LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MachineLICM.cpp
Go to the documentation of this file.
1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
12 //
13 // This pass does not attempt to throttle itself to limit register pressure.
14 // The register allocation phases are expected to perform rematerialization
15 // to recover when register pressure is high.
16 //
17 // This pass is not intended to be a replacement or a complete alternative
18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19 // constructs that are not exposed before lowering and instruction selection.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #define DEBUG_TYPE "machine-licm"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Support/Debug.h"
43 using namespace llvm;
44 
45 static cl::opt<bool>
46 AvoidSpeculation("avoid-speculation",
47  cl::desc("MachineLICM should avoid speculation"),
48  cl::init(true), cl::Hidden);
49 
50 STATISTIC(NumHoisted,
51  "Number of machine instructions hoisted out of loops");
52 STATISTIC(NumLowRP,
53  "Number of instructions hoisted in low reg pressure situation");
54 STATISTIC(NumHighLatency,
55  "Number of high latency instructions hoisted");
56 STATISTIC(NumCSEed,
57  "Number of hoisted machine instructions CSEed");
58 STATISTIC(NumPostRAHoisted,
59  "Number of machine instructions hoisted out of loops post regalloc");
60 
61 namespace {
62  class MachineLICM : public MachineFunctionPass {
63  const TargetMachine *TM;
64  const TargetInstrInfo *TII;
65  const TargetLoweringBase *TLI;
66  const TargetRegisterInfo *TRI;
67  const MachineFrameInfo *MFI;
69  const InstrItineraryData *InstrItins;
70  bool PreRegAlloc;
71 
72  // Various analyses that we use...
73  AliasAnalysis *AA; // Alias analysis info.
74  MachineLoopInfo *MLI; // Current MachineLoopInfo
75  MachineDominatorTree *DT; // Machine dominator tree for the cur loop
76 
77  // State that is updated as we process loops
78  bool Changed; // True if a loop is changed.
79  bool FirstInLoop; // True if it's the first LICM in the loop.
80  MachineLoop *CurLoop; // The current loop we are working on.
81  MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
82 
83  // Exit blocks for CurLoop.
85 
86  bool isExitBlock(const MachineBasicBlock *MBB) const {
87  return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
88  ExitBlocks.end();
89  }
90 
91  // Track 'estimated' register pressure.
92  SmallSet<unsigned, 32> RegSeen;
94 
95  // Register pressure "limit" per register class. If the pressure
96  // is higher than the limit, then it's considered high.
97  SmallVector<unsigned, 8> RegLimit;
98 
99  // Register pressure on path leading from loop preheader to current BB.
101 
102  // For each opcode, keep a list of potential CSE instructions.
104 
105  enum {
106  SpeculateFalse = 0,
107  SpeculateTrue = 1,
108  SpeculateUnknown = 2
109  };
110 
111  // If a MBB does not dominate loop exiting blocks then it may not safe
112  // to hoist loads from this block.
113  // Tri-state: 0 - false, 1 - true, 2 - unknown
114  unsigned SpeculationState;
115 
116  public:
117  static char ID; // Pass identification, replacement for typeid
118  MachineLICM() :
119  MachineFunctionPass(ID), PreRegAlloc(true) {
121  }
122 
123  explicit MachineLICM(bool PreRA) :
124  MachineFunctionPass(ID), PreRegAlloc(PreRA) {
126  }
127 
128  virtual bool runOnMachineFunction(MachineFunction &MF);
129 
130  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
137  }
138 
139  virtual void releaseMemory() {
140  RegSeen.clear();
141  RegPressure.clear();
142  RegLimit.clear();
143  BackTrace.clear();
144  for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
145  CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
146  CI->second.clear();
147  CSEMap.clear();
148  }
149 
150  private:
151  /// CandidateInfo - Keep track of information about hoisting candidates.
152  struct CandidateInfo {
153  MachineInstr *MI;
154  unsigned Def;
155  int FI;
156  CandidateInfo(MachineInstr *mi, unsigned def, int fi)
157  : MI(mi), Def(def), FI(fi) {}
158  };
159 
160  /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
161  /// invariants out to the preheader.
162  void HoistRegionPostRA();
163 
164  /// HoistPostRA - When an instruction is found to only use loop invariant
165  /// operands that is safe to hoist, this instruction is called to do the
166  /// dirty work.
167  void HoistPostRA(MachineInstr *MI, unsigned Def);
168 
169  /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
170  /// gather register def and frame object update information.
171  void ProcessMI(MachineInstr *MI,
172  BitVector &PhysRegDefs,
173  BitVector &PhysRegClobbers,
174  SmallSet<int, 32> &StoredFIs,
175  SmallVectorImpl<CandidateInfo> &Candidates);
176 
177  /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
178  /// current loop.
179  void AddToLiveIns(unsigned Reg);
180 
181  /// IsLICMCandidate - Returns true if the instruction may be a suitable
182  /// candidate for LICM. e.g. If the instruction is a call, then it's
183  /// obviously not safe to hoist it.
184  bool IsLICMCandidate(MachineInstr &I);
185 
186  /// IsLoopInvariantInst - Returns true if the instruction is loop
187  /// invariant. I.e., all virtual register operands are defined outside of
188  /// the loop, physical registers aren't accessed (explicitly or implicitly),
189  /// and the instruction is hoistable.
190  ///
191  bool IsLoopInvariantInst(MachineInstr &I);
192 
193  /// HasLoopPHIUse - Return true if the specified instruction is used by any
194  /// phi node in the current loop.
195  bool HasLoopPHIUse(const MachineInstr *MI) const;
196 
197  /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
198  /// and an use in the current loop, return true if the target considered
199  /// it 'high'.
200  bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
201  unsigned Reg) const;
202 
203  bool IsCheapInstruction(MachineInstr &MI) const;
204 
205  /// CanCauseHighRegPressure - Visit BBs from header to current BB,
206  /// check if hoisting an instruction of the given cost matrix can cause high
207  /// register pressure.
208  bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap);
209 
210  /// UpdateBackTraceRegPressure - Traverse the back trace from header to
211  /// the current block and update their register pressures to reflect the
212  /// effect of hoisting MI from the current block to the preheader.
213  void UpdateBackTraceRegPressure(const MachineInstr *MI);
214 
215  /// IsProfitableToHoist - Return true if it is potentially profitable to
216  /// hoist the given loop invariant.
217  bool IsProfitableToHoist(MachineInstr &MI);
218 
219  /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
220  /// If not then a load from this mbb may not be safe to hoist.
221  bool IsGuaranteedToExecute(MachineBasicBlock *BB);
222 
223  void EnterScope(MachineBasicBlock *MBB);
224 
225  void ExitScope(MachineBasicBlock *MBB);
226 
227  /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
228  /// dominator tree node if its a leaf or all of its children are done. Walk
229  /// up the dominator tree to destroy ancestors which are now done.
230  void ExitScopeIfDone(MachineDomTreeNode *Node,
233 
234  /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
235  /// blocks dominated by the specified header block, and that are in the
236  /// current loop) in depth first order w.r.t the DominatorTree. This allows
237  /// us to visit definitions before uses, allowing us to hoist a loop body in
238  /// one pass without iteration.
239  ///
240  void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
241  void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
242 
243  /// getRegisterClassIDAndCost - For a given MI, register, and the operand
244  /// index, return the ID and cost of its representative register class by
245  /// reference.
246  void getRegisterClassIDAndCost(const MachineInstr *MI,
247  unsigned Reg, unsigned OpIdx,
248  unsigned &RCId, unsigned &RCCost) const;
249 
250  /// InitRegPressure - Find all virtual register references that are liveout
251  /// of the preheader to initialize the starting "register pressure". Note
252  /// this does not count live through (livein but not used) registers.
253  void InitRegPressure(MachineBasicBlock *BB);
254 
255  /// UpdateRegPressure - Update estimate of register pressure after the
256  /// specified instruction.
257  void UpdateRegPressure(const MachineInstr *MI);
258 
259  /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
260  /// the load itself could be hoisted. Return the unfolded and hoistable
261  /// load, or null if the load couldn't be unfolded or if it wouldn't
262  /// be hoistable.
263  MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
264 
265  /// LookForDuplicate - Find an instruction amount PrevMIs that is a
266  /// duplicate of MI. Return this instruction if it's found.
267  const MachineInstr *LookForDuplicate(const MachineInstr *MI,
268  std::vector<const MachineInstr*> &PrevMIs);
269 
270  /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
271  /// the preheader that compute the same value. If it's found, do a RAU on
272  /// with the definition of the existing instruction rather than hoisting
273  /// the instruction to the preheader.
274  bool EliminateCSE(MachineInstr *MI,
275  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
276 
277  /// MayCSE - Return true if the given instruction will be CSE'd if it's
278  /// hoisted out of the loop.
279  bool MayCSE(MachineInstr *MI);
280 
281  /// Hoist - When an instruction is found to only use loop invariant operands
282  /// that is safe to hoist, this instruction is called to do the dirty work.
283  /// It returns true if the instruction is hoisted.
284  bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
285 
286  /// InitCSEMap - Initialize the CSE map with instructions that are in the
287  /// current loop preheader that may become duplicates of instructions that
288  /// are hoisted out of the loop.
289  void InitCSEMap(MachineBasicBlock *BB);
290 
291  /// getCurPreheader - Get the preheader for the current loop, splitting
292  /// a critical edge if needed.
293  MachineBasicBlock *getCurPreheader();
294  };
295 } // end anonymous namespace
296 
297 char MachineLICM::ID = 0;
299 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
300  "Machine Loop Invariant Code Motion", false, false)
305  "Machine Loop Invariant Code Motion", false, false)
306 
307 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
308 /// loop that has a unique predecessor.
310  // Check whether this loop even has a unique predecessor.
311  if (!CurLoop->getLoopPredecessor())
312  return false;
313  // Ok, now check to see if any of its outer loops do.
314  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
315  if (L->getLoopPredecessor())
316  return false;
317  // None of them did, so this is the outermost with a unique predecessor.
318  return true;
319 }
320 
321 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
322  Changed = FirstInLoop = false;
323  TM = &MF.getTarget();
324  TII = TM->getInstrInfo();
325  TLI = TM->getTargetLowering();
326  TRI = TM->getRegisterInfo();
327  MFI = MF.getFrameInfo();
328  MRI = &MF.getRegInfo();
329  InstrItins = TM->getInstrItineraryData();
330 
331  PreRegAlloc = MRI->isSSA();
332 
333  if (PreRegAlloc)
334  DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
335  else
336  DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
337  DEBUG(dbgs() << MF.getName() << " ********\n");
338 
339  if (PreRegAlloc) {
340  // Estimate register pressure during pre-regalloc pass.
341  unsigned NumRC = TRI->getNumRegClasses();
342  RegPressure.resize(NumRC);
343  std::fill(RegPressure.begin(), RegPressure.end(), 0);
344  RegLimit.resize(NumRC);
345  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
346  E = TRI->regclass_end(); I != E; ++I)
347  RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
348  }
349 
350  // Get our Loop information...
351  MLI = &getAnalysis<MachineLoopInfo>();
352  DT = &getAnalysis<MachineDominatorTree>();
353  AA = &getAnalysis<AliasAnalysis>();
354 
355  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
356  while (!Worklist.empty()) {
357  CurLoop = Worklist.pop_back_val();
358  CurPreheader = 0;
359  ExitBlocks.clear();
360 
361  // If this is done before regalloc, only visit outer-most preheader-sporting
362  // loops.
363  if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
364  Worklist.append(CurLoop->begin(), CurLoop->end());
365  continue;
366  }
367 
368  CurLoop->getExitBlocks(ExitBlocks);
369 
370  if (!PreRegAlloc)
371  HoistRegionPostRA();
372  else {
373  // CSEMap is initialized for loop header when the first instruction is
374  // being hoisted.
375  MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
376  FirstInLoop = true;
377  HoistOutOfLoop(N);
378  CSEMap.clear();
379  }
380  }
381 
382  return Changed;
383 }
384 
385 /// InstructionStoresToFI - Return true if instruction stores to the
386 /// specified frame.
387 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
389  oe = MI->memoperands_end(); o != oe; ++o) {
390  if (!(*o)->isStore() || !(*o)->getValue())
391  continue;
393  dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
394  if (Value->getFrameIndex() == FI)
395  return true;
396  }
397  }
398  return false;
399 }
400 
401 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
402 /// gather register def and frame object update information.
403 void MachineLICM::ProcessMI(MachineInstr *MI,
404  BitVector &PhysRegDefs,
405  BitVector &PhysRegClobbers,
406  SmallSet<int, 32> &StoredFIs,
407  SmallVectorImpl<CandidateInfo> &Candidates) {
408  bool RuledOut = false;
409  bool HasNonInvariantUse = false;
410  unsigned Def = 0;
411  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
412  const MachineOperand &MO = MI->getOperand(i);
413  if (MO.isFI()) {
414  // Remember if the instruction stores to the frame index.
415  int FI = MO.getIndex();
416  if (!StoredFIs.count(FI) &&
417  MFI->isSpillSlotObjectIndex(FI) &&
418  InstructionStoresToFI(MI, FI))
419  StoredFIs.insert(FI);
420  HasNonInvariantUse = true;
421  continue;
422  }
423 
424  // We can't hoist an instruction defining a physreg that is clobbered in
425  // the loop.
426  if (MO.isRegMask()) {
427  PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
428  continue;
429  }
430 
431  if (!MO.isReg())
432  continue;
433  unsigned Reg = MO.getReg();
434  if (!Reg)
435  continue;
437  "Not expecting virtual register!");
438 
439  if (!MO.isDef()) {
440  if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
441  // If it's using a non-loop-invariant register, then it's obviously not
442  // safe to hoist.
443  HasNonInvariantUse = true;
444  continue;
445  }
446 
447  if (MO.isImplicit()) {
448  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
449  PhysRegClobbers.set(*AI);
450  if (!MO.isDead())
451  // Non-dead implicit def? This cannot be hoisted.
452  RuledOut = true;
453  // No need to check if a dead implicit def is also defined by
454  // another instruction.
455  continue;
456  }
457 
458  // FIXME: For now, avoid instructions with multiple defs, unless
459  // it's a dead implicit def.
460  if (Def)
461  RuledOut = true;
462  else
463  Def = Reg;
464 
465  // If we have already seen another instruction that defines the same
466  // register, then this is not safe. Two defs is indicated by setting a
467  // PhysRegClobbers bit.
468  for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
469  if (PhysRegDefs.test(*AS))
470  PhysRegClobbers.set(*AS);
471  PhysRegDefs.set(*AS);
472  }
473  if (PhysRegClobbers.test(Reg))
474  // MI defined register is seen defined by another instruction in
475  // the loop, it cannot be a LICM candidate.
476  RuledOut = true;
477  }
478 
479  // Only consider reloads for now and remats which do not have register
480  // operands. FIXME: Consider unfold load folding instructions.
481  if (Def && !RuledOut) {
482  int FI = INT_MIN;
483  if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
484  (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
485  Candidates.push_back(CandidateInfo(MI, Def, FI));
486  }
487 }
488 
489 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
490 /// invariants out to the preheader.
491 void MachineLICM::HoistRegionPostRA() {
492  MachineBasicBlock *Preheader = getCurPreheader();
493  if (!Preheader)
494  return;
495 
496  unsigned NumRegs = TRI->getNumRegs();
497  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
498  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
499 
501  SmallSet<int, 32> StoredFIs;
502 
503  // Walk the entire region, count number of defs for each register, and
504  // collect potential LICM candidates.
505  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
506  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
507  MachineBasicBlock *BB = Blocks[i];
508 
509  // If the header of the loop containing this basic block is a landing pad,
510  // then don't try to hoist instructions out of this loop.
511  const MachineLoop *ML = MLI->getLoopFor(BB);
512  if (ML && ML->getHeader()->isLandingPad()) continue;
513 
514  // Conservatively treat live-in's as an external def.
515  // FIXME: That means a reload that're reused in successor block(s) will not
516  // be LICM'ed.
518  E = BB->livein_end(); I != E; ++I) {
519  unsigned Reg = *I;
520  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
521  PhysRegDefs.set(*AI);
522  }
523 
524  SpeculationState = SpeculateUnknown;
526  MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
527  MachineInstr *MI = &*MII;
528  ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
529  }
530  }
531 
532  // Gather the registers read / clobbered by the terminator.
533  BitVector TermRegs(NumRegs);
535  if (TI != Preheader->end()) {
536  for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
537  const MachineOperand &MO = TI->getOperand(i);
538  if (!MO.isReg())
539  continue;
540  unsigned Reg = MO.getReg();
541  if (!Reg)
542  continue;
543  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
544  TermRegs.set(*AI);
545  }
546  }
547 
548  // Now evaluate whether the potential candidates qualify.
549  // 1. Check if the candidate defined register is defined by another
550  // instruction in the loop.
551  // 2. If the candidate is a load from stack slot (always true for now),
552  // check if the slot is stored anywhere in the loop.
553  // 3. Make sure candidate def should not clobber
554  // registers read by the terminator. Similarly its def should not be
555  // clobbered by the terminator.
556  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
557  if (Candidates[i].FI != INT_MIN &&
558  StoredFIs.count(Candidates[i].FI))
559  continue;
560 
561  unsigned Def = Candidates[i].Def;
562  if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
563  bool Safe = true;
564  MachineInstr *MI = Candidates[i].MI;
565  for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
566  const MachineOperand &MO = MI->getOperand(j);
567  if (!MO.isReg() || MO.isDef() || !MO.getReg())
568  continue;
569  unsigned Reg = MO.getReg();
570  if (PhysRegDefs.test(Reg) ||
571  PhysRegClobbers.test(Reg)) {
572  // If it's using a non-loop-invariant register, then it's obviously
573  // not safe to hoist.
574  Safe = false;
575  break;
576  }
577  }
578  if (Safe)
579  HoistPostRA(MI, Candidates[i].Def);
580  }
581  }
582 }
583 
584 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
585 /// loop, and make sure it is not killed by any instructions in the loop.
586 void MachineLICM::AddToLiveIns(unsigned Reg) {
587  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
588  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
589  MachineBasicBlock *BB = Blocks[i];
590  if (!BB->isLiveIn(Reg))
591  BB->addLiveIn(Reg);
593  MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
594  MachineInstr *MI = &*MII;
595  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
596  MachineOperand &MO = MI->getOperand(i);
597  if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
598  if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
599  MO.setIsKill(false);
600  }
601  }
602  }
603 }
604 
605 /// HoistPostRA - When an instruction is found to only use loop invariant
606 /// operands that is safe to hoist, this instruction is called to do the
607 /// dirty work.
608 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
609  MachineBasicBlock *Preheader = getCurPreheader();
610 
611  // Now move the instructions to the predecessor, inserting it before any
612  // terminator instructions.
613  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
614  << MI->getParent()->getNumber() << ": " << *MI);
615 
616  // Splice the instruction to the preheader.
617  MachineBasicBlock *MBB = MI->getParent();
618  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
619 
620  // Add register to livein list to all the BBs in the current loop since a
621  // loop invariant must be kept live throughout the whole loop. This is
622  // important to ensure later passes do not scavenge the def register.
623  AddToLiveIns(Def);
624 
625  ++NumPostRAHoisted;
626  Changed = true;
627 }
628 
629 // IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
630 // If not then a load from this mbb may not be safe to hoist.
631 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
632  if (SpeculationState != SpeculateUnknown)
633  return SpeculationState == SpeculateFalse;
634 
635  if (BB != CurLoop->getHeader()) {
636  // Check loop exiting blocks.
637  SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
638  CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
639  for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
640  if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
641  SpeculationState = SpeculateTrue;
642  return false;
643  }
644  }
645 
646  SpeculationState = SpeculateFalse;
647  return true;
648 }
649 
650 void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
651  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
652 
653  // Remember livein register pressure.
654  BackTrace.push_back(RegPressure);
655 }
656 
657 void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
658  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
659  BackTrace.pop_back();
660 }
661 
662 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
663 /// dominator tree node if its a leaf or all of its children are done. Walk
664 /// up the dominator tree to destroy ancestors which are now done.
665 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
668  if (OpenChildren[Node])
669  return;
670 
671  // Pop scope.
672  ExitScope(Node->getBlock());
673 
674  // Now traverse upwards to pop ancestors whose offsprings are all done.
675  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
676  unsigned Left = --OpenChildren[Parent];
677  if (Left != 0)
678  break;
679  ExitScope(Parent->getBlock());
680  Node = Parent;
681  }
682 }
683 
684 /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
685 /// blocks dominated by the specified header block, and that are in the
686 /// current loop) in depth first order w.r.t the DominatorTree. This allows
687 /// us to visit definitions before uses, allowing us to hoist a loop body in
688 /// one pass without iteration.
689 ///
690 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
695 
696  // Perform a DFS walk to determine the order of visit.
697  WorkList.push_back(HeaderN);
698  do {
699  MachineDomTreeNode *Node = WorkList.pop_back_val();
700  assert(Node != 0 && "Null dominator tree node?");
701  MachineBasicBlock *BB = Node->getBlock();
702 
703  // If the header of the loop containing this basic block is a landing pad,
704  // then don't try to hoist instructions out of this loop.
705  const MachineLoop *ML = MLI->getLoopFor(BB);
706  if (ML && ML->getHeader()->isLandingPad())
707  continue;
708 
709  // If this subregion is not in the top level loop at all, exit.
710  if (!CurLoop->contains(BB))
711  continue;
712 
713  Scopes.push_back(Node);
714  const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
715  unsigned NumChildren = Children.size();
716 
717  // Don't hoist things out of a large switch statement. This often causes
718  // code to be hoisted that wasn't going to be executed, and increases
719  // register pressure in a situation where it's likely to matter.
720  if (BB->succ_size() >= 25)
721  NumChildren = 0;
722 
723  OpenChildren[Node] = NumChildren;
724  // Add children in reverse order as then the next popped worklist node is
725  // the first child of this node. This means we ultimately traverse the
726  // DOM tree in exactly the same order as if we'd recursed.
727  for (int i = (int)NumChildren-1; i >= 0; --i) {
728  MachineDomTreeNode *Child = Children[i];
729  ParentMap[Child] = Node;
730  WorkList.push_back(Child);
731  }
732  } while (!WorkList.empty());
733 
734  if (Scopes.size() != 0) {
735  MachineBasicBlock *Preheader = getCurPreheader();
736  if (!Preheader)
737  return;
738 
739  // Compute registers which are livein into the loop headers.
740  RegSeen.clear();
741  BackTrace.clear();
742  InitRegPressure(Preheader);
743  }
744 
745  // Now perform LICM.
746  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
747  MachineDomTreeNode *Node = Scopes[i];
748  MachineBasicBlock *MBB = Node->getBlock();
749 
750  MachineBasicBlock *Preheader = getCurPreheader();
751  if (!Preheader)
752  continue;
753 
754  EnterScope(MBB);
755 
756  // Process the block
757  SpeculationState = SpeculateUnknown;
759  MII = MBB->begin(), E = MBB->end(); MII != E; ) {
760  MachineBasicBlock::iterator NextMII = MII; ++NextMII;
761  MachineInstr *MI = &*MII;
762  if (!Hoist(MI, Preheader))
763  UpdateRegPressure(MI);
764  MII = NextMII;
765  }
766 
767  // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
768  ExitScopeIfDone(Node, OpenChildren, ParentMap);
769  }
770 }
771 
773  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
774 }
775 
776 /// getRegisterClassIDAndCost - For a given MI, register, and the operand
777 /// index, return the ID and cost of its representative register class.
778 void
779 MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
780  unsigned Reg, unsigned OpIdx,
781  unsigned &RCId, unsigned &RCCost) const {
782  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
783  MVT VT = *RC->vt_begin();
784  if (VT == MVT::Untyped) {
785  RCId = RC->getID();
786  RCCost = 1;
787  } else {
788  RCId = TLI->getRepRegClassFor(VT)->getID();
789  RCCost = TLI->getRepRegClassCostFor(VT);
790  }
791 }
792 
793 /// InitRegPressure - Find all virtual register references that are liveout of
794 /// the preheader to initialize the starting "register pressure". Note this
795 /// does not count live through (livein but not used) registers.
796 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
797  std::fill(RegPressure.begin(), RegPressure.end(), 0);
798 
799  // If the preheader has only a single predecessor and it ends with a
800  // fallthrough or an unconditional branch, then scan its predecessor for live
801  // defs as well. This happens whenever the preheader is created by splitting
802  // the critical edge from the loop predecessor to the loop header.
803  if (BB->pred_size() == 1) {
804  MachineBasicBlock *TBB = 0, *FBB = 0;
806  if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
807  InitRegPressure(*BB->pred_begin());
808  }
809 
810  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
811  MII != E; ++MII) {
812  MachineInstr *MI = &*MII;
813  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
814  const MachineOperand &MO = MI->getOperand(i);
815  if (!MO.isReg() || MO.isImplicit())
816  continue;
817  unsigned Reg = MO.getReg();
819  continue;
820 
821  bool isNew = RegSeen.insert(Reg);
822  unsigned RCId, RCCost;
823  getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
824  if (MO.isDef())
825  RegPressure[RCId] += RCCost;
826  else {
827  bool isKill = isOperandKill(MO, MRI);
828  if (isNew && !isKill)
829  // Haven't seen this, it must be a livein.
830  RegPressure[RCId] += RCCost;
831  else if (!isNew && isKill)
832  RegPressure[RCId] -= RCCost;
833  }
834  }
835  }
836 }
837 
838 /// UpdateRegPressure - Update estimate of register pressure after the
839 /// specified instruction.
840 void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
841  if (MI->isImplicitDef())
842  return;
843 
845  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
846  const MachineOperand &MO = MI->getOperand(i);
847  if (!MO.isReg() || MO.isImplicit())
848  continue;
849  unsigned Reg = MO.getReg();
851  continue;
852 
853  bool isNew = RegSeen.insert(Reg);
854  if (MO.isDef())
855  Defs.push_back(Reg);
856  else if (!isNew && isOperandKill(MO, MRI)) {
857  unsigned RCId, RCCost;
858  getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
859  if (RCCost > RegPressure[RCId])
860  RegPressure[RCId] = 0;
861  else
862  RegPressure[RCId] -= RCCost;
863  }
864  }
865 
866  unsigned Idx = 0;
867  while (!Defs.empty()) {
868  unsigned Reg = Defs.pop_back_val();
869  unsigned RCId, RCCost;
870  getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
871  RegPressure[RCId] += RCCost;
872  ++Idx;
873  }
874 }
875 
876 /// isLoadFromGOTOrConstantPool - Return true if this machine instruction
877 /// loads from global offset table or constant pool.
879  assert (MI.mayLoad() && "Expected MI that loads!");
881  E = MI.memoperands_end(); I != E; ++I) {
882  if (const Value *V = (*I)->getValue()) {
883  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
884  if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
885  return true;
886  }
887  }
888  return false;
889 }
890 
891 /// IsLICMCandidate - Returns true if the instruction may be a suitable
892 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously
893 /// not safe to hoist it.
894 bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
895  // Check if it's safe to move the instruction.
896  bool DontMoveAcrossStore = true;
897  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
898  return false;
899 
900  // If it is load then check if it is guaranteed to execute by making sure that
901  // it dominates all exiting blocks. If it doesn't, then there is a path out of
902  // the loop which does not execute this load, so we can't hoist it. Loads
903  // from constant memory are not safe to speculate all the time, for example
904  // indexed load from a jump table.
905  // Stores and side effects are already checked by isSafeToMove.
906  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
907  !IsGuaranteedToExecute(I.getParent()))
908  return false;
909 
910  return true;
911 }
912 
913 /// IsLoopInvariantInst - Returns true if the instruction is loop
914 /// invariant. I.e., all virtual register operands are defined outside of the
915 /// loop, physical registers aren't accessed explicitly, and there are no side
916 /// effects that aren't captured by the operands or other flags.
917 ///
918 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
919  if (!IsLICMCandidate(I))
920  return false;
921 
922  // The instruction is loop invariant if all of its operands are.
923  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
924  const MachineOperand &MO = I.getOperand(i);
925 
926  if (!MO.isReg())
927  continue;
928 
929  unsigned Reg = MO.getReg();
930  if (Reg == 0) continue;
931 
932  // Don't hoist an instruction that uses or defines a physical register.
934  if (MO.isUse()) {
935  // If the physreg has no defs anywhere, it's just an ambient register
936  // and we can freely move its uses. Alternatively, if it's allocatable,
937  // it could get allocated to something with a def during allocation.
938  if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
939  return false;
940  // Otherwise it's safe to move.
941  continue;
942  } else if (!MO.isDead()) {
943  // A def that isn't dead. We can't move it.
944  return false;
945  } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
946  // If the reg is live into the loop, we can't hoist an instruction
947  // which would clobber it.
948  return false;
949  }
950  }
951 
952  if (!MO.isUse())
953  continue;
954 
955  assert(MRI->getVRegDef(Reg) &&
956  "Machine instr not mapped for this vreg?!");
957 
958  // If the loop contains the definition of an operand, then the instruction
959  // isn't loop invariant.
960  if (CurLoop->contains(MRI->getVRegDef(Reg)))
961  return false;
962  }
963 
964  // If we got this far, the instruction is loop invariant!
965  return true;
966 }
967 
968 
969 /// HasLoopPHIUse - Return true if the specified instruction is used by a
970 /// phi node and hoisting it could cause a copy to be inserted.
971 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
973  do {
974  MI = Work.pop_back_val();
975  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
976  if (!MO->isReg() || !MO->isDef())
977  continue;
978  unsigned Reg = MO->getReg();
980  continue;
981  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
982  UE = MRI->use_end(); UI != UE; ++UI) {
983  MachineInstr *UseMI = &*UI;
984  // A PHI may cause a copy to be inserted.
985  if (UseMI->isPHI()) {
986  // A PHI inside the loop causes a copy because the live range of Reg is
987  // extended across the PHI.
988  if (CurLoop->contains(UseMI))
989  return true;
990  // A PHI in an exit block can cause a copy to be inserted if the PHI
991  // has multiple predecessors in the loop with different values.
992  // For now, approximate by rejecting all exit blocks.
993  if (isExitBlock(UseMI->getParent()))
994  return true;
995  continue;
996  }
997  // Look past copies as well.
998  if (UseMI->isCopy() && CurLoop->contains(UseMI))
999  Work.push_back(UseMI);
1000  }
1001  }
1002  } while (!Work.empty());
1003  return false;
1004 }
1005 
1006 /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
1007 /// and an use in the current loop, return true if the target considered
1008 /// it 'high'.
1009 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
1010  unsigned DefIdx, unsigned Reg) const {
1011  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
1012  return false;
1013 
1014  for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
1015  E = MRI->use_nodbg_end(); I != E; ++I) {
1016  MachineInstr *UseMI = &*I;
1017  if (UseMI->isCopyLike())
1018  continue;
1019  if (!CurLoop->contains(UseMI->getParent()))
1020  continue;
1021  for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
1022  const MachineOperand &MO = UseMI->getOperand(i);
1023  if (!MO.isReg() || !MO.isUse())
1024  continue;
1025  unsigned MOReg = MO.getReg();
1026  if (MOReg != Reg)
1027  continue;
1028 
1029  if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
1030  return true;
1031  }
1032 
1033  // Only look at the first in loop use.
1034  break;
1035  }
1036 
1037  return false;
1038 }
1039 
1040 /// IsCheapInstruction - Return true if the instruction is marked "cheap" or
1041 /// the operand latency between its def and a use is one or less.
1042 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
1043  if (MI.isAsCheapAsAMove() || MI.isCopyLike())
1044  return true;
1045  if (!InstrItins || InstrItins->isEmpty())
1046  return false;
1047 
1048  bool isCheap = false;
1049  unsigned NumDefs = MI.getDesc().getNumDefs();
1050  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1051  MachineOperand &DefMO = MI.getOperand(i);
1052  if (!DefMO.isReg() || !DefMO.isDef())
1053  continue;
1054  --NumDefs;
1055  unsigned Reg = DefMO.getReg();
1057  continue;
1058 
1059  if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1060  return false;
1061  isCheap = true;
1062  }
1063 
1064  return isCheap;
1065 }
1066 
1067 /// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1068 /// if hoisting an instruction of the given cost matrix can cause high
1069 /// register pressure.
1070 bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
1071  bool CheapInstr) {
1072  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1073  CI != CE; ++CI) {
1074  if (CI->second <= 0)
1075  continue;
1076 
1077  unsigned RCId = CI->first;
1078  unsigned Limit = RegLimit[RCId];
1079  int Cost = CI->second;
1080 
1081  // Don't hoist cheap instructions if they would increase register pressure,
1082  // even if we're under the limit.
1083  if (CheapInstr)
1084  return true;
1085 
1086  for (unsigned i = BackTrace.size(); i != 0; --i) {
1087  SmallVectorImpl<unsigned> &RP = BackTrace[i-1];
1088  if (RP[RCId] + Cost >= Limit)
1089  return true;
1090  }
1091  }
1092 
1093  return false;
1094 }
1095 
1096 /// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1097 /// current block and update their register pressures to reflect the effect
1098 /// of hoisting MI from the current block to the preheader.
1099 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1100  if (MI->isImplicitDef())
1101  return;
1102 
1103  // First compute the 'cost' of the instruction, i.e. its contribution
1104  // to register pressure.
1106  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1107  const MachineOperand &MO = MI->getOperand(i);
1108  if (!MO.isReg() || MO.isImplicit())
1109  continue;
1110  unsigned Reg = MO.getReg();
1112  continue;
1113 
1114  unsigned RCId, RCCost;
1115  getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1116  if (MO.isDef()) {
1117  DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1118  if (CI != Cost.end())
1119  CI->second += RCCost;
1120  else
1121  Cost.insert(std::make_pair(RCId, RCCost));
1122  } else if (isOperandKill(MO, MRI)) {
1123  DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1124  if (CI != Cost.end())
1125  CI->second -= RCCost;
1126  else
1127  Cost.insert(std::make_pair(RCId, -RCCost));
1128  }
1129  }
1130 
1131  // Update register pressure of blocks from loop header to current block.
1132  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1133  SmallVectorImpl<unsigned> &RP = BackTrace[i];
1134  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1135  CI != CE; ++CI) {
1136  unsigned RCId = CI->first;
1137  RP[RCId] += CI->second;
1138  }
1139  }
1140 }
1141 
1142 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1143 /// the given loop invariant.
1144 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1145  if (MI.isImplicitDef())
1146  return true;
1147 
1148  // Besides removing computation from the loop, hoisting an instruction has
1149  // these effects:
1150  //
1151  // - The value defined by the instruction becomes live across the entire
1152  // loop. This increases register pressure in the loop.
1153  //
1154  // - If the value is used by a PHI in the loop, a copy will be required for
1155  // lowering the PHI after extending the live range.
1156  //
1157  // - When hoisting the last use of a value in the loop, that value no longer
1158  // needs to be live in the loop. This lowers register pressure in the loop.
1159 
1160  bool CheapInstr = IsCheapInstruction(MI);
1161  bool CreatesCopy = HasLoopPHIUse(&MI);
1162 
1163  // Don't hoist a cheap instruction if it would create a copy in the loop.
1164  if (CheapInstr && CreatesCopy) {
1165  DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1166  return false;
1167  }
1168 
1169  // Rematerializable instructions should always be hoisted since the register
1170  // allocator can just pull them down again when needed.
1171  if (TII->isTriviallyReMaterializable(&MI, AA))
1172  return true;
1173 
1174  // Estimate register pressure to determine whether to LICM the instruction.
1175  // In low register pressure situation, we can be more aggressive about
1176  // hoisting. Also, favors hoisting long latency instructions even in
1177  // moderately high pressure situation.
1178  // Cheap instructions will only be hoisted if they don't increase register
1179  // pressure at all.
1180  // FIXME: If there are long latency loop-invariant instructions inside the
1181  // loop at this point, why didn't the optimizer's LICM hoist them?
1183  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1184  const MachineOperand &MO = MI.getOperand(i);
1185  if (!MO.isReg() || MO.isImplicit())
1186  continue;
1187  unsigned Reg = MO.getReg();
1189  continue;
1190 
1191  unsigned RCId, RCCost;
1192  getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1193  if (MO.isDef()) {
1194  if (HasHighOperandLatency(MI, i, Reg)) {
1195  DEBUG(dbgs() << "Hoist High Latency: " << MI);
1196  ++NumHighLatency;
1197  return true;
1198  }
1199  Cost[RCId] += RCCost;
1200  } else if (isOperandKill(MO, MRI)) {
1201  // Is a virtual register use is a kill, hoisting it out of the loop
1202  // may actually reduce register pressure or be register pressure
1203  // neutral.
1204  Cost[RCId] -= RCCost;
1205  }
1206  }
1207 
1208  // Visit BBs from header to current BB, if hoisting this doesn't cause
1209  // high register pressure, then it's safe to proceed.
1210  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1211  DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1212  ++NumLowRP;
1213  return true;
1214  }
1215 
1216  // Don't risk increasing register pressure if it would create copies.
1217  if (CreatesCopy) {
1218  DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1219  return false;
1220  }
1221 
1222  // Do not "speculate" in high register pressure situation. If an
1223  // instruction is not guaranteed to be executed in the loop, it's best to be
1224  // conservative.
1225  if (AvoidSpeculation &&
1226  (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1227  DEBUG(dbgs() << "Won't speculate: " << MI);
1228  return false;
1229  }
1230 
1231  // High register pressure situation, only hoist if the instruction is going
1232  // to be remat'ed.
1233  if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1234  !MI.isInvariantLoad(AA)) {
1235  DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1236  return false;
1237  }
1238 
1239  return true;
1240 }
1241 
1242 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1243  // Don't unfold simple loads.
1244  if (MI->canFoldAsLoad())
1245  return 0;
1246 
1247  // If not, we may be able to unfold a load and hoist that.
1248  // First test whether the instruction is loading from an amenable
1249  // memory location.
1250  if (!MI->isInvariantLoad(AA))
1251  return 0;
1252 
1253  // Next determine the register class for a temporary register.
1254  unsigned LoadRegIndex;
1255  unsigned NewOpc =
1256  TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1257  /*UnfoldLoad=*/true,
1258  /*UnfoldStore=*/false,
1259  &LoadRegIndex);
1260  if (NewOpc == 0) return 0;
1261  const MCInstrDesc &MID = TII->get(NewOpc);
1262  if (MID.getNumDefs() != 1) return 0;
1263  MachineFunction &MF = *MI->getParent()->getParent();
1264  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1265  // Ok, we're unfolding. Create a temporary register and do the unfold.
1266  unsigned Reg = MRI->createVirtualRegister(RC);
1267 
1269  bool Success =
1270  TII->unfoldMemoryOperand(MF, MI, Reg,
1271  /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1272  NewMIs);
1273  (void)Success;
1274  assert(Success &&
1275  "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1276  "succeeded!");
1277  assert(NewMIs.size() == 2 &&
1278  "Unfolded a load into multiple instructions!");
1279  MachineBasicBlock *MBB = MI->getParent();
1281  MBB->insert(Pos, NewMIs[0]);
1282  MBB->insert(Pos, NewMIs[1]);
1283  // If unfolding produced a load that wasn't loop-invariant or profitable to
1284  // hoist, discard the new instructions and bail.
1285  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1286  NewMIs[0]->eraseFromParent();
1287  NewMIs[1]->eraseFromParent();
1288  return 0;
1289  }
1290 
1291  // Update register pressure for the unfolded instruction.
1292  UpdateRegPressure(NewMIs[1]);
1293 
1294  // Otherwise we successfully unfolded a load that we can hoist.
1295  MI->eraseFromParent();
1296  return NewMIs[0];
1297 }
1298 
1299 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1300  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1301  const MachineInstr *MI = &*I;
1302  unsigned Opcode = MI->getOpcode();
1304  CI = CSEMap.find(Opcode);
1305  if (CI != CSEMap.end())
1306  CI->second.push_back(MI);
1307  else {
1308  std::vector<const MachineInstr*> CSEMIs;
1309  CSEMIs.push_back(MI);
1310  CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1311  }
1312  }
1313 }
1314 
1315 const MachineInstr*
1316 MachineLICM::LookForDuplicate(const MachineInstr *MI,
1317  std::vector<const MachineInstr*> &PrevMIs) {
1318  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1319  const MachineInstr *PrevMI = PrevMIs[i];
1320  if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : 0)))
1321  return PrevMI;
1322  }
1323  return 0;
1324 }
1325 
1326 bool MachineLICM::EliminateCSE(MachineInstr *MI,
1327  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1328  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1329  // the undef property onto uses.
1330  if (CI == CSEMap.end() || MI->isImplicitDef())
1331  return false;
1332 
1333  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1334  DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1335 
1336  // Replace virtual registers defined by MI by their counterparts defined
1337  // by Dup.
1339  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1340  const MachineOperand &MO = MI->getOperand(i);
1341 
1342  // Physical registers may not differ here.
1343  assert((!MO.isReg() || MO.getReg() == 0 ||
1345  MO.getReg() == Dup->getOperand(i).getReg()) &&
1346  "Instructions with different phys regs are not identical!");
1347 
1348  if (MO.isReg() && MO.isDef() &&
1350  Defs.push_back(i);
1351  }
1352 
1354  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1355  unsigned Idx = Defs[i];
1356  unsigned Reg = MI->getOperand(Idx).getReg();
1357  unsigned DupReg = Dup->getOperand(Idx).getReg();
1358  OrigRCs.push_back(MRI->getRegClass(DupReg));
1359 
1360  if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1361  // Restore old RCs if more than one defs.
1362  for (unsigned j = 0; j != i; ++j)
1363  MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1364  return false;
1365  }
1366  }
1367 
1368  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1369  unsigned Idx = Defs[i];
1370  unsigned Reg = MI->getOperand(Idx).getReg();
1371  unsigned DupReg = Dup->getOperand(Idx).getReg();
1372  MRI->replaceRegWith(Reg, DupReg);
1373  MRI->clearKillFlags(DupReg);
1374  }
1375 
1376  MI->eraseFromParent();
1377  ++NumCSEed;
1378  return true;
1379  }
1380  return false;
1381 }
1382 
1383 /// MayCSE - Return true if the given instruction will be CSE'd if it's
1384 /// hoisted out of the loop.
1385 bool MachineLICM::MayCSE(MachineInstr *MI) {
1386  unsigned Opcode = MI->getOpcode();
1388  CI = CSEMap.find(Opcode);
1389  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1390  // the undef property onto uses.
1391  if (CI == CSEMap.end() || MI->isImplicitDef())
1392  return false;
1393 
1394  return LookForDuplicate(MI, CI->second) != 0;
1395 }
1396 
1397 /// Hoist - When an instruction is found to use only loop invariant operands
1398 /// that are safe to hoist, this instruction is called to do the dirty work.
1399 ///
1400 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1401  // First check whether we should hoist this instruction.
1402  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1403  // If not, try unfolding a hoistable load.
1404  MI = ExtractHoistableLoad(MI);
1405  if (!MI) return false;
1406  }
1407 
1408  // Now move the instructions to the predecessor, inserting it before any
1409  // terminator instructions.
1410  DEBUG({
1411  dbgs() << "Hoisting " << *MI;
1412  if (Preheader->getBasicBlock())
1413  dbgs() << " to MachineBasicBlock "
1414  << Preheader->getName();
1415  if (MI->getParent()->getBasicBlock())
1416  dbgs() << " from MachineBasicBlock "
1417  << MI->getParent()->getName();
1418  dbgs() << "\n";
1419  });
1420 
1421  // If this is the first instruction being hoisted to the preheader,
1422  // initialize the CSE map with potential common expressions.
1423  if (FirstInLoop) {
1424  InitCSEMap(Preheader);
1425  FirstInLoop = false;
1426  }
1427 
1428  // Look for opportunity to CSE the hoisted instruction.
1429  unsigned Opcode = MI->getOpcode();
1431  CI = CSEMap.find(Opcode);
1432  if (!EliminateCSE(MI, CI)) {
1433  // Otherwise, splice the instruction to the preheader.
1434  Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1435 
1436  // Update register pressure for BBs from header to this block.
1437  UpdateBackTraceRegPressure(MI);
1438 
1439  // Clear the kill flags of any register this instruction defines,
1440  // since they may need to be live throughout the entire loop
1441  // rather than just live for part of it.
1442  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1443  MachineOperand &MO = MI->getOperand(i);
1444  if (MO.isReg() && MO.isDef() && !MO.isDead())
1445  MRI->clearKillFlags(MO.getReg());
1446  }
1447 
1448  // Add to the CSE map.
1449  if (CI != CSEMap.end())
1450  CI->second.push_back(MI);
1451  else {
1452  std::vector<const MachineInstr*> CSEMIs;
1453  CSEMIs.push_back(MI);
1454  CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1455  }
1456  }
1457 
1458  ++NumHoisted;
1459  Changed = true;
1460 
1461  return true;
1462 }
1463 
1464 MachineBasicBlock *MachineLICM::getCurPreheader() {
1465  // Determine the block to which to hoist instructions. If we can't find a
1466  // suitable loop predecessor, we can't do any hoisting.
1467 
1468  // If we've tried to get a preheader and failed, don't try again.
1469  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1470  return 0;
1471 
1472  if (!CurPreheader) {
1473  CurPreheader = CurLoop->getLoopPreheader();
1474  if (!CurPreheader) {
1475  MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1476  if (!Pred) {
1477  CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1478  return 0;
1479  }
1480 
1481  CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1482  if (!CurPreheader) {
1483  CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1484  return 0;
1485  }
1486  }
1487  }
1488  return CurPreheader;
1489 }
bool isImplicit() const
unsigned succ_size() const
const MachineFunction * getParent() const
BitVector & set()
Definition: BitVector.h:236
AnalysisUsage & addPreserved()
static PassRegistry * getPassRegistry()
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
char & MachineLICMID
MachineLICM - This pass performs LICM on machine instructions.
std::vector< unsigned >::const_iterator livein_iterator
bool isDead() const
static bool isVirtualRegister(unsigned Reg)
INITIALIZE_PASS_BEGIN(MachineLICM,"machinelicm","Machine Loop Invariant Code Motion", false, false) INITIALIZE_PASS_END(MachineLICM
void addLiveIn(unsigned Reg)
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
Definition: BitVector.h:509
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
STATISTIC(NumHoisted,"Number of machine instructions hoisted out of loops")
bool canFoldAsLoad(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:454
BlockT * getHeader() const
Definition: LoopInfo.h:95
livein_iterator livein_begin() const
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
const HexagonInstrInfo * TII
bool isPHI() const
Definition: MachineInstr.h:648
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI)
Machine Loop Invariant Code false
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool mayLoad(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:465
MachineBasicBlock * SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P)
Abstract Stack Frame Information.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static cl::opt< bool > AvoidSpeculation("avoid-speculation", cl::desc("MachineLICM should avoid speculation"), cl::init(true), cl::Hidden)
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isKill() const
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
int getOpcode() const
Definition: MachineInstr.h:261
bool isCopyLike() const
Definition: MachineInstr.h:678
bool insert(const T &V)
Definition: SmallSet.h:59
COFF::MachineTypes Machine
Definition: COFFYAML.cpp:211
NodeT * getBlock() const
Definition: Dominators.h:82
static bool isLoadFromGOTOrConstantPool(MachineInstr &MI)
const BasicBlock * getBasicBlock() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bool isImplicitDef() const
Definition: MachineInstr.h:650
mmo_iterator memoperands_end() const
Definition: MachineInstr.h:292
bundle_iterator< MachineInstr, instr_iterator > iterator
#define true
Definition: ConvertUTF.c:65
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
bool isAsCheapAsAMove(QueryType Type=AllInBundle) const
Definition: MachineInstr.h:560
livein_iterator livein_end() const
const MCInstrInfo & MII
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
bool isCopy() const
Definition: MachineInstr.h:669
iterator end()
Definition: DenseMap.h:57
static bool InstructionStoresToFI(const MachineInstr *MI, int FI)
bool isInvariantLoad(AliasAnalysis *AA) const
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
void initializeMachineLICMPass(PassRegistry &)
void setIsKill(bool Val=true)
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
const std::vector< DomTreeNodeBase< NodeT > * > & getChildren() const
Definition: Dominators.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
const uint32_t * getRegMask() const
bool test(unsigned Idx) const
Definition: BitVector.h:337
MachineFrameInfo * getFrameInfo()
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
StringRef getName() const
Machine Loop Invariant Code static false bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop)
iterator begin()
Definition: DenseMap.h:53
bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA, bool &SawStore) const
bool count(const T &V) const
count - Return true if the element is in the set.
Definition: SmallSet.h:48
static bool isPhysicalRegister(unsigned Reg)
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
bool isLiveIn(unsigned Reg) const
MachineRegisterInfo & getRegInfo()
virtual void getAnalysisUsage(AnalysisUsage &AU) const
bool hasOneNonDBGUse(unsigned RegNo) const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
const TargetMachine & getTarget() const
machinelicm
unsigned getReg() const
getReg - Returns the register number.
Machine Loop Invariant Code Motion
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
LLVM Value Representation.
Definition: Value.h:66
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
#define DEBUG(X)
Definition: Debug.h:97
static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &ExitBlocks)
isExitBlock - Return true if the specified block is in the list.
Definition: LCSSA.cpp:166
vt_iterator vt_begin() const
const MCRegisterInfo & MRI
StringRef getName() const
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
unsigned pred_size() const
const TargetRegisterClass *const * regclass_iterator
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:291