LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MipsSEISelDAGToDAG.cpp
Go to the documentation of this file.
1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "mips-isel"
15 #include "MipsSEISelDAGToDAG.h"
16 #include "Mips.h"
18 #include "MipsAnalyzeImmediate.h"
19 #include "MipsMachineFunction.h"
20 #include "MipsRegisterInfo.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/Debug.h"
36 using namespace llvm;
37 
38 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
39  if (Subtarget.inMips16Mode())
40  return false;
42 }
43 
44 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
45  MachineFunction &MF) {
46  MachineInstrBuilder MIB(MF, &MI);
47  unsigned Mask = MI.getOperand(1).getImm();
48  unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
49 
50  if (Mask & 1)
51  MIB.addReg(Mips::DSPPos, Flag);
52 
53  if (Mask & 2)
54  MIB.addReg(Mips::DSPSCount, Flag);
55 
56  if (Mask & 4)
57  MIB.addReg(Mips::DSPCarry, Flag);
58 
59  if (Mask & 8)
60  MIB.addReg(Mips::DSPOutFlag, Flag);
61 
62  if (Mask & 16)
63  MIB.addReg(Mips::DSPCCond, Flag);
64 
65  if (Mask & 32)
66  MIB.addReg(Mips::DSPEFI, Flag);
67 }
68 
69 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
70  switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
71  default:
72  llvm_unreachable("Could not map int to register");
73  case 0: return Mips::MSAIR;
74  case 1: return Mips::MSACSR;
75  case 2: return Mips::MSAAccess;
76  case 3: return Mips::MSASave;
77  case 4: return Mips::MSAModify;
78  case 5: return Mips::MSARequest;
79  case 6: return Mips::MSAMap;
80  case 7: return Mips::MSAUnmap;
81  }
82 }
83 
84 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
85  const MachineInstr& MI) {
86  unsigned DstReg = 0, ZeroReg = 0;
87 
88  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
89  if ((MI.getOpcode() == Mips::ADDiu) &&
90  (MI.getOperand(1).getReg() == Mips::ZERO) &&
91  (MI.getOperand(2).getImm() == 0)) {
92  DstReg = MI.getOperand(0).getReg();
93  ZeroReg = Mips::ZERO;
94  } else if ((MI.getOpcode() == Mips::DADDiu) &&
95  (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
96  (MI.getOperand(2).getImm() == 0)) {
97  DstReg = MI.getOperand(0).getReg();
98  ZeroReg = Mips::ZERO_64;
99  }
100 
101  if (!DstReg)
102  return false;
103 
104  // Replace uses with ZeroReg.
105  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
106  E = MRI->use_end(); U != E;) {
107  MachineOperand &MO = U.getOperand();
108  unsigned OpNo = U.getOperandNo();
109  MachineInstr *MI = MO.getParent();
110  ++U;
111 
112  // Do not replace if it is a phi's operand or is tied to def operand.
113  if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
114  continue;
115 
116  MO.setReg(ZeroReg);
117  }
118 
119  return true;
120 }
121 
122 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
123  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
124 
125  if (!MipsFI->globalBaseRegSet())
126  return;
127 
128  MachineBasicBlock &MBB = MF.front();
131  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
132  DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc();
133  unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
134  const TargetRegisterClass *RC;
135 
136  if (Subtarget.isABI_N64())
137  RC = (const TargetRegisterClass*)&Mips::GPR64RegClass;
138  else
139  RC = (const TargetRegisterClass*)&Mips::GPR32RegClass;
140 
141  V0 = RegInfo.createVirtualRegister(RC);
142  V1 = RegInfo.createVirtualRegister(RC);
143 
144  if (Subtarget.isABI_N64()) {
145  MF.getRegInfo().addLiveIn(Mips::T9_64);
146  MBB.addLiveIn(Mips::T9_64);
147 
148  // lui $v0, %hi(%neg(%gp_rel(fname)))
149  // daddu $v1, $v0, $t9
150  // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
151  const GlobalValue *FName = MF.getFunction();
152  BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
153  .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
154  BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
155  .addReg(Mips::T9_64);
156  BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
158  return;
159  }
160 
162  // Set global register to __gnu_local_gp.
163  //
164  // lui $v0, %hi(__gnu_local_gp)
165  // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
166  BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
167  .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
168  BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
169  .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
170  return;
171  }
172 
173  MF.getRegInfo().addLiveIn(Mips::T9);
174  MBB.addLiveIn(Mips::T9);
175 
176  if (Subtarget.isABI_N32()) {
177  // lui $v0, %hi(%neg(%gp_rel(fname)))
178  // addu $v1, $v0, $t9
179  // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
180  const GlobalValue *FName = MF.getFunction();
181  BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
182  .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
183  BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
184  BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
186  return;
187  }
188 
189  assert(Subtarget.isABI_O32());
190 
191  // For O32 ABI, the following instruction sequence is emitted to initialize
192  // the global base register:
193  //
194  // 0. lui $2, %hi(_gp_disp)
195  // 1. addiu $2, $2, %lo(_gp_disp)
196  // 2. addu $globalbasereg, $2, $t9
197  //
198  // We emit only the last instruction here.
199  //
200  // GNU linker requires that the first two instructions appear at the beginning
201  // of a function and no instructions be inserted before or between them.
202  // The two instructions are emitted during lowering to MC layer in order to
203  // avoid any reordering.
204  //
205  // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
206  // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
207  // reads it.
208  MF.getRegInfo().addLiveIn(Mips::V0);
209  MBB.addLiveIn(Mips::V0);
210  BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
211  .addReg(Mips::V0).addReg(Mips::T9);
212 }
213 
214 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
215  initGlobalBaseReg(MF);
216 
217  MachineRegisterInfo *MRI = &MF.getRegInfo();
218 
219  for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
220  ++MFI)
221  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
222  if (I->getOpcode() == Mips::RDDSP)
223  addDSPCtrlRegOperands(false, *I, MF);
224  else if (I->getOpcode() == Mips::WRDSP)
225  addDSPCtrlRegOperands(true, *I, MF);
226  else
227  replaceUsesWithZeroReg(MRI, *I);
228  }
229 }
230 
231 SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
232  SDValue CmpLHS, SDLoc DL,
233  SDNode *Node) const {
234  unsigned Opc = InFlag.getOpcode(); (void)Opc;
235 
236  assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
237  (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
238  "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
239 
240  SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
241  SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
242  EVT VT = LHS.getValueType();
243 
244  SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops);
245  SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT,
246  SDValue(Carry, 0), RHS);
247  return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
248  SDValue(AddCarry, 0));
249 }
250 
251 /// ComplexPattern used on MipsInstrInfo
252 /// Used on Mips Load/Store instructions
253 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
254  SDValue &Offset) const {
255  EVT ValTy = Addr.getValueType();
256 
257  // if Address is FI, get the TargetFrameIndex.
258  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
259  Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
260  Offset = CurDAG->getTargetConstant(0, ValTy);
261  return true;
262  }
263 
264  // on PIC code Load GA
265  if (Addr.getOpcode() == MipsISD::Wrapper) {
266  Base = Addr.getOperand(0);
267  Offset = Addr.getOperand(1);
268  return true;
269  }
270 
271  if (TM.getRelocationModel() != Reloc::PIC_) {
272  if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
274  return false;
275  }
276 
277  // Addresses of the form FI+const or FI|const
278  if (CurDAG->isBaseWithConstantOffset(Addr)) {
280  if (isInt<16>(CN->getSExtValue())) {
281 
282  // If the first operand is a FI, get the TargetFI Node
283  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
284  (Addr.getOperand(0)))
285  Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
286  else
287  Base = Addr.getOperand(0);
288 
289  Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
290  return true;
291  }
292  }
293 
294  // Operand is a result from an ADD.
295  if (Addr.getOpcode() == ISD::ADD) {
296  // When loading from constant pools, load the lower address part in
297  // the instruction itself. Example, instead of:
298  // lui $2, %hi($CPI1_0)
299  // addiu $2, $2, %lo($CPI1_0)
300  // lwc1 $f0, 0($2)
301  // Generate:
302  // lui $2, %hi($CPI1_0)
303  // lwc1 $f0, %lo($CPI1_0)($2)
304  if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
305  Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
306  SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
307  if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
308  isa<JumpTableSDNode>(Opnd0)) {
309  Base = Addr.getOperand(0);
310  Offset = Opnd0;
311  return true;
312  }
313  }
314  }
315 
316  return false;
317 }
318 
319 /// ComplexPattern used on MipsInstrInfo
320 /// Used on Mips Load/Store instructions
321 bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
322  SDValue &Offset) const {
323  // Operand is a result from an ADD.
324  if (Addr.getOpcode() == ISD::ADD) {
325  Base = Addr.getOperand(0);
326  Offset = Addr.getOperand(1);
327  return true;
328  }
329 
330  return false;
331 }
332 
333 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
334  SDValue &Offset) const {
335  Base = Addr;
336  Offset = CurDAG->getTargetConstant(0, Addr.getValueType());
337  return true;
338 }
339 
340 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
341  SDValue &Offset) const {
342  return selectAddrRegImm(Addr, Base, Offset) ||
343  selectAddrDefault(Addr, Base, Offset);
344 }
345 
346 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
347 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
348  SDValue &Offset) const {
349  EVT ValTy = Addr.getValueType();
350 
351  // Addresses of the form FI+const or FI|const
352  if (CurDAG->isBaseWithConstantOffset(Addr)) {
354  if (isInt<12>(CN->getSExtValue())) {
355 
356  // If the first operand is a FI then get the TargetFI Node
357  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
358  (Addr.getOperand(0)))
359  Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
360  else
361  Base = Addr.getOperand(0);
362 
363  Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy);
364  return true;
365  }
366  }
367 
368  return false;
369 }
370 
371 bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
372  SDValue &Offset) const {
373  return selectAddrRegImm12(Addr, Base, Offset) ||
374  selectAddrDefault(Addr, Base, Offset);
375 }
376 
377 // Select constant vector splats.
378 //
379 // Returns true and sets Imm if:
380 // * MSA is enabled
381 // * N is a ISD::BUILD_VECTOR representing a constant splat
382 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const {
383  if (!Subtarget.hasMSA())
384  return false;
385 
387 
388  if (Node == NULL)
389  return false;
390 
391  APInt SplatValue, SplatUndef;
392  unsigned SplatBitSize;
393  bool HasAnyUndefs;
394 
395  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
396  HasAnyUndefs, 8,
397  !Subtarget.isLittle()))
398  return false;
399 
400  Imm = SplatValue;
401 
402  return true;
403 }
404 
405 // Select constant vector splats.
406 //
407 // In addition to the requirements of selectVSplat(), this function returns
408 // true and sets Imm if:
409 // * The splat value is the same width as the elements of the vector
410 // * The splat value fits in an integer with the specified signed-ness and
411 // width.
412 //
413 // This function looks through ISD::BITCAST nodes.
414 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
415 // sometimes a shuffle in big-endian mode.
416 //
417 // It's worth noting that this function is not used as part of the selection
418 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
419 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
420 // MipsSEDAGToDAGISel::selectNode.
421 bool MipsSEDAGToDAGISel::
422 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
423  unsigned ImmBitSize) const {
424  APInt ImmValue;
425  EVT EltTy = N->getValueType(0).getVectorElementType();
426 
427  if (N->getOpcode() == ISD::BITCAST)
428  N = N->getOperand(0);
429 
430  if (selectVSplat (N.getNode(), ImmValue) &&
431  ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
432  if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
433  (!Signed && ImmValue.isIntN(ImmBitSize))) {
434  Imm = CurDAG->getTargetConstant(ImmValue, EltTy);
435  return true;
436  }
437  }
438 
439  return false;
440 }
441 
442 // Select constant vector splats.
443 bool MipsSEDAGToDAGISel::
444 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
445  return selectVSplatCommon(N, Imm, false, 1);
446 }
447 
448 bool MipsSEDAGToDAGISel::
449 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
450  return selectVSplatCommon(N, Imm, false, 2);
451 }
452 
453 bool MipsSEDAGToDAGISel::
454 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
455  return selectVSplatCommon(N, Imm, false, 3);
456 }
457 
458 // Select constant vector splats.
459 bool MipsSEDAGToDAGISel::
460 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
461  return selectVSplatCommon(N, Imm, false, 4);
462 }
463 
464 // Select constant vector splats.
465 bool MipsSEDAGToDAGISel::
466 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
467  return selectVSplatCommon(N, Imm, false, 5);
468 }
469 
470 // Select constant vector splats.
471 bool MipsSEDAGToDAGISel::
472 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
473  return selectVSplatCommon(N, Imm, false, 6);
474 }
475 
476 // Select constant vector splats.
477 bool MipsSEDAGToDAGISel::
478 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
479  return selectVSplatCommon(N, Imm, false, 8);
480 }
481 
482 // Select constant vector splats.
483 bool MipsSEDAGToDAGISel::
484 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
485  return selectVSplatCommon(N, Imm, true, 5);
486 }
487 
488 // Select constant vector splats whose value is a power of 2.
489 //
490 // In addition to the requirements of selectVSplat(), this function returns
491 // true and sets Imm if:
492 // * The splat value is the same width as the elements of the vector
493 // * The splat value is a power of two.
494 //
495 // This function looks through ISD::BITCAST nodes.
496 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
497 // sometimes a shuffle in big-endian mode.
498 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
499  APInt ImmValue;
500  EVT EltTy = N->getValueType(0).getVectorElementType();
501 
502  if (N->getOpcode() == ISD::BITCAST)
503  N = N->getOperand(0);
504 
505  if (selectVSplat (N.getNode(), ImmValue) &&
506  ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
507  int32_t Log2 = ImmValue.exactLogBase2();
508 
509  if (Log2 != -1) {
510  Imm = CurDAG->getTargetConstant(Log2, EltTy);
511  return true;
512  }
513  }
514 
515  return false;
516 }
517 
518 // Select constant vector splats whose value only has a consecutive sequence
519 // of left-most bits set (e.g. 0b11...1100...00).
520 //
521 // In addition to the requirements of selectVSplat(), this function returns
522 // true and sets Imm if:
523 // * The splat value is the same width as the elements of the vector
524 // * The splat value is a consecutive sequence of left-most bits.
525 //
526 // This function looks through ISD::BITCAST nodes.
527 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
528 // sometimes a shuffle in big-endian mode.
529 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
530  APInt ImmValue;
531  EVT EltTy = N->getValueType(0).getVectorElementType();
532 
533  if (N->getOpcode() == ISD::BITCAST)
534  N = N->getOperand(0);
535 
536  if (selectVSplat(N.getNode(), ImmValue) &&
537  ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
538  // Extract the run of set bits starting with bit zero from the bitwise
539  // inverse of ImmValue, and test that the inverse of this is the same
540  // as the original value.
541  if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
542 
543  Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
544  return true;
545  }
546  }
547 
548  return false;
549 }
550 
551 // Select constant vector splats whose value only has a consecutive sequence
552 // of right-most bits set (e.g. 0b00...0011...11).
553 //
554 // In addition to the requirements of selectVSplat(), this function returns
555 // true and sets Imm if:
556 // * The splat value is the same width as the elements of the vector
557 // * The splat value is a consecutive sequence of right-most bits.
558 //
559 // This function looks through ISD::BITCAST nodes.
560 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
561 // sometimes a shuffle in big-endian mode.
562 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
563  APInt ImmValue;
564  EVT EltTy = N->getValueType(0).getVectorElementType();
565 
566  if (N->getOpcode() == ISD::BITCAST)
567  N = N->getOperand(0);
568 
569  if (selectVSplat(N.getNode(), ImmValue) &&
570  ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
571  // Extract the run of set bits starting with bit zero, and test that the
572  // result is the same as the original value
573  if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
574  Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy);
575  return true;
576  }
577  }
578 
579  return false;
580 }
581 
582 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
583  SDValue &Imm) const {
584  APInt ImmValue;
585  EVT EltTy = N->getValueType(0).getVectorElementType();
586 
587  if (N->getOpcode() == ISD::BITCAST)
588  N = N->getOperand(0);
589 
590  if (selectVSplat(N.getNode(), ImmValue) &&
591  ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
592  int32_t Log2 = (~ImmValue).exactLogBase2();
593 
594  if (Log2 != -1) {
595  Imm = CurDAG->getTargetConstant(Log2, EltTy);
596  return true;
597  }
598  }
599 
600  return false;
601 }
602 
603 std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
604  unsigned Opcode = Node->getOpcode();
605  SDLoc DL(Node);
606 
607  ///
608  // Instruction Selection not handled by the auto-generated
609  // tablegen selection should be handled here.
610  ///
611  SDNode *Result;
612 
613  switch(Opcode) {
614  default: break;
615 
616  case ISD::SUBE: {
617  SDValue InFlag = Node->getOperand(2);
618  Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node);
619  return std::make_pair(true, Result);
620  }
621 
622  case ISD::ADDE: {
623  if (Subtarget.hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
624  break;
625  SDValue InFlag = Node->getOperand(2);
626  Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node);
627  return std::make_pair(true, Result);
628  }
629 
630  case ISD::ConstantFP: {
632  if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
633  if (Subtarget.hasMips64()) {
635  Mips::ZERO_64, MVT::i64);
636  Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
637  } else if (Subtarget.isFP64bit()) {
639  Mips::ZERO, MVT::i32);
640  Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
641  Zero, Zero);
642  } else {
644  Mips::ZERO, MVT::i32);
645  Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
646  Zero);
647  }
648 
649  return std::make_pair(true, Result);
650  }
651  break;
652  }
653 
654  case ISD::Constant: {
655  const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
656  unsigned Size = CN->getValueSizeInBits(0);
657 
658  if (Size == 32)
659  break;
660 
661  MipsAnalyzeImmediate AnalyzeImm;
662  int64_t Imm = CN->getSExtValue();
663 
664  const MipsAnalyzeImmediate::InstSeq &Seq =
665  AnalyzeImm.Analyze(Imm, Size, false);
666 
668  SDLoc DL(CN);
669  SDNode *RegOpnd;
670  SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
671  MVT::i64);
672 
673  // The first instruction can be a LUi which is different from other
674  // instructions (ADDiu, ORI and SLL) in that it does not have a register
675  // operand.
676  if (Inst->Opc == Mips::LUi64)
677  RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
678  else
679  RegOpnd =
680  CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
681  CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
682  ImmOpnd);
683 
684  // The remaining instructions in the sequence are handled here.
685  for (++Inst; Inst != Seq.end(); ++Inst) {
686  ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
687  MVT::i64);
688  RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
689  SDValue(RegOpnd, 0), ImmOpnd);
690  }
691 
692  return std::make_pair(true, RegOpnd);
693  }
694 
695  case ISD::INTRINSIC_W_CHAIN: {
696  switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
697  default:
698  break;
699 
700  case Intrinsic::mips_cfcmsa: {
701  SDValue ChainIn = Node->getOperand(0);
702  SDValue RegIdx = Node->getOperand(2);
703  SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
704  getMSACtrlReg(RegIdx), MVT::i32);
705  return std::make_pair(true, Reg.getNode());
706  }
707  }
708  break;
709  }
710 
712  switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
713  default:
714  break;
715 
717  // Like an assignment but will always produce a move.v even if
718  // unnecessary.
719  return std::make_pair(true,
720  CurDAG->getMachineNode(Mips::MOVE_V, DL,
721  Node->getValueType(0),
722  Node->getOperand(1)));
723  }
724  break;
725  }
726 
727  case ISD::INTRINSIC_VOID: {
728  switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
729  default:
730  break;
731 
732  case Intrinsic::mips_ctcmsa: {
733  SDValue ChainIn = Node->getOperand(0);
734  SDValue RegIdx = Node->getOperand(2);
735  SDValue Value = Node->getOperand(3);
736  SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
737  getMSACtrlReg(RegIdx), Value);
738  return std::make_pair(true, ChainOut.getNode());
739  }
740  }
741  break;
742  }
743 
744  case MipsISD::ThreadPointer: {
745  EVT PtrVT = getTargetLowering()->getPointerTy();
746  unsigned RdhwrOpc, DestReg;
747 
748  if (PtrVT == MVT::i32) {
749  RdhwrOpc = Mips::RDHWR;
750  DestReg = Mips::V1;
751  } else {
752  RdhwrOpc = Mips::RDHWR64;
753  DestReg = Mips::V1_64;
754  }
755 
756  SDNode *Rdhwr =
757  CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node),
758  Node->getValueType(0),
759  CurDAG->getRegister(Mips::HWR29, MVT::i32));
760  SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
761  SDValue(Rdhwr, 0));
762  SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
763  ReplaceUses(SDValue(Node, 0), ResNode);
764  return std::make_pair(true, ResNode.getNode());
765  }
766 
767  case ISD::BUILD_VECTOR: {
768  // Select appropriate ldi.[bhwd] instructions for constant splats of
769  // 128-bit when MSA is enabled. Fixup any register class mismatches that
770  // occur as a result.
771  //
772  // This allows the compiler to use a wider range of immediates than would
773  // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
774  // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
775  // 0x01010101 } without using a constant pool. This would be sub-optimal
776  // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
777  // same set/ of registers. Similarly, ldi.h isn't capable of producing {
778  // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
779 
780  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
781  APInt SplatValue, SplatUndef;
782  unsigned SplatBitSize;
783  bool HasAnyUndefs;
784  unsigned LdiOp;
785  EVT ResVecTy = BVN->getValueType(0);
786  EVT ViaVecTy;
787 
788  if (!Subtarget.hasMSA() || !BVN->getValueType(0).is128BitVector())
789  return std::make_pair(false, (SDNode*)NULL);
790 
791  if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
792  HasAnyUndefs, 8,
793  !Subtarget.isLittle()))
794  return std::make_pair(false, (SDNode*)NULL);
795 
796  switch (SplatBitSize) {
797  default:
798  return std::make_pair(false, (SDNode*)NULL);
799  case 8:
800  LdiOp = Mips::LDI_B;
801  ViaVecTy = MVT::v16i8;
802  break;
803  case 16:
804  LdiOp = Mips::LDI_H;
805  ViaVecTy = MVT::v8i16;
806  break;
807  case 32:
808  LdiOp = Mips::LDI_W;
809  ViaVecTy = MVT::v4i32;
810  break;
811  case 64:
812  LdiOp = Mips::LDI_D;
813  ViaVecTy = MVT::v2i64;
814  break;
815  }
816 
817  if (!SplatValue.isSignedIntN(10))
818  return std::make_pair(false, (SDNode*)NULL);
819 
820  SDValue Imm = CurDAG->getTargetConstant(SplatValue,
821  ViaVecTy.getVectorElementType());
822 
823  SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm);
824 
825  if (ResVecTy != ViaVecTy) {
826  // If LdiOp is writing to a different register class to ResVecTy, then
827  // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
828  // since the source and destination register sets contain the same
829  // registers.
830  const TargetLowering *TLI = getTargetLowering();
831  MVT ResVecTySimple = ResVecTy.getSimpleVT();
832  const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
834  ResVecTy, SDValue(Res, 0),
836  MVT::i32));
837  }
838 
839  return std::make_pair(true, Res);
840  }
841 
842  }
843 
844  return std::make_pair(false, (SDNode*)NULL);
845 }
846 
848  return new MipsSEDAGToDAGISel(TM);
849 }
unsigned getValueSizeInBits(unsigned ResNo) const
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=0) const
Definition: MachineInstr.h:862
SDValue getValue(unsigned R) const
MachineInstr * getParent()
bool isExactlyValue(double V) const
SDValue getCopyToReg(SDValue Chain, SDLoc dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:487
Reloc::Model getRelocationModel() const
void ReplaceUses(SDValue F, SDValue T)
unsigned createVirtualRegister(const TargetRegisterClass *RegClass)
void addLiveIn(unsigned Reg, unsigned vreg=0)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
bool isPseudo(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:341
unsigned getOpcode() const
void addLiveIn(unsigned Reg)
const SDValue & getOperand(unsigned Num) const
const Function * getFunction() const
bool isABI_O32() const
FunctionPass * createMipsSEISelDag(MipsTargetMachine &TM)
static use_iterator use_end()
const HexagonInstrInfo * TII
bool isPHI() const
Definition: MachineInstr.h:648
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
const TargetLowering * getTargetLowering() const
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition: APInt.h:376
virtual MVT getPointerTy(uint32_t=0) const
bool hasMSA() const
EVT getVectorElementType() const
Definition: ValueTypes.h:762
bool hasMips64() const
const MachineBasicBlock & front() const
bool isABI_N64() const
SDValue getTargetFrameIndex(int FI, EVT VT)
Definition: SelectionDAG.h:440
int getOpcode() const
Definition: MachineInstr.h:261
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
bool isABI_N32() const
const InstSeq & Analyze(uint64_t Imm, unsigned Size, bool LastInstrIsADDiu)
int64_t getImm() const
MachineRegisterInfo * RegInfo
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false)
SDNode * getNode() const
get the SDNode which holds the desired result
bundle_iterator< MachineInstr, instr_iterator > iterator
const SDValue & getOperand(unsigned i) const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
bool isFP64bit() const
SDValue getCopyFromReg(SDValue Chain, SDLoc dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:510
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
unsigned getOpcode() const
unsigned countPopulation() const
Count the number of bits set.
Definition: APInt.h:1394
bool inMips16Mode() const
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
virtual bool runOnMachineFunction(MachineFunction &MF)
virtual const TargetInstrInfo * getInstrInfo() const
bool isBaseWithConstantOffset(SDValue Op) const
SDNode * SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT)
bool isLittle() const
int32_t exactLogBase2() const
Definition: APInt.h:1509
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition: APInt.h:382
int64_t getSExtValue() const
virtual const TargetRegisterClass * getRegClassFor(MVT VT) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned char TargetFlags=0) const
MachineRegisterInfo & getRegInfo()
use_iterator use_begin(unsigned RegNo) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned char TargetFlags=0) const
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
void setReg(unsigned Reg)
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
const TargetMachine & getTarget() const
MachineSDNode * getMachineNode(unsigned Opcode, SDLoc dl, EVT VT)
bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:272
EVT getValueType() const
bool hasDSP() const
bool is128BitVector() const
is128BitVector - Return true if this is a 128-bit vector type.
Definition: ValueTypes.h:681
unsigned getReg() const
getReg - Returns the register number.
const MipsSubtarget & Subtarget
LLVM Value Representation.
Definition: Value.h:66
SDValue getRegister(unsigned Reg, EVT VT)
BasicBlockListType::iterator iterator
const MCRegisterInfo & MRI
SDValue getTargetConstant(uint64_t Val, EVT VT)
Definition: SelectionDAG.h:408
SDValue getEntryNode() const
Definition: SelectionDAG.h:332
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
MVT getSimpleVT() const
Definition: ValueTypes.h:749
uint64_t getZExtValue() const