &Ctx = SrcVal->getType()->getContext();
1115 
1116  uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
1117  uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8;
1118 
1119  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1120 
1121  // Compute which bits of the stored value are being used by the load. Convert
1122  // to an integer type to start with.
1123  if (SrcVal->getType()->getScalarType()->isPointerTy())
1124  SrcVal = Builder.CreatePtrToInt(SrcVal,
1125  TD.getIntPtrType(SrcVal->getType()));
1126  if (!SrcVal->getType()->isIntegerTy())
1127  SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
1128 
1129  // Shift the bits to the least significant depending on endianness.
1130  unsigned ShiftAmt;
1131  if (TD.isLittleEndian())
1132  ShiftAmt = Offset*8;
1133  else
1134  ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1135 
1136  if (ShiftAmt)
1137  SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
1138 
1139  if (LoadSize != StoreSize)
1140  SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
1141 
1142  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1143 }
1144 
1145 /// GetLoadValueForLoad - This function is called when we have a
1146 /// memdep query of a load that ends up being a clobbering load. This means
1147 /// that the load *may* provide bits used by the load but we can't be sure
1148 /// because the pointers don't mustalias. Check this case to see if there is
1149 /// anything more we can do before we give up.
1150 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
1151  Type *LoadTy, Instruction *InsertPt,
1152  GVN &gvn) {
1153  const DataLayout &TD = *gvn.getDataLayout();
1154  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
1155  // widen SrcVal out to a larger load.
1156  unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType());
1157  unsigned LoadSize = TD.getTypeStoreSize(LoadTy);
1158  if (Offset+LoadSize > SrcValSize) {
1159  assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
1160  assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
1161  // If we have a load/load clobber an DepLI can be widened to cover this
1162  // load, then we should widen it to the next power of 2 size big enough!
1163  unsigned NewLoadSize = Offset+LoadSize;
1164  if (!isPowerOf2_32(NewLoadSize))
1165  NewLoadSize = NextPowerOf2(NewLoadSize);
1166 
1167  Value *PtrVal = SrcVal->getPointerOperand();
1168 
1169  // Insert the new load after the old load. This ensures that subsequent
1170  // memdep queries will find the new load. We can't easily remove the old
1171  // load completely because it is already in the value numbering table.
1172  IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
1173  Type *DestPTy =
1174  IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
1175  DestPTy = PointerType::get(DestPTy,
1176  PtrVal->getType()->getPointerAddressSpace());
1177  Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
1178  PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
1179  LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
1180  NewLoad->takeName(SrcVal);
1181  NewLoad->setAlignment(SrcVal->getAlignment());
1182 
1183  DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
1184  DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
1185 
1186  // Replace uses of the original load with the wider load. On a big endian
1187  // system, we need to shift down to get the relevant bits.
1188  Value *RV = NewLoad;
1189  if (TD.isBigEndian())
1190  RV = Builder.CreateLShr(RV,
1191  NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
1192  RV = Builder.CreateTrunc(RV, SrcVal->getType());
1193  SrcVal->replaceAllUsesWith(RV);
1194 
1195  // We would like to use gvn.markInstructionForDeletion here, but we can't
1196  // because the load is already memoized into the leader map table that GVN
1197  // tracks. It is potentially possible to remove the load from the table,
1198  // but then there all of the operations based on it would need to be
1199  // rehashed. Just leave the dead load around.
1200  gvn.getMemDep().removeInstruction(SrcVal);
1201  SrcVal = NewLoad;
1202  }
1203 
1204  return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD);
1205 }
1206 
1207 
1208 /// GetMemInstValueForLoad - This function is called when we have a
1209 /// memdep query of a load that ends up being a clobbering mem intrinsic.
1210 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
1211  Type *LoadTy, Instruction *InsertPt,
1212  const DataLayout &TD){
1213  LLVMContext &Ctx = LoadTy->getContext();
1214  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1215 
1216  IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
1217 
1218  // We know that this method is only called when the mem transfer fully
1219  // provides the bits for the load.
1220  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
1221  // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
1222  // independently of what the offset is.
1223  Value *Val = MSI->getValue();
1224  if (LoadSize != 1)
1225  Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
1226 
1227  Value *OneElt = Val;
1228 
1229  // Splat the value out to the right number of bits.
1230  for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
1231  // If we can double the number of bytes set, do it.
1232  if (NumBytesSet*2 <= LoadSize) {
1233  Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
1234  Val = Builder.CreateOr(Val, ShVal);
1235  NumBytesSet <<= 1;
1236  continue;
1237  }
1238 
1239  // Otherwise insert one byte at a time.
1240  Value *ShVal = Builder.CreateShl(Val, 1*8);
1241  Val = Builder.CreateOr(OneElt, ShVal);
1242  ++NumBytesSet;
1243  }
1244 
1245  return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
1246  }
1247 
1248  // Otherwise, this is a memcpy/memmove from a constant global.
1249  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
1250  Constant *Src = cast<Constant>(MTI->getSource());
1251  unsigned AS = Src->getType()->getPointerAddressSpace();
1252 
1253  // Otherwise, see if we can constant fold a load from the constant with the
1254  // offset applied as appropriate.
1255  Src = ConstantExpr::getBitCast(Src,
1256  Type::getInt8PtrTy(Src->getContext(), AS));
1257  Constant *OffsetCst =
1258  ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
1259  Src = ConstantExpr::getGetElementPtr(Src, OffsetCst);
1260  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
1261  return ConstantFoldLoadFromConstPtr(Src, &TD);
1262 }
1263 
1264 
1265 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
1266 /// construct SSA form, allowing us to eliminate LI. This returns the value
1267 /// that should be used at LI's definition site.
1270  GVN &gvn) {
1271  // Check for the fully redundant, dominating load case. In this case, we can
1272  // just use the dominating value directly.
1273  if (ValuesPerBlock.size() == 1 &&
1274  gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
1275  LI->getParent())) {
1276  assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
1277  return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn);
1278  }
1279 
1280  // Otherwise, we have to construct SSA form.
1281  SmallVector<PHINode*, 8> NewPHIs;
1282  SSAUpdater SSAUpdate(&NewPHIs);
1283  SSAUpdate.Initialize(LI->getType(), LI->getName());
1284 
1285  Type *LoadTy = LI->getType();
1286 
1287  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1288  const AvailableValueInBlock &AV = ValuesPerBlock[i];
1289  BasicBlock *BB = AV.BB;
1290 
1291  if (SSAUpdate.HasValueForBlock(BB))
1292  continue;
1293 
1294  SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn));
1295  }
1296 
1297  // Perform PHI construction.
1298  Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
1299 
1300  // If new PHI nodes were created, notify alias analysis.
1301  if (V->getType()->getScalarType()->isPointerTy()) {
1302  AliasAnalysis *AA = gvn.getAliasAnalysis();
1303 
1304  for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
1305  AA->copyValue(LI, NewPHIs[i]);
1306 
1307  // Now that we've copied information to the new PHIs, scan through
1308  // them again and inform alias analysis that we've added potentially
1309  // escaping uses to any values that are operands to these PHIs.
1310  for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
1311  PHINode *P = NewPHIs[i];
1312  for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
1313  unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
1314  AA->addEscapingUse(P->getOperandUse(jj));
1315  }
1316  }
1317  }
1318 
1319  return V;
1320 }
1321 
1322 Value *AvailableValueInBlock::MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const {
1323  Value *Res;
1324  if (isSimpleValue()) {
1325  Res = getSimpleValue();
1326  if (Res->getType() != LoadTy) {
1327  const DataLayout *TD = gvn.getDataLayout();
1328  assert(TD && "Need target data to handle type mismatch case");
1329  Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
1330  *TD);
1331 
1332  DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " "
1333  << *getSimpleValue() << '\n'
1334  << *Res << '\n' << "\n\n\n");
1335  }
1336  } else if (isCoercedLoadValue()) {
1337  LoadInst *Load = getCoercedLoadValue();
1338  if (Load->getType() == LoadTy && Offset == 0) {
1339  Res = Load;
1340  } else {
1341  Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
1342  gvn);
1343 
1344  DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " "
1345  << *getCoercedLoadValue() << '\n'
1346  << *Res << '\n' << "\n\n\n");
1347  }
1348  } else if (isMemIntrinValue()) {
1349  const DataLayout *TD = gvn.getDataLayout();
1350  assert(TD && "Need target data to handle type mismatch case");
1351  Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
1352  LoadTy, BB->getTerminator(), *TD);
1353  DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
1354  << " " << *getMemIntrinValue() << '\n'
1355  << *Res << '\n' << "\n\n\n");
1356  } else {
1357  assert(isUndefValue() && "Should be UndefVal");
1358  DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
1359  return UndefValue::get(LoadTy);
1360  }
1361  return Res;
1362 }
1363 
1364 static bool isLifetimeStart(const Instruction *Inst) {
1365  if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
1366  return II->getIntrinsicID() == Intrinsic::lifetime_start;
1367  return false;
1368 }
1369 
1370 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
1371  AvailValInBlkVect &ValuesPerBlock,
1372  UnavailBlkVect &UnavailableBlocks) {
1373 
1374  // Filter out useless results (non-locals, etc). Keep track of the blocks
1375  // where we have a value available in repl, also keep track of whether we see
1376  // dependencies that produce an unknown value for the load (such as a call
1377  // that could potentially clobber the load).
1378  unsigned NumDeps = Deps.size();
1379  for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1380  BasicBlock *DepBB = Deps[i].getBB();
1381  MemDepResult DepInfo = Deps[i].getResult();
1382 
1383  if (DeadBlocks.count(DepBB)) {
1384  // Dead dependent mem-op disguise as a load evaluating the same value
1385  // as the load in question.
1386  ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1387  continue;
1388  }
1389 
1390  if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1391  UnavailableBlocks.push_back(DepBB);
1392  continue;
1393  }
1394 
1395  if (DepInfo.isClobber()) {
1396  // The address being loaded in this non-local block may not be the same as
1397  // the pointer operand of the load if PHI translation occurs. Make sure
1398  // to consider the right address.
1399  Value *Address = Deps[i].getAddress();
1400 
1401  // If the dependence is to a store that writes to a superset of the bits
1402  // read by the load, we can extract the bits we need for the load from the
1403  // stored value.
1404  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1405  if (TD && Address) {
1406  int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
1407  DepSI, *TD);
1408  if (Offset != -1) {
1409  ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1410  DepSI->getValueOperand(),
1411  Offset));
1412  continue;
1413  }
1414  }
1415  }
1416 
1417  // Check to see if we have something like this:
1418  // load i32* P
1419  // load i8* (P+1)
1420  // if we have this, replace the later with an extraction from the former.
1421  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
1422  // If this is a clobber and L is the first instruction in its block, then
1423  // we have the first instruction in the entry block.
1424  if (DepLI != LI && Address && TD) {
1425  int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(),
1426  LI->getPointerOperand(),
1427  DepLI, *TD);
1428 
1429  if (Offset != -1) {
1430  ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
1431  Offset));
1432  continue;
1433  }
1434  }
1435  }
1436 
1437  // If the clobbering value is a memset/memcpy/memmove, see if we can
1438  // forward a value on from it.
1439  if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
1440  if (TD && Address) {
1441  int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
1442  DepMI, *TD);
1443  if (Offset != -1) {
1444  ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
1445  Offset));
1446  continue;
1447  }
1448  }
1449  }
1450 
1451  UnavailableBlocks.push_back(DepBB);
1452  continue;
1453  }
1454 
1455  // DepInfo.isDef() here
1456 
1457  Instruction *DepInst = DepInfo.getInst();
1458 
1459  // Loading the allocation -> undef.
1460  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1461  // Loading immediately after lifetime begin -> undef.
1462  isLifetimeStart(DepInst)) {
1463  ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1464  UndefValue::get(LI->getType())));
1465  continue;
1466  }
1467 
1468  if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1469  // Reject loads and stores that are to the same address but are of
1470  // different types if we have to.
1471  if (S->getValueOperand()->getType() != LI->getType()) {
1472  // If the stored value is larger or equal to the loaded value, we can
1473  // reuse it.
1474  if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
1475  LI->getType(), *TD)) {
1476  UnavailableBlocks.push_back(DepBB);
1477  continue;
1478  }
1479  }
1480 
1481  ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1482  S->getValueOperand()));
1483  continue;
1484  }
1485 
1486  if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1487  // If the types mismatch and we can't handle it, reject reuse of the load.
1488  if (LD->getType() != LI->getType()) {
1489  // If the stored value is larger or equal to the loaded value, we can
1490  // reuse it.
1491  if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1492  UnavailableBlocks.push_back(DepBB);
1493  continue;
1494  }
1495  }
1496  ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
1497  continue;
1498  }
1499 
1500  UnavailableBlocks.push_back(DepBB);
1501  }
1502 }
1503 
1504 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
1505  UnavailBlkVect &UnavailableBlocks) {
1506  // Okay, we have *some* definitions of the value. This means that the value
1507  // is available in some of our (transitive) predecessors. Lets think about
1508  // doing PRE of this load. This will involve inserting a new load into the
1509  // predecessor when it's not available. We could do this in general, but
1510  // prefer to not increase code size. As such, we only do this when we know
1511  // that we only have to insert *one* load (which means we're basically moving
1512  // the load, not inserting a new one).
1513 
1515  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1516  Blockers.insert(UnavailableBlocks[i]);
1517 
1518  // Let's find the first basic block with more than one predecessor. Walk
1519  // backwards through predecessors if needed.
1520  BasicBlock *LoadBB = LI->getParent();
1521  BasicBlock *TmpBB = LoadBB;
1522 
1523  while (TmpBB->getSinglePredecessor()) {
1524  TmpBB = TmpBB->getSinglePredecessor();
1525  if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1526  return false;
1527  if (Blockers.count(TmpBB))
1528  return false;
1529 
1530  // If any of these blocks has more than one successor (i.e. if the edge we
1531  // just traversed was critical), then there are other paths through this
1532  // block along which the load may not be anticipated. Hoisting the load
1533  // above this block would be adding the load to execution paths along
1534  // which it was not previously executed.
1535  if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1536  return false;
1537  }
1538 
1539  assert(TmpBB);
1540  LoadBB = TmpBB;
1541 
1542  // Check to see how many predecessors have the loaded value fully
1543  // available.
1545  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1546  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1547  FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1548  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1549  FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1550 
1551  SmallVector<BasicBlock *, 4> CriticalEdgePred;
1552  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1553  PI != E; ++PI) {
1554  BasicBlock *Pred = *PI;
1555  if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
1556  continue;
1557  }
1558  PredLoads[Pred] = 0;
1559 
1560  if (Pred->getTerminator()->getNumSuccessors() != 1) {
1561  if (isa<IndirectBrInst>(Pred->getTerminator())) {
1562  DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1563  << Pred->getName() << "': " << *LI << '\n');
1564  return false;
1565  }
1566 
1567  if (LoadBB->isLandingPad()) {
1568  DEBUG(dbgs()
1569  << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
1570  << Pred->getName() << "': " << *LI << '\n');
1571  return false;
1572  }
1573 
1574  CriticalEdgePred.push_back(Pred);
1575  }
1576  }
1577 
1578  // Decide whether PRE is profitable for this load.
1579  unsigned NumUnavailablePreds = PredLoads.size();
1580  assert(NumUnavailablePreds != 0 &&
1581  "Fully available value should already be eliminated!");
1582 
1583  // If this load is unavailable in multiple predecessors, reject it.
1584  // FIXME: If we could restructure the CFG, we could make a common pred with
1585  // all the preds that don't have an available LI and insert a new load into
1586  // that one block.
1587  if (NumUnavailablePreds != 1)
1588  return false;
1589 
1590  // Split critical edges, and update the unavailable predecessors accordingly.
1591  for (SmallVectorImpl<BasicBlock *>::iterator I = CriticalEdgePred.begin(),
1592  E = CriticalEdgePred.end(); I != E; I++) {
1593  BasicBlock *OrigPred = *I;
1594  BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1595  PredLoads.erase(OrigPred);
1596  PredLoads[NewPred] = 0;
1597  DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1598  << LoadBB->getName() << '\n');
1599  }
1600 
1601  // Check if the load can safely be moved to all the unavailable predecessors.
1602  bool CanDoPRE = true;
1604  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1605  E = PredLoads.end(); I != E; ++I) {
1606  BasicBlock *UnavailablePred = I->first;
1607 
1608  // Do PHI translation to get its value in the predecessor if necessary. The
1609  // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1610 
1611  // If all preds have a single successor, then we know it is safe to insert
1612  // the load on the pred (?!?), so we can insert code to materialize the
1613  // pointer if it is not available.
1614  PHITransAddr Address(LI->getPointerOperand(), TD);
1615  Value *LoadPtr = 0;
1616  LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
1617  *DT, NewInsts);
1618 
1619  // If we couldn't find or insert a computation of this phi translated value,
1620  // we fail PRE.
1621  if (LoadPtr == 0) {
1622  DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1623  << *LI->getPointerOperand() << "\n");
1624  CanDoPRE = false;
1625  break;
1626  }
1627 
1628  I->second = LoadPtr;
1629  }
1630 
1631  if (!CanDoPRE) {
1632  while (!NewInsts.empty()) {
1633  Instruction *I = NewInsts.pop_back_val();
1634  if (MD) MD->removeInstruction(I);
1635  I->eraseFromParent();
1636  }
1637  // HINT:Don't revert the edge-splitting as following transformation may
1638  // also need to split these critial edges.
1639  return !CriticalEdgePred.empty();
1640  }
1641 
1642  // Okay, we can eliminate this load by inserting a reload in the predecessor
1643  // and using PHI construction to get the value in the other predecessors, do
1644  // it.
1645  DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1646  DEBUG(if (!NewInsts.empty())
1647  dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
1648  << *NewInsts.back() << '\n');
1649 
1650  // Assign value numbers to the new instructions.
1651  for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
1652  // FIXME: We really _ought_ to insert these value numbers into their
1653  // parent's availability map. However, in doing so, we risk getting into
1654  // ordering issues. If a block hasn't been processed yet, we would be
1655  // marking a value as AVAIL-IN, which isn't what we intend.
1656  VN.lookup_or_add(NewInsts[i]);
1657  }
1658 
1659  for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(),
1660  E = PredLoads.end(); I != E; ++I) {
1661  BasicBlock *UnavailablePred = I->first;
1662  Value *LoadPtr = I->second;
1663 
1664  Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1665  LI->getAlignment(),
1666  UnavailablePred->getTerminator());
1667 
1668  // Transfer the old load's TBAA tag to the new load.
1669  if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa))
1670  NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1671 
1672  // Transfer DebugLoc.
1673  NewLoad->setDebugLoc(LI->getDebugLoc());
1674 
1675  // Add the newly created load.
1676  ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
1677  NewLoad));
1678  MD->invalidateCachedPointerInfo(LoadPtr);
1679  DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1680  }
1681 
1682  // Perform PHI construction.
1683  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1684  LI->replaceAllUsesWith(V);
1685  if (isa<PHINode>(V))
1686  V->takeName(LI);
1687  if (V->getType()->getScalarType()->isPointerTy())
1688  MD->invalidateCachedPointerInfo(V);
1689  markInstructionForDeletion(LI);
1690  ++NumPRELoad;
1691  return true;
1692 }
1693 
1694 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1695 /// non-local by performing PHI construction.
1696 bool GVN::processNonLocalLoad(LoadInst *LI) {
1697  // Step 1: Find the non-local dependencies of the load.
1698  LoadDepVect Deps;
1699  AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI);
1700  MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps);
1701 
1702  // If we had to process more than one hundred blocks to find the
1703  // dependencies, this load isn't worth worrying about. Optimizing
1704  // it will be too expensive.
1705  unsigned NumDeps = Deps.size();
1706  if (NumDeps > 100)
1707  return false;
1708 
1709  // If we had a phi translation failure, we'll have a single entry which is a
1710  // clobber in the current block. Reject this early.
1711  if (NumDeps == 1 &&
1712  !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1713  DEBUG(
1714  dbgs() << "GVN: non-local load ";
1715  WriteAsOperand(dbgs(), LI);
1716  dbgs() << " has unknown dependencies\n";
1717  );
1718  return false;
1719  }
1720 
1721  // Step 2: Analyze the availability of the load
1722  AvailValInBlkVect ValuesPerBlock;
1723  UnavailBlkVect UnavailableBlocks;
1724  AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
1725 
1726  // If we have no predecessors that produce a known value for this load, exit
1727  // early.
1728  if (ValuesPerBlock.empty())
1729  return false;
1730 
1731  // Step 3: Eliminate fully redundancy.
1732  //
1733  // If all of the instructions we depend on produce a known value for this
1734  // load, then it is fully redundant and we can use PHI insertion to compute
1735  // its value. Insert PHIs and remove the fully redundant value now.
1736  if (UnavailableBlocks.empty()) {
1737  DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1738 
1739  // Perform PHI construction.
1740  Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
1741  LI->replaceAllUsesWith(V);
1742 
1743  if (isa<PHINode>(V))
1744  V->takeName(LI);
1745  if (V->getType()->getScalarType()->isPointerTy())
1746  MD->invalidateCachedPointerInfo(V);
1747  markInstructionForDeletion(LI);
1748  ++NumGVNLoad;
1749  return true;
1750  }
1751 
1752  // Step 4: Eliminate partial redundancy.
1753  if (!EnablePRE || !EnableLoadPRE)
1754  return false;
1755 
1756  return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
1757 }
1758 
1759 
1761  // Patch the replacement so that it is not more restrictive than the value
1762  // being replaced.
1764  BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
1765  if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
1766  isa<OverflowingBinaryOperator>(ReplOp)) {
1767  if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
1768  ReplOp->setHasNoSignedWrap(false);
1769  if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
1770  ReplOp->setHasNoUnsignedWrap(false);
1771  }
1772  if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
1774  ReplInst->getAllMetadataOtherThanDebugLoc(Metadata);
1775  for (int i = 0, n = Metadata.size(); i < n; ++i) {
1776  unsigned Kind = Metadata[i].first;
1777  MDNode *IMD = I->getMetadata(Kind);
1778  MDNode *ReplMD = Metadata[i].second;
1779  switch(Kind) {
1780  default:
1781  ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata
1782  break;
1783  case LLVMContext::MD_dbg:
1784  llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1785  case LLVMContext::MD_tbaa:
1786  ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD));
1787  break;
1788  case LLVMContext::MD_range:
1789  ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD));
1790  break;
1791  case LLVMContext::MD_prof:
1792  llvm_unreachable("MD_prof in a non terminator instruction");
1793  break;
1795  ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD));
1796  break;
1797  }
1798  }
1799  }
1800 }
1801 
1803  patchReplacementInstruction(I, Repl);
1804  I->replaceAllUsesWith(Repl);
1805 }
1806 
1807 /// processLoad - Attempt to eliminate a load, first by eliminating it
1808 /// locally, and then attempting non-local elimination if that fails.
1809 bool GVN::processLoad(LoadInst *L) {
1810  if (!MD)
1811  return false;
1812 
1813  if (!L->isSimple())
1814  return false;
1815 
1816  if (L->use_empty()) {
1817  markInstructionForDeletion(L);
1818  return true;
1819  }
1820 
1821  // ... to a pointer that has been loaded from before...
1822  MemDepResult Dep = MD->getDependency(L);
1823 
1824  // If we have a clobber and target data is around, see if this is a clobber
1825  // that we can fix up through code synthesis.
1826  if (Dep.isClobber() && TD) {
1827  // Check to see if we have something like this:
1828  // store i32 123, i32* %P
1829  // %A = bitcast i32* %P to i8*
1830  // %B = gep i8* %A, i32 1
1831  // %C = load i8* %B
1832  //
1833  // We could do that by recognizing if the clobber instructions are obviously
1834  // a common base + constant offset, and if the previous store (or memset)
1835  // completely covers this load. This sort of thing can happen in bitfield
1836  // access code.
1837  Value *AvailVal = 0;
1838  if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
1839  int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
1840  L->getPointerOperand(),
1841  DepSI, *TD);
1842  if (Offset != -1)
1843  AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
1844  L->getType(), L, *TD);
1845  }
1846 
1847  // Check to see if we have something like this:
1848  // load i32* P
1849  // load i8* (P+1)
1850  // if we have this, replace the later with an extraction from the former.
1851  if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
1852  // If this is a clobber and L is the first instruction in its block, then
1853  // we have the first instruction in the entry block.
1854  if (DepLI == L)
1855  return false;
1856 
1857  int Offset = AnalyzeLoadFromClobberingLoad(L->getType(),
1858  L->getPointerOperand(),
1859  DepLI, *TD);
1860  if (Offset != -1)
1861  AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
1862  }
1863 
1864  // If the clobbering value is a memset/memcpy/memmove, see if we can forward
1865  // a value on from it.
1866  if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
1867  int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
1868  L->getPointerOperand(),
1869  DepMI, *TD);
1870  if (Offset != -1)
1871  AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD);
1872  }
1873 
1874  if (AvailVal) {
1875  DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
1876  << *AvailVal << '\n' << *L << "\n\n\n");
1877 
1878  // Replace the load!
1879  L->replaceAllUsesWith(AvailVal);
1880  if (AvailVal->getType()->getScalarType()->isPointerTy())
1881  MD->invalidateCachedPointerInfo(AvailVal);
1882  markInstructionForDeletion(L);
1883  ++NumGVNLoad;
1884  return true;
1885  }
1886  }
1887 
1888  // If the value isn't available, don't do anything!
1889  if (Dep.isClobber()) {
1890  DEBUG(
1891  // fast print dep, using operator<< on instruction is too slow.
1892  dbgs() << "GVN: load ";
1893  WriteAsOperand(dbgs(), L);
1894  Instruction *I = Dep.getInst();
1895  dbgs() << " is clobbered by " << *I << '\n';
1896  );
1897  return false;
1898  }
1899 
1900  // If it is defined in another block, try harder.
1901  if (Dep.isNonLocal())
1902  return processNonLocalLoad(L);
1903 
1904  if (!Dep.isDef()) {
1905  DEBUG(
1906  // fast print dep, using operator<< on instruction is too slow.
1907  dbgs() << "GVN: load ";
1908  WriteAsOperand(dbgs(), L);
1909  dbgs() << " has unknown dependence\n";
1910  );
1911  return false;
1912  }
1913 
1914  Instruction *DepInst = Dep.getInst();
1915  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1916  Value *StoredVal = DepSI->getValueOperand();
1917 
1918  // The store and load are to a must-aliased pointer, but they may not
1919  // actually have the same type. See if we know how to reuse the stored
1920  // value (depending on its type).
1921  if (StoredVal->getType() != L->getType()) {
1922  if (TD) {
1923  StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1924  L, *TD);
1925  if (StoredVal == 0)
1926  return false;
1927 
1928  DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1929  << '\n' << *L << "\n\n\n");
1930  }
1931  else
1932  return false;
1933  }
1934 
1935  // Remove it!
1936  L->replaceAllUsesWith(StoredVal);
1937  if (StoredVal->getType()->getScalarType()->isPointerTy())
1938  MD->invalidateCachedPointerInfo(StoredVal);
1939  markInstructionForDeletion(L);
1940  ++NumGVNLoad;
1941  return true;
1942  }
1943 
1944  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1945  Value *AvailableVal = DepLI;
1946 
1947  // The loads are of a must-aliased pointer, but they may not actually have
1948  // the same type. See if we know how to reuse the previously loaded value
1949  // (depending on its type).
1950  if (DepLI->getType() != L->getType()) {
1951  if (TD) {
1952  AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(),
1953  L, *TD);
1954  if (AvailableVal == 0)
1955  return false;
1956 
1957  DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1958  << "\n" << *L << "\n\n\n");
1959  }
1960  else
1961  return false;
1962  }
1963 
1964  // Remove it!
1965  patchAndReplaceAllUsesWith(L, AvailableVal);
1966  if (DepLI->getType()->getScalarType()->isPointerTy())
1967  MD->invalidateCachedPointerInfo(DepLI);
1968  markInstructionForDeletion(L);
1969  ++NumGVNLoad;
1970  return true;
1971  }
1972 
1973  // If this load really doesn't depend on anything, then we must be loading an
1974  // undef value. This can happen when loading for a fresh allocation with no
1975  // intervening stores, for example.
1976  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1978  markInstructionForDeletion(L);
1979  ++NumGVNLoad;
1980  return true;
1981  }
1982 
1983  // If this load occurs either right after a lifetime begin,
1984  // then the loaded value is undefined.
1985  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
1986  if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1988  markInstructionForDeletion(L);
1989  ++NumGVNLoad;
1990  return true;
1991  }
1992  }
1993 
1994  return false;
1995 }
1996 
1997 // findLeader - In order to find a leader for a given value number at a
1998 // specific basic block, we first obtain the list of all Values for that number,
1999 // and then scan the list to find one whose block dominates the block in
2000 // question. This is fast because dominator tree queries consist of only
2001 // a few comparisons of DFS numbers.
2002 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2003  LeaderTableEntry Vals = LeaderTable[num];
2004  if (!Vals.Val) return 0;
2005 
2006  Value *Val = 0;
2007  if (DT->dominates(Vals.BB, BB)) {
2008  Val = Vals.Val;
2009  if (isa<Constant>(Val)) return Val;
2010  }
2011 
2012  LeaderTableEntry* Next = Vals.Next;
2013  while (Next) {
2014  if (DT->dominates(Next->BB, BB)) {
2015  if (isa<Constant>(Next->Val)) return Next->Val;
2016  if (!Val) Val = Next->Val;
2017  }
2018 
2019  Next = Next->Next;
2020  }
2021 
2022  return Val;
2023 }
2024 
2025 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the
2026 /// use is dominated by the given basic block. Returns the number of uses that
2027 /// were replaced.
2028 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
2029  const BasicBlockEdge &Root) {
2030  unsigned Count = 0;
2031  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
2032  UI != UE; ) {
2033  Use &U = (UI++).getUse();
2034 
2035  if (DT->dominates(Root, U)) {
2036  U.set(To);
2037  ++Count;
2038  }
2039  }
2040  return Count;
2041 }
2042 
2043 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return
2044 /// true if every path from the entry block to 'Dst' passes via this edge. In
2045 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2047  DominatorTree *DT) {
2048  // While in theory it is interesting to consider the case in which Dst has
2049  // more than one predecessor, because Dst might be part of a loop which is
2050  // only reachable from Src, in practice it is pointless since at the time
2051  // GVN runs all such loops have preheaders, which means that Dst will have
2052  // been changed to have only one predecessor, namely Src.
2053  const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2054  const BasicBlock *Src = E.getStart();
2055  assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
2056  (void)Src;
2057  return Pred != 0;
2058 }
2059 
2060 /// propagateEquality - The given values are known to be equal in every block
2061 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2062 /// 'RHS' everywhere in the scope. Returns whether a change was made.
2063 bool GVN::propagateEquality(Value *LHS, Value *RHS,
2064  const BasicBlockEdge &Root) {
2066  Worklist.push_back(std::make_pair(LHS, RHS));
2067  bool Changed = false;
2068  // For speed, compute a conservative fast approximation to
2069  // DT->dominates(Root, Root.getEnd());
2070  bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2071 
2072  while (!Worklist.empty()) {
2073  std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2074  LHS = Item.first; RHS = Item.second;
2075 
2076  if (LHS == RHS) continue;
2077  assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2078 
2079  // Don't try to propagate equalities between constants.
2080  if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
2081 
2082  // Prefer a constant on the right-hand side, or an Argument if no constants.
2083  if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2084  std::swap(LHS, RHS);
2085  assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2086 
2087  // If there is no obvious reason to prefer the left-hand side over the right-
2088  // hand side, ensure the longest lived term is on the right-hand side, so the
2089  // shortest lived term will be replaced by the longest lived. This tends to
2090  // expose more simplifications.
2091  uint32_t LVN = VN.lookup_or_add(LHS);
2092  if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2093  (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2094  // Move the 'oldest' value to the right-hand side, using the value number as
2095  // a proxy for age.
2096  uint32_t RVN = VN.lookup_or_add(RHS);
2097  if (LVN < RVN) {
2098  std::swap(LHS, RHS);
2099  LVN = RVN;
2100  }
2101  }
2102 
2103  // If value numbering later sees that an instruction in the scope is equal
2104  // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2105  // the invariant that instructions only occur in the leader table for their
2106  // own value number (this is used by removeFromLeaderTable), do not do this
2107  // if RHS is an instruction (if an instruction in the scope is morphed into
2108  // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2109  // using the leader table is about compiling faster, not optimizing better).
2110  // The leader table only tracks basic blocks, not edges. Only add to if we
2111  // have the simple case where the edge dominates the end.
2112  if (RootDominatesEnd && !isa<Instruction>(RHS))
2113  addToLeaderTable(LVN, RHS, Root.getEnd());
2114 
2115  // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2116  // LHS always has at least one use that is not dominated by Root, this will
2117  // never do anything if LHS has only one use.
2118  if (!LHS->hasOneUse()) {
2119  unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
2120  Changed |= NumReplacements > 0;
2121  NumGVNEqProp += NumReplacements;
2122  }
2123 
2124  // Now try to deduce additional equalities from this one. For example, if the
2125  // known equality was "(A != B)" == "false" then it follows that A and B are
2126  // equal in the scope. Only boolean equalities with an explicit true or false
2127  // RHS are currently supported.
2128  if (!RHS->getType()->isIntegerTy(1))
2129  // Not a boolean equality - bail out.
2130  continue;
2131  ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2132  if (!CI)
2133  // RHS neither 'true' nor 'false' - bail out.
2134  continue;
2135  // Whether RHS equals 'true'. Otherwise it equals 'false'.
2136  bool isKnownTrue = CI->isAllOnesValue();
2137  bool isKnownFalse = !isKnownTrue;
2138 
2139  // If "A && B" is known true then both A and B are known true. If "A || B"
2140  // is known false then both A and B are known false.
2141  Value *A, *B;
2142  if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
2143  (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
2144  Worklist.push_back(std::make_pair(A, RHS));
2145  Worklist.push_back(std::make_pair(B, RHS));
2146  continue;
2147  }
2148 
2149  // If we are propagating an equality like "(A == B)" == "true" then also
2150  // propagate the equality A == B. When propagating a comparison such as
2151  // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2152  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) {
2153  Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2154 
2155  // If "A == B" is known true, or "A != B" is known false, then replace
2156  // A with B everywhere in the scope.
2157  if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
2158  (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
2159  Worklist.push_back(std::make_pair(Op0, Op1));
2160 
2161  // If "A >= B" is known true, replace "A < B" with false everywhere.
2162  CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2163  Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2164  // Since we don't have the instruction "A < B" immediately to hand, work out
2165  // the value number that it would have and use that to find an appropriate
2166  // instruction (if any).
2167  uint32_t NextNum = VN.getNextUnusedValueNumber();
2168  uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2169  // If the number we were assigned was brand new then there is no point in
2170  // looking for an instruction realizing it: there cannot be one!
2171  if (Num < NextNum) {
2172  Value *NotCmp = findLeader(Root.getEnd(), Num);
2173  if (NotCmp && isa<Instruction>(NotCmp)) {
2174  unsigned NumReplacements =
2175  replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
2176  Changed |= NumReplacements > 0;
2177  NumGVNEqProp += NumReplacements;
2178  }
2179  }
2180  // Ensure that any instruction in scope that gets the "A < B" value number
2181  // is replaced with false.
2182  // The leader table only tracks basic blocks, not edges. Only add to if we
2183  // have the simple case where the edge dominates the end.
2184  if (RootDominatesEnd)
2185  addToLeaderTable(Num, NotVal, Root.getEnd());
2186 
2187  continue;
2188  }
2189  }
2190 
2191  return Changed;
2192 }
2193 
2194 /// processInstruction - When calculating availability, handle an instruction
2195 /// by inserting it into the appropriate sets
2196 bool GVN::processInstruction(Instruction *I) {
2197  // Ignore dbg info intrinsics.
2198  if (isa<DbgInfoIntrinsic>(I))
2199  return false;
2200 
2201  // If the instruction can be easily simplified then do so now in preference
2202  // to value numbering it. Value numbering often exposes redundancies, for
2203  // example if it determines that %y is equal to %x then the instruction
2204  // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2205  if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) {
2206  I->replaceAllUsesWith(V);
2207  if (MD && V->getType()->getScalarType()->isPointerTy())
2208  MD->invalidateCachedPointerInfo(V);
2209  markInstructionForDeletion(I);
2210  ++NumGVNSimpl;
2211  return true;
2212  }
2213 
2214  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2215  if (processLoad(LI))
2216  return true;
2217 
2218  unsigned Num = VN.lookup_or_add(LI);
2219  addToLeaderTable(Num, LI, LI->getParent());
2220  return false;
2221  }
2222 
2223  // For conditional branches, we can perform simple conditional propagation on
2224  // the condition value itself.
2225  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2226  if (!BI->isConditional())
2227  return false;
2228 
2229  if (isa<Constant>(BI->getCondition()))
2230  return processFoldableCondBr(BI);
2231 
2232  Value *BranchCond = BI->getCondition();
2233  BasicBlock *TrueSucc = BI->getSuccessor(0);
2234  BasicBlock *FalseSucc = BI->getSuccessor(1);
2235  // Avoid multiple edges early.
2236  if (TrueSucc == FalseSucc)
2237  return false;
2238 
2239  BasicBlock *Parent = BI->getParent();
2240  bool Changed = false;
2241 
2242  Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2243  BasicBlockEdge TrueE(Parent, TrueSucc);
2244  Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
2245 
2246  Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2247  BasicBlockEdge FalseE(Parent, FalseSucc);
2248  Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
2249 
2250  return Changed;
2251  }
2252 
2253  // For switches, propagate the case values into the case destinations.
2254  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2255  Value *SwitchCond = SI->getCondition();
2256  BasicBlock *Parent = SI->getParent();
2257  bool Changed = false;
2258 
2259  // Remember how many outgoing edges there are to every successor.
2261  for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2262  ++SwitchEdges[SI->getSuccessor(i)];
2263 
2264  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2265  i != e; ++i) {
2266  BasicBlock *Dst = i.getCaseSuccessor();
2267  // If there is only a single edge, propagate the case value into it.
2268  if (SwitchEdges.lookup(Dst) == 1) {
2269  BasicBlockEdge E(Parent, Dst);
2270  Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
2271  }
2272  }
2273  return Changed;
2274  }
2275 
2276  // Instructions with void type don't return a value, so there's
2277  // no point in trying to find redundancies in them.
2278  if (I->getType()->isVoidTy()) return false;
2279 
2280  uint32_t NextNum = VN.getNextUnusedValueNumber();
2281  unsigned Num = VN.lookup_or_add(I);
2282 
2283  // Allocations are always uniquely numbered, so we can save time and memory
2284  // by fast failing them.
2285  if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
2286  addToLeaderTable(Num, I, I->getParent());
2287  return false;
2288  }
2289 
2290  // If the number we were assigned was a brand new VN, then we don't
2291  // need to do a lookup to see if the number already exists
2292  // somewhere in the domtree: it can't!
2293  if (Num >= NextNum) {
2294  addToLeaderTable(Num, I, I->getParent());
2295  return false;
2296  }
2297 
2298  // Perform fast-path value-number based elimination of values inherited from
2299  // dominators.
2300  Value *repl = findLeader(I->getParent(), Num);
2301  if (repl == 0) {
2302  // Failure, just remember this instance for future use.
2303  addToLeaderTable(Num, I, I->getParent());
2304  return false;
2305  }
2306 
2307  // Remove it!
2308  patchAndReplaceAllUsesWith(I, repl);
2309  if (MD && repl->getType()->getScalarType()->isPointerTy())
2310  MD->invalidateCachedPointerInfo(repl);
2311  markInstructionForDeletion(I);
2312  return true;
2313 }
2314 
2315 /// runOnFunction - This is the main transformation entry point for a function.
2316 bool GVN::runOnFunction(Function& F) {
2317  if (!NoLoads)
2318  MD = &getAnalysis<MemoryDependenceAnalysis>();
2319  DT = &getAnalysis<DominatorTree>();
2320  TD = getAnalysisIfAvailable<DataLayout>();
2321  TLI = &getAnalysis<TargetLibraryInfo>();
2322  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
2323  VN.setMemDep(MD);
2324  VN.setDomTree(DT);
2325 
2326  bool Changed = false;
2327  bool ShouldContinue = true;
2328 
2329  // Merge unconditional branches, allowing PRE to catch more
2330  // optimization opportunities.
2331  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2332  BasicBlock *BB = FI++;
2333 
2334  bool removedBlock = MergeBlockIntoPredecessor(BB, this);
2335  if (removedBlock) ++NumGVNBlocks;
2336 
2337  Changed |= removedBlock;
2338  }
2339 
2340  unsigned Iteration = 0;
2341  while (ShouldContinue) {
2342  DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2343  ShouldContinue = iterateOnFunction(F);
2344  Changed |= ShouldContinue;
2345  ++Iteration;
2346  }
2347 
2348  if (EnablePRE) {
2349  // Fabricate val-num for dead-code in order to suppress assertion in
2350  // performPRE().
2351  assignValNumForDeadCode();
2352  bool PREChanged = true;
2353  while (PREChanged) {
2354  PREChanged = performPRE(F);
2355  Changed |= PREChanged;
2356  }
2357  }
2358 
2359  // FIXME: Should perform GVN again after PRE does something. PRE can move
2360  // computations into blocks where they become fully redundant. Note that
2361  // we can't do this until PRE's critical edge splitting updates memdep.
2362  // Actually, when this happens, we should just fully integrate PRE into GVN.
2363 
2364  cleanupGlobalSets();
2365  // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2366  // iteration.
2367  DeadBlocks.clear();
2368 
2369  return Changed;
2370 }
2371 
2372 
2373 bool GVN::processBlock(BasicBlock *BB) {
2374  // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2375  // (and incrementing BI before processing an instruction).
2376  assert(InstrsToErase.empty() &&
2377  "We expect InstrsToErase to be empty across iterations");
2378  if (DeadBlocks.count(BB))
2379  return false;
2380 
2381  bool ChangedFunction = false;
2382 
2383  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2384  BI != BE;) {
2385  ChangedFunction |= processInstruction(BI);
2386  if (InstrsToErase.empty()) {
2387  ++BI;
2388  continue;
2389  }
2390 
2391  // If we need some instructions deleted, do it now.
2392  NumGVNInstr += InstrsToErase.size();
2393 
2394  // Avoid iterator invalidation.
2395  bool AtStart = BI == BB->begin();
2396  if (!AtStart)
2397  --BI;
2398 
2399  for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
2400  E = InstrsToErase.end(); I != E; ++I) {
2401  DEBUG(dbgs() << "GVN removed: " << **I << '\n');
2402  if (MD) MD->removeInstruction(*I);
2403  DEBUG(verifyRemoved(*I));
2404  (*I)->eraseFromParent();
2405  }
2406  InstrsToErase.clear();
2407 
2408  if (AtStart)
2409  BI = BB->begin();
2410  else
2411  ++BI;
2412  }
2413 
2414  return ChangedFunction;
2415 }
2416 
2417 /// performPRE - Perform a purely local form of PRE that looks for diamond
2418 /// control flow patterns and attempts to perform simple PRE at the join point.
2419 bool GVN::performPRE(Function &F) {
2420  bool Changed = false;
2423  DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
2424  BasicBlock *CurrentBlock = *DI;
2425 
2426  // Nothing to PRE in the entry block.
2427  if (CurrentBlock == &F.getEntryBlock()) continue;
2428 
2429  // Don't perform PRE on a landing pad.
2430  if (CurrentBlock->isLandingPad()) continue;
2431 
2432  for (BasicBlock::iterator BI = CurrentBlock->begin(),
2433  BE = CurrentBlock->end(); BI != BE; ) {
2434  Instruction *CurInst = BI++;
2435 
2436  if (isa<AllocaInst>(CurInst) ||
2437  isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
2438  CurInst->getType()->isVoidTy() ||
2439  CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2440  isa<DbgInfoIntrinsic>(CurInst))
2441  continue;
2442 
2443  // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2444  // sinking the compare again, and it would force the code generator to
2445  // move the i1 from processor flags or predicate registers into a general
2446  // purpose register.
2447  if (isa<CmpInst>(CurInst))
2448  continue;
2449 
2450  // We don't currently value number ANY inline asm calls.
2451  if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
2452  if (CallI->isInlineAsm())
2453  continue;
2454 
2455  uint32_t ValNo = VN.lookup(CurInst);
2456 
2457  // Look for the predecessors for PRE opportunities. We're
2458  // only trying to solve the basic diamond case, where
2459  // a value is computed in the successor and one predecessor,
2460  // but not the other. We also explicitly disallow cases
2461  // where the successor is its own predecessor, because they're
2462  // more complicated to get right.
2463  unsigned NumWith = 0;
2464  unsigned NumWithout = 0;
2465  BasicBlock *PREPred = 0;
2466  predMap.clear();
2467 
2468  for (pred_iterator PI = pred_begin(CurrentBlock),
2469  PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2470  BasicBlock *P = *PI;
2471  // We're not interested in PRE where the block is its
2472  // own predecessor, or in blocks with predecessors
2473  // that are not reachable.
2474  if (P == CurrentBlock) {
2475  NumWithout = 2;
2476  break;
2477  } else if (!DT->isReachableFromEntry(P)) {
2478  NumWithout = 2;
2479  break;
2480  }
2481 
2482  Value* predV = findLeader(P, ValNo);
2483  if (predV == 0) {
2484  predMap.push_back(std::make_pair(static_cast<Value *>(0), P));
2485  PREPred = P;
2486  ++NumWithout;
2487  } else if (predV == CurInst) {
2488  /* CurInst dominates this predecessor. */
2489  NumWithout = 2;
2490  break;
2491  } else {
2492  predMap.push_back(std::make_pair(predV, P));
2493  ++NumWith;
2494  }
2495  }
2496 
2497  // Don't do PRE when it might increase code size, i.e. when
2498  // we would need to insert instructions in more than one pred.
2499  if (NumWithout != 1 || NumWith == 0)
2500  continue;
2501 
2502  // Don't do PRE across indirect branch.
2503  if (isa<IndirectBrInst>(PREPred->getTerminator()))
2504  continue;
2505 
2506  // We can't do PRE safely on a critical edge, so instead we schedule
2507  // the edge to be split and perform the PRE the next time we iterate
2508  // on the function.
2509  unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2510  if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2511  toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2512  continue;
2513  }
2514 
2515  // Instantiate the expression in the predecessor that lacked it.
2516  // Because we are going top-down through the block, all value numbers
2517  // will be available in the predecessor by the time we need them. Any
2518  // that weren't originally present will have been instantiated earlier
2519  // in this loop.
2520  Instruction *PREInstr = CurInst->clone();
2521  bool success = true;
2522  for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2523  Value *Op = PREInstr->getOperand(i);
2524  if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2525  continue;
2526 
2527  if (Value *V = findLeader(PREPred, VN.lookup(Op))) {
2528  PREInstr->setOperand(i, V);
2529  } else {
2530  success = false;
2531  break;
2532  }
2533  }
2534 
2535  // Fail out if we encounter an operand that is not available in
2536  // the PRE predecessor. This is typically because of loads which
2537  // are not value numbered precisely.
2538  if (!success) {
2539  DEBUG(verifyRemoved(PREInstr));
2540  delete PREInstr;
2541  continue;
2542  }
2543 
2544  PREInstr->insertBefore(PREPred->getTerminator());
2545  PREInstr->setName(CurInst->getName() + ".pre");
2546  PREInstr->setDebugLoc(CurInst->getDebugLoc());
2547  VN.add(PREInstr, ValNo);
2548  ++NumGVNPRE;
2549 
2550  // Update the availability map to include the new instruction.
2551  addToLeaderTable(ValNo, PREInstr, PREPred);
2552 
2553  // Create a PHI to make the value available in this block.
2554  PHINode* Phi = PHINode::Create(CurInst->getType(), predMap.size(),
2555  CurInst->getName() + ".pre-phi",
2556  CurrentBlock->begin());
2557  for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2558  if (Value *V = predMap[i].first)
2559  Phi->addIncoming(V, predMap[i].second);
2560  else
2561  Phi->addIncoming(PREInstr, PREPred);
2562  }
2563 
2564  VN.add(Phi, ValNo);
2565  addToLeaderTable(ValNo, Phi, CurrentBlock);
2566  Phi->setDebugLoc(CurInst->getDebugLoc());
2567  CurInst->replaceAllUsesWith(Phi);
2568  if (Phi->getType()->getScalarType()->isPointerTy()) {
2569  // Because we have added a PHI-use of the pointer value, it has now
2570  // "escaped" from alias analysis' perspective. We need to inform
2571  // AA of this.
2572  for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee;
2573  ++ii) {
2574  unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
2575  VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
2576  }
2577 
2578  if (MD)
2579  MD->invalidateCachedPointerInfo(Phi);
2580  }
2581  VN.erase(CurInst);
2582  removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2583 
2584  DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2585  if (MD) MD->removeInstruction(CurInst);
2586  DEBUG(verifyRemoved(CurInst));
2587  CurInst->eraseFromParent();
2588  Changed = true;
2589  }
2590  }
2591 
2592  if (splitCriticalEdges())
2593  Changed = true;
2594 
2595  return Changed;
2596 }
2597 
2598 /// Split the critical edge connecting the given two blocks, and return
2599 /// the block inserted to the critical edge.
2600 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2601  BasicBlock *BB = SplitCriticalEdge(Pred, Succ, this);
2602  if (MD)
2603  MD->invalidateCachedPredecessors();
2604  return BB;
2605 }
2606 
2607 /// splitCriticalEdges - Split critical edges found during the previous
2608 /// iteration that may enable further optimization.
2609 bool GVN::splitCriticalEdges() {
2610  if (toSplit.empty())
2611  return false;
2612  do {
2613  std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
2614  SplitCriticalEdge(Edge.first, Edge.second, this);
2615  } while (!toSplit.empty());
2616  if (MD) MD->invalidateCachedPredecessors();
2617  return true;
2618 }
2619 
2620 /// iterateOnFunction - Executes one iteration of GVN
2621 bool GVN::iterateOnFunction(Function &F) {
2622  cleanupGlobalSets();
2623 
2624  // Top-down walk of the dominator tree
2625  bool Changed = false;
2626 #if 0
2627  // Needed for value numbering with phi construction to work.
2630  RE = RPOT.end(); RI != RE; ++RI)
2631  Changed |= processBlock(*RI);
2632 #else
2633  // Save the blocks this function have before transformation begins. GVN may
2634  // split critical edge, and hence may invalidate the RPO/DT iterator.
2635  //
2636  std::vector<BasicBlock *> BBVect;
2637  BBVect.reserve(256);
2638  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2639  DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2640  BBVect.push_back(DI->getBlock());
2641 
2642  for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
2643  I != E; I++)
2644  Changed |= processBlock(*I);
2645 #endif
2646 
2647  return Changed;
2648 }
2649 
2650 void GVN::cleanupGlobalSets() {
2651  VN.clear();
2652  LeaderTable.clear();
2653  TableAllocator.Reset();
2654 }
2655 
2656 /// verifyRemoved - Verify that the specified instruction does not occur in our
2657 /// internal data structures.
2658 void GVN::verifyRemoved(const Instruction *Inst) const {
2659  VN.verifyRemoved(Inst);
2660 
2661  // Walk through the value number scope to make sure the instruction isn't
2662  // ferreted away in it.
2664  I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
2665  const LeaderTableEntry *Node = &I->second;
2666  assert(Node->Val != Inst && "Inst still in value numbering scope!");
2667 
2668  while (Node->Next) {
2669  Node = Node->Next;
2670  assert(Node->Val != Inst && "Inst still in value numbering scope!");
2671  }
2672  }
2673 }
2674 
2675 // BB is declared dead, which implied other blocks become dead as well. This
2676 // function is to add all these blocks to "DeadBlocks". For the dead blocks'
2677 // live successors, update their phi nodes by replacing the operands
2678 // corresponding to dead blocks with UndefVal.
2679 //
2680 void GVN::addDeadBlock(BasicBlock *BB) {
2683 
2684  NewDead.push_back(BB);
2685  while (!NewDead.empty()) {
2686  BasicBlock *D = NewDead.pop_back_val();
2687  if (DeadBlocks.count(D))
2688  continue;
2689 
2690  // All blocks dominated by D are dead.
2692  DT->getDescendants(D, Dom);
2693  DeadBlocks.insert(Dom.begin(), Dom.end());
2694 
2695  // Figure out the dominance-frontier(D).
2697  E = Dom.end(); I != E; I++) {
2698  BasicBlock *B = *I;
2699  for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
2700  BasicBlock *S = *SI;
2701  if (DeadBlocks.count(S))
2702  continue;
2703 
2704  bool AllPredDead = true;
2705  for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
2706  if (!DeadBlocks.count(*PI)) {
2707  AllPredDead = false;
2708  break;
2709  }
2710 
2711  if (!AllPredDead) {
2712  // S could be proved dead later on. That is why we don't update phi
2713  // operands at this moment.
2714  DF.insert(S);
2715  } else {
2716  // While S is not dominated by D, it is dead by now. This could take
2717  // place if S already have a dead predecessor before D is declared
2718  // dead.
2719  NewDead.push_back(S);
2720  }
2721  }
2722  }
2723  }
2724 
2725  // For the dead blocks' live successors, update their phi nodes by replacing
2726  // the operands corresponding to dead blocks with UndefVal.
2727  for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
2728  I != E; I++) {
2729  BasicBlock *B = *I;
2730  if (DeadBlocks.count(B))
2731  continue;
2732 
2734  for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
2735  PE = Preds.end(); PI != PE; PI++) {
2736  BasicBlock *P = *PI;
2737 
2738  if (!DeadBlocks.count(P))
2739  continue;
2740 
2741  if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
2742  if (BasicBlock *S = splitCriticalEdges(P, B))
2743  DeadBlocks.insert(P = S);
2744  }
2745 
2746  for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
2747  PHINode &Phi = cast<PHINode>(*II);
2749  UndefValue::get(Phi.getType()));
2750  }
2751  }
2752  }
2753 }
2754 
2755 // If the given branch is recognized as a foldable branch (i.e. conditional
2756 // branch with constant condition), it will perform following analyses and
2757 // transformation.
2758 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2759 // R be the target of the dead out-coming edge.
2760 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2761 // edge. The result of this step will be {X| X is dominated by R}
2762 // 2) Identify those blocks which haves at least one dead prodecessor. The
2763 // result of this step will be dominance-frontier(R).
2764 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2765 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2766 //
2767 // Return true iff *NEW* dead code are found.
2768 bool GVN::processFoldableCondBr(BranchInst *BI) {
2769  if (!BI || BI->isUnconditional())
2770  return false;
2771 
2772  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
2773  if (!Cond)
2774  return false;
2775 
2776  BasicBlock *DeadRoot = Cond->getZExtValue() ?
2777  BI->getSuccessor(1) : BI->getSuccessor(0);
2778  if (DeadBlocks.count(DeadRoot))
2779  return false;
2780 
2781  if (!DeadRoot->getSinglePredecessor())
2782  DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
2783 
2784  addDeadBlock(DeadRoot);
2785  return true;
2786 }
2787 
2788 // performPRE() will trigger assert if it come across an instruciton without
2789 // associated val-num. As it normally has far more live instructions than dead
2790 // instructions, it makes more sense just to "fabricate" a val-number for the
2791 // dead code than checking if instruction involved is dead or not.
2792 void GVN::assignValNumForDeadCode() {
2793  for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
2794  E = DeadBlocks.end(); I != E; I++) {
2795  BasicBlock *BB = *I;
2796  for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
2797  II != EE; II++) {
2798  Instruction *Inst = &*II;
2799  unsigned ValNum = VN.lookup_or_add(Inst);
2800  addToLeaderTable(ValNum, Inst, BB);
2801  }
2802  }
2803 }
static Value * GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &TD)
Definition: GVN.cpp:1210
const Use & getOperandUse(unsigned i) const
Definition: User.h:99
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:467
Value * getValueOperand()
Definition: Instructions.h:343
FunctionPass * createGVNPass(bool NoLoads=false)
Definition: GVN.cpp:724
static cl::opt< bool > EnableLoadPRE("enable-load-pre", cl::init(true))
use_iterator use_end()
Definition: Value.h:152
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
void setHasNoSignedWrap(bool b=true)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
AnalysisUsage & addPreserved()
raw_ostream & errs()
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:37
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:832
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:45
iterator end()
Definition: Function.h:397
Intrinsic::ID getIntrinsicID() const
Definition: IntrinsicInst.h:43
BasicBlock * SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P=0, bool MergeIdenticalEdges=false, bool DontDeleteUselessPHIs=false, bool SplitLandingPads=false)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
const BasicBlock * getStart() const
Definition: Dominators.h:727
unsigned getNumOperands() const
Definition: User.h:108
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value...
Definition: SSAUpdater.cpp:58
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout *TD)
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
static bool isEqual(const Expression &LHS, const Expression &RHS)
Definition: GVN.cpp:152
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool mayHaveSideEffects() const
Definition: Instruction.h:324
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
STATISTIC(NumGVNInstr,"Number of instructions deleted")
static Value * GetStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, const DataLayout &TD)
Definition: GVN.cpp:1111
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
unsigned GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ)
Definition: CFG.cpp:73
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &TD)
Definition: GVN.cpp:1016
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: Type.cpp:218
static Expression getEmptyKey()
Definition: GVN.cpp:140
static Value * CoerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy, Instruction *InsertPt, const DataLayout &TD)
Definition: GVN.cpp:855
bool isSimple() const
Definition: Instructions.h:218
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:79
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
void WriteAsOperand(raw_ostream &, const Value *, bool PrintTy=true, const Module *Context=0)
Definition: AsmWriter.cpp:1179
static unsigned getHashValue(const Expression e)
Definition: GVN.cpp:148
static unsigned getOperandNumForIncomingValue(unsigned i)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
bool isUnconditional() const
static cl::opt< uint32_t > MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, cl::desc("Max recurse depth (default = 1000)"))
void dump() const
dump - Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:2212
static cl::opt< bool > EnablePRE("enable-pre", cl::init(true), cl::Hidden)
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
unsigned getNumArgOperands() const
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
unsigned getNumIndices() const
bool MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P=0)
void setName(const Twine &Name)
Definition: Value.cpp:175
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Instruction * clone() const
static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, const LoadInst *LI, const DataLayout &TD)
#define false
Definition: ConvertUTF.c:64
This class represents a cast from a pointer to an integer.
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
virtual void copyValue(Value *From, Value *To)
static void patchReplacementInstruction(Instruction *I, Value *Repl)
Definition: GVN.cpp:1760
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
bool mayReadFromMemory() const
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, unsigned len)
General addition of 64-bit integer arrays.
Definition: APInt.cpp:237
BasicBlock * getSuccessor(unsigned i) const
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:69
This class represents a no-op cast from one type to another.
virtual void addEscapingUse(Use &U)
hash_code hash_value(const APFloat &Arg)
Definition: APFloat.cpp:2814
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:195
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
bool isArrayTy() const
Definition: Type.h:216
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &TD)
Definition: GVN.cpp:1033
This class represents a truncation of integer types.
static Value * GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy, Instruction *InsertPt, GVN &gvn)
Definition: GVN.cpp:1150
unsigned getNumIncomingValues() const
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define P(N)
static MDNode * getMostGenericRange(MDNode *A, MDNode *B)
Definition: Metadata.cpp:454
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
Value * GetValueInMiddleOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live in the middle of the specified block...
Definition: SSAUpdater.cpp:86
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
* if(!EatIfPresent(lltok::kw_thread_local)) return false
void set(Value *Val)
Definition: Value.h:356
void insertBefore(Instruction *InsertPos)
Definition: Instruction.cpp:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:473
df_iterator< T > df_end(const T &G)
static Value * ConstructSSAForLoadSet(LoadInst *LI, SmallVectorImpl< AvailableValueInBlock > &ValuesPerBlock, GVN &gvn)
Definition: GVN.cpp:1268
LLVM Constant Representation.
Definition: Constant.h:41
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3, const T4 &arg4, const T5 &arg5, const T6 &arg6)
Definition: Hashing.h:674
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
op_iterator op_end()
Definition: User.h:118
Represent an integer comparison operator.
Definition: Instructions.h:911
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
Value * getPointerOperand()
Definition: Instructions.h:223
bool isCommutative() const
Definition: Instruction.h:269
const MemDepResult & getResult() const
bool HasValueForBlock(BasicBlock *BB) const
Return true if the SSAUpdater already has a value for the specified block.
Definition: SSAUpdater.cpp:54
Constant * ConstantFoldLoadFromConstPtr(Constant *C, const DataLayout *TD=0)
static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy, const DataLayout &TD)
Definition: GVN.cpp:831
Location - A description of a memory location.
void setAlignment(unsigned Align)
This class represents a cast from an integer to a pointer.
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
static MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
Methods for metadata merging.
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
uint64_t NextPowerOf2(uint64_t A)
Definition: MathExtras.h:546
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
std::vector< NodeType * >::reverse_iterator rpo_iterator
const BasicBlock * getEnd() const
Definition: Dominators.h:730
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:218
Class for constant integers.
Definition: Constants.h:51
Value * getDest() const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
Value * getLength() const
std::vector< NonLocalDepEntry > NonLocalDepInfo
Predicate getSwappedPredicate() const
Return the predicate as if the operands were swapped.
Definition: InstrTypes.h:753
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isAllOnesValue() const
Definition: Constants.cpp:88
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
df_iterator< T > df_begin(const T &G)
Value * getArgOperand(unsigned i) const
bool isConstant() const
bool isIntegerTy() const
Definition: Type.h:196
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:487
idx_iterator idx_end() const
An opaque object representing a hash code.
Definition: Hashing.h:79
bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates uninitialized memory (such ...
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
bool isStructTy() const
Definition: Type.h:212
use_iterator use_begin()
Definition: Value.h:150
Value * getSource() const
static bool isLifetimeStart(const Instruction *Inst)
Definition: GVN.cpp:1364
static const uint16_t * lookup(unsigned opcode, unsigned domain)
Instruction * getInst() const
Value * getCondition() const
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:360
bool hasOneUse() const
Definition: Value.h:161
const Type * getScalarType() const
Definition: Type.cpp:51
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
uint64_t getTypeStoreSize(Type *Ty) const
Definition: DataLayout.h:311
static Expression getTombstoneKey()
Definition: GVN.cpp:144
bool use_empty() const
Definition: Value.h:149
Use * op_iterator
Definition: User.h:113
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
static bool IsValueFullyAvailableInBlock(BasicBlock *BB, DenseMap< BasicBlock *, char > &FullyAvailableBlocks, uint32_t RecurseDepth)
Definition: GVN.cpp:757
LLVM Value Representation.
Definition: Value.h:66
bool hasNoUnsignedWrap() const
hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
vector_type::const_iterator iterator
Definition: SetVector.h:45
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
A vector that has set insertion semantics.
Definition: SetVector.h:37
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
#define DEBUG(X)
Definition: Debug.h:97
static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *MI, const DataLayout &TD)
Definition: GVN.cpp:1060
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl)
Definition: GVN.cpp:1802
idx_iterator idx_begin() const
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1684
void setIncomingValue(unsigned i, Value *V)
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:408
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
bool isBigEndian() const
Definition: DataLayout.h:196
Value * getPointerOperand()
Definition: Instructions.h:346
int getBasicBlockIndex(const BasicBlock *BB) const
const BasicBlock * getParent() const
Definition: Instruction.h:52
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:99
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, Value *WritePtr, uint64_t WriteSizeInBits, const DataLayout &TD)
Definition: GVN.cpp:942
static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, DominatorTree *DT)
Definition: GVN.cpp:2046
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Definition: CFG.cpp:88
void initializeGVNPass(PassRegistry &)