LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ScalarReplAggregates.cpp
Go to the documentation of this file.
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/Loads.h"
30 #include "llvm/DIBuilder.h"
31 #include "llvm/DebugInfo.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CallSite.h"
45 #include "llvm/Support/Debug.h"
53 using namespace llvm;
54 
55 STATISTIC(NumReplaced, "Number of allocas broken up");
56 STATISTIC(NumPromoted, "Number of allocas promoted");
57 STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
58 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
59 
60 namespace {
61  struct SROA : public FunctionPass {
62  SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
63  : FunctionPass(ID), HasDomTree(hasDT) {
64  if (T == -1)
65  SRThreshold = 128;
66  else
67  SRThreshold = T;
68  if (ST == -1)
69  StructMemberThreshold = 32;
70  else
71  StructMemberThreshold = ST;
72  if (AT == -1)
73  ArrayElementThreshold = 8;
74  else
75  ArrayElementThreshold = AT;
76  if (SLT == -1)
77  // Do not limit the scalar integer load size if no threshold is given.
78  ScalarLoadThreshold = -1;
79  else
80  ScalarLoadThreshold = SLT;
81  }
82 
83  bool runOnFunction(Function &F);
84 
85  bool performScalarRepl(Function &F);
86  bool performPromotion(Function &F);
87 
88  private:
89  bool HasDomTree;
90  DataLayout *TD;
91 
92  /// DeadInsts - Keep track of instructions we have made dead, so that
93  /// we can remove them after we are done working.
94  SmallVector<Value*, 32> DeadInsts;
95 
96  /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
97  /// information about the uses. All these fields are initialized to false
98  /// and set to true when something is learned.
99  struct AllocaInfo {
100  /// The alloca to promote.
101  AllocaInst *AI;
102 
103  /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
104  /// looping and avoid redundant work.
105  SmallPtrSet<PHINode*, 8> CheckedPHIs;
106 
107  /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
108  bool isUnsafe : 1;
109 
110  /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
111  bool isMemCpySrc : 1;
112 
113  /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
114  bool isMemCpyDst : 1;
115 
116  /// hasSubelementAccess - This is true if a subelement of the alloca is
117  /// ever accessed, or false if the alloca is only accessed with mem
118  /// intrinsics or load/store that only access the entire alloca at once.
119  bool hasSubelementAccess : 1;
120 
121  /// hasALoadOrStore - This is true if there are any loads or stores to it.
122  /// The alloca may just be accessed with memcpy, for example, which would
123  /// not set this.
124  bool hasALoadOrStore : 1;
125 
126  explicit AllocaInfo(AllocaInst *ai)
127  : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
128  hasSubelementAccess(false), hasALoadOrStore(false) {}
129  };
130 
131  /// SRThreshold - The maximum alloca size to considered for SROA.
132  unsigned SRThreshold;
133 
134  /// StructMemberThreshold - The maximum number of members a struct can
135  /// contain to be considered for SROA.
136  unsigned StructMemberThreshold;
137 
138  /// ArrayElementThreshold - The maximum number of elements an array can
139  /// have to be considered for SROA.
140  unsigned ArrayElementThreshold;
141 
142  /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
143  /// converting to scalar
144  unsigned ScalarLoadThreshold;
145 
146  void MarkUnsafe(AllocaInfo &I, Instruction *User) {
147  I.isUnsafe = true;
148  DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
149  }
150 
151  bool isSafeAllocaToScalarRepl(AllocaInst *AI);
152 
153  void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
154  void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
155  AllocaInfo &Info);
156  void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
157  void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
158  Type *MemOpType, bool isStore, AllocaInfo &Info,
159  Instruction *TheAccess, bool AllowWholeAccess);
160  bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
161  uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
162  Type *&IdxTy);
163 
164  void DoScalarReplacement(AllocaInst *AI,
165  std::vector<AllocaInst*> &WorkList);
166  void DeleteDeadInstructions();
167 
168  void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
170  void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
172  void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
174  void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
175  uint64_t Offset,
177  void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
178  AllocaInst *AI,
180  void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
182  void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
184  bool ShouldAttemptScalarRepl(AllocaInst *AI);
185  };
186 
187  // SROA_DT - SROA that uses DominatorTree.
188  struct SROA_DT : public SROA {
189  static char ID;
190  public:
191  SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
192  SROA(T, true, ID, ST, AT, SLT) {
194  }
195 
196  // getAnalysisUsage - This pass does not require any passes, but we know it
197  // will not alter the CFG, so say so.
198  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
200  AU.setPreservesCFG();
201  }
202  };
203 
204  // SROA_SSAUp - SROA that uses SSAUpdater.
205  struct SROA_SSAUp : public SROA {
206  static char ID;
207  public:
208  SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
209  SROA(T, false, ID, ST, AT, SLT) {
211  }
212 
213  // getAnalysisUsage - This pass does not require any passes, but we know it
214  // will not alter the CFG, so say so.
215  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
216  AU.setPreservesCFG();
217  }
218  };
219 
220 }
221 
222 char SROA_DT::ID = 0;
223 char SROA_SSAUp::ID = 0;
224 
225 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
226  "Scalar Replacement of Aggregates (DT)", false, false)
229  "Scalar Replacement of Aggregates (DT)", false, false)
230 
231 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
232  "Scalar Replacement of Aggregates (SSAUp)", false, false)
233 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
234  "Scalar Replacement of Aggregates (SSAUp)", false, false)
235 
236 // Public interface to the ScalarReplAggregates pass
238  bool UseDomTree,
239  int StructMemberThreshold,
240  int ArrayElementThreshold,
241  int ScalarLoadThreshold) {
242  if (UseDomTree)
243  return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
244  ScalarLoadThreshold);
245  return new SROA_SSAUp(Threshold, StructMemberThreshold,
246  ArrayElementThreshold, ScalarLoadThreshold);
247 }
248 
249 
250 //===----------------------------------------------------------------------===//
251 // Convert To Scalar Optimization.
252 //===----------------------------------------------------------------------===//
253 
254 namespace {
255 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
256 /// optimization, which scans the uses of an alloca and determines if it can
257 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
258 class ConvertToScalarInfo {
259  /// AllocaSize - The size of the alloca being considered in bytes.
260  unsigned AllocaSize;
261  const DataLayout &TD;
262  unsigned ScalarLoadThreshold;
263 
264  /// IsNotTrivial - This is set to true if there is some access to the object
265  /// which means that mem2reg can't promote it.
266  bool IsNotTrivial;
267 
268  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
269  /// computed based on the uses of the alloca rather than the LLVM type system.
270  enum {
271  Unknown,
272 
273  // Accesses via GEPs that are consistent with element access of a vector
274  // type. This will not be converted into a vector unless there is a later
275  // access using an actual vector type.
276  ImplicitVector,
277 
278  // Accesses via vector operations and GEPs that are consistent with the
279  // layout of a vector type.
280  Vector,
281 
282  // An integer bag-of-bits with bitwise operations for insertion and
283  // extraction. Any combination of types can be converted into this kind
284  // of scalar.
285  Integer
286  } ScalarKind;
287 
288  /// VectorTy - This tracks the type that we should promote the vector to if
289  /// it is possible to turn it into a vector. This starts out null, and if it
290  /// isn't possible to turn into a vector type, it gets set to VoidTy.
291  VectorType *VectorTy;
292 
293  /// HadNonMemTransferAccess - True if there is at least one access to the
294  /// alloca that is not a MemTransferInst. We don't want to turn structs into
295  /// large integers unless there is some potential for optimization.
296  bool HadNonMemTransferAccess;
297 
298  /// HadDynamicAccess - True if some element of this alloca was dynamic.
299  /// We don't yet have support for turning a dynamic access into a large
300  /// integer.
301  bool HadDynamicAccess;
302 
303 public:
304  explicit ConvertToScalarInfo(unsigned Size, const DataLayout &td,
305  unsigned SLT)
306  : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
307  ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
308  HadDynamicAccess(false) { }
309 
310  AllocaInst *TryConvert(AllocaInst *AI);
311 
312 private:
313  bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
314  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
315  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
316  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
317  Value *NonConstantIdx);
318 
319  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
320  uint64_t Offset, Value* NonConstantIdx,
321  IRBuilder<> &Builder);
322  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
323  uint64_t Offset, Value* NonConstantIdx,
324  IRBuilder<> &Builder);
325 };
326 } // end anonymous namespace.
327 
328 
329 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
330 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
331 /// alloca if possible or null if not.
332 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
333  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
334  // out.
335  if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
336  return 0;
337 
338  // If an alloca has only memset / memcpy uses, it may still have an Unknown
339  // ScalarKind. Treat it as an Integer below.
340  if (ScalarKind == Unknown)
341  ScalarKind = Integer;
342 
343  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
344  ScalarKind = Integer;
345 
346  // If we were able to find a vector type that can handle this with
347  // insert/extract elements, and if there was at least one use that had
348  // a vector type, promote this to a vector. We don't want to promote
349  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
350  // we just get a lot of insert/extracts. If at least one vector is
351  // involved, then we probably really do have a union of vector/array.
352  Type *NewTy;
353  if (ScalarKind == Vector) {
354  assert(VectorTy && "Missing type for vector scalar.");
355  DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
356  << *VectorTy << '\n');
357  NewTy = VectorTy; // Use the vector type.
358  } else {
359  unsigned BitWidth = AllocaSize * 8;
360 
361  // Do not convert to scalar integer if the alloca size exceeds the
362  // scalar load threshold.
363  if (BitWidth > ScalarLoadThreshold)
364  return 0;
365 
366  if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
367  !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
368  return 0;
369  // Dynamic accesses on integers aren't yet supported. They need us to shift
370  // by a dynamic amount which could be difficult to work out as we might not
371  // know whether to use a left or right shift.
372  if (ScalarKind == Integer && HadDynamicAccess)
373  return 0;
374 
375  DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
376  // Create and insert the integer alloca.
377  NewTy = IntegerType::get(AI->getContext(), BitWidth);
378  }
379  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
380  ConvertUsesToScalar(AI, NewAI, 0, 0);
381  return NewAI;
382 }
383 
384 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
385 /// (VectorTy) so far at the offset specified by Offset (which is specified in
386 /// bytes).
387 ///
388 /// There are two cases we handle here:
389 /// 1) A union of vector types of the same size and potentially its elements.
390 /// Here we turn element accesses into insert/extract element operations.
391 /// This promotes a <4 x float> with a store of float to the third element
392 /// into a <4 x float> that uses insert element.
393 /// 2) A fully general blob of memory, which we turn into some (potentially
394 /// large) integer type with extract and insert operations where the loads
395 /// and stores would mutate the memory. We mark this by setting VectorTy
396 /// to VoidTy.
397 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
398  uint64_t Offset) {
399  // If we already decided to turn this into a blob of integer memory, there is
400  // nothing to be done.
401  if (ScalarKind == Integer)
402  return;
403 
404  // If this could be contributing to a vector, analyze it.
405 
406  // If the In type is a vector that is the same size as the alloca, see if it
407  // matches the existing VecTy.
408  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
409  if (MergeInVectorType(VInTy, Offset))
410  return;
411  } else if (In->isFloatTy() || In->isDoubleTy() ||
412  (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
414  // Full width accesses can be ignored, because they can always be turned
415  // into bitcasts.
416  unsigned EltSize = In->getPrimitiveSizeInBits()/8;
417  if (EltSize == AllocaSize)
418  return;
419 
420  // If we're accessing something that could be an element of a vector, see
421  // if the implied vector agrees with what we already have and if Offset is
422  // compatible with it.
423  if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
424  (!VectorTy || EltSize == VectorTy->getElementType()
425  ->getPrimitiveSizeInBits()/8)) {
426  if (!VectorTy) {
427  ScalarKind = ImplicitVector;
428  VectorTy = VectorType::get(In, AllocaSize/EltSize);
429  }
430  return;
431  }
432  }
433 
434  // Otherwise, we have a case that we can't handle with an optimized vector
435  // form. We can still turn this into a large integer.
436  ScalarKind = Integer;
437 }
438 
439 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
440 /// returning true if the type was successfully merged and false otherwise.
441 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
442  uint64_t Offset) {
443  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
444  // If we're storing/loading a vector of the right size, allow it as a
445  // vector. If this the first vector we see, remember the type so that
446  // we know the element size. If this is a subsequent access, ignore it
447  // even if it is a differing type but the same size. Worst case we can
448  // bitcast the resultant vectors.
449  if (!VectorTy)
450  VectorTy = VInTy;
451  ScalarKind = Vector;
452  return true;
453  }
454 
455  return false;
456 }
457 
458 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
459 /// its accesses to a single vector type, return true and set VecTy to
460 /// the new type. If we could convert the alloca into a single promotable
461 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
462 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
463 /// is the current offset from the base of the alloca being analyzed.
464 ///
465 /// If we see at least one access to the value that is as a vector type, set the
466 /// SawVec flag.
467 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
468  Value* NonConstantIdx) {
469  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
470  Instruction *User = cast<Instruction>(*UI);
471 
472  if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
473  // Don't break volatile loads.
474  if (!LI->isSimple())
475  return false;
476  // Don't touch MMX operations.
477  if (LI->getType()->isX86_MMXTy())
478  return false;
479  HadNonMemTransferAccess = true;
480  MergeInTypeForLoadOrStore(LI->getType(), Offset);
481  continue;
482  }
483 
484  if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
485  // Storing the pointer, not into the value?
486  if (SI->getOperand(0) == V || !SI->isSimple()) return false;
487  // Don't touch MMX operations.
488  if (SI->getOperand(0)->getType()->isX86_MMXTy())
489  return false;
490  HadNonMemTransferAccess = true;
491  MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
492  continue;
493  }
494 
495  if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
496  if (!onlyUsedByLifetimeMarkers(BCI))
497  IsNotTrivial = true; // Can't be mem2reg'd.
498  if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
499  return false;
500  continue;
501  }
502 
503  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
504  // If this is a GEP with a variable indices, we can't handle it.
505  PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
506  if (!PtrTy)
507  return false;
508 
509  // Compute the offset that this GEP adds to the pointer.
510  SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
511  Value *GEPNonConstantIdx = 0;
512  if (!GEP->hasAllConstantIndices()) {
513  if (!isa<VectorType>(PtrTy->getElementType()))
514  return false;
515  if (NonConstantIdx)
516  return false;
517  GEPNonConstantIdx = Indices.pop_back_val();
518  if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
519  return false;
520  HadDynamicAccess = true;
521  } else
522  GEPNonConstantIdx = NonConstantIdx;
523  uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
524  Indices);
525  // See if all uses can be converted.
526  if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
527  return false;
528  IsNotTrivial = true; // Can't be mem2reg'd.
529  HadNonMemTransferAccess = true;
530  continue;
531  }
532 
533  // If this is a constant sized memset of a constant value (e.g. 0) we can
534  // handle it.
535  if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
536  // Store to dynamic index.
537  if (NonConstantIdx)
538  return false;
539  // Store of constant value.
540  if (!isa<ConstantInt>(MSI->getValue()))
541  return false;
542 
543  // Store of constant size.
544  ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
545  if (!Len)
546  return false;
547 
548  // If the size differs from the alloca, we can only convert the alloca to
549  // an integer bag-of-bits.
550  // FIXME: This should handle all of the cases that are currently accepted
551  // as vector element insertions.
552  if (Len->getZExtValue() != AllocaSize || Offset != 0)
553  ScalarKind = Integer;
554 
555  IsNotTrivial = true; // Can't be mem2reg'd.
556  HadNonMemTransferAccess = true;
557  continue;
558  }
559 
560  // If this is a memcpy or memmove into or out of the whole allocation, we
561  // can handle it like a load or store of the scalar type.
562  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
563  // Store to dynamic index.
564  if (NonConstantIdx)
565  return false;
566  ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
567  if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
568  return false;
569 
570  IsNotTrivial = true; // Can't be mem2reg'd.
571  continue;
572  }
573 
574  // If this is a lifetime intrinsic, we can handle it.
575  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
576  if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
577  II->getIntrinsicID() == Intrinsic::lifetime_end) {
578  continue;
579  }
580  }
581 
582  // Otherwise, we cannot handle this!
583  return false;
584  }
585 
586  return true;
587 }
588 
589 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
590 /// directly. This happens when we are converting an "integer union" to a
591 /// single integer scalar, or when we are converting a "vector union" to a
592 /// vector with insert/extractelement instructions.
593 ///
594 /// Offset is an offset from the original alloca, in bits that need to be
595 /// shifted to the right. By the end of this, there should be no uses of Ptr.
596 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
597  uint64_t Offset,
598  Value* NonConstantIdx) {
599  while (!Ptr->use_empty()) {
600  Instruction *User = cast<Instruction>(Ptr->use_back());
601 
602  if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
603  ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
604  CI->eraseFromParent();
605  continue;
606  }
607 
608  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
609  // Compute the offset that this GEP adds to the pointer.
610  SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
611  Value* GEPNonConstantIdx = 0;
612  if (!GEP->hasAllConstantIndices()) {
613  assert(!NonConstantIdx &&
614  "Dynamic GEP reading from dynamic GEP unsupported");
615  GEPNonConstantIdx = Indices.pop_back_val();
616  } else
617  GEPNonConstantIdx = NonConstantIdx;
618  uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
619  Indices);
620  ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
621  GEP->eraseFromParent();
622  continue;
623  }
624 
625  IRBuilder<> Builder(User);
626 
627  if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
628  // The load is a bit extract from NewAI shifted right by Offset bits.
629  Value *LoadedVal = Builder.CreateLoad(NewAI);
630  Value *NewLoadVal
631  = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
632  NonConstantIdx, Builder);
633  LI->replaceAllUsesWith(NewLoadVal);
634  LI->eraseFromParent();
635  continue;
636  }
637 
638  if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
639  assert(SI->getOperand(0) != Ptr && "Consistency error!");
640  Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
641  Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
642  NonConstantIdx, Builder);
643  Builder.CreateStore(New, NewAI);
644  SI->eraseFromParent();
645 
646  // If the load we just inserted is now dead, then the inserted store
647  // overwrote the entire thing.
648  if (Old->use_empty())
649  Old->eraseFromParent();
650  continue;
651  }
652 
653  // If this is a constant sized memset of a constant value (e.g. 0) we can
654  // transform it into a store of the expanded constant value.
655  if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
656  assert(MSI->getRawDest() == Ptr && "Consistency error!");
657  assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
658  int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
659  if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
660  unsigned NumBytes = static_cast<unsigned>(SNumBytes);
661  unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
662 
663  // Compute the value replicated the right number of times.
664  APInt APVal(NumBytes*8, Val);
665 
666  // Splat the value if non-zero.
667  if (Val)
668  for (unsigned i = 1; i != NumBytes; ++i)
669  APVal |= APVal << 8;
670 
671  Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
672  Value *New = ConvertScalar_InsertValue(
673  ConstantInt::get(User->getContext(), APVal),
674  Old, Offset, 0, Builder);
675  Builder.CreateStore(New, NewAI);
676 
677  // If the load we just inserted is now dead, then the memset overwrote
678  // the entire thing.
679  if (Old->use_empty())
680  Old->eraseFromParent();
681  }
682  MSI->eraseFromParent();
683  continue;
684  }
685 
686  // If this is a memcpy or memmove into or out of the whole allocation, we
687  // can handle it like a load or store of the scalar type.
688  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
689  assert(Offset == 0 && "must be store to start of alloca");
690  assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
691 
692  // If the source and destination are both to the same alloca, then this is
693  // a noop copy-to-self, just delete it. Otherwise, emit a load and store
694  // as appropriate.
695  AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
696 
697  if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
698  // Dest must be OrigAI, change this to be a load from the original
699  // pointer (bitcasted), then a store to our new alloca.
700  assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
701  Value *SrcPtr = MTI->getSource();
702  PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
703  PointerType* AIPTy = cast<PointerType>(NewAI->getType());
704  if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
705  AIPTy = PointerType::get(AIPTy->getElementType(),
706  SPTy->getAddressSpace());
707  }
708  SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
709 
710  LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
711  SrcVal->setAlignment(MTI->getAlignment());
712  Builder.CreateStore(SrcVal, NewAI);
713  } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
714  // Src must be OrigAI, change this to be a load from NewAI then a store
715  // through the original dest pointer (bitcasted).
716  assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
717  LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
718 
719  PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
720  PointerType* AIPTy = cast<PointerType>(NewAI->getType());
721  if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
722  AIPTy = PointerType::get(AIPTy->getElementType(),
723  DPTy->getAddressSpace());
724  }
725  Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
726 
727  StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
728  NewStore->setAlignment(MTI->getAlignment());
729  } else {
730  // Noop transfer. Src == Dst
731  }
732 
733  MTI->eraseFromParent();
734  continue;
735  }
736 
737  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
738  if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
739  II->getIntrinsicID() == Intrinsic::lifetime_end) {
740  // There's no need to preserve these, as the resulting alloca will be
741  // converted to a register anyways.
742  II->eraseFromParent();
743  continue;
744  }
745  }
746 
747  llvm_unreachable("Unsupported operation!");
748  }
749 }
750 
751 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
752 /// or vector value FromVal, extracting the bits from the offset specified by
753 /// Offset. This returns the value, which is of type ToType.
754 ///
755 /// This happens when we are converting an "integer union" to a single
756 /// integer scalar, or when we are converting a "vector union" to a vector with
757 /// insert/extractelement instructions.
758 ///
759 /// Offset is an offset from the original alloca, in bits that need to be
760 /// shifted to the right.
761 Value *ConvertToScalarInfo::
762 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
763  uint64_t Offset, Value* NonConstantIdx,
764  IRBuilder<> &Builder) {
765  // If the load is of the whole new alloca, no conversion is needed.
766  Type *FromType = FromVal->getType();
767  if (FromType == ToType && Offset == 0)
768  return FromVal;
769 
770  // If the result alloca is a vector type, this is either an element
771  // access or a bitcast to another vector type of the same size.
772  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
773  unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
774  unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
775  if (FromTypeSize == ToTypeSize)
776  return Builder.CreateBitCast(FromVal, ToType);
777 
778  // Otherwise it must be an element access.
779  unsigned Elt = 0;
780  if (Offset) {
781  unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
782  Elt = Offset/EltSize;
783  assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
784  }
785  // Return the element extracted out of it.
786  Value *Idx;
787  if (NonConstantIdx) {
788  if (Elt)
789  Idx = Builder.CreateAdd(NonConstantIdx,
790  Builder.getInt32(Elt),
791  "dyn.offset");
792  else
793  Idx = NonConstantIdx;
794  } else
795  Idx = Builder.getInt32(Elt);
796  Value *V = Builder.CreateExtractElement(FromVal, Idx);
797  if (V->getType() != ToType)
798  V = Builder.CreateBitCast(V, ToType);
799  return V;
800  }
801 
802  // If ToType is a first class aggregate, extract out each of the pieces and
803  // use insertvalue's to form the FCA.
804  if (StructType *ST = dyn_cast<StructType>(ToType)) {
805  assert(!NonConstantIdx &&
806  "Dynamic indexing into struct types not supported");
807  const StructLayout &Layout = *TD.getStructLayout(ST);
808  Value *Res = UndefValue::get(ST);
809  for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
810  Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
811  Offset+Layout.getElementOffsetInBits(i),
812  0, Builder);
813  Res = Builder.CreateInsertValue(Res, Elt, i);
814  }
815  return Res;
816  }
817 
818  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
819  assert(!NonConstantIdx &&
820  "Dynamic indexing into array types not supported");
821  uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
822  Value *Res = UndefValue::get(AT);
823  for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
824  Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
825  Offset+i*EltSize, 0, Builder);
826  Res = Builder.CreateInsertValue(Res, Elt, i);
827  }
828  return Res;
829  }
830 
831  // Otherwise, this must be a union that was converted to an integer value.
832  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
833 
834  // If this is a big-endian system and the load is narrower than the
835  // full alloca type, we need to do a shift to get the right bits.
836  int ShAmt = 0;
837  if (TD.isBigEndian()) {
838  // On big-endian machines, the lowest bit is stored at the bit offset
839  // from the pointer given by getTypeStoreSizeInBits. This matters for
840  // integers with a bitwidth that is not a multiple of 8.
841  ShAmt = TD.getTypeStoreSizeInBits(NTy) -
842  TD.getTypeStoreSizeInBits(ToType) - Offset;
843  } else {
844  ShAmt = Offset;
845  }
846 
847  // Note: we support negative bitwidths (with shl) which are not defined.
848  // We do this to support (f.e.) loads off the end of a structure where
849  // only some bits are used.
850  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
851  FromVal = Builder.CreateLShr(FromVal,
852  ConstantInt::get(FromVal->getType(), ShAmt));
853  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
854  FromVal = Builder.CreateShl(FromVal,
855  ConstantInt::get(FromVal->getType(), -ShAmt));
856 
857  // Finally, unconditionally truncate the integer to the right width.
858  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
859  if (LIBitWidth < NTy->getBitWidth())
860  FromVal =
861  Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
862  LIBitWidth));
863  else if (LIBitWidth > NTy->getBitWidth())
864  FromVal =
865  Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
866  LIBitWidth));
867 
868  // If the result is an integer, this is a trunc or bitcast.
869  if (ToType->isIntegerTy()) {
870  // Should be done.
871  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
872  // Just do a bitcast, we know the sizes match up.
873  FromVal = Builder.CreateBitCast(FromVal, ToType);
874  } else {
875  // Otherwise must be a pointer.
876  FromVal = Builder.CreateIntToPtr(FromVal, ToType);
877  }
878  assert(FromVal->getType() == ToType && "Didn't convert right?");
879  return FromVal;
880 }
881 
882 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
883 /// or vector value "Old" at the offset specified by Offset.
884 ///
885 /// This happens when we are converting an "integer union" to a
886 /// single integer scalar, or when we are converting a "vector union" to a
887 /// vector with insert/extractelement instructions.
888 ///
889 /// Offset is an offset from the original alloca, in bits that need to be
890 /// shifted to the right.
891 ///
892 /// NonConstantIdx is an index value if there was a GEP with a non-constant
893 /// index value. If this is 0 then all GEPs used to find this insert address
894 /// are constant.
895 Value *ConvertToScalarInfo::
896 ConvertScalar_InsertValue(Value *SV, Value *Old,
897  uint64_t Offset, Value* NonConstantIdx,
898  IRBuilder<> &Builder) {
899  // Convert the stored type to the actual type, shift it left to insert
900  // then 'or' into place.
901  Type *AllocaType = Old->getType();
902  LLVMContext &Context = Old->getContext();
903 
904  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
905  uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
906  uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
907 
908  // Changing the whole vector with memset or with an access of a different
909  // vector type?
910  if (ValSize == VecSize)
911  return Builder.CreateBitCast(SV, AllocaType);
912 
913  // Must be an element insertion.
914  Type *EltTy = VTy->getElementType();
915  if (SV->getType() != EltTy)
916  SV = Builder.CreateBitCast(SV, EltTy);
917  uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
918  unsigned Elt = Offset/EltSize;
919  Value *Idx;
920  if (NonConstantIdx) {
921  if (Elt)
922  Idx = Builder.CreateAdd(NonConstantIdx,
923  Builder.getInt32(Elt),
924  "dyn.offset");
925  else
926  Idx = NonConstantIdx;
927  } else
928  Idx = Builder.getInt32(Elt);
929  return Builder.CreateInsertElement(Old, SV, Idx);
930  }
931 
932  // If SV is a first-class aggregate value, insert each value recursively.
933  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
934  assert(!NonConstantIdx &&
935  "Dynamic indexing into struct types not supported");
936  const StructLayout &Layout = *TD.getStructLayout(ST);
937  for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
938  Value *Elt = Builder.CreateExtractValue(SV, i);
939  Old = ConvertScalar_InsertValue(Elt, Old,
940  Offset+Layout.getElementOffsetInBits(i),
941  0, Builder);
942  }
943  return Old;
944  }
945 
946  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
947  assert(!NonConstantIdx &&
948  "Dynamic indexing into array types not supported");
949  uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
950  for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
951  Value *Elt = Builder.CreateExtractValue(SV, i);
952  Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
953  }
954  return Old;
955  }
956 
957  // If SV is a float, convert it to the appropriate integer type.
958  // If it is a pointer, do the same.
959  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
960  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
961  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
962  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
963  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
964  SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
965  else if (SV->getType()->isPointerTy())
966  SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getType()));
967 
968  // Zero extend or truncate the value if needed.
969  if (SV->getType() != AllocaType) {
970  if (SV->getType()->getPrimitiveSizeInBits() <
971  AllocaType->getPrimitiveSizeInBits())
972  SV = Builder.CreateZExt(SV, AllocaType);
973  else {
974  // Truncation may be needed if storing more than the alloca can hold
975  // (undefined behavior).
976  SV = Builder.CreateTrunc(SV, AllocaType);
977  SrcWidth = DestWidth;
978  SrcStoreWidth = DestStoreWidth;
979  }
980  }
981 
982  // If this is a big-endian system and the store is narrower than the
983  // full alloca type, we need to do a shift to get the right bits.
984  int ShAmt = 0;
985  if (TD.isBigEndian()) {
986  // On big-endian machines, the lowest bit is stored at the bit offset
987  // from the pointer given by getTypeStoreSizeInBits. This matters for
988  // integers with a bitwidth that is not a multiple of 8.
989  ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
990  } else {
991  ShAmt = Offset;
992  }
993 
994  // Note: we support negative bitwidths (with shr) which are not defined.
995  // We do this to support (f.e.) stores off the end of a structure where
996  // only some bits in the structure are set.
997  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
998  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
999  SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1000  Mask <<= ShAmt;
1001  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1002  SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1003  Mask = Mask.lshr(-ShAmt);
1004  }
1005 
1006  // Mask out the bits we are about to insert from the old value, and or
1007  // in the new bits.
1008  if (SrcWidth != DestWidth) {
1009  assert(DestWidth > SrcWidth);
1010  Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1011  SV = Builder.CreateOr(Old, SV, "ins");
1012  }
1013  return SV;
1014 }
1015 
1016 
1017 //===----------------------------------------------------------------------===//
1018 // SRoA Driver
1019 //===----------------------------------------------------------------------===//
1020 
1021 
1022 bool SROA::runOnFunction(Function &F) {
1023  TD = getAnalysisIfAvailable<DataLayout>();
1024 
1025  bool Changed = performPromotion(F);
1026 
1027  // FIXME: ScalarRepl currently depends on DataLayout more than it
1028  // theoretically needs to. It should be refactored in order to support
1029  // target-independent IR. Until this is done, just skip the actual
1030  // scalar-replacement portion of this pass.
1031  if (!TD) return Changed;
1032 
1033  while (1) {
1034  bool LocalChange = performScalarRepl(F);
1035  if (!LocalChange) break; // No need to repromote if no scalarrepl
1036  Changed = true;
1037  LocalChange = performPromotion(F);
1038  if (!LocalChange) break; // No need to re-scalarrepl if no promotion
1039  }
1040 
1041  return Changed;
1042 }
1043 
1044 namespace {
1045 class AllocaPromoter : public LoadAndStorePromoter {
1046  AllocaInst *AI;
1047  DIBuilder *DIB;
1050 public:
1051  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1052  DIBuilder *DB)
1053  : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1054 
1055  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1056  // Remember which alloca we're promoting (for isInstInList).
1057  this->AI = AI;
1058  if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
1059  for (Value::use_iterator UI = DebugNode->use_begin(),
1060  E = DebugNode->use_end(); UI != E; ++UI)
1061  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1062  DDIs.push_back(DDI);
1063  else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1064  DVIs.push_back(DVI);
1065  }
1066 
1068  AI->eraseFromParent();
1069  for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1070  E = DDIs.end(); I != E; ++I) {
1071  DbgDeclareInst *DDI = *I;
1072  DDI->eraseFromParent();
1073  }
1074  for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1075  E = DVIs.end(); I != E; ++I) {
1076  DbgValueInst *DVI = *I;
1077  DVI->eraseFromParent();
1078  }
1079  }
1080 
1081  virtual bool isInstInList(Instruction *I,
1082  const SmallVectorImpl<Instruction*> &Insts) const {
1083  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1084  return LI->getOperand(0) == AI;
1085  return cast<StoreInst>(I)->getPointerOperand() == AI;
1086  }
1087 
1088  virtual void updateDebugInfo(Instruction *Inst) const {
1090  E = DDIs.end(); I != E; ++I) {
1091  DbgDeclareInst *DDI = *I;
1092  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1093  ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1094  else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1095  ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1096  }
1098  E = DVIs.end(); I != E; ++I) {
1099  DbgValueInst *DVI = *I;
1100  Value *Arg = NULL;
1101  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1102  // If an argument is zero extended then use argument directly. The ZExt
1103  // may be zapped by an optimization pass in future.
1104  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1105  Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1106  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1107  Arg = dyn_cast<Argument>(SExt->getOperand(0));
1108  if (!Arg)
1109  Arg = SI->getOperand(0);
1110  } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1111  Arg = LI->getOperand(0);
1112  } else {
1113  continue;
1114  }
1115  Instruction *DbgVal =
1116  DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1117  Inst);
1118  DbgVal->setDebugLoc(DVI->getDebugLoc());
1119  }
1120  }
1121 };
1122 } // end anon namespace
1123 
1124 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1125 /// subsequently loaded can be rewritten to load both input pointers and then
1126 /// select between the result, allowing the load of the alloca to be promoted.
1127 /// From this:
1128 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1129 /// %V = load i32* %P2
1130 /// to:
1131 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1132 /// %V2 = load i32* %Other
1133 /// %V = select i1 %cond, i32 %V1, i32 %V2
1134 ///
1135 /// We can do this to a select if its only uses are loads and if the operand to
1136 /// the select can be loaded unconditionally.
1138  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1139  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1140 
1141  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1142  UI != UE; ++UI) {
1143  LoadInst *LI = dyn_cast<LoadInst>(*UI);
1144  if (LI == 0 || !LI->isSimple()) return false;
1145 
1146  // Both operands to the select need to be dereferencable, either absolutely
1147  // (e.g. allocas) or at this point because we can see other accesses to it.
1148  if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1149  LI->getAlignment(), TD))
1150  return false;
1151  if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1152  LI->getAlignment(), TD))
1153  return false;
1154  }
1155 
1156  return true;
1157 }
1158 
1159 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1160 /// subsequently loaded can be rewritten to load both input pointers in the pred
1161 /// blocks and then PHI the results, allowing the load of the alloca to be
1162 /// promoted.
1163 /// From this:
1164 /// %P2 = phi [i32* %Alloca, i32* %Other]
1165 /// %V = load i32* %P2
1166 /// to:
1167 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1168 /// ...
1169 /// %V2 = load i32* %Other
1170 /// ...
1171 /// %V = phi [i32 %V1, i32 %V2]
1172 ///
1173 /// We can do this to a select if its only uses are loads and if the operand to
1174 /// the select can be loaded unconditionally.
1175 static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD) {
1176  // For now, we can only do this promotion if the load is in the same block as
1177  // the PHI, and if there are no stores between the phi and load.
1178  // TODO: Allow recursive phi users.
1179  // TODO: Allow stores.
1180  BasicBlock *BB = PN->getParent();
1181  unsigned MaxAlign = 0;
1182  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1183  UI != UE; ++UI) {
1184  LoadInst *LI = dyn_cast<LoadInst>(*UI);
1185  if (LI == 0 || !LI->isSimple()) return false;
1186 
1187  // For now we only allow loads in the same block as the PHI. This is a
1188  // common case that happens when instcombine merges two loads through a PHI.
1189  if (LI->getParent() != BB) return false;
1190 
1191  // Ensure that there are no instructions between the PHI and the load that
1192  // could store.
1193  for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1194  if (BBI->mayWriteToMemory())
1195  return false;
1196 
1197  MaxAlign = std::max(MaxAlign, LI->getAlignment());
1198  }
1199 
1200  // Okay, we know that we have one or more loads in the same block as the PHI.
1201  // We can transform this if it is safe to push the loads into the predecessor
1202  // blocks. The only thing to watch out for is that we can't put a possibly
1203  // trapping load in the predecessor if it is a critical edge.
1204  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1205  BasicBlock *Pred = PN->getIncomingBlock(i);
1206  Value *InVal = PN->getIncomingValue(i);
1207 
1208  // If the terminator of the predecessor has side-effects (an invoke),
1209  // there is no safe place to put a load in the predecessor.
1210  if (Pred->getTerminator()->mayHaveSideEffects())
1211  return false;
1212 
1213  // If the value is produced by the terminator of the predecessor
1214  // (an invoke), there is no valid place to put a load in the predecessor.
1215  if (Pred->getTerminator() == InVal)
1216  return false;
1217 
1218  // If the predecessor has a single successor, then the edge isn't critical.
1219  if (Pred->getTerminator()->getNumSuccessors() == 1)
1220  continue;
1221 
1222  // If this pointer is always safe to load, or if we can prove that there is
1223  // already a load in the block, then we can move the load to the pred block.
1224  if (InVal->isDereferenceablePointer() ||
1225  isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1226  continue;
1227 
1228  return false;
1229  }
1230 
1231  return true;
1232 }
1233 
1234 
1235 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1236 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1237 /// not quite there, this will transform the code to allow promotion. As such,
1238 /// it is a non-pure predicate.
1241  SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1242 
1243  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1244  UI != UE; ++UI) {
1245  User *U = *UI;
1246  if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1247  if (!LI->isSimple())
1248  return false;
1249  continue;
1250  }
1251 
1252  if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1253  if (SI->getOperand(0) == AI || !SI->isSimple())
1254  return false; // Don't allow a store OF the AI, only INTO the AI.
1255  continue;
1256  }
1257 
1258  if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1259  // If the condition being selected on is a constant, fold the select, yes
1260  // this does (rarely) happen early on.
1261  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1262  Value *Result = SI->getOperand(1+CI->isZero());
1263  SI->replaceAllUsesWith(Result);
1264  SI->eraseFromParent();
1265 
1266  // This is very rare and we just scrambled the use list of AI, start
1267  // over completely.
1268  return tryToMakeAllocaBePromotable(AI, TD);
1269  }
1270 
1271  // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1272  // loads, then we can transform this by rewriting the select.
1273  if (!isSafeSelectToSpeculate(SI, TD))
1274  return false;
1275 
1276  InstsToRewrite.insert(SI);
1277  continue;
1278  }
1279 
1280  if (PHINode *PN = dyn_cast<PHINode>(U)) {
1281  if (PN->use_empty()) { // Dead PHIs can be stripped.
1282  InstsToRewrite.insert(PN);
1283  continue;
1284  }
1285 
1286  // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1287  // in the pred blocks, then we can transform this by rewriting the PHI.
1288  if (!isSafePHIToSpeculate(PN, TD))
1289  return false;
1290 
1291  InstsToRewrite.insert(PN);
1292  continue;
1293  }
1294 
1295  if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1296  if (onlyUsedByLifetimeMarkers(BCI)) {
1297  InstsToRewrite.insert(BCI);
1298  continue;
1299  }
1300  }
1301 
1302  return false;
1303  }
1304 
1305  // If there are no instructions to rewrite, then all uses are load/stores and
1306  // we're done!
1307  if (InstsToRewrite.empty())
1308  return true;
1309 
1310  // If we have instructions that need to be rewritten for this to be promotable
1311  // take care of it now.
1312  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1313  if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1314  // This could only be a bitcast used by nothing but lifetime intrinsics.
1315  for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1316  I != E;) {
1317  Use &U = I.getUse();
1318  ++I;
1319  cast<Instruction>(U.getUser())->eraseFromParent();
1320  }
1321  BCI->eraseFromParent();
1322  continue;
1323  }
1324 
1325  if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1326  // Selects in InstsToRewrite only have load uses. Rewrite each as two
1327  // loads with a new select.
1328  while (!SI->use_empty()) {
1329  LoadInst *LI = cast<LoadInst>(SI->use_back());
1330 
1331  IRBuilder<> Builder(LI);
1332  LoadInst *TrueLoad =
1333  Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1334  LoadInst *FalseLoad =
1335  Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1336 
1337  // Transfer alignment and TBAA info if present.
1338  TrueLoad->setAlignment(LI->getAlignment());
1339  FalseLoad->setAlignment(LI->getAlignment());
1340  if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1341  TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1342  FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1343  }
1344 
1345  Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1346  V->takeName(LI);
1347  LI->replaceAllUsesWith(V);
1348  LI->eraseFromParent();
1349  }
1350 
1351  // Now that all the loads are gone, the select is gone too.
1352  SI->eraseFromParent();
1353  continue;
1354  }
1355 
1356  // Otherwise, we have a PHI node which allows us to push the loads into the
1357  // predecessors.
1358  PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1359  if (PN->use_empty()) {
1360  PN->eraseFromParent();
1361  continue;
1362  }
1363 
1364  Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1365  PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1366  PN->getName()+".ld", PN);
1367 
1368  // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1369  // matter which one we get and if any differ, it doesn't matter.
1370  LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1371  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1372  unsigned Align = SomeLoad->getAlignment();
1373 
1374  // Rewrite all loads of the PN to use the new PHI.
1375  while (!PN->use_empty()) {
1376  LoadInst *LI = cast<LoadInst>(PN->use_back());
1377  LI->replaceAllUsesWith(NewPN);
1378  LI->eraseFromParent();
1379  }
1380 
1381  // Inject loads into all of the pred blocks. Keep track of which blocks we
1382  // insert them into in case we have multiple edges from the same block.
1383  DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1384 
1385  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1386  BasicBlock *Pred = PN->getIncomingBlock(i);
1387  LoadInst *&Load = InsertedLoads[Pred];
1388  if (Load == 0) {
1389  Load = new LoadInst(PN->getIncomingValue(i),
1390  PN->getName() + "." + Pred->getName(),
1391  Pred->getTerminator());
1392  Load->setAlignment(Align);
1393  if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1394  }
1395 
1396  NewPN->addIncoming(Load, Pred);
1397  }
1398 
1399  PN->eraseFromParent();
1400  }
1401 
1402  ++NumAdjusted;
1403  return true;
1404 }
1405 
1406 bool SROA::performPromotion(Function &F) {
1407  std::vector<AllocaInst*> Allocas;
1408  DominatorTree *DT = 0;
1409  if (HasDomTree)
1410  DT = &getAnalysis<DominatorTree>();
1411 
1412  BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
1413  DIBuilder DIB(*F.getParent());
1414  bool Changed = false;
1416  while (1) {
1417  Allocas.clear();
1418 
1419  // Find allocas that are safe to promote, by looking at all instructions in
1420  // the entry node
1421  for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1422  if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
1424  Allocas.push_back(AI);
1425 
1426  if (Allocas.empty()) break;
1427 
1428  if (HasDomTree)
1429  PromoteMemToReg(Allocas, *DT);
1430  else {
1431  SSAUpdater SSA;
1432  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1433  AllocaInst *AI = Allocas[i];
1434 
1435  // Build list of instructions to promote.
1436  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1437  UI != E; ++UI)
1438  Insts.push_back(cast<Instruction>(*UI));
1439  AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1440  Insts.clear();
1441  }
1442  }
1443  NumPromoted += Allocas.size();
1444  Changed = true;
1445  }
1446 
1447  return Changed;
1448 }
1449 
1450 
1451 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1452 /// SROA. It must be a struct or array type with a small number of elements.
1453 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1454  Type *T = AI->getAllocatedType();
1455  // Do not promote any struct that has too many members.
1456  if (StructType *ST = dyn_cast<StructType>(T))
1457  return ST->getNumElements() <= StructMemberThreshold;
1458  // Do not promote any array that has too many elements.
1459  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1460  return AT->getNumElements() <= ArrayElementThreshold;
1461  return false;
1462 }
1463 
1464 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1465 // which runs on all of the alloca instructions in the entry block, removing
1466 // them if they are only used by getelementptr instructions.
1467 //
1468 bool SROA::performScalarRepl(Function &F) {
1469  std::vector<AllocaInst*> WorkList;
1470 
1471  // Scan the entry basic block, adding allocas to the worklist.
1472  BasicBlock &BB = F.getEntryBlock();
1473  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1474  if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1475  WorkList.push_back(A);
1476 
1477  // Process the worklist
1478  bool Changed = false;
1479  while (!WorkList.empty()) {
1480  AllocaInst *AI = WorkList.back();
1481  WorkList.pop_back();
1482 
1483  // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1484  // with unused elements.
1485  if (AI->use_empty()) {
1486  AI->eraseFromParent();
1487  Changed = true;
1488  continue;
1489  }
1490 
1491  // If this alloca is impossible for us to promote, reject it early.
1492  if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1493  continue;
1494 
1495  // Check to see if we can perform the core SROA transformation. We cannot
1496  // transform the allocation instruction if it is an array allocation
1497  // (allocations OF arrays are ok though), and an allocation of a scalar
1498  // value cannot be decomposed at all.
1499  uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1500 
1501  // Do not promote [0 x %struct].
1502  if (AllocaSize == 0) continue;
1503 
1504  // Do not promote any struct whose size is too big.
1505  if (AllocaSize > SRThreshold) continue;
1506 
1507  // If the alloca looks like a good candidate for scalar replacement, and if
1508  // all its users can be transformed, then split up the aggregate into its
1509  // separate elements.
1510  if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1511  DoScalarReplacement(AI, WorkList);
1512  Changed = true;
1513  continue;
1514  }
1515 
1516  // If we can turn this aggregate value (potentially with casts) into a
1517  // simple scalar value that can be mem2reg'd into a register value.
1518  // IsNotTrivial tracks whether this is something that mem2reg could have
1519  // promoted itself. If so, we don't want to transform it needlessly. Note
1520  // that we can't just check based on the type: the alloca may be of an i32
1521  // but that has pointer arithmetic to set byte 3 of it or something.
1522  if (AllocaInst *NewAI = ConvertToScalarInfo(
1523  (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
1524  NewAI->takeName(AI);
1525  AI->eraseFromParent();
1526  ++NumConverted;
1527  Changed = true;
1528  continue;
1529  }
1530 
1531  // Otherwise, couldn't process this alloca.
1532  }
1533 
1534  return Changed;
1535 }
1536 
1537 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1538 /// predicate, do SROA now.
1539 void SROA::DoScalarReplacement(AllocaInst *AI,
1540  std::vector<AllocaInst*> &WorkList) {
1541  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1542  SmallVector<AllocaInst*, 32> ElementAllocas;
1543  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1544  ElementAllocas.reserve(ST->getNumContainedTypes());
1545  for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1546  AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1547  AI->getAlignment(),
1548  AI->getName() + "." + Twine(i), AI);
1549  ElementAllocas.push_back(NA);
1550  WorkList.push_back(NA); // Add to worklist for recursive processing
1551  }
1552  } else {
1553  ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1554  ElementAllocas.reserve(AT->getNumElements());
1555  Type *ElTy = AT->getElementType();
1556  for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1557  AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1558  AI->getName() + "." + Twine(i), AI);
1559  ElementAllocas.push_back(NA);
1560  WorkList.push_back(NA); // Add to worklist for recursive processing
1561  }
1562  }
1563 
1564  // Now that we have created the new alloca instructions, rewrite all the
1565  // uses of the old alloca.
1566  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1567 
1568  // Now erase any instructions that were made dead while rewriting the alloca.
1569  DeleteDeadInstructions();
1570  AI->eraseFromParent();
1571 
1572  ++NumReplaced;
1573 }
1574 
1575 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1576 /// recursively including all their operands that become trivially dead.
1577 void SROA::DeleteDeadInstructions() {
1578  while (!DeadInsts.empty()) {
1579  Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1580 
1581  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1582  if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1583  // Zero out the operand and see if it becomes trivially dead.
1584  // (But, don't add allocas to the dead instruction list -- they are
1585  // already on the worklist and will be deleted separately.)
1586  *OI = 0;
1587  if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1588  DeadInsts.push_back(U);
1589  }
1590 
1591  I->eraseFromParent();
1592  }
1593 }
1594 
1595 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1596 /// performing scalar replacement of alloca AI. The results are flagged in
1597 /// the Info parameter. Offset indicates the position within AI that is
1598 /// referenced by this instruction.
1599 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1600  AllocaInfo &Info) {
1601  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1602  Instruction *User = cast<Instruction>(*UI);
1603 
1604  if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1605  isSafeForScalarRepl(BC, Offset, Info);
1606  } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1607  uint64_t GEPOffset = Offset;
1608  isSafeGEP(GEPI, GEPOffset, Info);
1609  if (!Info.isUnsafe)
1610  isSafeForScalarRepl(GEPI, GEPOffset, Info);
1611  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1612  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1613  if (Length == 0)
1614  return MarkUnsafe(Info, User);
1615  if (Length->isNegative())
1616  return MarkUnsafe(Info, User);
1617 
1618  isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1619  UI.getOperandNo() == 0, Info, MI,
1620  true /*AllowWholeAccess*/);
1621  } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1622  if (!LI->isSimple())
1623  return MarkUnsafe(Info, User);
1624  Type *LIType = LI->getType();
1625  isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1626  LIType, false, Info, LI, true /*AllowWholeAccess*/);
1627  Info.hasALoadOrStore = true;
1628 
1629  } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1630  // Store is ok if storing INTO the pointer, not storing the pointer
1631  if (!SI->isSimple() || SI->getOperand(0) == I)
1632  return MarkUnsafe(Info, User);
1633 
1634  Type *SIType = SI->getOperand(0)->getType();
1635  isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1636  SIType, true, Info, SI, true /*AllowWholeAccess*/);
1637  Info.hasALoadOrStore = true;
1638  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1639  if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1640  II->getIntrinsicID() != Intrinsic::lifetime_end)
1641  return MarkUnsafe(Info, User);
1642  } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1643  isSafePHISelectUseForScalarRepl(User, Offset, Info);
1644  } else {
1645  return MarkUnsafe(Info, User);
1646  }
1647  if (Info.isUnsafe) return;
1648  }
1649 }
1650 
1651 
1652 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1653 /// derived from the alloca, we can often still split the alloca into elements.
1654 /// This is useful if we have a large alloca where one element is phi'd
1655 /// together somewhere: we can SRoA and promote all the other elements even if
1656 /// we end up not being able to promote this one.
1657 ///
1658 /// All we require is that the uses of the PHI do not index into other parts of
1659 /// the alloca. The most important use case for this is single load and stores
1660 /// that are PHI'd together, which can happen due to code sinking.
1661 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1662  AllocaInfo &Info) {
1663  // If we've already checked this PHI, don't do it again.
1664  if (PHINode *PN = dyn_cast<PHINode>(I))
1665  if (!Info.CheckedPHIs.insert(PN))
1666  return;
1667 
1668  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1669  Instruction *User = cast<Instruction>(*UI);
1670 
1671  if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1672  isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1673  } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1674  // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1675  // but would have to prove that we're staying inside of an element being
1676  // promoted.
1677  if (!GEPI->hasAllZeroIndices())
1678  return MarkUnsafe(Info, User);
1679  isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1680  } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1681  if (!LI->isSimple())
1682  return MarkUnsafe(Info, User);
1683  Type *LIType = LI->getType();
1684  isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1685  LIType, false, Info, LI, false /*AllowWholeAccess*/);
1686  Info.hasALoadOrStore = true;
1687 
1688  } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1689  // Store is ok if storing INTO the pointer, not storing the pointer
1690  if (!SI->isSimple() || SI->getOperand(0) == I)
1691  return MarkUnsafe(Info, User);
1692 
1693  Type *SIType = SI->getOperand(0)->getType();
1694  isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1695  SIType, true, Info, SI, false /*AllowWholeAccess*/);
1696  Info.hasALoadOrStore = true;
1697  } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1698  isSafePHISelectUseForScalarRepl(User, Offset, Info);
1699  } else {
1700  return MarkUnsafe(Info, User);
1701  }
1702  if (Info.isUnsafe) return;
1703  }
1704 }
1705 
1706 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1707 /// replacement. It is safe when all the indices are constant, in-bounds
1708 /// references, and when the resulting offset corresponds to an element within
1709 /// the alloca type. The results are flagged in the Info parameter. Upon
1710 /// return, Offset is adjusted as specified by the GEP indices.
1711 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1712  uint64_t &Offset, AllocaInfo &Info) {
1713  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1714  if (GEPIt == E)
1715  return;
1716  bool NonConstant = false;
1717  unsigned NonConstantIdxSize = 0;
1718 
1719  // Walk through the GEP type indices, checking the types that this indexes
1720  // into.
1721  for (; GEPIt != E; ++GEPIt) {
1722  // Ignore struct elements, no extra checking needed for these.
1723  if ((*GEPIt)->isStructTy())
1724  continue;
1725 
1726  ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1727  if (!IdxVal)
1728  return MarkUnsafe(Info, GEPI);
1729  }
1730 
1731  // Compute the offset due to this GEP and check if the alloca has a
1732  // component element at that offset.
1733  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1734  // If this GEP is non constant then the last operand must have been a
1735  // dynamic index into a vector. Pop this now as it has no impact on the
1736  // constant part of the offset.
1737  if (NonConstant)
1738  Indices.pop_back();
1739  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1740  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
1741  NonConstantIdxSize))
1742  MarkUnsafe(Info, GEPI);
1743 }
1744 
1745 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1746 /// elements of the same type (which is always true for arrays). If so,
1747 /// return true with NumElts and EltTy set to the number of elements and the
1748 /// element type, respectively.
1749 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1750  Type *&EltTy) {
1751  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1752  NumElts = AT->getNumElements();
1753  EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1754  return true;
1755  }
1756  if (StructType *ST = dyn_cast<StructType>(T)) {
1757  NumElts = ST->getNumContainedTypes();
1758  EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1759  for (unsigned n = 1; n < NumElts; ++n) {
1760  if (ST->getContainedType(n) != EltTy)
1761  return false;
1762  }
1763  return true;
1764  }
1765  return false;
1766 }
1767 
1768 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1769 /// "homogeneous" aggregates with the same element type and number of elements.
1770 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1771  if (T1 == T2)
1772  return true;
1773 
1774  unsigned NumElts1, NumElts2;
1775  Type *EltTy1, *EltTy2;
1776  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1777  isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1778  NumElts1 == NumElts2 &&
1779  EltTy1 == EltTy2)
1780  return true;
1781 
1782  return false;
1783 }
1784 
1785 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1786 /// alloca or has an offset and size that corresponds to a component element
1787 /// within it. The offset checked here may have been formed from a GEP with a
1788 /// pointer bitcasted to a different type.
1789 ///
1790 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1791 /// unit. If false, it only allows accesses known to be in a single element.
1792 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1793  Type *MemOpType, bool isStore,
1794  AllocaInfo &Info, Instruction *TheAccess,
1795  bool AllowWholeAccess) {
1796  // Check if this is a load/store of the entire alloca.
1797  if (Offset == 0 && AllowWholeAccess &&
1798  MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1799  // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1800  // loads/stores (which are essentially the same as the MemIntrinsics with
1801  // regard to copying padding between elements). But, if an alloca is
1802  // flagged as both a source and destination of such operations, we'll need
1803  // to check later for padding between elements.
1804  if (!MemOpType || MemOpType->isIntegerTy()) {
1805  if (isStore)
1806  Info.isMemCpyDst = true;
1807  else
1808  Info.isMemCpySrc = true;
1809  return;
1810  }
1811  // This is also safe for references using a type that is compatible with
1812  // the type of the alloca, so that loads/stores can be rewritten using
1813  // insertvalue/extractvalue.
1814  if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1815  Info.hasSubelementAccess = true;
1816  return;
1817  }
1818  }
1819  // Check if the offset/size correspond to a component within the alloca type.
1820  Type *T = Info.AI->getAllocatedType();
1821  if (TypeHasComponent(T, Offset, MemSize)) {
1822  Info.hasSubelementAccess = true;
1823  return;
1824  }
1825 
1826  return MarkUnsafe(Info, TheAccess);
1827 }
1828 
1829 /// TypeHasComponent - Return true if T has a component type with the
1830 /// specified offset and size. If Size is zero, do not check the size.
1831 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1832  Type *EltTy;
1833  uint64_t EltSize;
1834  if (StructType *ST = dyn_cast<StructType>(T)) {
1835  const StructLayout *Layout = TD->getStructLayout(ST);
1836  unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1837  EltTy = ST->getContainedType(EltIdx);
1838  EltSize = TD->getTypeAllocSize(EltTy);
1839  Offset -= Layout->getElementOffset(EltIdx);
1840  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1841  EltTy = AT->getElementType();
1842  EltSize = TD->getTypeAllocSize(EltTy);
1843  if (Offset >= AT->getNumElements() * EltSize)
1844  return false;
1845  Offset %= EltSize;
1846  } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1847  EltTy = VT->getElementType();
1848  EltSize = TD->getTypeAllocSize(EltTy);
1849  if (Offset >= VT->getNumElements() * EltSize)
1850  return false;
1851  Offset %= EltSize;
1852  } else {
1853  return false;
1854  }
1855  if (Offset == 0 && (Size == 0 || EltSize == Size))
1856  return true;
1857  // Check if the component spans multiple elements.
1858  if (Offset + Size > EltSize)
1859  return false;
1860  return TypeHasComponent(EltTy, Offset, Size);
1861 }
1862 
1863 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1864 /// the instruction I, which references it, to use the separate elements.
1865 /// Offset indicates the position within AI that is referenced by this
1866 /// instruction.
1867 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1868  SmallVectorImpl<AllocaInst *> &NewElts) {
1869  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1870  Use &TheUse = UI.getUse();
1871  Instruction *User = cast<Instruction>(*UI++);
1872 
1873  if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1874  RewriteBitCast(BC, AI, Offset, NewElts);
1875  continue;
1876  }
1877 
1878  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1879  RewriteGEP(GEPI, AI, Offset, NewElts);
1880  continue;
1881  }
1882 
1883  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1884  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1885  uint64_t MemSize = Length->getZExtValue();
1886  if (Offset == 0 &&
1887  MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1888  RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1889  // Otherwise the intrinsic can only touch a single element and the
1890  // address operand will be updated, so nothing else needs to be done.
1891  continue;
1892  }
1893 
1894  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1895  if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1896  II->getIntrinsicID() == Intrinsic::lifetime_end) {
1897  RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1898  }
1899  continue;
1900  }
1901 
1902  if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1903  Type *LIType = LI->getType();
1904 
1905  if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1906  // Replace:
1907  // %res = load { i32, i32 }* %alloc
1908  // with:
1909  // %load.0 = load i32* %alloc.0
1910  // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1911  // %load.1 = load i32* %alloc.1
1912  // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1913  // (Also works for arrays instead of structs)
1914  Value *Insert = UndefValue::get(LIType);
1915  IRBuilder<> Builder(LI);
1916  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1917  Value *Load = Builder.CreateLoad(NewElts[i], "load");
1918  Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1919  }
1920  LI->replaceAllUsesWith(Insert);
1921  DeadInsts.push_back(LI);
1922  } else if (LIType->isIntegerTy() &&
1923  TD->getTypeAllocSize(LIType) ==
1924  TD->getTypeAllocSize(AI->getAllocatedType())) {
1925  // If this is a load of the entire alloca to an integer, rewrite it.
1926  RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1927  }
1928  continue;
1929  }
1930 
1931  if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1932  Value *Val = SI->getOperand(0);
1933  Type *SIType = Val->getType();
1934  if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1935  // Replace:
1936  // store { i32, i32 } %val, { i32, i32 }* %alloc
1937  // with:
1938  // %val.0 = extractvalue { i32, i32 } %val, 0
1939  // store i32 %val.0, i32* %alloc.0
1940  // %val.1 = extractvalue { i32, i32 } %val, 1
1941  // store i32 %val.1, i32* %alloc.1
1942  // (Also works for arrays instead of structs)
1943  IRBuilder<> Builder(SI);
1944  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1945  Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1946  Builder.CreateStore(Extract, NewElts[i]);
1947  }
1948  DeadInsts.push_back(SI);
1949  } else if (SIType->isIntegerTy() &&
1950  TD->getTypeAllocSize(SIType) ==
1951  TD->getTypeAllocSize(AI->getAllocatedType())) {
1952  // If this is a store of the entire alloca from an integer, rewrite it.
1953  RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1954  }
1955  continue;
1956  }
1957 
1958  if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1959  // If we have a PHI user of the alloca itself (as opposed to a GEP or
1960  // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1961  // the new pointer.
1962  if (!isa<AllocaInst>(I)) continue;
1963 
1964  assert(Offset == 0 && NewElts[0] &&
1965  "Direct alloca use should have a zero offset");
1966 
1967  // If we have a use of the alloca, we know the derived uses will be
1968  // utilizing just the first element of the scalarized result. Insert a
1969  // bitcast of the first alloca before the user as required.
1970  AllocaInst *NewAI = NewElts[0];
1971  BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1972  NewAI->moveBefore(BCI);
1973  TheUse = BCI;
1974  continue;
1975  }
1976  }
1977 }
1978 
1979 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1980 /// and recursively continue updating all of its uses.
1981 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1982  SmallVectorImpl<AllocaInst *> &NewElts) {
1983  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1984  if (BC->getOperand(0) != AI)
1985  return;
1986 
1987  // The bitcast references the original alloca. Replace its uses with
1988  // references to the alloca containing offset zero (which is normally at
1989  // index zero, but might not be in cases involving structs with elements
1990  // of size zero).
1991  Type *T = AI->getAllocatedType();
1992  uint64_t EltOffset = 0;
1993  Type *IdxTy;
1994  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1995  Instruction *Val = NewElts[Idx];
1996  if (Val->getType() != BC->getDestTy()) {
1997  Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1998  Val->takeName(BC);
1999  }
2000  BC->replaceAllUsesWith(Val);
2001  DeadInsts.push_back(BC);
2002 }
2003 
2004 /// FindElementAndOffset - Return the index of the element containing Offset
2005 /// within the specified type, which must be either a struct or an array.
2006 /// Sets T to the type of the element and Offset to the offset within that
2007 /// element. IdxTy is set to the type of the index result to be used in a
2008 /// GEP instruction.
2009 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2010  Type *&IdxTy) {
2011  uint64_t Idx = 0;
2012  if (StructType *ST = dyn_cast<StructType>(T)) {
2013  const StructLayout *Layout = TD->getStructLayout(ST);
2014  Idx = Layout->getElementContainingOffset(Offset);
2015  T = ST->getContainedType(Idx);
2016  Offset -= Layout->getElementOffset(Idx);
2017  IdxTy = Type::getInt32Ty(T->getContext());
2018  return Idx;
2019  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2020  T = AT->getElementType();
2021  uint64_t EltSize = TD->getTypeAllocSize(T);
2022  Idx = Offset / EltSize;
2023  Offset -= Idx * EltSize;
2024  IdxTy = Type::getInt64Ty(T->getContext());
2025  return Idx;
2026  }
2027  VectorType *VT = cast<VectorType>(T);
2028  T = VT->getElementType();
2029  uint64_t EltSize = TD->getTypeAllocSize(T);
2030  Idx = Offset / EltSize;
2031  Offset -= Idx * EltSize;
2032  IdxTy = Type::getInt64Ty(T->getContext());
2033  return Idx;
2034 }
2035 
2036 /// RewriteGEP - Check if this GEP instruction moves the pointer across
2037 /// elements of the alloca that are being split apart, and if so, rewrite
2038 /// the GEP to be relative to the new element.
2039 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2040  SmallVectorImpl<AllocaInst *> &NewElts) {
2041  uint64_t OldOffset = Offset;
2042  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2043  // If the GEP was dynamic then it must have been a dynamic vector lookup.
2044  // In this case, it must be the last GEP operand which is dynamic so keep that
2045  // aside until we've found the constant GEP offset then add it back in at the
2046  // end.
2047  Value* NonConstantIdx = 0;
2048  if (!GEPI->hasAllConstantIndices())
2049  NonConstantIdx = Indices.pop_back_val();
2050  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2051 
2052  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2053 
2054  Type *T = AI->getAllocatedType();
2055  Type *IdxTy;
2056  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2057  if (GEPI->getOperand(0) == AI)
2058  OldIdx = ~0ULL; // Force the GEP to be rewritten.
2059 
2060  T = AI->getAllocatedType();
2061  uint64_t EltOffset = Offset;
2062  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2063 
2064  // If this GEP does not move the pointer across elements of the alloca
2065  // being split, then it does not needs to be rewritten.
2066  if (Idx == OldIdx)
2067  return;
2068 
2069  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2070  SmallVector<Value*, 8> NewArgs;
2071  NewArgs.push_back(Constant::getNullValue(i32Ty));
2072  while (EltOffset != 0) {
2073  uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2074  NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2075  }
2076  if (NonConstantIdx) {
2077  Type* GepTy = T;
2078  // This GEP has a dynamic index. We need to add "i32 0" to index through
2079  // any structs or arrays in the original type until we get to the vector
2080  // to index.
2081  while (!isa<VectorType>(GepTy)) {
2082  NewArgs.push_back(Constant::getNullValue(i32Ty));
2083  GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2084  }
2085  NewArgs.push_back(NonConstantIdx);
2086  }
2087  Instruction *Val = NewElts[Idx];
2088  if (NewArgs.size() > 1) {
2089  Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2090  Val->takeName(GEPI);
2091  }
2092  if (Val->getType() != GEPI->getType())
2093  Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2094  GEPI->replaceAllUsesWith(Val);
2095  DeadInsts.push_back(GEPI);
2096 }
2097 
2098 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2099 /// to mark the lifetime of the scalarized memory.
2100 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2101  uint64_t Offset,
2102  SmallVectorImpl<AllocaInst *> &NewElts) {
2103  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2104  // Put matching lifetime markers on everything from Offset up to
2105  // Offset+OldSize.
2106  Type *AIType = AI->getAllocatedType();
2107  uint64_t NewOffset = Offset;
2108  Type *IdxTy;
2109  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2110 
2111  IRBuilder<> Builder(II);
2112  uint64_t Size = OldSize->getLimitedValue();
2113 
2114  if (NewOffset) {
2115  // Splice the first element and index 'NewOffset' bytes in. SROA will
2116  // split the alloca again later.
2117  Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
2118  V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2119 
2120  IdxTy = NewElts[Idx]->getAllocatedType();
2121  uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
2122  if (EltSize > Size) {
2123  EltSize = Size;
2124  Size = 0;
2125  } else {
2126  Size -= EltSize;
2127  }
2129  Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2130  else
2131  Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2132  ++Idx;
2133  }
2134 
2135  for (; Idx != NewElts.size() && Size; ++Idx) {
2136  IdxTy = NewElts[Idx]->getAllocatedType();
2137  uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2138  if (EltSize > Size) {
2139  EltSize = Size;
2140  Size = 0;
2141  } else {
2142  Size -= EltSize;
2143  }
2145  Builder.CreateLifetimeStart(NewElts[Idx],
2146  Builder.getInt64(EltSize));
2147  else
2148  Builder.CreateLifetimeEnd(NewElts[Idx],
2149  Builder.getInt64(EltSize));
2150  }
2151  DeadInsts.push_back(II);
2152 }
2153 
2154 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2155 /// Rewrite it to copy or set the elements of the scalarized memory.
2156 void
2157 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2158  AllocaInst *AI,
2159  SmallVectorImpl<AllocaInst *> &NewElts) {
2160  // If this is a memcpy/memmove, construct the other pointer as the
2161  // appropriate type. The "Other" pointer is the pointer that goes to memory
2162  // that doesn't have anything to do with the alloca that we are promoting. For
2163  // memset, this Value* stays null.
2164  Value *OtherPtr = 0;
2165  unsigned MemAlignment = MI->getAlignment();
2166  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2167  if (Inst == MTI->getRawDest())
2168  OtherPtr = MTI->getRawSource();
2169  else {
2170  assert(Inst == MTI->getRawSource());
2171  OtherPtr = MTI->getRawDest();
2172  }
2173  }
2174 
2175  // If there is an other pointer, we want to convert it to the same pointer
2176  // type as AI has, so we can GEP through it safely.
2177  if (OtherPtr) {
2178  unsigned AddrSpace =
2179  cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2180 
2181  // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
2182  // optimization, but it's also required to detect the corner case where
2183  // both pointer operands are referencing the same memory, and where
2184  // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
2185  // function is only called for mem intrinsics that access the whole
2186  // aggregate, so non-zero GEPs are not an issue here.)
2187  OtherPtr = OtherPtr->stripPointerCasts();
2188 
2189  // Copying the alloca to itself is a no-op: just delete it.
2190  if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2191  // This code will run twice for a no-op memcpy -- once for each operand.
2192  // Put only one reference to MI on the DeadInsts list.
2193  for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2194  E = DeadInsts.end(); I != E; ++I)
2195  if (*I == MI) return;
2196  DeadInsts.push_back(MI);
2197  return;
2198  }
2199 
2200  // If the pointer is not the right type, insert a bitcast to the right
2201  // type.
2202  Type *NewTy =
2203  PointerType::get(AI->getType()->getElementType(), AddrSpace);
2204 
2205  if (OtherPtr->getType() != NewTy)
2206  OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2207  }
2208 
2209  // Process each element of the aggregate.
2210  bool SROADest = MI->getRawDest() == Inst;
2211 
2213 
2214  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2215  // If this is a memcpy/memmove, emit a GEP of the other element address.
2216  Value *OtherElt = 0;
2217  unsigned OtherEltAlign = MemAlignment;
2218 
2219  if (OtherPtr) {
2220  Value *Idx[2] = { Zero,
2222  OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2223  OtherPtr->getName()+"."+Twine(i),
2224  MI);
2225  uint64_t EltOffset;
2226  PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2227  Type *OtherTy = OtherPtrTy->getElementType();
2228  if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2229  EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2230  } else {
2231  Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2232  EltOffset = TD->getTypeAllocSize(EltTy)*i;
2233  }
2234 
2235  // The alignment of the other pointer is the guaranteed alignment of the
2236  // element, which is affected by both the known alignment of the whole
2237  // mem intrinsic and the alignment of the element. If the alignment of
2238  // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2239  // known alignment is just 4 bytes.
2240  OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2241  }
2242 
2243  Value *EltPtr = NewElts[i];
2244  Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2245 
2246  // If we got down to a scalar, insert a load or store as appropriate.
2247  if (EltTy->isSingleValueType()) {
2248  if (isa<MemTransferInst>(MI)) {
2249  if (SROADest) {
2250  // From Other to Alloca.
2251  Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2252  new StoreInst(Elt, EltPtr, MI);
2253  } else {
2254  // From Alloca to Other.
2255  Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2256  new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2257  }
2258  continue;
2259  }
2260  assert(isa<MemSetInst>(MI));
2261 
2262  // If the stored element is zero (common case), just store a null
2263  // constant.
2264  Constant *StoreVal;
2265  if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2266  if (CI->isZero()) {
2267  StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
2268  } else {
2269  // If EltTy is a vector type, get the element type.
2270  Type *ValTy = EltTy->getScalarType();
2271 
2272  // Construct an integer with the right value.
2273  unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2274  APInt OneVal(EltSize, CI->getZExtValue());
2275  APInt TotalVal(OneVal);
2276  // Set each byte.
2277  for (unsigned i = 0; 8*i < EltSize; ++i) {
2278  TotalVal = TotalVal.shl(8);
2279  TotalVal |= OneVal;
2280  }
2281 
2282  // Convert the integer value to the appropriate type.
2283  StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2284  if (ValTy->isPointerTy())
2285  StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2286  else if (ValTy->isFloatingPointTy())
2287  StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2288  assert(StoreVal->getType() == ValTy && "Type mismatch!");
2289 
2290  // If the requested value was a vector constant, create it.
2291  if (EltTy->isVectorTy()) {
2292  unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2293  StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2294  }
2295  }
2296  new StoreInst(StoreVal, EltPtr, MI);
2297  continue;
2298  }
2299  // Otherwise, if we're storing a byte variable, use a memset call for
2300  // this element.
2301  }
2302 
2303  unsigned EltSize = TD->getTypeAllocSize(EltTy);
2304  if (!EltSize)
2305  continue;
2306 
2307  IRBuilder<> Builder(MI);
2308 
2309  // Finally, insert the meminst for this element.
2310  if (isa<MemSetInst>(MI)) {
2311  Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2312  MI->isVolatile());
2313  } else {
2314  assert(isa<MemTransferInst>(MI));
2315  Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2316  Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
2317 
2318  if (isa<MemCpyInst>(MI))
2319  Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2320  else
2321  Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2322  }
2323  }
2324  DeadInsts.push_back(MI);
2325 }
2326 
2327 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2328 /// overwrites the entire allocation. Extract out the pieces of the stored
2329 /// integer and store them individually.
2330 void
2331 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2332  SmallVectorImpl<AllocaInst *> &NewElts) {
2333  // Extract each element out of the integer according to its structure offset
2334  // and store the element value to the individual alloca.
2335  Value *SrcVal = SI->getOperand(0);
2336  Type *AllocaEltTy = AI->getAllocatedType();
2337  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2338 
2339  IRBuilder<> Builder(SI);
2340 
2341  // Handle tail padding by extending the operand
2342  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2343  SrcVal = Builder.CreateZExt(SrcVal,
2344  IntegerType::get(SI->getContext(), AllocaSizeBits));
2345 
2346  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2347  << '\n');
2348 
2349  // There are two forms here: AI could be an array or struct. Both cases
2350  // have different ways to compute the element offset.
2351  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2352  const StructLayout *Layout = TD->getStructLayout(EltSTy);
2353 
2354  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2355  // Get the number of bits to shift SrcVal to get the value.
2356  Type *FieldTy = EltSTy->getElementType(i);
2357  uint64_t Shift = Layout->getElementOffsetInBits(i);
2358 
2359  if (TD->isBigEndian())
2360  Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2361 
2362  Value *EltVal = SrcVal;
2363  if (Shift) {
2364  Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2365  EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2366  }
2367 
2368  // Truncate down to an integer of the right size.
2369  uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2370 
2371  // Ignore zero sized fields like {}, they obviously contain no data.
2372  if (FieldSizeBits == 0) continue;
2373 
2374  if (FieldSizeBits != AllocaSizeBits)
2375  EltVal = Builder.CreateTrunc(EltVal,
2376  IntegerType::get(SI->getContext(), FieldSizeBits));
2377  Value *DestField = NewElts[i];
2378  if (EltVal->getType() == FieldTy) {
2379  // Storing to an integer field of this size, just do it.
2380  } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2381  // Bitcast to the right element type (for fp/vector values).
2382  EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2383  } else {
2384  // Otherwise, bitcast the dest pointer (for aggregates).
2385  DestField = Builder.CreateBitCast(DestField,
2386  PointerType::getUnqual(EltVal->getType()));
2387  }
2388  new StoreInst(EltVal, DestField, SI);
2389  }
2390 
2391  } else {
2392  ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2393  Type *ArrayEltTy = ATy->getElementType();
2394  uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2395  uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2396 
2397  uint64_t Shift;
2398 
2399  if (TD->isBigEndian())
2400  Shift = AllocaSizeBits-ElementOffset;
2401  else
2402  Shift = 0;
2403 
2404  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2405  // Ignore zero sized fields like {}, they obviously contain no data.
2406  if (ElementSizeBits == 0) continue;
2407 
2408  Value *EltVal = SrcVal;
2409  if (Shift) {
2410  Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2411  EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2412  }
2413 
2414  // Truncate down to an integer of the right size.
2415  if (ElementSizeBits != AllocaSizeBits)
2416  EltVal = Builder.CreateTrunc(EltVal,
2418  ElementSizeBits));
2419  Value *DestField = NewElts[i];
2420  if (EltVal->getType() == ArrayEltTy) {
2421  // Storing to an integer field of this size, just do it.
2422  } else if (ArrayEltTy->isFloatingPointTy() ||
2423  ArrayEltTy->isVectorTy()) {
2424  // Bitcast to the right element type (for fp/vector values).
2425  EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2426  } else {
2427  // Otherwise, bitcast the dest pointer (for aggregates).
2428  DestField = Builder.CreateBitCast(DestField,
2429  PointerType::getUnqual(EltVal->getType()));
2430  }
2431  new StoreInst(EltVal, DestField, SI);
2432 
2433  if (TD->isBigEndian())
2434  Shift -= ElementOffset;
2435  else
2436  Shift += ElementOffset;
2437  }
2438  }
2439 
2440  DeadInsts.push_back(SI);
2441 }
2442 
2443 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2444 /// an integer. Load the individual pieces to form the aggregate value.
2445 void
2446 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2447  SmallVectorImpl<AllocaInst *> &NewElts) {
2448  // Extract each element out of the NewElts according to its structure offset
2449  // and form the result value.
2450  Type *AllocaEltTy = AI->getAllocatedType();
2451  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2452 
2453  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2454  << '\n');
2455 
2456  // There are two forms here: AI could be an array or struct. Both cases
2457  // have different ways to compute the element offset.
2458  const StructLayout *Layout = 0;
2459  uint64_t ArrayEltBitOffset = 0;
2460  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2461  Layout = TD->getStructLayout(EltSTy);
2462  } else {
2463  Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2464  ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2465  }
2466 
2467  Value *ResultVal =
2468  Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2469 
2470  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2471  // Load the value from the alloca. If the NewElt is an aggregate, cast
2472  // the pointer to an integer of the same size before doing the load.
2473  Value *SrcField = NewElts[i];
2474  Type *FieldTy =
2475  cast<PointerType>(SrcField->getType())->getElementType();
2476  uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2477 
2478  // Ignore zero sized fields like {}, they obviously contain no data.
2479  if (FieldSizeBits == 0) continue;
2480 
2481  IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2482  FieldSizeBits);
2483  if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2484  !FieldTy->isVectorTy())
2485  SrcField = new BitCastInst(SrcField,
2486  PointerType::getUnqual(FieldIntTy),
2487  "", LI);
2488  SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2489 
2490  // If SrcField is a fp or vector of the right size but that isn't an
2491  // integer type, bitcast to an integer so we can shift it.
2492  if (SrcField->getType() != FieldIntTy)
2493  SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2494 
2495  // Zero extend the field to be the same size as the final alloca so that
2496  // we can shift and insert it.
2497  if (SrcField->getType() != ResultVal->getType())
2498  SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2499 
2500  // Determine the number of bits to shift SrcField.
2501  uint64_t Shift;
2502  if (Layout) // Struct case.
2503  Shift = Layout->getElementOffsetInBits(i);
2504  else // Array case.
2505  Shift = i*ArrayEltBitOffset;
2506 
2507  if (TD->isBigEndian())
2508  Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2509 
2510  if (Shift) {
2511  Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2512  SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2513  }
2514 
2515  // Don't create an 'or x, 0' on the first iteration.
2516  if (!isa<Constant>(ResultVal) ||
2517  !cast<Constant>(ResultVal)->isNullValue())
2518  ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2519  else
2520  ResultVal = SrcField;
2521  }
2522 
2523  // Handle tail padding by truncating the result
2524  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2525  ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2526 
2527  LI->replaceAllUsesWith(ResultVal);
2528  DeadInsts.push_back(LI);
2529 }
2530 
2531 /// HasPadding - Return true if the specified type has any structure or
2532 /// alignment padding in between the elements that would be split apart
2533 /// by SROA; return false otherwise.
2534 static bool HasPadding(Type *Ty, const DataLayout &TD) {
2535  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2536  Ty = ATy->getElementType();
2537  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2538  }
2539 
2540  // SROA currently handles only Arrays and Structs.
2541  StructType *STy = cast<StructType>(Ty);
2542  const StructLayout *SL = TD.getStructLayout(STy);
2543  unsigned PrevFieldBitOffset = 0;
2544  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2545  unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2546 
2547  // Check to see if there is any padding between this element and the
2548  // previous one.
2549  if (i) {
2550  unsigned PrevFieldEnd =
2551  PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2552  if (PrevFieldEnd < FieldBitOffset)
2553  return true;
2554  }
2555  PrevFieldBitOffset = FieldBitOffset;
2556  }
2557  // Check for tail padding.
2558  if (unsigned EltCount = STy->getNumElements()) {
2559  unsigned PrevFieldEnd = PrevFieldBitOffset +
2560  TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2561  if (PrevFieldEnd < SL->getSizeInBits())
2562  return true;
2563  }
2564  return false;
2565 }
2566 
2567 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2568 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2569 /// or 1 if safe after canonicalization has been performed.
2570 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2571  // Loop over the use list of the alloca. We can only transform it if all of
2572  // the users are safe to transform.
2573  AllocaInfo Info(AI);
2574 
2575  isSafeForScalarRepl(AI, 0, Info);
2576  if (Info.isUnsafe) {
2577  DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2578  return false;
2579  }
2580 
2581  // Okay, we know all the users are promotable. If the aggregate is a memcpy
2582  // source and destination, we have to be careful. In particular, the memcpy
2583  // could be moving around elements that live in structure padding of the LLVM
2584  // types, but may actually be used. In these cases, we refuse to promote the
2585  // struct.
2586  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2587  HasPadding(AI->getAllocatedType(), *TD))
2588  return false;
2589 
2590  // If the alloca never has an access to just *part* of it, but is accessed
2591  // via loads and stores, then we should use ConvertToScalarInfo to promote
2592  // the alloca instead of promoting each piece at a time and inserting fission
2593  // and fusion code.
2594  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2595  // If the struct/array just has one element, use basic SRoA.
2596  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2597  if (ST->getNumElements() > 1) return false;
2598  } else {
2599  if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2600  return false;
2601  }
2602  }
2603 
2604  return true;
2605 }
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:753
unsigned getAlignment() const
Value * CreateGEP(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:931
use_iterator use_end()
Definition: Value.h:152
void reserve(unsigned N)
Definition: SmallVector.h:425
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:37
LoadInst * CreateLoad(Value *Ptr, const char *Name)
Definition: IRBuilder.h:879
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
LLVM Argument representation.
Definition: Argument.h:35
void run(const SmallVectorImpl< Instruction * > &Insts) const
This does the promotion.
Definition: SSAUpdater.cpp:342
bool isVolatile() const
FunctionPass * createScalarReplAggregatesPass(signed Threshold=-1, bool UseDomTree=true, signed StructMemberThreshold=-1, signed ArrayElementThreshold=-1, signed ScalarLoadThreshold=-1)
STATISTIC(NumReplaced,"Number of allocas broken up")
Intrinsic::ID getIntrinsicID() const
Definition: IntrinsicInst.h:43
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
This class represents zero extension of integer types.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:528
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
gep_type_iterator gep_type_end(const User *GEP)
bool mayHaveSideEffects() const
Definition: Instruction.h:324
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
MDNode - a tuple of other values.
Definition: Metadata.h:69
void PromoteMemToReg(ArrayRef< AllocaInst * > Allocas, DominatorTree &DT, AliasSetTracker *AST=0)
Promote the specified list of alloca instructions into scalar registers, inserting PHI nodes as appro...
F(f)
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align, const DataLayout *TD=0)
Definition: Loads.cpp:56
This class represents a sign extension of integer types.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
bool isSimple() const
Definition: Instructions.h:218
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:64
op_iterator op_begin()
Definition: User.h:116
void initializeSROA_DTPass(PassRegistry &)
CallInst * CreateLifetimeEnd(Value *Ptr, ConstantInt *Size=0)
Create a lifetime.end intrinsic.
Definition: IRBuilder.cpp:140
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
uint64_t getTypeAllocSizeInBits(Type *Ty) const
Definition: DataLayout.h:335
Value * CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:1357
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
bool isSingleValueType() const
Definition: Type.h:259
bool isArrayAllocation() const
Scalar Replacement of Aggregates(DT)"
CallInst * CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=0)
Create and insert a memmove between the specified pointers.
Definition: IRBuilder.h:381
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:1375
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static Value * getPointerOperand(Instruction &Inst)
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1128
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
unsigned getBitWidth() const
Return the number of bits in the Vector type. Returns zero when the vector is a vector of pointers...
Definition: DerivedTypes.h:412
Type * getAllocatedType() const
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *TD)
Type * getPointerOperandType() const
Definition: Instructions.h:802
bool isNegative() const
Definition: Constants.h:155
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:789
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:805
#define T
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Get the constant's value with a saturation limit.
Definition: Constants.h:218
This class represents a no-op cast from one type to another.
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:59
bool isFloatingPointTy() const
Definition: Type.h:162
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
static Constant * getIntToPtr(Constant *C, Type *Ty)
Definition: Constants.cpp:1649
void takeName(Value *V)
Definition: Value.cpp:239
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:888
This class represents a truncation of integer types.
Type * getElementType() const
Definition: DerivedTypes.h:319
unsigned getNumIncomingValues() const
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
uint64_t getElementOffsetInBits(unsigned Idx) const
Definition: DataLayout.h:447
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define true
Definition: ConvertUTF.c:65
value_use_iterator< User > use_iterator
Definition: Value.h:146
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool isVectorTy() const
Definition: Type.h:229
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
Type * getContainedType(unsigned i) const
Definition: Type.h:339
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:287
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1124
LLVM Constant Representation.
Definition: Constant.h:41
PointerType * getType() const
Definition: Instructions.h:91
bool onlyUsedByLifetimeMarkers(const Value *V)
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
unsigned getAlignment() const
Definition: Instructions.h:103
Value * getRawDest() const
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
op_iterator op_end()
Definition: User.h:118
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
uint64_t getNumElements() const
Definition: DerivedTypes.h:348
User * getUser() const
Definition: Use.cpp:137
Value * getOperand(unsigned i) const
Definition: User.h:88
Integer representation type.
Definition: DerivedTypes.h:37
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition: IRBuilder.h:281
void setAlignment(unsigned Align)
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
bool hasAllConstantIndices() const
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
MDNode * getVariable() const
PointerType * getInt8PtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer to an 8-bit integer value.
Definition: IRBuilder.h:335
static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *TD)
const Value * getTrueValue() const
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Definition: Constants.cpp:1021
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
static PointerType * getUnqual(Type *ElementType)
Definition: DerivedTypes.h:436
Class for constant integers.
Definition: Constants.h:51
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:1349
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1071
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
Helper class for promoting a collection of loads and stores into SSA Form using the SSAUpdater...
Definition: SSAUpdater.h:133
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI, DIBuilder &Builder)
Definition: Local.cpp:971
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1132
static MDNode * getIfExists(LLVMContext &Context, ArrayRef< Value * > Vals)
Definition: Metadata.cpp:278
Type * getType() const
Definition: Value.h:111
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
void initializeSROA_SSAUpPass(PassRegistry &)
Type * getDestTy() const
Return the destination type, as a convenience.
Definition: InstrTypes.h:610
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:276
SequentialType * getType() const
Definition: Instructions.h:764
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
unsigned getElementContainingOffset(uint64_t Offset) const
Definition: DataLayout.cpp:78
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
void setPreservesCFG()
Definition: Pass.cpp:249
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
Value * getArgOperand(unsigned i) const
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:1383
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:734
INITIALIZE_PASS_BEGIN(SROA_DT,"scalarrepl","Scalar Replacement of Aggregates (DT)", false, false) INITIALIZE_PASS_END(SROA_DT
bool isDereferenceablePointer() const
Definition: Value.cpp:500
use_iterator use_begin()
Definition: Value.h:150
uint64_t MinAlign(uint64_t A, uint64_t B)
Definition: MathExtras.h:535
static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *TD)
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
User * use_back()
Definition: Value.h:154
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
Scalar Replacement of false scalarrepl ssa
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=0)
Create and insert a memset to the specified pointer and the specified value.
Definition: IRBuilder.h:353
const Type * getScalarType() const
Definition: Type.cpp:51
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
static bool isCompatibleAggregate(Type *T1, Type *T2)
static bool HasPadding(Type *Ty, const DataLayout &TD)
static int const Threshold
Scalar Replacement of false
bool use_empty() const
Definition: Value.h:149
Module * getParent()
Definition: GlobalValue.h:286
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
void setAlignment(unsigned Align)
A vector that has set insertion semantics.
Definition: SetVector.h:37
static VectorType * get(Type *ElementType, unsigned NumElements)
Definition: Type.cpp:706
static bool isHomogeneousAggregate(Type *T, unsigned &NumElts, Type *&EltTy)
CallInst * CreateLifetimeStart(Value *Ptr, ConstantInt *Size=0)
Create a lifetime.start intrinsic.
Definition: IRBuilder.cpp:125
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
bool isSized() const
Definition: Type.h:278
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
const Value * getFalseValue() const
static GetElementPtrInst * CreateInBounds(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:743
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:286
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
#define T1
CallInst * CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align, bool isVolatile=false, MDNode *TBAATag=0, MDNode *TBAAStructTag=0)
Create and insert a memcpy between the specified pointers.
Definition: IRBuilder.h:365
gep_type_iterator gep_type_begin(const User *GEP)