LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PPCInstrInfo.cpp
Go to the documentation of this file.
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCInstrInfo.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/MC/MCAsmInfo.h"
34 
35 #define GET_INSTRMAP_INFO
36 #define GET_INSTRINFO_CTOR_DTOR
37 #include "PPCGenInstrInfo.inc"
38 
39 using namespace llvm;
40 
41 static cl::
42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
43  cl::desc("Disable analysis for CTR loops"));
44 
45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
46 cl::desc("Disable compare instruction optimization"), cl::Hidden);
47 
48 // Pin the vtable to this file.
49 void PPCInstrInfo::anchor() {}
50 
52  : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
53  TM(tm), RI(*TM.getSubtargetImpl()) {}
54 
55 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
56 /// this target when scheduling the DAG.
58  const TargetMachine *TM,
59  const ScheduleDAG *DAG) const {
60  unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
61  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
62  Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
63  const InstrItineraryData *II = TM->getInstrItineraryData();
64  return new PPCScoreboardHazardRecognizer(II, DAG);
65  }
66 
68 }
69 
70 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
71 /// to use for this target when scheduling the DAG.
73  const InstrItineraryData *II,
74  const ScheduleDAG *DAG) const {
75  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
76 
77  // Most subtargets use a PPC970 recognizer.
78  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
79  Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
80  assert(TM.getInstrInfo() && "No InstrInfo?");
81 
82  return new PPCHazardRecognizer970(TM);
83  }
84 
85  return new PPCScoreboardHazardRecognizer(II, DAG);
86 }
87 
88 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
90  unsigned &SrcReg, unsigned &DstReg,
91  unsigned &SubIdx) const {
92  switch (MI.getOpcode()) {
93  default: return false;
94  case PPC::EXTSW:
95  case PPC::EXTSW_32_64:
96  SrcReg = MI.getOperand(1).getReg();
97  DstReg = MI.getOperand(0).getReg();
98  SubIdx = PPC::sub_32;
99  return true;
100  }
101 }
102 
104  int &FrameIndex) const {
105  // Note: This list must be kept consistent with LoadRegFromStackSlot.
106  switch (MI->getOpcode()) {
107  default: break;
108  case PPC::LD:
109  case PPC::LWZ:
110  case PPC::LFS:
111  case PPC::LFD:
112  case PPC::RESTORE_CR:
113  case PPC::LVX:
114  case PPC::RESTORE_VRSAVE:
115  // Check for the operands added by addFrameReference (the immediate is the
116  // offset which defaults to 0).
117  if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
118  MI->getOperand(2).isFI()) {
119  FrameIndex = MI->getOperand(2).getIndex();
120  return MI->getOperand(0).getReg();
121  }
122  break;
123  }
124  return 0;
125 }
126 
128  int &FrameIndex) const {
129  // Note: This list must be kept consistent with StoreRegToStackSlot.
130  switch (MI->getOpcode()) {
131  default: break;
132  case PPC::STD:
133  case PPC::STW:
134  case PPC::STFS:
135  case PPC::STFD:
136  case PPC::SPILL_CR:
137  case PPC::STVX:
138  case PPC::SPILL_VRSAVE:
139  // Check for the operands added by addFrameReference (the immediate is the
140  // offset which defaults to 0).
141  if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
142  MI->getOperand(2).isFI()) {
143  FrameIndex = MI->getOperand(2).getIndex();
144  return MI->getOperand(0).getReg();
145  }
146  break;
147  }
148  return 0;
149 }
150 
151 // commuteInstruction - We can commute rlwimi instructions, but only if the
152 // rotate amt is zero. We also have to munge the immediates a bit.
153 MachineInstr *
155  MachineFunction &MF = *MI->getParent()->getParent();
156 
157  // Normal instructions can be commuted the obvious way.
158  if (MI->getOpcode() != PPC::RLWIMI &&
159  MI->getOpcode() != PPC::RLWIMIo)
160  return TargetInstrInfo::commuteInstruction(MI, NewMI);
161 
162  // Cannot commute if it has a non-zero rotate count.
163  if (MI->getOperand(3).getImm() != 0)
164  return 0;
165 
166  // If we have a zero rotate count, we have:
167  // M = mask(MB,ME)
168  // Op0 = (Op1 & ~M) | (Op2 & M)
169  // Change this to:
170  // M = mask((ME+1)&31, (MB-1)&31)
171  // Op0 = (Op2 & ~M) | (Op1 & M)
172 
173  // Swap op1/op2
174  unsigned Reg0 = MI->getOperand(0).getReg();
175  unsigned Reg1 = MI->getOperand(1).getReg();
176  unsigned Reg2 = MI->getOperand(2).getReg();
177  bool Reg1IsKill = MI->getOperand(1).isKill();
178  bool Reg2IsKill = MI->getOperand(2).isKill();
179  bool ChangeReg0 = false;
180  // If machine instrs are no longer in two-address forms, update
181  // destination register as well.
182  if (Reg0 == Reg1) {
183  // Must be two address instruction!
184  assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
185  "Expecting a two-address instruction!");
186  Reg2IsKill = false;
187  ChangeReg0 = true;
188  }
189 
190  // Masks.
191  unsigned MB = MI->getOperand(4).getImm();
192  unsigned ME = MI->getOperand(5).getImm();
193 
194  if (NewMI) {
195  // Create a new instruction.
196  unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
197  bool Reg0IsDead = MI->getOperand(0).isDead();
198  return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
199  .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
200  .addReg(Reg2, getKillRegState(Reg2IsKill))
201  .addReg(Reg1, getKillRegState(Reg1IsKill))
202  .addImm((ME+1) & 31)
203  .addImm((MB-1) & 31);
204  }
205 
206  if (ChangeReg0)
207  MI->getOperand(0).setReg(Reg2);
208  MI->getOperand(2).setReg(Reg1);
209  MI->getOperand(1).setReg(Reg2);
210  MI->getOperand(2).setIsKill(Reg1IsKill);
211  MI->getOperand(1).setIsKill(Reg2IsKill);
212 
213  // Swap the mask around.
214  MI->getOperand(4).setImm((ME+1) & 31);
215  MI->getOperand(5).setImm((MB-1) & 31);
216  return MI;
217 }
218 
221  DebugLoc DL;
222  BuildMI(MBB, MI, DL, get(PPC::NOP));
223 }
224 
225 
226 // Branch analysis.
227 // Note: If the condition register is set to CTR or CTR8 then this is a
228 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
230  MachineBasicBlock *&FBB,
232  bool AllowModify) const {
233  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
234 
235  // If the block has no terminators, it just falls into the block after it.
237  if (I == MBB.begin())
238  return false;
239  --I;
240  while (I->isDebugValue()) {
241  if (I == MBB.begin())
242  return false;
243  --I;
244  }
245  if (!isUnpredicatedTerminator(I))
246  return false;
247 
248  // Get the last instruction in the block.
249  MachineInstr *LastInst = I;
250 
251  // If there is only one terminator instruction, process it.
252  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
253  if (LastInst->getOpcode() == PPC::B) {
254  if (!LastInst->getOperand(0).isMBB())
255  return true;
256  TBB = LastInst->getOperand(0).getMBB();
257  return false;
258  } else if (LastInst->getOpcode() == PPC::BCC) {
259  if (!LastInst->getOperand(2).isMBB())
260  return true;
261  // Block ends with fall-through condbranch.
262  TBB = LastInst->getOperand(2).getMBB();
263  Cond.push_back(LastInst->getOperand(0));
264  Cond.push_back(LastInst->getOperand(1));
265  return false;
266  } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
267  LastInst->getOpcode() == PPC::BDNZ) {
268  if (!LastInst->getOperand(0).isMBB())
269  return true;
270  if (DisableCTRLoopAnal)
271  return true;
272  TBB = LastInst->getOperand(0).getMBB();
274  Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
275  true));
276  return false;
277  } else if (LastInst->getOpcode() == PPC::BDZ8 ||
278  LastInst->getOpcode() == PPC::BDZ) {
279  if (!LastInst->getOperand(0).isMBB())
280  return true;
281  if (DisableCTRLoopAnal)
282  return true;
283  TBB = LastInst->getOperand(0).getMBB();
285  Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
286  true));
287  return false;
288  }
289 
290  // Otherwise, don't know what this is.
291  return true;
292  }
293 
294  // Get the instruction before it if it's a terminator.
295  MachineInstr *SecondLastInst = I;
296 
297  // If there are three terminators, we don't know what sort of block this is.
298  if (SecondLastInst && I != MBB.begin() &&
300  return true;
301 
302  // If the block ends with PPC::B and PPC:BCC, handle it.
303  if (SecondLastInst->getOpcode() == PPC::BCC &&
304  LastInst->getOpcode() == PPC::B) {
305  if (!SecondLastInst->getOperand(2).isMBB() ||
306  !LastInst->getOperand(0).isMBB())
307  return true;
308  TBB = SecondLastInst->getOperand(2).getMBB();
309  Cond.push_back(SecondLastInst->getOperand(0));
310  Cond.push_back(SecondLastInst->getOperand(1));
311  FBB = LastInst->getOperand(0).getMBB();
312  return false;
313  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
314  SecondLastInst->getOpcode() == PPC::BDNZ) &&
315  LastInst->getOpcode() == PPC::B) {
316  if (!SecondLastInst->getOperand(0).isMBB() ||
317  !LastInst->getOperand(0).isMBB())
318  return true;
319  if (DisableCTRLoopAnal)
320  return true;
321  TBB = SecondLastInst->getOperand(0).getMBB();
323  Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
324  true));
325  FBB = LastInst->getOperand(0).getMBB();
326  return false;
327  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
328  SecondLastInst->getOpcode() == PPC::BDZ) &&
329  LastInst->getOpcode() == PPC::B) {
330  if (!SecondLastInst->getOperand(0).isMBB() ||
331  !LastInst->getOperand(0).isMBB())
332  return true;
333  if (DisableCTRLoopAnal)
334  return true;
335  TBB = SecondLastInst->getOperand(0).getMBB();
337  Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
338  true));
339  FBB = LastInst->getOperand(0).getMBB();
340  return false;
341  }
342 
343  // If the block ends with two PPC:Bs, handle it. The second one is not
344  // executed, so remove it.
345  if (SecondLastInst->getOpcode() == PPC::B &&
346  LastInst->getOpcode() == PPC::B) {
347  if (!SecondLastInst->getOperand(0).isMBB())
348  return true;
349  TBB = SecondLastInst->getOperand(0).getMBB();
350  I = LastInst;
351  if (AllowModify)
352  I->eraseFromParent();
353  return false;
354  }
355 
356  // Otherwise, can't handle this.
357  return true;
358 }
359 
362  if (I == MBB.begin()) return 0;
363  --I;
364  while (I->isDebugValue()) {
365  if (I == MBB.begin())
366  return 0;
367  --I;
368  }
369  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
370  I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
371  I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
372  return 0;
373 
374  // Remove the branch.
375  I->eraseFromParent();
376 
377  I = MBB.end();
378 
379  if (I == MBB.begin()) return 1;
380  --I;
381  if (I->getOpcode() != PPC::BCC &&
382  I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
383  I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
384  return 1;
385 
386  // Remove the branch.
387  I->eraseFromParent();
388  return 2;
389 }
390 
391 unsigned
393  MachineBasicBlock *FBB,
395  DebugLoc DL) const {
396  // Shouldn't be a fall through.
397  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
398  assert((Cond.size() == 2 || Cond.size() == 0) &&
399  "PPC branch conditions have two components!");
400 
401  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
402 
403  // One-way branch.
404  if (FBB == 0) {
405  if (Cond.empty()) // Unconditional branch
406  BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
407  else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
408  BuildMI(&MBB, DL, get(Cond[0].getImm() ?
409  (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
410  (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
411  else // Conditional branch
412  BuildMI(&MBB, DL, get(PPC::BCC))
413  .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
414  return 1;
415  }
416 
417  // Two-way Conditional Branch.
418  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
419  BuildMI(&MBB, DL, get(Cond[0].getImm() ?
420  (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
421  (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
422  else
423  BuildMI(&MBB, DL, get(PPC::BCC))
424  .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
425  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
426  return 2;
427 }
428 
429 // Select analysis.
432  unsigned TrueReg, unsigned FalseReg,
433  int &CondCycles, int &TrueCycles, int &FalseCycles) const {
434  if (!TM.getSubtargetImpl()->hasISEL())
435  return false;
436 
437  if (Cond.size() != 2)
438  return false;
439 
440  // If this is really a bdnz-like condition, then it cannot be turned into a
441  // select.
442  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
443  return false;
444 
445  // Check register classes.
446  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
447  const TargetRegisterClass *RC =
448  RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
449  if (!RC)
450  return false;
451 
452  // isel is for regular integer GPRs only.
453  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
454  !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
455  !PPC::G8RCRegClass.hasSubClassEq(RC) &&
456  !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
457  return false;
458 
459  // FIXME: These numbers are for the A2, how well they work for other cores is
460  // an open question. On the A2, the isel instruction has a 2-cycle latency
461  // but single-cycle throughput. These numbers are used in combination with
462  // the MispredictPenalty setting from the active SchedMachineModel.
463  CondCycles = 1;
464  TrueCycles = 1;
465  FalseCycles = 1;
466 
467  return true;
468 }
469 
472  unsigned DestReg,
474  unsigned TrueReg, unsigned FalseReg) const {
475  assert(Cond.size() == 2 &&
476  "PPC branch conditions have two components!");
477 
478  assert(TM.getSubtargetImpl()->hasISEL() &&
479  "Cannot insert select on target without ISEL support");
480 
481  // Get the register classes.
483  const TargetRegisterClass *RC =
484  RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
485  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
486 
487  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
488  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
489  assert((Is64Bit ||
490  PPC::GPRCRegClass.hasSubClassEq(RC) ||
491  PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
492  "isel is for regular integer GPRs only");
493 
494  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
495  unsigned SelectPred = Cond[0].getImm();
496 
497  unsigned SubIdx;
498  bool SwapOps;
499  switch (SelectPred) {
500  default: llvm_unreachable("invalid predicate for isel");
501  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
502  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
503  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
504  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
505  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
506  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
507  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
508  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
509  }
510 
511  unsigned FirstReg = SwapOps ? FalseReg : TrueReg,
512  SecondReg = SwapOps ? TrueReg : FalseReg;
513 
514  // The first input register of isel cannot be r0. If it is a member
515  // of a register class that can be r0, then copy it first (the
516  // register allocator should eliminate the copy).
517  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
518  MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
519  const TargetRegisterClass *FirstRC =
520  MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
521  &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
522  unsigned OldFirstReg = FirstReg;
523  FirstReg = MRI.createVirtualRegister(FirstRC);
524  BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
525  .addReg(OldFirstReg);
526  }
527 
528  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
529  .addReg(FirstReg).addReg(SecondReg)
530  .addReg(Cond[1].getReg(), 0, SubIdx);
531 }
532 
535  unsigned DestReg, unsigned SrcReg,
536  bool KillSrc) const {
537  unsigned Opc;
538  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
539  Opc = PPC::OR;
540  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
541  Opc = PPC::OR8;
542  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
543  Opc = PPC::FMR;
544  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
545  Opc = PPC::MCRF;
546  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
547  Opc = PPC::VOR;
548  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
549  Opc = PPC::CROR;
550  else
551  llvm_unreachable("Impossible reg-to-reg copy");
552 
553  const MCInstrDesc &MCID = get(Opc);
554  if (MCID.getNumOperands() == 3)
555  BuildMI(MBB, I, DL, MCID, DestReg)
556  .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
557  else
558  BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
559 }
560 
561 // This function returns true if a CR spill is necessary and false otherwise.
562 bool
563 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
564  unsigned SrcReg, bool isKill,
565  int FrameIdx,
566  const TargetRegisterClass *RC,
568  bool &NonRI, bool &SpillsVRS) const{
569  // Note: If additional store instructions are added here,
570  // update isStoreToStackSlot.
571 
572  DebugLoc DL;
573  if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
574  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
575  .addReg(SrcReg,
576  getKillRegState(isKill)),
577  FrameIdx));
578  } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
579  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
580  .addReg(SrcReg,
581  getKillRegState(isKill)),
582  FrameIdx));
583  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
584  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
585  .addReg(SrcReg,
586  getKillRegState(isKill)),
587  FrameIdx));
588  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
589  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
590  .addReg(SrcReg,
591  getKillRegState(isKill)),
592  FrameIdx));
593  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
594  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
595  .addReg(SrcReg,
596  getKillRegState(isKill)),
597  FrameIdx));
598  return true;
599  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
600  // FIXME: We use CRi here because there is no mtcrf on a bit. Since the
601  // backend currently only uses CR1EQ as an individual bit, this should
602  // not cause any bug. If we need other uses of CR bits, the following
603  // code may be invalid.
604  unsigned Reg = 0;
605  if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
606  SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
607  Reg = PPC::CR0;
608  else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
609  SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
610  Reg = PPC::CR1;
611  else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
612  SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
613  Reg = PPC::CR2;
614  else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
615  SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
616  Reg = PPC::CR3;
617  else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
618  SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
619  Reg = PPC::CR4;
620  else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
621  SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
622  Reg = PPC::CR5;
623  else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
624  SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
625  Reg = PPC::CR6;
626  else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
627  SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
628  Reg = PPC::CR7;
629 
630  return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
631  &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
632 
633  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
634  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
635  .addReg(SrcReg,
636  getKillRegState(isKill)),
637  FrameIdx));
638  NonRI = true;
639  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
640  assert(TM.getSubtargetImpl()->isDarwin() &&
641  "VRSAVE only needs spill/restore on Darwin");
642  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
643  .addReg(SrcReg,
644  getKillRegState(isKill)),
645  FrameIdx));
646  SpillsVRS = true;
647  } else {
648  llvm_unreachable("Unknown regclass!");
649  }
650 
651  return false;
652 }
653 
654 void
657  unsigned SrcReg, bool isKill, int FrameIdx,
658  const TargetRegisterClass *RC,
659  const TargetRegisterInfo *TRI) const {
660  MachineFunction &MF = *MBB.getParent();
662 
663  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
664  FuncInfo->setHasSpills();
665 
666  bool NonRI = false, SpillsVRS = false;
667  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
668  NonRI, SpillsVRS))
669  FuncInfo->setSpillsCR();
670 
671  if (SpillsVRS)
672  FuncInfo->setSpillsVRSAVE();
673 
674  if (NonRI)
675  FuncInfo->setHasNonRISpills();
676 
677  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
678  MBB.insert(MI, NewMIs[i]);
679 
680  const MachineFrameInfo &MFI = *MF.getFrameInfo();
681  MachineMemOperand *MMO =
684  MFI.getObjectSize(FrameIdx),
685  MFI.getObjectAlignment(FrameIdx));
686  NewMIs.back()->addMemOperand(MF, MMO);
687 }
688 
689 bool
690 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
691  unsigned DestReg, int FrameIdx,
692  const TargetRegisterClass *RC,
694  bool &NonRI, bool &SpillsVRS) const{
695  // Note: If additional load instructions are added here,
696  // update isLoadFromStackSlot.
697 
698  if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
699  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
700  DestReg), FrameIdx));
701  } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
702  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
703  FrameIdx));
704  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
705  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
706  FrameIdx));
707  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
708  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
709  FrameIdx));
710  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
711  NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
712  get(PPC::RESTORE_CR), DestReg),
713  FrameIdx));
714  return true;
715  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
716 
717  unsigned Reg = 0;
718  if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
719  DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
720  Reg = PPC::CR0;
721  else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
722  DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
723  Reg = PPC::CR1;
724  else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
725  DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
726  Reg = PPC::CR2;
727  else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
728  DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
729  Reg = PPC::CR3;
730  else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
731  DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
732  Reg = PPC::CR4;
733  else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
734  DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
735  Reg = PPC::CR5;
736  else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
737  DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
738  Reg = PPC::CR6;
739  else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
740  DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
741  Reg = PPC::CR7;
742 
743  return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
744  &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
745 
746  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
747  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
748  FrameIdx));
749  NonRI = true;
750  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
751  assert(TM.getSubtargetImpl()->isDarwin() &&
752  "VRSAVE only needs spill/restore on Darwin");
753  NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
754  get(PPC::RESTORE_VRSAVE),
755  DestReg),
756  FrameIdx));
757  SpillsVRS = true;
758  } else {
759  llvm_unreachable("Unknown regclass!");
760  }
761 
762  return false;
763 }
764 
765 void
768  unsigned DestReg, int FrameIdx,
769  const TargetRegisterClass *RC,
770  const TargetRegisterInfo *TRI) const {
771  MachineFunction &MF = *MBB.getParent();
773  DebugLoc DL;
774  if (MI != MBB.end()) DL = MI->getDebugLoc();
775 
776  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
777  FuncInfo->setHasSpills();
778 
779  bool NonRI = false, SpillsVRS = false;
780  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
781  NonRI, SpillsVRS))
782  FuncInfo->setSpillsCR();
783 
784  if (SpillsVRS)
785  FuncInfo->setSpillsVRSAVE();
786 
787  if (NonRI)
788  FuncInfo->setHasNonRISpills();
789 
790  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
791  MBB.insert(MI, NewMIs[i]);
792 
793  const MachineFrameInfo &MFI = *MF.getFrameInfo();
794  MachineMemOperand *MMO =
797  MFI.getObjectSize(FrameIdx),
798  MFI.getObjectAlignment(FrameIdx));
799  NewMIs.back()->addMemOperand(MF, MMO);
800 }
801 
802 bool PPCInstrInfo::
804  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
805  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
806  Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
807  else
808  // Leave the CR# the same, but invert the condition.
809  Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
810  return false;
811 }
812 
814  unsigned Reg, MachineRegisterInfo *MRI) const {
815  // For some instructions, it is legal to fold ZERO into the RA register field.
816  // A zero immediate should always be loaded with a single li.
817  unsigned DefOpc = DefMI->getOpcode();
818  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
819  return false;
820  if (!DefMI->getOperand(1).isImm())
821  return false;
822  if (DefMI->getOperand(1).getImm() != 0)
823  return false;
824 
825  // Note that we cannot here invert the arguments of an isel in order to fold
826  // a ZERO into what is presented as the second argument. All we have here
827  // is the condition bit, and that might come from a CR-logical bit operation.
828 
829  const MCInstrDesc &UseMCID = UseMI->getDesc();
830 
831  // Only fold into real machine instructions.
832  if (UseMCID.isPseudo())
833  return false;
834 
835  unsigned UseIdx;
836  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
837  if (UseMI->getOperand(UseIdx).isReg() &&
838  UseMI->getOperand(UseIdx).getReg() == Reg)
839  break;
840 
841  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
842  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
843 
844  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
845 
846  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
847  // register (which might also be specified as a pointer class kind).
848  if (UseInfo->isLookupPtrRegClass()) {
849  if (UseInfo->RegClass /* Kind */ != 1)
850  return false;
851  } else {
852  if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
853  UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
854  return false;
855  }
856 
857  // Make sure this is not tied to an output register (or otherwise
858  // constrained). This is true for ST?UX registers, for example, which
859  // are tied to their output registers.
860  if (UseInfo->Constraints != 0)
861  return false;
862 
863  unsigned ZeroReg;
864  if (UseInfo->isLookupPtrRegClass()) {
865  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
866  ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
867  } else {
868  ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
869  PPC::ZERO8 : PPC::ZERO;
870  }
871 
872  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
873  UseMI->getOperand(UseIdx).setReg(ZeroReg);
874 
875  if (DeleteDef)
876  DefMI->eraseFromParent();
877 
878  return true;
879 }
880 
881 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
882  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
883  I != IE; ++I)
884  if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
885  return true;
886  return false;
887 }
888 
889 // We should make sure that, if we're going to predicate both sides of a
890 // condition (a diamond), that both sides don't define the counter register. We
891 // can predicate counter-decrement-based branches, but while that predicates
892 // the branching, it does not predicate the counter decrement. If we tried to
893 // merge the triangle into one predicated block, we'd decrement the counter
894 // twice.
896  unsigned NumT, unsigned ExtraT,
897  MachineBasicBlock &FMBB,
898  unsigned NumF, unsigned ExtraF,
899  const BranchProbability &Probability) const {
900  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
901 }
902 
903 
905  // The predicated branches are identified by their type, not really by the
906  // explicit presence of a predicate. Furthermore, some of them can be
907  // predicated more than once. Because if conversion won't try to predicate
908  // any instruction which already claims to be predicated (by returning true
909  // here), always return false. In doing so, we let isPredicable() be the
910  // final word on whether not the instruction can be (further) predicated.
911 
912  return false;
913 }
914 
916  if (!MI->isTerminator())
917  return false;
918 
919  // Conditional branch is a special case.
920  if (MI->isBranch() && !MI->isBarrier())
921  return true;
922 
923  return !isPredicated(MI);
924 }
925 
927  MachineInstr *MI,
928  const SmallVectorImpl<MachineOperand> &Pred) const {
929  unsigned OpC = MI->getOpcode();
930  if (OpC == PPC::BLR) {
931  if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
932  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
933  MI->setDesc(get(Pred[0].getImm() ?
934  (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
935  (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
936  } else {
937  MI->setDesc(get(PPC::BCLR));
939  .addImm(Pred[0].getImm())
940  .addReg(Pred[1].getReg());
941  }
942 
943  return true;
944  } else if (OpC == PPC::B) {
945  if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
946  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
947  MI->setDesc(get(Pred[0].getImm() ?
948  (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
949  (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
950  } else {
951  MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
952  MI->RemoveOperand(0);
953 
954  MI->setDesc(get(PPC::BCC));
956  .addImm(Pred[0].getImm())
957  .addReg(Pred[1].getReg())
958  .addMBB(MBB);
959  }
960 
961  return true;
962  } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 ||
963  OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
964  if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
965  llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
966 
967  bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
968  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
969  MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
970  (setLR ? PPC::BCCTRL : PPC::BCCTR)));
972  .addImm(Pred[0].getImm())
973  .addReg(Pred[1].getReg());
974  return true;
975  }
976 
977  return false;
978 }
979 
981  const SmallVectorImpl<MachineOperand> &Pred1,
982  const SmallVectorImpl<MachineOperand> &Pred2) const {
983  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
984  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
985 
986  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
987  return false;
988  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
989  return false;
990 
991  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
992  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
993 
994  if (P1 == P2)
995  return true;
996 
997  // Does P1 subsume P2, e.g. GE subsumes GT.
998  if (P1 == PPC::PRED_LE &&
999  (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1000  return true;
1001  if (P1 == PPC::PRED_GE &&
1002  (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1003  return true;
1004 
1005  return false;
1006 }
1007 
1009  std::vector<MachineOperand> &Pred) const {
1010  // Note: At the present time, the contents of Pred from this function is
1011  // unused by IfConversion. This implementation follows ARM by pushing the
1012  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1013  // predicate, instructions defining CTR or CTR8 are also included as
1014  // predicate-defining instructions.
1015 
1016  const TargetRegisterClass *RCs[] =
1017  { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1018  &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1019 
1020  bool Found = false;
1021  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1022  const MachineOperand &MO = MI->getOperand(i);
1023  for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1024  const TargetRegisterClass *RC = RCs[c];
1025  if (MO.isReg()) {
1026  if (MO.isDef() && RC->contains(MO.getReg())) {
1027  Pred.push_back(MO);
1028  Found = true;
1029  }
1030  } else if (MO.isRegMask()) {
1031  for (TargetRegisterClass::iterator I = RC->begin(),
1032  IE = RC->end(); I != IE; ++I)
1033  if (MO.clobbersPhysReg(*I)) {
1034  Pred.push_back(MO);
1035  Found = true;
1036  }
1037  }
1038  }
1039  }
1040 
1041  return Found;
1042 }
1043 
1045  unsigned OpC = MI->getOpcode();
1046  switch (OpC) {
1047  default:
1048  return false;
1049  case PPC::B:
1050  case PPC::BLR:
1051  case PPC::BCTR:
1052  case PPC::BCTR8:
1053  case PPC::BCTRL:
1054  case PPC::BCTRL8:
1055  return true;
1056  }
1057 }
1058 
1060  unsigned &SrcReg, unsigned &SrcReg2,
1061  int &Mask, int &Value) const {
1062  unsigned Opc = MI->getOpcode();
1063 
1064  switch (Opc) {
1065  default: return false;
1066  case PPC::CMPWI:
1067  case PPC::CMPLWI:
1068  case PPC::CMPDI:
1069  case PPC::CMPLDI:
1070  SrcReg = MI->getOperand(1).getReg();
1071  SrcReg2 = 0;
1072  Value = MI->getOperand(2).getImm();
1073  Mask = 0xFFFF;
1074  return true;
1075  case PPC::CMPW:
1076  case PPC::CMPLW:
1077  case PPC::CMPD:
1078  case PPC::CMPLD:
1079  case PPC::FCMPUS:
1080  case PPC::FCMPUD:
1081  SrcReg = MI->getOperand(1).getReg();
1082  SrcReg2 = MI->getOperand(2).getReg();
1083  return true;
1084  }
1085 }
1086 
1088  unsigned SrcReg, unsigned SrcReg2,
1089  int Mask, int Value,
1090  const MachineRegisterInfo *MRI) const {
1091  if (DisableCmpOpt)
1092  return false;
1093 
1094  int OpC = CmpInstr->getOpcode();
1095  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1096 
1097  // FP record forms set CR1 based on the execption status bits, not a
1098  // comparison with zero.
1099  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1100  return false;
1101 
1102  // The record forms set the condition register based on a signed comparison
1103  // with zero (so says the ISA manual). This is not as straightforward as it
1104  // seems, however, because this is always a 64-bit comparison on PPC64, even
1105  // for instructions that are 32-bit in nature (like slw for example).
1106  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1107  // for equality checks (as those don't depend on the sign). On PPC64,
1108  // we are restricted to equality for unsigned 64-bit comparisons and for
1109  // signed 32-bit comparisons the applicability is more restricted.
1110  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1111  bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
1112  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1113  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1114 
1115  // Get the unique definition of SrcReg.
1116  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1117  if (!MI) return false;
1118  int MIOpC = MI->getOpcode();
1119 
1120  bool equalityOnly = false;
1121  bool noSub = false;
1122  if (isPPC64) {
1123  if (is32BitSignedCompare) {
1124  // We can perform this optimization only if MI is sign-extending.
1125  if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo ||
1126  MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1127  MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1128  MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1129  MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1130  noSub = true;
1131  } else
1132  return false;
1133  } else if (is32BitUnsignedCompare) {
1134  // We can perform this optimization, equality only, if MI is
1135  // zero-extending.
1136  if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1137  MIOpC == PPC::SLW || MIOpC == PPC::SLWo ||
1138  MIOpC == PPC::SRW || MIOpC == PPC::SRWo) {
1139  noSub = true;
1140  equalityOnly = true;
1141  } else
1142  return false;
1143  } else
1144  equalityOnly = is64BitUnsignedCompare;
1145  } else
1146  equalityOnly = is32BitUnsignedCompare;
1147 
1148  if (equalityOnly) {
1149  // We need to check the uses of the condition register in order to reject
1150  // non-equality comparisons.
1151  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
1152  IE = MRI->use_end(); I != IE; ++I) {
1153  MachineInstr *UseMI = &*I;
1154  if (UseMI->getOpcode() == PPC::BCC) {
1155  unsigned Pred = UseMI->getOperand(0).getImm();
1156  if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1157  return false;
1158  } else if (UseMI->getOpcode() == PPC::ISEL ||
1159  UseMI->getOpcode() == PPC::ISEL8) {
1160  unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1161  if (SubIdx != PPC::sub_eq)
1162  return false;
1163  } else
1164  return false;
1165  }
1166  }
1167 
1168  MachineBasicBlock::iterator I = CmpInstr;
1169 
1170  // Scan forward to find the first use of the compare.
1171  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1172  I != EL; ++I) {
1173  bool FoundUse = false;
1174  for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg),
1175  JE = MRI->use_end(); J != JE; ++J)
1176  if (&*J == &*I) {
1177  FoundUse = true;
1178  break;
1179  }
1180 
1181  if (FoundUse)
1182  break;
1183  }
1184 
1185  // There are two possible candidates which can be changed to set CR[01].
1186  // One is MI, the other is a SUB instruction.
1187  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1188  MachineInstr *Sub = NULL;
1189  if (SrcReg2 != 0)
1190  // MI is not a candidate for CMPrr.
1191  MI = NULL;
1192  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1193  // same BB as the comparison. This is to allow the check below to avoid calls
1194  // (and other explicit clobbers); instead we should really check for these
1195  // more explicitly (in at least a few predecessors).
1196  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1197  // PPC does not have a record-form SUBri.
1198  return false;
1199  }
1200 
1201  // Search for Sub.
1202  const TargetRegisterInfo *TRI = &getRegisterInfo();
1203  --I;
1204 
1205  // Get ready to iterate backward from CmpInstr.
1207  B = CmpInstr->getParent()->begin();
1208 
1209  for (; I != E && !noSub; --I) {
1210  const MachineInstr &Instr = *I;
1211  unsigned IOpC = Instr.getOpcode();
1212 
1213  if (&*I != CmpInstr && (
1214  Instr.modifiesRegister(PPC::CR0, TRI) ||
1215  Instr.readsRegister(PPC::CR0, TRI)))
1216  // This instruction modifies or uses the record condition register after
1217  // the one we want to change. While we could do this transformation, it
1218  // would likely not be profitable. This transformation removes one
1219  // instruction, and so even forcing RA to generate one move probably
1220  // makes it unprofitable.
1221  return false;
1222 
1223  // Check whether CmpInstr can be made redundant by the current instruction.
1224  if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1225  OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1226  (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1227  ((Instr.getOperand(1).getReg() == SrcReg &&
1228  Instr.getOperand(2).getReg() == SrcReg2) ||
1229  (Instr.getOperand(1).getReg() == SrcReg2 &&
1230  Instr.getOperand(2).getReg() == SrcReg))) {
1231  Sub = &*I;
1232  break;
1233  }
1234 
1235  if (I == B)
1236  // The 'and' is below the comparison instruction.
1237  return false;
1238  }
1239 
1240  // Return false if no candidates exist.
1241  if (!MI && !Sub)
1242  return false;
1243 
1244  // The single candidate is called MI.
1245  if (!MI) MI = Sub;
1246 
1247  int NewOpC = -1;
1248  MIOpC = MI->getOpcode();
1249  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1250  NewOpC = MIOpC;
1251  else {
1252  NewOpC = PPC::getRecordFormOpcode(MIOpC);
1253  if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1254  NewOpC = MIOpC;
1255  }
1256 
1257  // FIXME: On the non-embedded POWER architectures, only some of the record
1258  // forms are fast, and we should use only the fast ones.
1259 
1260  // The defining instruction has a record form (or is already a record
1261  // form). It is possible, however, that we'll need to reverse the condition
1262  // code of the users.
1263  if (NewOpC == -1)
1264  return false;
1265 
1268 
1269  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1270  // needs to be updated to be based on SUB. Push the condition code
1271  // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1272  // condition code of these operands will be modified.
1273  bool ShouldSwap = false;
1274  if (Sub) {
1275  ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1276  Sub->getOperand(2).getReg() == SrcReg;
1277 
1278  // The operands to subf are the opposite of sub, so only in the fixed-point
1279  // case, invert the order.
1280  ShouldSwap = !ShouldSwap;
1281  }
1282 
1283  if (ShouldSwap)
1284  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
1285  IE = MRI->use_end(); I != IE; ++I) {
1286  MachineInstr *UseMI = &*I;
1287  if (UseMI->getOpcode() == PPC::BCC) {
1288  PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1289  assert((!equalityOnly ||
1290  Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1291  "Invalid predicate for equality-only optimization");
1292  PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)),
1293  PPC::getSwappedPredicate(Pred)));
1294  } else if (UseMI->getOpcode() == PPC::ISEL ||
1295  UseMI->getOpcode() == PPC::ISEL8) {
1296  unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1297  assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1298  "Invalid CR bit for equality-only optimization");
1299 
1300  if (NewSubReg == PPC::sub_lt)
1301  NewSubReg = PPC::sub_gt;
1302  else if (NewSubReg == PPC::sub_gt)
1303  NewSubReg = PPC::sub_lt;
1304 
1305  SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)),
1306  NewSubReg));
1307  } else // We need to abort on a user we don't understand.
1308  return false;
1309  }
1310 
1311  // Create a new virtual register to hold the value of the CR set by the
1312  // record-form instruction. If the instruction was not previously in
1313  // record form, then set the kill flag on the CR.
1314  CmpInstr->eraseFromParent();
1315 
1317  BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(),
1318  get(TargetOpcode::COPY), CRReg)
1319  .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1320 
1321  if (MIOpC != NewOpC) {
1322  // We need to be careful here: we're replacing one instruction with
1323  // another, and we need to make sure that we get all of the right
1324  // implicit uses and defs. On the other hand, the caller may be holding
1325  // an iterator to this instruction, and so we can't delete it (this is
1326  // specifically the case if this is the instruction directly after the
1327  // compare).
1328 
1329  const MCInstrDesc &NewDesc = get(NewOpC);
1330  MI->setDesc(NewDesc);
1331 
1332  if (NewDesc.ImplicitDefs)
1333  for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1334  *ImpDefs; ++ImpDefs)
1335  if (!MI->definesRegister(*ImpDefs))
1336  MI->addOperand(*MI->getParent()->getParent(),
1337  MachineOperand::CreateReg(*ImpDefs, true, true));
1338  if (NewDesc.ImplicitUses)
1339  for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1340  *ImpUses; ++ImpUses)
1341  if (!MI->readsRegister(*ImpUses))
1342  MI->addOperand(*MI->getParent()->getParent(),
1343  MachineOperand::CreateReg(*ImpUses, false, true));
1344  }
1345 
1346  // Modify the condition code of operands in OperandsToUpdate.
1347  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1348  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1349  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1350  PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1351 
1352  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1353  SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1354 
1355  return true;
1356 }
1357 
1358 /// GetInstSize - Return the number of bytes of code the specified
1359 /// instruction may be. This returns the maximum number of bytes.
1360 ///
1362  switch (MI->getOpcode()) {
1363  case PPC::INLINEASM: { // Inline Asm: Variable size.
1364  const MachineFunction *MF = MI->getParent()->getParent();
1365  const char *AsmStr = MI->getOperand(0).getSymbolName();
1366  return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1367  }
1368  case PPC::PROLOG_LABEL:
1369  case PPC::EH_LABEL:
1370  case PPC::GC_LABEL:
1371  case PPC::DBG_VALUE:
1372  return 0;
1373  case PPC::BL8_NOP:
1374  case PPC::BLA8_NOP:
1375  return 8;
1376  default:
1377  return 4; // PowerPC instructions are all 4 bytes
1378  }
1379 }
1380 
1381 #undef DEBUG_TYPE
1382 #define DEBUG_TYPE "ppc-early-ret"
1383 STATISTIC(NumBCLR, "Number of early conditional returns");
1384 STATISTIC(NumBLR, "Number of early returns");
1385 
1386 namespace llvm {
1388 }
1389 
1390 namespace {
1391  // PPCEarlyReturn pass - For simple functions without epilogue code, move
1392  // returns up, and create conditional returns, to avoid unnecessary
1393  // branch-to-blr sequences.
1394  struct PPCEarlyReturn : public MachineFunctionPass {
1395  static char ID;
1396  PPCEarlyReturn() : MachineFunctionPass(ID) {
1398  }
1399 
1400  const PPCTargetMachine *TM;
1401  const PPCInstrInfo *TII;
1402 
1403 protected:
1404  bool processBlock(MachineBasicBlock &ReturnMBB) {
1405  bool Changed = false;
1406 
1407  MachineBasicBlock::iterator I = ReturnMBB.begin();
1408  I = ReturnMBB.SkipPHIsAndLabels(I);
1409 
1410  // The block must be essentially empty except for the blr.
1411  if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
1412  I != ReturnMBB.getLastNonDebugInstr())
1413  return Changed;
1414 
1416  for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
1417  PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
1418  bool OtherReference = false, BlockChanged = false;
1419  for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
1420  if (J->getOpcode() == PPC::B) {
1421  if (J->getOperand(0).getMBB() == &ReturnMBB) {
1422  // This is an unconditional branch to the return. Replace the
1423  // branch with a blr.
1424  BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
1426  K->eraseFromParent();
1427  BlockChanged = true;
1428  ++NumBLR;
1429  continue;
1430  }
1431  } else if (J->getOpcode() == PPC::BCC) {
1432  if (J->getOperand(2).getMBB() == &ReturnMBB) {
1433  // This is a conditional branch to the return. Replace the branch
1434  // with a bclr.
1435  BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR))
1436  .addImm(J->getOperand(0).getImm())
1437  .addReg(J->getOperand(1).getReg());
1439  K->eraseFromParent();
1440  BlockChanged = true;
1441  ++NumBCLR;
1442  continue;
1443  }
1444  } else if (J->isBranch()) {
1445  if (J->isIndirectBranch()) {
1446  if (ReturnMBB.hasAddressTaken())
1447  OtherReference = true;
1448  } else
1449  for (unsigned i = 0; i < J->getNumOperands(); ++i)
1450  if (J->getOperand(i).isMBB() &&
1451  J->getOperand(i).getMBB() == &ReturnMBB)
1452  OtherReference = true;
1453  } else if (!J->isTerminator() && !J->isDebugValue())
1454  break;
1455 
1456  if (J == (*PI)->begin())
1457  break;
1458 
1459  --J;
1460  }
1461 
1462  if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
1463  OtherReference = true;
1464 
1465  // Predecessors are stored in a vector and can't be removed here.
1466  if (!OtherReference && BlockChanged) {
1467  PredToRemove.push_back(*PI);
1468  }
1469 
1470  if (BlockChanged)
1471  Changed = true;
1472  }
1473 
1474  for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
1475  PredToRemove[i]->removeSuccessor(&ReturnMBB);
1476 
1477  if (Changed && !ReturnMBB.hasAddressTaken()) {
1478  // We now might be able to merge this blr-only block into its
1479  // by-layout predecessor.
1480  if (ReturnMBB.pred_size() == 1 &&
1481  (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
1482  // Move the blr into the preceding block.
1483  MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
1484  PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
1485  PrevMBB.removeSuccessor(&ReturnMBB);
1486  }
1487 
1488  if (ReturnMBB.pred_empty())
1489  ReturnMBB.eraseFromParent();
1490  }
1491 
1492  return Changed;
1493  }
1494 
1495 public:
1496  virtual bool runOnMachineFunction(MachineFunction &MF) {
1497  TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1498  TII = TM->getInstrInfo();
1499 
1500  bool Changed = false;
1501 
1502  // If the function does not have at least two blocks, then there is
1503  // nothing to do.
1504  if (MF.size() < 2)
1505  return Changed;
1506 
1507  for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1508  MachineBasicBlock &B = *I++;
1509  if (processBlock(B))
1510  Changed = true;
1511  }
1512 
1513  return Changed;
1514  }
1515 
1516  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1518  }
1519  };
1520 }
1521 
1522 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
1523  "PowerPC Early-Return Creation", false, false)
1524 
1525 char PPCEarlyReturn::ID = 0;
1526 FunctionPass*
1527 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
1528 
unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
The memory access reads data.
const MachineFunction * getParent() const
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const
The memory access writes data.
const uint16_t * getImplicitDefs() const
Definition: MCInstrDesc.h:523
static PassRegistry * getPassRegistry()
virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const
bool isBranch(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:374
virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const
bool isPredicated(const MachineInstr *MI) const
MachineBasicBlock * getMBB() const
bool hasISEL() const
Definition: PPCSubtarget.h:192
virtual MachineInstr * commuteInstruction(MachineInstr *MI, bool NewMI) const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, uint64_t s, unsigned base_alignment, const MDNode *TBAAInfo=0, const MDNode *Ranges=0)
bool isDead() const
const uint16_t * getImplicitUses() const
Definition: MCInstrDesc.h:501
static cl::opt< bool > DisableCmpOpt("disable-ppc-cmp-opt", cl::desc("Disable compare instruction optimization"), cl::Hidden)
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const
virtual bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, int Mask, int Value, const MachineRegisterInfo *MRI) const
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SubIdx) const
bool isDarwin() const
isDarwin - True if this is any darwin platform.
Definition: PPCSubtarget.h:202
virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const
Definition: PPCInstrInfo.h:161
const char * getSymbolName() const
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
virtual bool isPredicable(MachineInstr *MI) const
bool isTerminator(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:366
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static MachinePointerInfo getFixedStack(int FI, int64_t offset=0)
virtual bool ReverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const
virtual bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const
static use_iterator use_end()
const HexagonInstrInfo * TII
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false)
const MCAsmInfo * getMCAsmInfo() const
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
#define llvm_unreachable(msg)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
const TargetRegisterClass * getRegClass(unsigned Reg) const
const uint16_t * ImplicitUses
Definition: MCInstrDesc.h:146
Abstract Stack Frame Information.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
virtual const InstrItineraryData * getInstrItineraryData() const
const MachineInstrBuilder & addImm(int64_t Val) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
void RemoveOperand(unsigned i)
bool isKill() const
bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const
Definition: MachineInstr.h:753
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const
Definition: MachineInstr.h:724
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
virtual MachineInstr * commuteInstruction(MachineInstr *MI, bool NewMI=false) const
int getOpcode() const
Definition: MachineInstr.h:261
virtual bool SubsumesPredicate(const SmallVectorImpl< MachineOperand > &Pred1, const SmallVectorImpl< MachineOperand > &Pred2) const
std::vector< MachineBasicBlock * >::iterator pred_iterator
int64_t getImm() const
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
virtual const PPCInstrInfo * getInstrInfo() const
unsigned getKillRegState(bool B)
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
unsigned getDeadRegState(bool B)
bundle_iterator< MachineInstr, instr_iterator > iterator
iterator SkipPHIsAndLabels(iterator I)
FunctionPass * createPPCEarlyReturnPass()
virtual bool canInsertSelect(const MachineBasicBlock &, const SmallVectorImpl< MachineOperand > &Cond, unsigned, unsigned, int &, int &, int &) const
virtual bool DefinesPredicate(MachineInstr *MI, std::vector< MachineOperand > &Pred) const
const MCInstrInfo & MII
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
virtual const PPCRegisterInfo & getRegisterInfo() const
Definition: PPCInstrInfo.h:89
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
#define DEBUG_TYPE
void setImm(int64_t immVal)
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl< MachineOperand > &Cond, DebugLoc DL) const
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
unsigned size() const
void removeSuccessor(MachineBasicBlock *succ)
unsigned getSubReg() const
virtual void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, DebugLoc DL, unsigned DstReg, const SmallVectorImpl< MachineOperand > &Cond, unsigned TrueReg, unsigned FalseReg) const
virtual const PPCSubtarget * getSubtargetImpl() const
bool isPseudo() const
Return true if this is a pseudo instruction that doesn't correspond to a real machine instruction...
Definition: MCInstrDesc.h:222
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const
void initializePPCEarlyReturnPass(PassRegistry &)
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specific constraint if it is set. Returns -1 if it is not set...
Definition: MCInstrDesc.h:156
STATISTIC(NumBCLR,"Number of early conditional returns")
unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const
virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const
void setIsKill(bool Val=true)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:153
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
static bool MBBDefinesCTR(MachineBasicBlock &MBB)
void setDesc(const MCInstrDesc &tid)
Definition: MachineInstr.h:984
const STC & getSubtarget() const
void addOperand(MachineFunction &MF, const MachineOperand &Op)
unsigned getObjectAlignment(int ObjectIdx) const
getObjectAlignment - Return the alignment of the specified stack object.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:27
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineFrameInfo * getFrameInfo()
static bool clobbersPhysReg(const uint32_t *RegMask, unsigned PhysReg)
bool isPPC64() const
Definition: PPCSubtarget.h:154
MachineInstr * getUniqueVRegDef(unsigned Reg) const
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const
PPCInstrInfo(PPCTargetMachine &TM)
Predicate InvertPredicate(Predicate Opcode)
Invert the specified predicate. != -> ==, < -> >=.
virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl< MachineOperand > &Pred) const
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
MachineRegisterInfo & getRegInfo()
ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const
virtual void getAnalysisUsage(AnalysisUsage &AU) const
use_iterator use_begin(unsigned RegNo) const
bool hasOneNonDBGUse(unsigned RegNo) const
void setReg(unsigned Reg)
DBG_VALUE - a mapping of the llvm.dbg.value intrinsic.
Definition: TargetOpcodes.h:69
static MachineOperand CreateImm(int64_t Val)
#define I(x, y, z)
Definition: MD5.cpp:54
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
const TargetMachine & getTarget() const
instr_iterator insert(instr_iterator I, MachineInstr *M)
unsigned getReg() const
getReg - Returns the register number.
const uint16_t * ImplicitDefs
Definition: MCInstrDesc.h:147
virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const
LLVM Value Representation.
Definition: Value.h:66
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
BasicBlockListType::iterator iterator
const MCRegisterInfo & MRI
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
static cl::opt< bool > DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, cl::desc("Disable analysis for CTR loops"))
unsigned pred_size() const
int64_t getObjectSize(int ObjectIdx) const
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const
Definition: MachineInstr.h:760
bool isBarrier(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:356
ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
virtual bool FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, unsigned Reg, MachineRegisterInfo *MRI) const
bool contains(unsigned Reg) const
Predicate getSwappedPredicate(Predicate Opcode)