LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopVectorize.cpp
Go to the documentation of this file.
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #define LV_NAME "loop-vectorize"
46 #define DEBUG_TYPE LV_NAME
47 
49 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
60 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopPass.h"
68 #include "llvm/Analysis/Verifier.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/LLVMContext.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/Pass.h"
82 #include "llvm/Support/Debug.h"
87 #include "llvm/Transforms/Scalar.h"
90 #include <algorithm>
91 #include <map>
92 
93 using namespace llvm;
94 using namespace llvm::PatternMatch;
95 
96 static cl::opt<unsigned>
97 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
98  cl::desc("Sets the SIMD width. Zero is autoselect."));
99 
100 static cl::opt<unsigned>
101 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
102  cl::desc("Sets the vectorization unroll count. "
103  "Zero is autoselect."));
104 
105 static cl::opt<bool>
106 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
107  cl::desc("Enable if-conversion during vectorization."));
108 
109 /// We don't vectorize loops with a known constant trip count below this number.
110 static cl::opt<unsigned>
111 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
112  cl::Hidden,
113  cl::desc("Don't vectorize loops with a constant "
114  "trip count that is smaller than this "
115  "value."));
116 
117 /// We don't unroll loops with a known constant trip count below this number.
118 static const unsigned TinyTripCountUnrollThreshold = 128;
119 
120 /// When performing memory disambiguation checks at runtime do not make more
121 /// than this number of comparisons.
122 static const unsigned RuntimeMemoryCheckThreshold = 8;
123 
124 /// Maximum simd width.
125 static const unsigned MaxVectorWidth = 64;
126 
127 /// Maximum vectorization unroll count.
128 static const unsigned MaxUnrollFactor = 16;
129 
130 /// The cost of a loop that is considered 'small' by the unroller.
131 static const unsigned SmallLoopCost = 20;
132 
133 namespace {
134 
135 // Forward declarations.
136 class LoopVectorizationLegality;
137 class LoopVectorizationCostModel;
138 
139 /// InnerLoopVectorizer vectorizes loops which contain only one basic
140 /// block to a specified vectorization factor (VF).
141 /// This class performs the widening of scalars into vectors, or multiple
142 /// scalars. This class also implements the following features:
143 /// * It inserts an epilogue loop for handling loops that don't have iteration
144 /// counts that are known to be a multiple of the vectorization factor.
145 /// * It handles the code generation for reduction variables.
146 /// * Scalarization (implementation using scalars) of un-vectorizable
147 /// instructions.
148 /// InnerLoopVectorizer does not perform any vectorization-legality
149 /// checks, and relies on the caller to check for the different legality
150 /// aspects. The InnerLoopVectorizer relies on the
151 /// LoopVectorizationLegality class to provide information about the induction
152 /// and reduction variables that were found to a given vectorization factor.
153 class InnerLoopVectorizer {
154 public:
155  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
156  DominatorTree *DT, DataLayout *DL,
157  const TargetLibraryInfo *TLI, unsigned VecWidth,
158  unsigned UnrollFactor)
159  : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
160  VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
161  OldInduction(0), WidenMap(UnrollFactor) {}
162 
163  // Perform the actual loop widening (vectorization).
164  void vectorize(LoopVectorizationLegality *Legal) {
165  // Create a new empty loop. Unlink the old loop and connect the new one.
166  createEmptyLoop(Legal);
167  // Widen each instruction in the old loop to a new one in the new loop.
168  // Use the Legality module to find the induction and reduction variables.
169  vectorizeLoop(Legal);
170  // Register the new loop and update the analysis passes.
171  updateAnalysis();
172  }
173 
174  virtual ~InnerLoopVectorizer() {}
175 
176 protected:
177  /// A small list of PHINodes.
178  typedef SmallVector<PHINode*, 4> PhiVector;
179  /// When we unroll loops we have multiple vector values for each scalar.
180  /// This data structure holds the unrolled and vectorized values that
181  /// originated from one scalar instruction.
182  typedef SmallVector<Value*, 2> VectorParts;
183 
184  // When we if-convert we need create edge masks. We have to cache values so
185  // that we don't end up with exponential recursion/IR.
187  VectorParts> EdgeMaskCache;
188 
189  /// Add code that checks at runtime if the accessed arrays overlap.
190  /// Returns the comparator value or NULL if no check is needed.
191  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
192  Instruction *Loc);
193  /// Create an empty loop, based on the loop ranges of the old loop.
194  void createEmptyLoop(LoopVectorizationLegality *Legal);
195  /// Copy and widen the instructions from the old loop.
196  virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
197 
198  /// \brief The Loop exit block may have single value PHI nodes where the
199  /// incoming value is 'Undef'. While vectorizing we only handled real values
200  /// that were defined inside the loop. Here we fix the 'undef case'.
201  /// See PR14725.
202  void fixLCSSAPHIs();
203 
204  /// A helper function that computes the predicate of the block BB, assuming
205  /// that the header block of the loop is set to True. It returns the *entry*
206  /// mask for the block BB.
207  VectorParts createBlockInMask(BasicBlock *BB);
208  /// A helper function that computes the predicate of the edge between SRC
209  /// and DST.
210  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
211 
212  /// A helper function to vectorize a single BB within the innermost loop.
213  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
214  PhiVector *PV);
215 
216  /// Vectorize a single PHINode in a block. This method handles the induction
217  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
218  /// arbitrary length vectors.
219  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
220  LoopVectorizationLegality *Legal,
221  unsigned UF, unsigned VF, PhiVector *PV);
222 
223  /// Insert the new loop to the loop hierarchy and pass manager
224  /// and update the analysis passes.
225  void updateAnalysis();
226 
227  /// This instruction is un-vectorizable. Implement it as a sequence
228  /// of scalars.
229  virtual void scalarizeInstruction(Instruction *Instr);
230 
231  /// Vectorize Load and Store instructions,
232  virtual void vectorizeMemoryInstruction(Instruction *Instr,
233  LoopVectorizationLegality *Legal);
234 
235  /// Create a broadcast instruction. This method generates a broadcast
236  /// instruction (shuffle) for loop invariant values and for the induction
237  /// value. If this is the induction variable then we extend it to N, N+1, ...
238  /// this is needed because each iteration in the loop corresponds to a SIMD
239  /// element.
240  virtual Value *getBroadcastInstrs(Value *V);
241 
242  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
243  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
244  /// The sequence starts at StartIndex.
245  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
246 
247  /// When we go over instructions in the basic block we rely on previous
248  /// values within the current basic block or on loop invariant values.
249  /// When we widen (vectorize) values we place them in the map. If the values
250  /// are not within the map, they have to be loop invariant, so we simply
251  /// broadcast them into a vector.
252  VectorParts &getVectorValue(Value *V);
253 
254  /// Generate a shuffle sequence that will reverse the vector Vec.
255  virtual Value *reverseVector(Value *Vec);
256 
257  /// This is a helper class that holds the vectorizer state. It maps scalar
258  /// instructions to vector instructions. When the code is 'unrolled' then
259  /// then a single scalar value is mapped to multiple vector parts. The parts
260  /// are stored in the VectorPart type.
261  struct ValueMap {
262  /// C'tor. UnrollFactor controls the number of vectors ('parts') that
263  /// are mapped.
264  ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
265 
266  /// \return True if 'Key' is saved in the Value Map.
267  bool has(Value *Key) const { return MapStorage.count(Key); }
268 
269  /// Initializes a new entry in the map. Sets all of the vector parts to the
270  /// save value in 'Val'.
271  /// \return A reference to a vector with splat values.
272  VectorParts &splat(Value *Key, Value *Val) {
273  VectorParts &Entry = MapStorage[Key];
274  Entry.assign(UF, Val);
275  return Entry;
276  }
277 
278  ///\return A reference to the value that is stored at 'Key'.
279  VectorParts &get(Value *Key) {
280  VectorParts &Entry = MapStorage[Key];
281  if (Entry.empty())
282  Entry.resize(UF);
283  assert(Entry.size() == UF);
284  return Entry;
285  }
286 
287  private:
288  /// The unroll factor. Each entry in the map stores this number of vector
289  /// elements.
290  unsigned UF;
291 
292  /// Map storage. We use std::map and not DenseMap because insertions to a
293  /// dense map invalidates its iterators.
294  std::map<Value *, VectorParts> MapStorage;
295  };
296 
297  /// The original loop.
298  Loop *OrigLoop;
299  /// Scev analysis to use.
300  ScalarEvolution *SE;
301  /// Loop Info.
302  LoopInfo *LI;
303  /// Dominator Tree.
304  DominatorTree *DT;
305  /// Data Layout.
306  DataLayout *DL;
307  /// Target Library Info.
308  const TargetLibraryInfo *TLI;
309 
310  /// The vectorization SIMD factor to use. Each vector will have this many
311  /// vector elements.
312  unsigned VF;
313 
314 protected:
315  /// The vectorization unroll factor to use. Each scalar is vectorized to this
316  /// many different vector instructions.
317  unsigned UF;
318 
319  /// The builder that we use
320  IRBuilder<> Builder;
321 
322  // --- Vectorization state ---
323 
324  /// The vector-loop preheader.
325  BasicBlock *LoopVectorPreHeader;
326  /// The scalar-loop preheader.
327  BasicBlock *LoopScalarPreHeader;
328  /// Middle Block between the vector and the scalar.
329  BasicBlock *LoopMiddleBlock;
330  ///The ExitBlock of the scalar loop.
331  BasicBlock *LoopExitBlock;
332  ///The vector loop body.
333  BasicBlock *LoopVectorBody;
334  ///The scalar loop body.
335  BasicBlock *LoopScalarBody;
336  /// A list of all bypass blocks. The first block is the entry of the loop.
337  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
338 
339  /// The new Induction variable which was added to the new block.
340  PHINode *Induction;
341  /// The induction variable of the old basic block.
342  PHINode *OldInduction;
343  /// Holds the extended (to the widest induction type) start index.
344  Value *ExtendedIdx;
345  /// Maps scalars to widened vectors.
346  ValueMap WidenMap;
347  EdgeMaskCache MaskCache;
348 };
349 
350 class InnerLoopUnroller : public InnerLoopVectorizer {
351 public:
352  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
353  DominatorTree *DT, DataLayout *DL,
354  const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
355  InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
356 
357 private:
358  virtual void scalarizeInstruction(Instruction *Instr);
359  virtual void vectorizeMemoryInstruction(Instruction *Instr,
360  LoopVectorizationLegality *Legal);
361  virtual Value *getBroadcastInstrs(Value *V);
362  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363  virtual Value *reverseVector(Value *Vec);
364 };
365 
366 /// \brief Look for a meaningful debug location on the instruction or it's
367 /// operands.
368 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
369  if (!I)
370  return I;
371 
372  DebugLoc Empty;
373  if (I->getDebugLoc() != Empty)
374  return I;
375 
376  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
377  if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
378  if (OpInst->getDebugLoc() != Empty)
379  return OpInst;
380  }
381 
382  return I;
383 }
384 
385 /// \brief Set the debug location in the builder using the debug location in the
386 /// instruction.
387 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
388  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
389  B.SetCurrentDebugLocation(Inst->getDebugLoc());
390  else
392 }
393 
394 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
395 /// to what vectorization factor.
396 /// This class does not look at the profitability of vectorization, only the
397 /// legality. This class has two main kinds of checks:
398 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
399 /// will change the order of memory accesses in a way that will change the
400 /// correctness of the program.
401 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
402 /// checks for a number of different conditions, such as the availability of a
403 /// single induction variable, that all types are supported and vectorize-able,
404 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
405 /// This class is also used by InnerLoopVectorizer for identifying
406 /// induction variable and the different reduction variables.
407 class LoopVectorizationLegality {
408 public:
409  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
411  : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
412  Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
413  MaxSafeDepDistBytes(-1U) {}
414 
415  /// This enum represents the kinds of reductions that we support.
416  enum ReductionKind {
417  RK_NoReduction, ///< Not a reduction.
418  RK_IntegerAdd, ///< Sum of integers.
419  RK_IntegerMult, ///< Product of integers.
420  RK_IntegerOr, ///< Bitwise or logical OR of numbers.
421  RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
422  RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
423  RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
424  RK_FloatAdd, ///< Sum of floats.
425  RK_FloatMult, ///< Product of floats.
426  RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
427  };
428 
429  /// This enum represents the kinds of inductions that we support.
430  enum InductionKind {
431  IK_NoInduction, ///< Not an induction variable.
432  IK_IntInduction, ///< Integer induction variable. Step = 1.
433  IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
434  IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
435  IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
436  };
437 
438  // This enum represents the kind of minmax reduction.
439  enum MinMaxReductionKind {
440  MRK_Invalid,
441  MRK_UIntMin,
442  MRK_UIntMax,
443  MRK_SIntMin,
444  MRK_SIntMax,
445  MRK_FloatMin,
446  MRK_FloatMax
447  };
448 
449  /// This struct holds information about reduction variables.
450  struct ReductionDescriptor {
451  ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
452  Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
453 
454  ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
455  MinMaxReductionKind MK)
456  : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
457 
458  // The starting value of the reduction.
459  // It does not have to be zero!
460  TrackingVH<Value> StartValue;
461  // The instruction who's value is used outside the loop.
462  Instruction *LoopExitInstr;
463  // The kind of the reduction.
464  ReductionKind Kind;
465  // If this a min/max reduction the kind of reduction.
466  MinMaxReductionKind MinMaxKind;
467  };
468 
469  /// This POD struct holds information about a potential reduction operation.
470  struct ReductionInstDesc {
471  ReductionInstDesc(bool IsRedux, Instruction *I) :
472  IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
473 
474  ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
475  IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
476 
477  // Is this instruction a reduction candidate.
478  bool IsReduction;
479  // The last instruction in a min/max pattern (select of the select(icmp())
480  // pattern), or the current reduction instruction otherwise.
481  Instruction *PatternLastInst;
482  // If this is a min/max pattern the comparison predicate.
483  MinMaxReductionKind MinMaxKind;
484  };
485 
486  /// This struct holds information about the memory runtime legality
487  /// check that a group of pointers do not overlap.
488  struct RuntimePointerCheck {
489  RuntimePointerCheck() : Need(false) {}
490 
491  /// Reset the state of the pointer runtime information.
492  void reset() {
493  Need = false;
494  Pointers.clear();
495  Starts.clear();
496  Ends.clear();
497  IsWritePtr.clear();
498  DependencySetId.clear();
499  }
500 
501  /// Insert a pointer and calculate the start and end SCEVs.
502  void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
503  unsigned DepSetId);
504 
505  /// This flag indicates if we need to add the runtime check.
506  bool Need;
507  /// Holds the pointers that we need to check.
508  SmallVector<TrackingVH<Value>, 2> Pointers;
509  /// Holds the pointer value at the beginning of the loop.
511  /// Holds the pointer value at the end of the loop.
513  /// Holds the information if this pointer is used for writing to memory.
514  SmallVector<bool, 2> IsWritePtr;
515  /// Holds the id of the set of pointers that could be dependent because of a
516  /// shared underlying object.
517  SmallVector<unsigned, 2> DependencySetId;
518  };
519 
520  /// A struct for saving information about induction variables.
521  struct InductionInfo {
522  InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
523  InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
524  /// Start value.
525  TrackingVH<Value> StartValue;
526  /// Induction kind.
527  InductionKind IK;
528  };
529 
530  /// ReductionList contains the reduction descriptors for all
531  /// of the reductions that were found in the loop.
532  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
533 
534  /// InductionList saves induction variables and maps them to the
535  /// induction descriptor.
536  typedef MapVector<PHINode*, InductionInfo> InductionList;
537 
538  /// Returns true if it is legal to vectorize this loop.
539  /// This does not mean that it is profitable to vectorize this
540  /// loop, only that it is legal to do so.
541  bool canVectorize();
542 
543  /// Returns the Induction variable.
544  PHINode *getInduction() { return Induction; }
545 
546  /// Returns the reduction variables found in the loop.
547  ReductionList *getReductionVars() { return &Reductions; }
548 
549  /// Returns the induction variables found in the loop.
550  InductionList *getInductionVars() { return &Inductions; }
551 
552  /// Returns the widest induction type.
553  Type *getWidestInductionType() { return WidestIndTy; }
554 
555  /// Returns True if V is an induction variable in this loop.
556  bool isInductionVariable(const Value *V);
557 
558  /// Return true if the block BB needs to be predicated in order for the loop
559  /// to be vectorized.
560  bool blockNeedsPredication(BasicBlock *BB);
561 
562  /// Check if this pointer is consecutive when vectorizing. This happens
563  /// when the last index of the GEP is the induction variable, or that the
564  /// pointer itself is an induction variable.
565  /// This check allows us to vectorize A[idx] into a wide load/store.
566  /// Returns:
567  /// 0 - Stride is unknown or non consecutive.
568  /// 1 - Address is consecutive.
569  /// -1 - Address is consecutive, and decreasing.
570  int isConsecutivePtr(Value *Ptr);
571 
572  /// Returns true if the value V is uniform within the loop.
573  bool isUniform(Value *V);
574 
575  /// Returns true if this instruction will remain scalar after vectorization.
576  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
577 
578  /// Returns the information that we collected about runtime memory check.
579  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
580 
581  /// This function returns the identity element (or neutral element) for
582  /// the operation K.
583  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
584 
585  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
586 
587 private:
588  /// Check if a single basic block loop is vectorizable.
589  /// At this point we know that this is a loop with a constant trip count
590  /// and we only need to check individual instructions.
591  bool canVectorizeInstrs();
592 
593  /// When we vectorize loops we may change the order in which
594  /// we read and write from memory. This method checks if it is
595  /// legal to vectorize the code, considering only memory constrains.
596  /// Returns true if the loop is vectorizable
597  bool canVectorizeMemory();
598 
599  /// Return true if we can vectorize this loop using the IF-conversion
600  /// transformation.
601  bool canVectorizeWithIfConvert();
602 
603  /// Collect the variables that need to stay uniform after vectorization.
604  void collectLoopUniforms();
605 
606  /// Return true if all of the instructions in the block can be speculatively
607  /// executed. \p SafePtrs is a list of addresses that are known to be legal
608  /// and we know that we can read from them without segfault.
609  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
610 
611  /// Returns True, if 'Phi' is the kind of reduction variable for type
612  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
613  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
614  /// Returns a struct describing if the instruction 'I' can be a reduction
615  /// variable of type 'Kind'. If the reduction is a min/max pattern of
616  /// select(icmp()) this function advances the instruction pointer 'I' from the
617  /// compare instruction to the select instruction and stores this pointer in
618  /// 'PatternLastInst' member of the returned struct.
619  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
620  ReductionInstDesc &Desc);
621  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
622  /// pattern corresponding to a min(X, Y) or max(X, Y).
623  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
624  ReductionInstDesc &Prev);
625  /// Returns the induction kind of Phi. This function may return NoInduction
626  /// if the PHI is not an induction variable.
627  InductionKind isInductionVariable(PHINode *Phi);
628 
629  /// The loop that we evaluate.
630  Loop *TheLoop;
631  /// Scev analysis.
632  ScalarEvolution *SE;
633  /// DataLayout analysis.
634  DataLayout *DL;
635  /// Dominators.
636  DominatorTree *DT;
637  /// Target Library Info.
638  TargetLibraryInfo *TLI;
639 
640  // --- vectorization state --- //
641 
642  /// Holds the integer induction variable. This is the counter of the
643  /// loop.
644  PHINode *Induction;
645  /// Holds the reduction variables.
646  ReductionList Reductions;
647  /// Holds all of the induction variables that we found in the loop.
648  /// Notice that inductions don't need to start at zero and that induction
649  /// variables can be pointers.
650  InductionList Inductions;
651  /// Holds the widest induction type encountered.
652  Type *WidestIndTy;
653 
654  /// Allowed outside users. This holds the reduction
655  /// vars which can be accessed from outside the loop.
656  SmallPtrSet<Value*, 4> AllowedExit;
657  /// This set holds the variables which are known to be uniform after
658  /// vectorization.
660  /// We need to check that all of the pointers in this list are disjoint
661  /// at runtime.
662  RuntimePointerCheck PtrRtCheck;
663  /// Can we assume the absence of NaNs.
664  bool HasFunNoNaNAttr;
665 
666  unsigned MaxSafeDepDistBytes;
667 };
668 
669 /// LoopVectorizationCostModel - estimates the expected speedups due to
670 /// vectorization.
671 /// In many cases vectorization is not profitable. This can happen because of
672 /// a number of reasons. In this class we mainly attempt to predict the
673 /// expected speedup/slowdowns due to the supported instruction set. We use the
674 /// TargetTransformInfo to query the different backends for the cost of
675 /// different operations.
676 class LoopVectorizationCostModel {
677 public:
678  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
679  LoopVectorizationLegality *Legal,
680  const TargetTransformInfo &TTI,
681  DataLayout *DL, const TargetLibraryInfo *TLI)
682  : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
683 
684  /// Information about vectorization costs
685  struct VectorizationFactor {
686  unsigned Width; // Vector width with best cost
687  unsigned Cost; // Cost of the loop with that width
688  };
689  /// \return The most profitable vectorization factor and the cost of that VF.
690  /// This method checks every power of two up to VF. If UserVF is not ZERO
691  /// then this vectorization factor will be selected if vectorization is
692  /// possible.
693  VectorizationFactor selectVectorizationFactor(bool OptForSize,
694  unsigned UserVF);
695 
696  /// \return The size (in bits) of the widest type in the code that
697  /// needs to be vectorized. We ignore values that remain scalar such as
698  /// 64 bit loop indices.
699  unsigned getWidestType();
700 
701  /// \return The most profitable unroll factor.
702  /// If UserUF is non-zero then this method finds the best unroll-factor
703  /// based on register pressure and other parameters.
704  /// VF and LoopCost are the selected vectorization factor and the cost of the
705  /// selected VF.
706  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
707  unsigned LoopCost);
708 
709  /// \brief A struct that represents some properties of the register usage
710  /// of a loop.
711  struct RegisterUsage {
712  /// Holds the number of loop invariant values that are used in the loop.
713  unsigned LoopInvariantRegs;
714  /// Holds the maximum number of concurrent live intervals in the loop.
715  unsigned MaxLocalUsers;
716  /// Holds the number of instructions in the loop.
717  unsigned NumInstructions;
718  };
719 
720  /// \return information about the register usage of the loop.
721  RegisterUsage calculateRegisterUsage();
722 
723 private:
724  /// Returns the expected execution cost. The unit of the cost does
725  /// not matter because we use the 'cost' units to compare different
726  /// vector widths. The cost that is returned is *not* normalized by
727  /// the factor width.
728  unsigned expectedCost(unsigned VF);
729 
730  /// Returns the execution time cost of an instruction for a given vector
731  /// width. Vector width of one means scalar.
732  unsigned getInstructionCost(Instruction *I, unsigned VF);
733 
734  /// A helper function for converting Scalar types to vector types.
735  /// If the incoming type is void, we return void. If the VF is 1, we return
736  /// the scalar type.
737  static Type* ToVectorTy(Type *Scalar, unsigned VF);
738 
739  /// Returns whether the instruction is a load or store and will be a emitted
740  /// as a vector operation.
741  bool isConsecutiveLoadOrStore(Instruction *I);
742 
743  /// The loop that we evaluate.
744  Loop *TheLoop;
745  /// Scev analysis.
746  ScalarEvolution *SE;
747  /// Loop Info analysis.
748  LoopInfo *LI;
749  /// Vectorization legality.
750  LoopVectorizationLegality *Legal;
751  /// Vector target information.
752  const TargetTransformInfo &TTI;
753  /// Target data layout information.
754  DataLayout *DL;
755  /// Target Library Info.
756  const TargetLibraryInfo *TLI;
757 };
758 
759 /// Utility class for getting and setting loop vectorizer hints in the form
760 /// of loop metadata.
761 struct LoopVectorizeHints {
762  /// Vectorization width.
763  unsigned Width;
764  /// Vectorization unroll factor.
765  unsigned Unroll;
766 
767  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
768  : Width(VectorizationFactor)
769  , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
770  , LoopID(L->getLoopID()) {
771  getHints(L);
772  // The command line options override any loop metadata except for when
773  // width == 1 which is used to indicate the loop is already vectorized.
774  if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
775  Width = VectorizationFactor;
776  if (VectorizationUnroll.getNumOccurrences() > 0)
777  Unroll = VectorizationUnroll;
778 
779  DEBUG(if (DisableUnrolling && Unroll == 1)
780  dbgs() << "LV: Unrolling disabled by the pass manager\n");
781  }
782 
783  /// Return the loop vectorizer metadata prefix.
784  static StringRef Prefix() { return "llvm.vectorizer."; }
785 
786  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
788  Vals.push_back(MDString::get(Context, Name));
789  Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
790  return MDNode::get(Context, Vals);
791  }
792 
793  /// Mark the loop L as already vectorized by setting the width to 1.
794  void setAlreadyVectorized(Loop *L) {
795  LLVMContext &Context = L->getHeader()->getContext();
796 
797  Width = 1;
798 
799  // Create a new loop id with one more operand for the already_vectorized
800  // hint. If the loop already has a loop id then copy the existing operands.
801  SmallVector<Value*, 4> Vals(1);
802  if (LoopID)
803  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
804  Vals.push_back(LoopID->getOperand(i));
805 
806  Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
807  Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
808 
809  MDNode *NewLoopID = MDNode::get(Context, Vals);
810  // Set operand 0 to refer to the loop id itself.
811  NewLoopID->replaceOperandWith(0, NewLoopID);
812 
813  L->setLoopID(NewLoopID);
814  if (LoopID)
815  LoopID->replaceAllUsesWith(NewLoopID);
816 
817  LoopID = NewLoopID;
818  }
819 
820 private:
821  MDNode *LoopID;
822 
823  /// Find hints specified in the loop metadata.
824  void getHints(const Loop *L) {
825  if (!LoopID)
826  return;
827 
828  // First operand should refer to the loop id itself.
829  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831 
832  for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
833  const MDString *S = 0;
835 
836  // The expected hint is either a MDString or a MDNode with the first
837  // operand a MDString.
838  if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
839  if (!MD || MD->getNumOperands() == 0)
840  continue;
841  S = dyn_cast<MDString>(MD->getOperand(0));
842  for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
843  Args.push_back(MD->getOperand(i));
844  } else {
845  S = dyn_cast<MDString>(LoopID->getOperand(i));
846  assert(Args.size() == 0 && "too many arguments for MDString");
847  }
848 
849  if (!S)
850  continue;
851 
852  // Check if the hint starts with the vectorizer prefix.
853  StringRef Hint = S->getString();
854  if (!Hint.startswith(Prefix()))
855  continue;
856  // Remove the prefix.
857  Hint = Hint.substr(Prefix().size(), StringRef::npos);
858 
859  if (Args.size() == 1)
860  getHint(Hint, Args[0]);
861  }
862  }
863 
864  // Check string hint with one operand.
865  void getHint(StringRef Hint, Value *Arg) {
866  const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
867  if (!C) return;
868  unsigned Val = C->getZExtValue();
869 
870  if (Hint == "width") {
871  if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
872  Width = Val;
873  else
874  DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
875  } else if (Hint == "unroll") {
876  if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
877  Unroll = Val;
878  else
879  DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
880  } else {
881  DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
882  }
883  }
884 };
885 
886 /// The LoopVectorize Pass.
887 struct LoopVectorize : public LoopPass {
888  /// Pass identification, replacement for typeid
889  static char ID;
890 
891  explicit LoopVectorize(bool NoUnrolling = false)
892  : LoopPass(ID), DisableUnrolling(NoUnrolling) {
894  }
895 
896  ScalarEvolution *SE;
897  DataLayout *DL;
898  LoopInfo *LI;
899  TargetTransformInfo *TTI;
900  DominatorTree *DT;
901  TargetLibraryInfo *TLI;
902  bool DisableUnrolling;
903 
904  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
905  // We only vectorize innermost loops.
906  if (!L->empty())
907  return false;
908 
909  SE = &getAnalysis<ScalarEvolution>();
910  DL = getAnalysisIfAvailable<DataLayout>();
911  LI = &getAnalysis<LoopInfo>();
912  TTI = &getAnalysis<TargetTransformInfo>();
913  DT = &getAnalysis<DominatorTree>();
914  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
915 
916  // If the target claims to have no vector registers don't attempt
917  // vectorization.
918  if (!TTI->getNumberOfRegisters(true))
919  return false;
920 
921  if (DL == NULL) {
922  DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
923  return false;
924  }
925 
926  DEBUG(dbgs() << "LV: Checking a loop in \"" <<
927  L->getHeader()->getParent()->getName() << "\"\n");
928 
929  LoopVectorizeHints Hints(L, DisableUnrolling);
930 
931  if (Hints.Width == 1 && Hints.Unroll == 1) {
932  DEBUG(dbgs() << "LV: Not vectorizing.\n");
933  return false;
934  }
935 
936  // Check if it is legal to vectorize the loop.
937  LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
938  if (!LVL.canVectorize()) {
939  DEBUG(dbgs() << "LV: Not vectorizing.\n");
940  return false;
941  }
942 
943  // Use the cost model.
944  LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
945 
946  // Check the function attributes to find out if this function should be
947  // optimized for size.
948  Function *F = L->getHeader()->getParent();
951  unsigned FnIndex = AttributeSet::FunctionIndex;
952  bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
953  bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
954 
955  if (NoFloat) {
956  DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
957  "attribute is used.\n");
958  return false;
959  }
960 
961  // Select the optimal vectorization factor.
963  VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
964  // Select the unroll factor.
965  unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
966  VF.Cost);
967 
968  DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
969  F->getParent()->getModuleIdentifier() << '\n');
970  DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
971 
972  if (VF.Width == 1) {
973  DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
974  if (UF == 1)
975  return false;
976  // We decided not to vectorize, but we may want to unroll.
977  InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978  Unroller.vectorize(&LVL);
979  } else {
980  // If we decided that it is *legal* to vectorize the loop then do it.
981  InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982  LB.vectorize(&LVL);
983  }
984 
985  // Mark the loop as already vectorized to avoid vectorizing again.
986  Hints.setAlreadyVectorized(L);
987 
988  DEBUG(verifyFunction(*L->getHeader()->getParent()));
989  return true;
990  }
991 
992  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
997  AU.addRequired<LoopInfo>();
1000  AU.addPreserved<LoopInfo>();
1002  }
1003 
1004 };
1005 
1006 } // end anonymous namespace
1007 
1008 //===----------------------------------------------------------------------===//
1009 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010 // LoopVectorizationCostModel.
1011 //===----------------------------------------------------------------------===//
1012 
1013 void
1014 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015  Loop *Lp, Value *Ptr,
1016  bool WritePtr,
1017  unsigned DepSetId) {
1018  const SCEV *Sc = SE->getSCEV(Ptr);
1019  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020  assert(AR && "Invalid addrec expression");
1021  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023  Pointers.push_back(Ptr);
1024  Starts.push_back(AR->getStart());
1025  Ends.push_back(ScEnd);
1026  IsWritePtr.push_back(WritePtr);
1027  DependencySetId.push_back(DepSetId);
1028 }
1029 
1030 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031  // We need to place the broadcast of invariant variables outside the loop.
1032  Instruction *Instr = dyn_cast<Instruction>(V);
1033  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035 
1036  // Place the code for broadcasting invariant variables in the new preheader.
1037  IRBuilder<>::InsertPointGuard Guard(Builder);
1038  if (Invariant)
1039  Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040 
1041  // Broadcast the scalar into all locations in the vector.
1042  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043 
1044  return Shuf;
1045 }
1046 
1047 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048  bool Negate) {
1049  assert(Val->getType()->isVectorTy() && "Must be a vector");
1050  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051  "Elem must be an integer");
1052  // Create the types.
1053  Type *ITy = Val->getType()->getScalarType();
1054  VectorType *Ty = cast<VectorType>(Val->getType());
1055  int VLen = Ty->getNumElements();
1056  SmallVector<Constant*, 8> Indices;
1057 
1058  // Create a vector of consecutive numbers from zero to VF.
1059  for (int i = 0; i < VLen; ++i) {
1060  int64_t Idx = Negate ? (-i) : i;
1061  Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062  }
1063 
1064  // Add the consecutive indices to the vector value.
1065  Constant *Cv = ConstantVector::get(Indices);
1066  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067  return Builder.CreateAdd(Val, Cv, "induction");
1068 }
1069 
1070 /// \brief Find the operand of the GEP that should be checked for consecutive
1071 /// stores. This ignores trailing indices that have no effect on the final
1072 /// pointer.
1074  const GetElementPtrInst *Gep) {
1075  unsigned LastOperand = Gep->getNumOperands() - 1;
1076  unsigned GEPAllocSize = DL->getTypeAllocSize(
1077  cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1078 
1079  // Walk backwards and try to peel off zeros.
1080  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1081  // Find the type we're currently indexing into.
1082  gep_type_iterator GEPTI = gep_type_begin(Gep);
1083  std::advance(GEPTI, LastOperand - 1);
1084 
1085  // If it's a type with the same allocation size as the result of the GEP we
1086  // can peel off the zero index.
1087  if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1088  break;
1089  --LastOperand;
1090  }
1091 
1092  return LastOperand;
1093 }
1094 
1095 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1096  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1097  // Make sure that the pointer does not point to structs.
1099  return 0;
1100 
1101  // If this value is a pointer induction variable we know it is consecutive.
1102  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1103  if (Phi && Inductions.count(Phi)) {
1104  InductionInfo II = Inductions[Phi];
1105  if (IK_PtrInduction == II.IK)
1106  return 1;
1107  else if (IK_ReversePtrInduction == II.IK)
1108  return -1;
1109  }
1110 
1111  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1112  if (!Gep)
1113  return 0;
1114 
1115  unsigned NumOperands = Gep->getNumOperands();
1116  Value *GpPtr = Gep->getPointerOperand();
1117  // If this GEP value is a consecutive pointer induction variable and all of
1118  // the indices are constant then we know it is consecutive. We can
1119  Phi = dyn_cast<PHINode>(GpPtr);
1120  if (Phi && Inductions.count(Phi)) {
1121 
1122  // Make sure that the pointer does not point to structs.
1123  PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1124  if (GepPtrType->getElementType()->isAggregateType())
1125  return 0;
1126 
1127  // Make sure that all of the index operands are loop invariant.
1128  for (unsigned i = 1; i < NumOperands; ++i)
1129  if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1130  return 0;
1131 
1132  InductionInfo II = Inductions[Phi];
1133  if (IK_PtrInduction == II.IK)
1134  return 1;
1135  else if (IK_ReversePtrInduction == II.IK)
1136  return -1;
1137  }
1138 
1139  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1140 
1141  // Check that all of the gep indices are uniform except for our induction
1142  // operand.
1143  for (unsigned i = 0; i != NumOperands; ++i)
1144  if (i != InductionOperand &&
1145  !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1146  return 0;
1147 
1148  // We can emit wide load/stores only if the last non-zero index is the
1149  // induction variable.
1150  const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1151  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1152  const SCEV *Step = AR->getStepRecurrence(*SE);
1153 
1154  // The memory is consecutive because the last index is consecutive
1155  // and all other indices are loop invariant.
1156  if (Step->isOne())
1157  return 1;
1158  if (Step->isAllOnesValue())
1159  return -1;
1160  }
1161 
1162  return 0;
1163 }
1164 
1165 bool LoopVectorizationLegality::isUniform(Value *V) {
1166  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1167 }
1168 
1170 InnerLoopVectorizer::getVectorValue(Value *V) {
1171  assert(V != Induction && "The new induction variable should not be used.");
1172  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1173 
1174  // If we have this scalar in the map, return it.
1175  if (WidenMap.has(V))
1176  return WidenMap.get(V);
1177 
1178  // If this scalar is unknown, assume that it is a constant or that it is
1179  // loop invariant. Broadcast V and save the value for future uses.
1180  Value *B = getBroadcastInstrs(V);
1181  return WidenMap.splat(V, B);
1182 }
1183 
1184 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1185  assert(Vec->getType()->isVectorTy() && "Invalid type");
1186  SmallVector<Constant*, 8> ShuffleMask;
1187  for (unsigned i = 0; i < VF; ++i)
1188  ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1189 
1190  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1191  ConstantVector::get(ShuffleMask),
1192  "reverse");
1193 }
1194 
1195 
1196 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1197  LoopVectorizationLegality *Legal) {
1198  // Attempt to issue a wide load.
1199  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1200  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1201 
1202  assert((LI || SI) && "Invalid Load/Store instruction");
1203 
1204  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1205  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1206  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1207  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1208  // An alignment of 0 means target abi alignment. We need to use the scalar's
1209  // target abi alignment in such a case.
1210  if (!Alignment)
1211  Alignment = DL->getABITypeAlignment(ScalarDataTy);
1212  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1213  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1214  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1215 
1216  if (ScalarAllocatedSize != VectorElementSize)
1217  return scalarizeInstruction(Instr);
1218 
1219  // If the pointer is loop invariant or if it is non consecutive,
1220  // scalarize the load.
1221  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1222  bool Reverse = ConsecutiveStride < 0;
1223  bool UniformLoad = LI && Legal->isUniform(Ptr);
1224  if (!ConsecutiveStride || UniformLoad)
1225  return scalarizeInstruction(Instr);
1226 
1227  Constant *Zero = Builder.getInt32(0);
1228  VectorParts &Entry = WidenMap.get(Instr);
1229 
1230  // Handle consecutive loads/stores.
1232  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1233  setDebugLocFromInst(Builder, Gep);
1234  Value *PtrOperand = Gep->getPointerOperand();
1235  Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1236  FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1237 
1238  // Create the new GEP with the new induction variable.
1239  GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1240  Gep2->setOperand(0, FirstBasePtr);
1241  Gep2->setName("gep.indvar.base");
1242  Ptr = Builder.Insert(Gep2);
1243  } else if (Gep) {
1244  setDebugLocFromInst(Builder, Gep);
1245  assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1246  OrigLoop) && "Base ptr must be invariant");
1247 
1248  // The last index does not have to be the induction. It can be
1249  // consecutive and be a function of the index. For example A[I+1];
1250  unsigned NumOperands = Gep->getNumOperands();
1251  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1252  // Create the new GEP with the new induction variable.
1253  GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1254 
1255  for (unsigned i = 0; i < NumOperands; ++i) {
1256  Value *GepOperand = Gep->getOperand(i);
1257  Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1258 
1259  // Update last index or loop invariant instruction anchored in loop.
1260  if (i == InductionOperand ||
1261  (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1262  assert((i == InductionOperand ||
1263  SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1264  "Must be last index or loop invariant");
1265 
1266  VectorParts &GEPParts = getVectorValue(GepOperand);
1267  Value *Index = GEPParts[0];
1268  Index = Builder.CreateExtractElement(Index, Zero);
1269  Gep2->setOperand(i, Index);
1270  Gep2->setName("gep.indvar.idx");
1271  }
1272  }
1273  Ptr = Builder.Insert(Gep2);
1274  } else {
1275  // Use the induction element ptr.
1276  assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1277  setDebugLocFromInst(Builder, Ptr);
1278  VectorParts &PtrVal = getVectorValue(Ptr);
1279  Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1280  }
1281 
1282  // Handle Stores:
1283  if (SI) {
1284  assert(!Legal->isUniform(SI->getPointerOperand()) &&
1285  "We do not allow storing to uniform addresses");
1286  setDebugLocFromInst(Builder, SI);
1287  // We don't want to update the value in the map as it might be used in
1288  // another expression. So don't use a reference type for "StoredVal".
1289  VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1290 
1291  for (unsigned Part = 0; Part < UF; ++Part) {
1292  // Calculate the pointer for the specific unroll-part.
1293  Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1294 
1295  if (Reverse) {
1296  // If we store to reverse consecutive memory locations then we need
1297  // to reverse the order of elements in the stored value.
1298  StoredVal[Part] = reverseVector(StoredVal[Part]);
1299  // If the address is consecutive but reversed, then the
1300  // wide store needs to start at the last vector element.
1301  PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1302  PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1303  }
1304 
1305  Value *VecPtr = Builder.CreateBitCast(PartPtr,
1306  DataTy->getPointerTo(AddressSpace));
1307  Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1308  }
1309  return;
1310  }
1311 
1312  // Handle loads.
1313  assert(LI && "Must have a load instruction");
1314  setDebugLocFromInst(Builder, LI);
1315  for (unsigned Part = 0; Part < UF; ++Part) {
1316  // Calculate the pointer for the specific unroll-part.
1317  Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1318 
1319  if (Reverse) {
1320  // If the address is consecutive but reversed, then the
1321  // wide store needs to start at the last vector element.
1322  PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1323  PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1324  }
1325 
1326  Value *VecPtr = Builder.CreateBitCast(PartPtr,
1327  DataTy->getPointerTo(AddressSpace));
1328  Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1329  cast<LoadInst>(LI)->setAlignment(Alignment);
1330  Entry[Part] = Reverse ? reverseVector(LI) : LI;
1331  }
1332 }
1333 
1334 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1335  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1336  // Holds vector parameters or scalars, in case of uniform vals.
1338 
1339  setDebugLocFromInst(Builder, Instr);
1340 
1341  // Find all of the vectorized parameters.
1342  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1343  Value *SrcOp = Instr->getOperand(op);
1344 
1345  // If we are accessing the old induction variable, use the new one.
1346  if (SrcOp == OldInduction) {
1347  Params.push_back(getVectorValue(SrcOp));
1348  continue;
1349  }
1350 
1351  // Try using previously calculated values.
1352  Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1353 
1354  // If the src is an instruction that appeared earlier in the basic block
1355  // then it should already be vectorized.
1356  if (SrcInst && OrigLoop->contains(SrcInst)) {
1357  assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1358  // The parameter is a vector value from earlier.
1359  Params.push_back(WidenMap.get(SrcInst));
1360  } else {
1361  // The parameter is a scalar from outside the loop. Maybe even a constant.
1362  VectorParts Scalars;
1363  Scalars.append(UF, SrcOp);
1364  Params.push_back(Scalars);
1365  }
1366  }
1367 
1368  assert(Params.size() == Instr->getNumOperands() &&
1369  "Invalid number of operands");
1370 
1371  // Does this instruction return a value ?
1372  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1373 
1374  Value *UndefVec = IsVoidRetTy ? 0 :
1375  UndefValue::get(VectorType::get(Instr->getType(), VF));
1376  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1377  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1378 
1379  // For each vector unroll 'part':
1380  for (unsigned Part = 0; Part < UF; ++Part) {
1381  // For each scalar that we create:
1382  for (unsigned Width = 0; Width < VF; ++Width) {
1383  Instruction *Cloned = Instr->clone();
1384  if (!IsVoidRetTy)
1385  Cloned->setName(Instr->getName() + ".cloned");
1386  // Replace the operands of the cloned instructions with extracted scalars.
1387  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1388  Value *Op = Params[op][Part];
1389  // Param is a vector. Need to extract the right lane.
1390  if (Op->getType()->isVectorTy())
1391  Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1392  Cloned->setOperand(op, Op);
1393  }
1394 
1395  // Place the cloned scalar in the new loop.
1396  Builder.Insert(Cloned);
1397 
1398  // If the original scalar returns a value we need to place it in a vector
1399  // so that future users will be able to use it.
1400  if (!IsVoidRetTy)
1401  VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1402  Builder.getInt32(Width));
1403  }
1404  }
1405 }
1406 
1407 Instruction *
1408 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1409  Instruction *Loc) {
1410  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1411  Legal->getRuntimePointerCheck();
1412 
1413  if (!PtrRtCheck->Need)
1414  return NULL;
1415 
1416  unsigned NumPointers = PtrRtCheck->Pointers.size();
1417  SmallVector<TrackingVH<Value> , 2> Starts;
1419 
1420  LLVMContext &Ctx = Loc->getContext();
1421  SCEVExpander Exp(*SE, "induction");
1422 
1423  for (unsigned i = 0; i < NumPointers; ++i) {
1424  Value *Ptr = PtrRtCheck->Pointers[i];
1425  const SCEV *Sc = SE->getSCEV(Ptr);
1426 
1427  if (SE->isLoopInvariant(Sc, OrigLoop)) {
1428  DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1429  *Ptr <<"\n");
1430  Starts.push_back(Ptr);
1431  Ends.push_back(Ptr);
1432  } else {
1433  DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1434  unsigned AS = Ptr->getType()->getPointerAddressSpace();
1435 
1436  // Use this type for pointer arithmetic.
1437  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1438 
1439  Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1440  Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1441  Starts.push_back(Start);
1442  Ends.push_back(End);
1443  }
1444  }
1445 
1446  IRBuilder<> ChkBuilder(Loc);
1447  // Our instructions might fold to a constant.
1448  Value *MemoryRuntimeCheck = 0;
1449  for (unsigned i = 0; i < NumPointers; ++i) {
1450  for (unsigned j = i+1; j < NumPointers; ++j) {
1451  // No need to check if two readonly pointers intersect.
1452  if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1453  continue;
1454 
1455  // Only need to check pointers between two different dependency sets.
1456  if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1457  continue;
1458 
1459  unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1460  unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1461 
1462  assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1463  (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1464  "Trying to bounds check pointers with different address spaces");
1465 
1466  Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1467  Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1468 
1469  Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1470  Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1471  Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1472  Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1473 
1474  Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1475  Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1476  Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1477  if (MemoryRuntimeCheck)
1478  IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1479  "conflict.rdx");
1480  MemoryRuntimeCheck = IsConflict;
1481  }
1482  }
1483 
1484  // We have to do this trickery because the IRBuilder might fold the check to a
1485  // constant expression in which case there is no Instruction anchored in a
1486  // the block.
1487  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1488  ConstantInt::getTrue(Ctx));
1489  ChkBuilder.Insert(Check, "memcheck.conflict");
1490  return Check;
1491 }
1492 
1493 void
1494 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1495  /*
1496  In this function we generate a new loop. The new loop will contain
1497  the vectorized instructions while the old loop will continue to run the
1498  scalar remainder.
1499 
1500  [ ] <-- vector loop bypass (may consist of multiple blocks).
1501  / |
1502  / v
1503  | [ ] <-- vector pre header.
1504  | |
1505  | v
1506  | [ ] \
1507  | [ ]_| <-- vector loop.
1508  | |
1509  \ v
1510  >[ ] <--- middle-block.
1511  / |
1512  / v
1513  | [ ] <--- new preheader.
1514  | |
1515  | v
1516  | [ ] \
1517  | [ ]_| <-- old scalar loop to handle remainder.
1518  \ |
1519  \ v
1520  >[ ] <-- exit block.
1521  ...
1522  */
1523 
1524  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1525  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1526  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1527  assert(ExitBlock && "Must have an exit block");
1528 
1529  // Some loops have a single integer induction variable, while other loops
1530  // don't. One example is c++ iterators that often have multiple pointer
1531  // induction variables. In the code below we also support a case where we
1532  // don't have a single induction variable.
1533  OldInduction = Legal->getInduction();
1534  Type *IdxTy = Legal->getWidestInductionType();
1535 
1536  // Find the loop boundaries.
1537  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1538  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1539 
1540  ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
1541  // Get the total trip count from the count by adding 1.
1542  ExitCount = SE->getAddExpr(ExitCount,
1543  SE->getConstant(ExitCount->getType(), 1));
1544 
1545  // Expand the trip count and place the new instructions in the preheader.
1546  // Notice that the pre-header does not change, only the loop body.
1547  SCEVExpander Exp(*SE, "induction");
1548 
1549  // Count holds the overall loop count (N).
1550  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1551  BypassBlock->getTerminator());
1552 
1553  // The loop index does not have to start at Zero. Find the original start
1554  // value from the induction PHI node. If we don't have an induction variable
1555  // then we know that it starts at zero.
1556  Builder.SetInsertPoint(BypassBlock->getTerminator());
1557  Value *StartIdx = ExtendedIdx = OldInduction ?
1558  Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1559  IdxTy):
1560  ConstantInt::get(IdxTy, 0);
1561 
1562  assert(BypassBlock && "Invalid loop structure");
1563  LoopBypassBlocks.push_back(BypassBlock);
1564 
1565  // Split the single block loop into the two loop structure described above.
1566  BasicBlock *VectorPH =
1567  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1568  BasicBlock *VecBody =
1569  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1570  BasicBlock *MiddleBlock =
1571  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1572  BasicBlock *ScalarPH =
1573  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1574 
1575  // Create and register the new vector loop.
1576  Loop* Lp = new Loop();
1577  Loop *ParentLoop = OrigLoop->getParentLoop();
1578 
1579  // Insert the new loop into the loop nest and register the new basic blocks
1580  // before calling any utilities such as SCEV that require valid LoopInfo.
1581  if (ParentLoop) {
1582  ParentLoop->addChildLoop(Lp);
1583  ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1584  ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1585  ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1586  } else {
1587  LI->addTopLevelLoop(Lp);
1588  }
1589  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1590 
1591  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1592  // inside the loop.
1593  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1594 
1595  // Generate the induction variable.
1596  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1597  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1598  // The loop step is equal to the vectorization factor (num of SIMD elements)
1599  // times the unroll factor (num of SIMD instructions).
1600  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1601 
1602  // This is the IR builder that we use to add all of the logic for bypassing
1603  // the new vector loop.
1604  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1605  setDebugLocFromInst(BypassBuilder,
1606  getDebugLocFromInstOrOperands(OldInduction));
1607 
1608  // We may need to extend the index in case there is a type mismatch.
1609  // We know that the count starts at zero and does not overflow.
1610  if (Count->getType() != IdxTy) {
1611  // The exit count can be of pointer type. Convert it to the correct
1612  // integer type.
1613  if (ExitCount->getType()->isPointerTy())
1614  Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1615  else
1616  Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1617  }
1618 
1619  // Add the start index to the loop count to get the new end index.
1620  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1621 
1622  // Now we need to generate the expression for N - (N % VF), which is
1623  // the part that the vectorized body will execute.
1624  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1625  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1626  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1627  "end.idx.rnd.down");
1628 
1629  // Now, compare the new count to zero. If it is zero skip the vector loop and
1630  // jump to the scalar loop.
1631  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1632  "cmp.zero");
1633 
1634  BasicBlock *LastBypassBlock = BypassBlock;
1635 
1636  // Generate the code that checks in runtime if arrays overlap. We put the
1637  // checks into a separate block to make the more common case of few elements
1638  // faster.
1639  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1640  BypassBlock->getTerminator());
1641  if (MemRuntimeCheck) {
1642  // Create a new block containing the memory check.
1643  BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1644  "vector.memcheck");
1645  if (ParentLoop)
1646  ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1647  LoopBypassBlocks.push_back(CheckBlock);
1648 
1649  // Replace the branch into the memory check block with a conditional branch
1650  // for the "few elements case".
1651  Instruction *OldTerm = BypassBlock->getTerminator();
1652  BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1653  OldTerm->eraseFromParent();
1654 
1655  Cmp = MemRuntimeCheck;
1656  LastBypassBlock = CheckBlock;
1657  }
1658 
1659  LastBypassBlock->getTerminator()->eraseFromParent();
1660  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1661  LastBypassBlock);
1662 
1663  // We are going to resume the execution of the scalar loop.
1664  // Go over all of the induction variables that we found and fix the
1665  // PHIs that are left in the scalar version of the loop.
1666  // The starting values of PHI nodes depend on the counter of the last
1667  // iteration in the vectorized loop.
1668  // If we come from a bypass edge then we need to start from the original
1669  // start value.
1670 
1671  // This variable saves the new starting index for the scalar loop.
1672  PHINode *ResumeIndex = 0;
1674  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1675  // Set builder to point to last bypass block.
1676  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1677  for (I = List->begin(), E = List->end(); I != E; ++I) {
1678  PHINode *OrigPhi = I->first;
1679  LoopVectorizationLegality::InductionInfo II = I->second;
1680 
1681  Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1682  PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1683  MiddleBlock->getTerminator());
1684  // We might have extended the type of the induction variable but we need a
1685  // truncated version for the scalar loop.
1686  PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1687  PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1688  MiddleBlock->getTerminator()) : 0;
1689 
1690  Value *EndValue = 0;
1691  switch (II.IK) {
1692  case LoopVectorizationLegality::IK_NoInduction:
1693  llvm_unreachable("Unknown induction");
1694  case LoopVectorizationLegality::IK_IntInduction: {
1695  // Handle the integer induction counter.
1696  assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1697 
1698  // We have the canonical induction variable.
1699  if (OrigPhi == OldInduction) {
1700  // Create a truncated version of the resume value for the scalar loop,
1701  // we might have promoted the type to a larger width.
1702  EndValue =
1703  BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1704  // The new PHI merges the original incoming value, in case of a bypass,
1705  // or the value at the end of the vectorized loop.
1706  for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1707  TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1708  TruncResumeVal->addIncoming(EndValue, VecBody);
1709 
1710  // We know what the end value is.
1711  EndValue = IdxEndRoundDown;
1712  // We also know which PHI node holds it.
1713  ResumeIndex = ResumeVal;
1714  break;
1715  }
1716 
1717  // Not the canonical induction variable - add the vector loop count to the
1718  // start value.
1719  Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1720  II.StartValue->getType(),
1721  "cast.crd");
1722  EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1723  break;
1724  }
1725  case LoopVectorizationLegality::IK_ReverseIntInduction: {
1726  // Convert the CountRoundDown variable to the PHI size.
1727  Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1728  II.StartValue->getType(),
1729  "cast.crd");
1730  // Handle reverse integer induction counter.
1731  EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1732  break;
1733  }
1734  case LoopVectorizationLegality::IK_PtrInduction: {
1735  // For pointer induction variables, calculate the offset using
1736  // the end index.
1737  EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1738  "ptr.ind.end");
1739  break;
1740  }
1741  case LoopVectorizationLegality::IK_ReversePtrInduction: {
1742  // The value at the end of the loop for the reverse pointer is calculated
1743  // by creating a GEP with a negative index starting from the start value.
1744  Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1745  Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1746  "rev.ind.end");
1747  EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1748  "rev.ptr.ind.end");
1749  break;
1750  }
1751  }// end of case
1752 
1753  // The new PHI merges the original incoming value, in case of a bypass,
1754  // or the value at the end of the vectorized loop.
1755  for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1756  if (OrigPhi == OldInduction)
1757  ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1758  else
1759  ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1760  }
1761  ResumeVal->addIncoming(EndValue, VecBody);
1762 
1763  // Fix the scalar body counter (PHI node).
1764  unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1765  // The old inductions phi node in the scalar body needs the truncated value.
1766  if (OrigPhi == OldInduction)
1767  OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1768  else
1769  OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1770  }
1771 
1772  // If we are generating a new induction variable then we also need to
1773  // generate the code that calculates the exit value. This value is not
1774  // simply the end of the counter because we may skip the vectorized body
1775  // in case of a runtime check.
1776  if (!OldInduction){
1777  assert(!ResumeIndex && "Unexpected resume value found");
1778  ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1779  MiddleBlock->getTerminator());
1780  for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1781  ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1782  ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1783  }
1784 
1785  // Make sure that we found the index where scalar loop needs to continue.
1786  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1787  "Invalid resume Index");
1788 
1789  // Add a check in the middle block to see if we have completed
1790  // all of the iterations in the first vector loop.
1791  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1792  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1793  ResumeIndex, "cmp.n",
1794  MiddleBlock->getTerminator());
1795 
1796  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1797  // Remove the old terminator.
1798  MiddleBlock->getTerminator()->eraseFromParent();
1799 
1800  // Create i+1 and fill the PHINode.
1801  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1802  Induction->addIncoming(StartIdx, VectorPH);
1803  Induction->addIncoming(NextIdx, VecBody);
1804  // Create the compare.
1805  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1806  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1807 
1808  // Now we have two terminators. Remove the old one from the block.
1809  VecBody->getTerminator()->eraseFromParent();
1810 
1811  // Get ready to start creating new instructions into the vectorized body.
1812  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1813 
1814  // Save the state.
1815  LoopVectorPreHeader = VectorPH;
1816  LoopScalarPreHeader = ScalarPH;
1817  LoopMiddleBlock = MiddleBlock;
1818  LoopExitBlock = ExitBlock;
1819  LoopVectorBody = VecBody;
1820  LoopScalarBody = OldBasicBlock;
1821 
1822  LoopVectorizeHints Hints(Lp, true);
1823  Hints.setAlreadyVectorized(Lp);
1824 }
1825 
1826 /// This function returns the identity element (or neutral element) for
1827 /// the operation K.
1828 Constant*
1829 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1830  switch (K) {
1831  case RK_IntegerXor:
1832  case RK_IntegerAdd:
1833  case RK_IntegerOr:
1834  // Adding, Xoring, Oring zero to a number does not change it.
1835  return ConstantInt::get(Tp, 0);
1836  case RK_IntegerMult:
1837  // Multiplying a number by 1 does not change it.
1838  return ConstantInt::get(Tp, 1);
1839  case RK_IntegerAnd:
1840  // AND-ing a number with an all-1 value does not change it.
1841  return ConstantInt::get(Tp, -1, true);
1842  case RK_FloatMult:
1843  // Multiplying a number by 1 does not change it.
1844  return ConstantFP::get(Tp, 1.0L);
1845  case RK_FloatAdd:
1846  // Adding zero to a number does not change it.
1847  return ConstantFP::get(Tp, 0.0L);
1848  default:
1849  llvm_unreachable("Unknown reduction kind");
1850  }
1851 }
1852 
1854  Intrinsic::ID ValidIntrinsicID) {
1855  if (I.getNumArgOperands() != 1 ||
1856  !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1857  I.getType() != I.getArgOperand(0)->getType() ||
1858  !I.onlyReadsMemory())
1859  return Intrinsic::not_intrinsic;
1860 
1861  return ValidIntrinsicID;
1862 }
1863 
1865  Intrinsic::ID ValidIntrinsicID) {
1866  if (I.getNumArgOperands() != 2 ||
1867  !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1868  !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1869  I.getType() != I.getArgOperand(0)->getType() ||
1870  I.getType() != I.getArgOperand(1)->getType() ||
1871  !I.onlyReadsMemory())
1872  return Intrinsic::not_intrinsic;
1873 
1874  return ValidIntrinsicID;
1875 }
1876 
1877 
1878 static Intrinsic::ID
1880  // If we have an intrinsic call, check if it is trivially vectorizable.
1881  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1882  switch (II->getIntrinsicID()) {
1883  case Intrinsic::sqrt:
1884  case Intrinsic::sin:
1885  case Intrinsic::cos:
1886  case Intrinsic::exp:
1887  case Intrinsic::exp2:
1888  case Intrinsic::log:
1889  case Intrinsic::log10:
1890  case Intrinsic::log2:
1891  case Intrinsic::fabs:
1892  case Intrinsic::copysign:
1893  case Intrinsic::floor:
1894  case Intrinsic::ceil:
1895  case Intrinsic::trunc:
1896  case Intrinsic::rint:
1897  case Intrinsic::nearbyint:
1898  case Intrinsic::round:
1899  case Intrinsic::pow:
1900  case Intrinsic::fma:
1901  case Intrinsic::fmuladd:
1904  return II->getIntrinsicID();
1905  default:
1906  return Intrinsic::not_intrinsic;
1907  }
1908  }
1909 
1910  if (!TLI)
1911  return Intrinsic::not_intrinsic;
1912 
1914  Function *F = CI->getCalledFunction();
1915  // We're going to make assumptions on the semantics of the functions, check
1916  // that the target knows that it's available in this environment and it does
1917  // not have local linkage.
1918  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1919  return Intrinsic::not_intrinsic;
1920 
1921  // Otherwise check if we have a call to a function that can be turned into a
1922  // vector intrinsic.
1923  switch (Func) {
1924  default:
1925  break;
1926  case LibFunc::sin:
1927  case LibFunc::sinf:
1928  case LibFunc::sinl:
1930  case LibFunc::cos:
1931  case LibFunc::cosf:
1932  case LibFunc::cosl:
1934  case LibFunc::exp:
1935  case LibFunc::expf:
1936  case LibFunc::expl:
1938  case LibFunc::exp2:
1939  case LibFunc::exp2f:
1940  case LibFunc::exp2l:
1942  case LibFunc::log:
1943  case LibFunc::logf:
1944  case LibFunc::logl:
1946  case LibFunc::log10:
1947  case LibFunc::log10f:
1948  case LibFunc::log10l:
1950  case LibFunc::log2:
1951  case LibFunc::log2f:
1952  case LibFunc::log2l:
1954  case LibFunc::fabs:
1955  case LibFunc::fabsf:
1956  case LibFunc::fabsl:
1958  case LibFunc::copysign:
1959  case LibFunc::copysignf:
1960  case LibFunc::copysignl:
1962  case LibFunc::floor:
1963  case LibFunc::floorf:
1964  case LibFunc::floorl:
1966  case LibFunc::ceil:
1967  case LibFunc::ceilf:
1968  case LibFunc::ceill:
1970  case LibFunc::trunc:
1971  case LibFunc::truncf:
1972  case LibFunc::truncl:
1974  case LibFunc::rint:
1975  case LibFunc::rintf:
1976  case LibFunc::rintl:
1978  case LibFunc::nearbyint:
1979  case LibFunc::nearbyintf:
1980  case LibFunc::nearbyintl:
1982  case LibFunc::round:
1983  case LibFunc::roundf:
1984  case LibFunc::roundl:
1986  case LibFunc::pow:
1987  case LibFunc::powf:
1988  case LibFunc::powl:
1990  }
1991 
1992  return Intrinsic::not_intrinsic;
1993 }
1994 
1995 /// This function translates the reduction kind to an LLVM binary operator.
1996 static unsigned
1997 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1998  switch (Kind) {
1999  case LoopVectorizationLegality::RK_IntegerAdd:
2000  return Instruction::Add;
2001  case LoopVectorizationLegality::RK_IntegerMult:
2002  return Instruction::Mul;
2003  case LoopVectorizationLegality::RK_IntegerOr:
2004  return Instruction::Or;
2005  case LoopVectorizationLegality::RK_IntegerAnd:
2006  return Instruction::And;
2007  case LoopVectorizationLegality::RK_IntegerXor:
2008  return Instruction::Xor;
2009  case LoopVectorizationLegality::RK_FloatMult:
2010  return Instruction::FMul;
2011  case LoopVectorizationLegality::RK_FloatAdd:
2012  return Instruction::FAdd;
2013  case LoopVectorizationLegality::RK_IntegerMinMax:
2014  return Instruction::ICmp;
2015  case LoopVectorizationLegality::RK_FloatMinMax:
2016  return Instruction::FCmp;
2017  default:
2018  llvm_unreachable("Unknown reduction operation");
2019  }
2020 }
2021 
2023  LoopVectorizationLegality::MinMaxReductionKind RK,
2024  Value *Left,
2025  Value *Right) {
2027  switch (RK) {
2028  default:
2029  llvm_unreachable("Unknown min/max reduction kind");
2030  case LoopVectorizationLegality::MRK_UIntMin:
2031  P = CmpInst::ICMP_ULT;
2032  break;
2033  case LoopVectorizationLegality::MRK_UIntMax:
2034  P = CmpInst::ICMP_UGT;
2035  break;
2036  case LoopVectorizationLegality::MRK_SIntMin:
2037  P = CmpInst::ICMP_SLT;
2038  break;
2039  case LoopVectorizationLegality::MRK_SIntMax:
2040  P = CmpInst::ICMP_SGT;
2041  break;
2042  case LoopVectorizationLegality::MRK_FloatMin:
2043  P = CmpInst::FCMP_OLT;
2044  break;
2045  case LoopVectorizationLegality::MRK_FloatMax:
2046  P = CmpInst::FCMP_OGT;
2047  break;
2048  }
2049 
2050  Value *Cmp;
2051  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2052  RK == LoopVectorizationLegality::MRK_FloatMax)
2053  Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2054  else
2055  Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2056 
2057  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2058  return Select;
2059 }
2060 
2061 namespace {
2062 struct CSEDenseMapInfo {
2063  static bool canHandle(Instruction *I) {
2064  return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2065  isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2066  }
2067  static inline Instruction *getEmptyKey() {
2069  }
2070  static inline Instruction *getTombstoneKey() {
2072  }
2073  static unsigned getHashValue(Instruction *I) {
2074  assert(canHandle(I) && "Unknown instruction!");
2076  I->value_op_end()));
2077  }
2078  static bool isEqual(Instruction *LHS, Instruction *RHS) {
2079  if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2080  LHS == getTombstoneKey() || RHS == getTombstoneKey())
2081  return LHS == RHS;
2082  return LHS->isIdenticalTo(RHS);
2083  }
2084 };
2085 }
2086 
2087 ///\brief Perform cse of induction variable instructions.
2088 static void cse(BasicBlock *BB) {
2089  // Perform simple cse.
2091  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2092  Instruction *In = I++;
2093 
2094  if (!CSEDenseMapInfo::canHandle(In))
2095  continue;
2096 
2097  // Check if we can replace this instruction with any of the
2098  // visited instructions.
2099  if (Instruction *V = CSEMap.lookup(In)) {
2100  In->replaceAllUsesWith(V);
2101  In->eraseFromParent();
2102  continue;
2103  }
2104 
2105  CSEMap[In] = In;
2106  }
2107 }
2108 
2109 void
2110 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2111  //===------------------------------------------------===//
2112  //
2113  // Notice: any optimization or new instruction that go
2114  // into the code below should be also be implemented in
2115  // the cost-model.
2116  //
2117  //===------------------------------------------------===//
2118  Constant *Zero = Builder.getInt32(0);
2119 
2120  // In order to support reduction variables we need to be able to vectorize
2121  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2122  // stages. First, we create a new vector PHI node with no incoming edges.
2123  // We use this value when we vectorize all of the instructions that use the
2124  // PHI. Next, after all of the instructions in the block are complete we
2125  // add the new incoming edges to the PHI. At this point all of the
2126  // instructions in the basic block are vectorized, so we can use them to
2127  // construct the PHI.
2128  PhiVector RdxPHIsToFix;
2129 
2130  // Scan the loop in a topological order to ensure that defs are vectorized
2131  // before users.
2132  LoopBlocksDFS DFS(OrigLoop);
2133  DFS.perform(LI);
2134 
2135  // Vectorize all of the blocks in the original loop.
2136  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2137  be = DFS.endRPO(); bb != be; ++bb)
2138  vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2139 
2140  // At this point every instruction in the original loop is widened to
2141  // a vector form. We are almost done. Now, we need to fix the PHI nodes
2142  // that we vectorized. The PHI nodes are currently empty because we did
2143  // not want to introduce cycles. Notice that the remaining PHI nodes
2144  // that we need to fix are reduction variables.
2145 
2146  // Create the 'reduced' values for each of the induction vars.
2147  // The reduced values are the vector values that we scalarize and combine
2148  // after the loop is finished.
2149  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2150  it != e; ++it) {
2151  PHINode *RdxPhi = *it;
2152  assert(RdxPhi && "Unable to recover vectorized PHI");
2153 
2154  // Find the reduction variable descriptor.
2155  assert(Legal->getReductionVars()->count(RdxPhi) &&
2156  "Unable to find the reduction variable");
2157  LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2158  (*Legal->getReductionVars())[RdxPhi];
2159 
2160  setDebugLocFromInst(Builder, RdxDesc.StartValue);
2161 
2162  // We need to generate a reduction vector from the incoming scalar.
2163  // To do so, we need to generate the 'identity' vector and overide
2164  // one of the elements with the incoming scalar reduction. We need
2165  // to do it in the vector-loop preheader.
2166  Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2167 
2168  // This is the vector-clone of the value that leaves the loop.
2169  VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2170  Type *VecTy = VectorExit[0]->getType();
2171 
2172  // Find the reduction identity variable. Zero for addition, or, xor,
2173  // one for multiplication, -1 for And.
2174  Value *Identity;
2175  Value *VectorStart;
2176  if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2177  RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2178  // MinMax reduction have the start value as their identify.
2179  if (VF == 1) {
2180  VectorStart = Identity = RdxDesc.StartValue;
2181  } else {
2182  VectorStart = Identity = Builder.CreateVectorSplat(VF,
2183  RdxDesc.StartValue,
2184  "minmax.ident");
2185  }
2186  } else {
2187  // Handle other reduction kinds:
2188  Constant *Iden =
2189  LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2190  VecTy->getScalarType());
2191  if (VF == 1) {
2192  Identity = Iden;
2193  // This vector is the Identity vector where the first element is the
2194  // incoming scalar reduction.
2195  VectorStart = RdxDesc.StartValue;
2196  } else {
2197  Identity = ConstantVector::getSplat(VF, Iden);
2198 
2199  // This vector is the Identity vector where the first element is the
2200  // incoming scalar reduction.
2201  VectorStart = Builder.CreateInsertElement(Identity,
2202  RdxDesc.StartValue, Zero);
2203  }
2204  }
2205 
2206  // Fix the vector-loop phi.
2207  // We created the induction variable so we know that the
2208  // preheader is the first entry.
2209  BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2210 
2211  // Reductions do not have to start at zero. They can start with
2212  // any loop invariant values.
2213  VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2214  BasicBlock *Latch = OrigLoop->getLoopLatch();
2215  Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2216  VectorParts &Val = getVectorValue(LoopVal);
2217  for (unsigned part = 0; part < UF; ++part) {
2218  // Make sure to add the reduction stat value only to the
2219  // first unroll part.
2220  Value *StartVal = (part == 0) ? VectorStart : Identity;
2221  cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2222  cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2223  }
2224 
2225  // Before each round, move the insertion point right between
2226  // the PHIs and the values we are going to write.
2227  // This allows us to write both PHINodes and the extractelement
2228  // instructions.
2229  Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2230 
2231  VectorParts RdxParts;
2232  setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2233  for (unsigned part = 0; part < UF; ++part) {
2234  // This PHINode contains the vectorized reduction variable, or
2235  // the initial value vector, if we bypass the vector loop.
2236  VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2237  PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2238  Value *StartVal = (part == 0) ? VectorStart : Identity;
2239  for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2240  NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2241  NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2242  RdxParts.push_back(NewPhi);
2243  }
2244 
2245  // Reduce all of the unrolled parts into a single vector.
2246  Value *ReducedPartRdx = RdxParts[0];
2247  unsigned Op = getReductionBinOp(RdxDesc.Kind);
2248  setDebugLocFromInst(Builder, ReducedPartRdx);
2249  for (unsigned part = 1; part < UF; ++part) {
2250  if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2251  ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2252  RdxParts[part], ReducedPartRdx,
2253  "bin.rdx");
2254  else
2255  ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2256  ReducedPartRdx, RdxParts[part]);
2257  }
2258 
2259  if (VF > 1) {
2260  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2261  // and vector ops, reducing the set of values being computed by half each
2262  // round.
2263  assert(isPowerOf2_32(VF) &&
2264  "Reduction emission only supported for pow2 vectors!");
2265  Value *TmpVec = ReducedPartRdx;
2266  SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2267  for (unsigned i = VF; i != 1; i >>= 1) {
2268  // Move the upper half of the vector to the lower half.
2269  for (unsigned j = 0; j != i/2; ++j)
2270  ShuffleMask[j] = Builder.getInt32(i/2 + j);
2271 
2272  // Fill the rest of the mask with undef.
2273  std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2274  UndefValue::get(Builder.getInt32Ty()));
2275 
2276  Value *Shuf =
2277  Builder.CreateShuffleVector(TmpVec,
2278  UndefValue::get(TmpVec->getType()),
2279  ConstantVector::get(ShuffleMask),
2280  "rdx.shuf");
2281 
2282  if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2283  TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2284  "bin.rdx");
2285  else
2286  TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2287  }
2288 
2289  // The result is in the first element of the vector.
2290  ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2291  Builder.getInt32(0));
2292  }
2293 
2294  // Now, we need to fix the users of the reduction variable
2295  // inside and outside of the scalar remainder loop.
2296  // We know that the loop is in LCSSA form. We need to update the
2297  // PHI nodes in the exit blocks.
2298  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2299  LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2300  PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2301  if (!LCSSAPhi) break;
2302 
2303  // All PHINodes need to have a single entry edge, or two if
2304  // we already fixed them.
2305  assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2306 
2307  // We found our reduction value exit-PHI. Update it with the
2308  // incoming bypass edge.
2309  if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2310  // Add an edge coming from the bypass.
2311  LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2312  break;
2313  }
2314  }// end of the LCSSA phi scan.
2315 
2316  // Fix the scalar loop reduction variable with the incoming reduction sum
2317  // from the vector body and from the backedge value.
2318  int IncomingEdgeBlockIdx =
2319  (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2320  assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2321  // Pick the other block.
2322  int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2323  (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2324  (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2325  }// end of for each redux variable.
2326 
2327  fixLCSSAPHIs();
2328 
2329  // Remove redundant induction instructions.
2330  cse(LoopVectorBody);
2331 }
2332 
2333 void InnerLoopVectorizer::fixLCSSAPHIs() {
2334  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2335  LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2336  PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2337  if (!LCSSAPhi) break;
2338  if (LCSSAPhi->getNumIncomingValues() == 1)
2339  LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2340  LoopMiddleBlock);
2341  }
2342 }
2343 
2345 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2346  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2347  "Invalid edge");
2348 
2349  // Look for cached value.
2350  std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2351  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2352  if (ECEntryIt != MaskCache.end())
2353  return ECEntryIt->second;
2354 
2355  VectorParts SrcMask = createBlockInMask(Src);
2356 
2357  // The terminator has to be a branch inst!
2359  assert(BI && "Unexpected terminator found");
2360 
2361  if (BI->isConditional()) {
2362  VectorParts EdgeMask = getVectorValue(BI->getCondition());
2363 
2364  if (BI->getSuccessor(0) != Dst)
2365  for (unsigned part = 0; part < UF; ++part)
2366  EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2367 
2368  for (unsigned part = 0; part < UF; ++part)
2369  EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2370 
2371  MaskCache[Edge] = EdgeMask;
2372  return EdgeMask;
2373  }
2374 
2375  MaskCache[Edge] = SrcMask;
2376  return SrcMask;
2377 }
2378 
2380 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2381  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2382 
2383  // Loop incoming mask is all-one.
2384  if (OrigLoop->getHeader() == BB) {
2386  return getVectorValue(C);
2387  }
2388 
2389  // This is the block mask. We OR all incoming edges, and with zero.
2391  VectorParts BlockMask = getVectorValue(Zero);
2392 
2393  // For each pred:
2394  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2395  VectorParts EM = createEdgeMask(*it, BB);
2396  for (unsigned part = 0; part < UF; ++part)
2397  BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2398  }
2399 
2400  return BlockMask;
2401 }
2402 
2403 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2405  LoopVectorizationLegality *Legal,
2406  unsigned UF, unsigned VF, PhiVector *PV) {
2407  PHINode* P = cast<PHINode>(PN);
2408  // Handle reduction variables:
2409  if (Legal->getReductionVars()->count(P)) {
2410  for (unsigned part = 0; part < UF; ++part) {
2411  // This is phase one of vectorizing PHIs.
2412  Type *VecTy = (VF == 1) ? PN->getType() :
2413  VectorType::get(PN->getType(), VF);
2414  Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2415  LoopVectorBody-> getFirstInsertionPt());
2416  }
2417  PV->push_back(P);
2418  return;
2419  }
2420 
2421  setDebugLocFromInst(Builder, P);
2422  // Check for PHI nodes that are lowered to vector selects.
2423  if (P->getParent() != OrigLoop->getHeader()) {
2424  // We know that all PHIs in non header blocks are converted into
2425  // selects, so we don't have to worry about the insertion order and we
2426  // can just use the builder.
2427  // At this point we generate the predication tree. There may be
2428  // duplications since this is a simple recursive scan, but future
2429  // optimizations will clean it up.
2430 
2431  unsigned NumIncoming = P->getNumIncomingValues();
2432 
2433  // Generate a sequence of selects of the form:
2434  // SELECT(Mask3, In3,
2435  // SELECT(Mask2, In2,
2436  // ( ...)))
2437  for (unsigned In = 0; In < NumIncoming; In++) {
2438  VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2439  P->getParent());
2440  VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2441 
2442  for (unsigned part = 0; part < UF; ++part) {
2443  // We might have single edge PHIs (blocks) - use an identity
2444  // 'select' for the first PHI operand.
2445  if (In == 0)
2446  Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2447  In0[part]);
2448  else
2449  // Select between the current value and the previous incoming edge
2450  // based on the incoming mask.
2451  Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2452  Entry[part], "predphi");
2453  }
2454  }
2455  return;
2456  }
2457 
2458  // This PHINode must be an induction variable.
2459  // Make sure that we know about it.
2460  assert(Legal->getInductionVars()->count(P) &&
2461  "Not an induction variable");
2462 
2463  LoopVectorizationLegality::InductionInfo II =
2464  Legal->getInductionVars()->lookup(P);
2465 
2466  switch (II.IK) {
2467  case LoopVectorizationLegality::IK_NoInduction:
2468  llvm_unreachable("Unknown induction");
2469  case LoopVectorizationLegality::IK_IntInduction: {
2470  assert(P->getType() == II.StartValue->getType() && "Types must match");
2471  Type *PhiTy = P->getType();
2472  Value *Broadcasted;
2473  if (P == OldInduction) {
2474  // Handle the canonical induction variable. We might have had to
2475  // extend the type.
2476  Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2477  } else {
2478  // Handle other induction variables that are now based on the
2479  // canonical one.
2480  Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2481  "normalized.idx");
2482  NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2483  Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2484  "offset.idx");
2485  }
2486  Broadcasted = getBroadcastInstrs(Broadcasted);
2487  // After broadcasting the induction variable we need to make the vector
2488  // consecutive by adding 0, 1, 2, etc.
2489  for (unsigned part = 0; part < UF; ++part)
2490  Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2491  return;
2492  }
2493  case LoopVectorizationLegality::IK_ReverseIntInduction:
2494  case LoopVectorizationLegality::IK_PtrInduction:
2495  case LoopVectorizationLegality::IK_ReversePtrInduction:
2496  // Handle reverse integer and pointer inductions.
2497  Value *StartIdx = ExtendedIdx;
2498  // This is the normalized GEP that starts counting at zero.
2499  Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2500  "normalized.idx");
2501 
2502  // Handle the reverse integer induction variable case.
2503  if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2504  IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2505  Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2506  "resize.norm.idx");
2507  Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
2508  "reverse.idx");
2509 
2510  // This is a new value so do not hoist it out.
2511  Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2512  // After broadcasting the induction variable we need to make the
2513  // vector consecutive by adding ... -3, -2, -1, 0.
2514  for (unsigned part = 0; part < UF; ++part)
2515  Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2516  true);
2517  return;
2518  }
2519 
2520  // Handle the pointer induction variable case.
2521  assert(P->getType()->isPointerTy() && "Unexpected type.");
2522 
2523  // Is this a reverse induction ptr or a consecutive induction ptr.
2524  bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2525  II.IK);
2526 
2527  // This is the vector of results. Notice that we don't generate
2528  // vector geps because scalar geps result in better code.
2529  for (unsigned part = 0; part < UF; ++part) {
2530  if (VF == 1) {
2531  int EltIndex = (part) * (Reverse ? -1 : 1);
2532  Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2533  Value *GlobalIdx;
2534  if (Reverse)
2535  GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2536  else
2537  GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2538 
2539  Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2540  "next.gep");
2541  Entry[part] = SclrGep;
2542  continue;
2543  }
2544 
2545  Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2546  for (unsigned int i = 0; i < VF; ++i) {
2547  int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2548  Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2549  Value *GlobalIdx;
2550  if (!Reverse)
2551  GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2552  else
2553  GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2554 
2555  Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2556  "next.gep");
2557  VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2558  Builder.getInt32(i),
2559  "insert.gep");
2560  }
2561  Entry[part] = VecVal;
2562  }
2563  return;
2564  }
2565 }
2566 
2567 void
2568 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2569  BasicBlock *BB, PhiVector *PV) {
2570  // For each instruction in the old loop.
2571  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2572  VectorParts &Entry = WidenMap.get(it);
2573  switch (it->getOpcode()) {
2574  case Instruction::Br:
2575  // Nothing to do for PHIs and BR, since we already took care of the
2576  // loop control flow instructions.
2577  continue;
2578  case Instruction::PHI:{
2579  // Vectorize PHINodes.
2580  widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2581  continue;
2582  }// End of PHI.
2583 
2584  case Instruction::Add:
2585  case Instruction::FAdd:
2586  case Instruction::Sub:
2587  case Instruction::FSub:
2588  case Instruction::Mul:
2589  case Instruction::FMul:
2590  case Instruction::UDiv:
2591  case Instruction::SDiv:
2592  case Instruction::FDiv:
2593  case Instruction::URem:
2594  case Instruction::SRem:
2595  case Instruction::FRem:
2596  case Instruction::Shl:
2597  case Instruction::LShr:
2598  case Instruction::AShr:
2599  case Instruction::And:
2600  case Instruction::Or:
2601  case Instruction::Xor: {
2602  // Just widen binops.
2603  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2604  setDebugLocFromInst(Builder, BinOp);
2605  VectorParts &A = getVectorValue(it->getOperand(0));
2606  VectorParts &B = getVectorValue(it->getOperand(1));
2607 
2608  // Use this vector value for all users of the original instruction.
2609  for (unsigned Part = 0; Part < UF; ++Part) {
2610  Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2611 
2612  // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2613  BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2614  if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2615  VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2616  VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2617  }
2618  if (VecOp && isa<PossiblyExactOperator>(VecOp))
2619  VecOp->setIsExact(BinOp->isExact());
2620 
2621  Entry[Part] = V;
2622  }
2623  break;
2624  }
2625  case Instruction::Select: {
2626  // Widen selects.
2627  // If the selector is loop invariant we can create a select
2628  // instruction with a scalar condition. Otherwise, use vector-select.
2629  bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2630  OrigLoop);
2631  setDebugLocFromInst(Builder, it);
2632 
2633  // The condition can be loop invariant but still defined inside the
2634  // loop. This means that we can't just use the original 'cond' value.
2635  // We have to take the 'vectorized' value and pick the first lane.
2636  // Instcombine will make this a no-op.
2637  VectorParts &Cond = getVectorValue(it->getOperand(0));
2638  VectorParts &Op0 = getVectorValue(it->getOperand(1));
2639  VectorParts &Op1 = getVectorValue(it->getOperand(2));
2640 
2641  Value *ScalarCond = (VF == 1) ? Cond[0] :
2642  Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2643 
2644  for (unsigned Part = 0; Part < UF; ++Part) {
2645  Entry[Part] = Builder.CreateSelect(
2646  InvariantCond ? ScalarCond : Cond[Part],
2647  Op0[Part],
2648  Op1[Part]);
2649  }
2650  break;
2651  }
2652 
2653  case Instruction::ICmp:
2654  case Instruction::FCmp: {
2655  // Widen compares. Generate vector compares.
2656  bool FCmp = (it->getOpcode() == Instruction::FCmp);
2657  CmpInst *Cmp = dyn_cast<CmpInst>(it);
2658  setDebugLocFromInst(Builder, it);
2659  VectorParts &A = getVectorValue(it->getOperand(0));
2660  VectorParts &B = getVectorValue(it->getOperand(1));
2661  for (unsigned Part = 0; Part < UF; ++Part) {
2662  Value *C = 0;
2663  if (FCmp)
2664  C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2665  else
2666  C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2667  Entry[Part] = C;
2668  }
2669  break;
2670  }
2671 
2672  case Instruction::Store:
2673  case Instruction::Load:
2674  vectorizeMemoryInstruction(it, Legal);
2675  break;
2676  case Instruction::ZExt:
2677  case Instruction::SExt:
2678  case Instruction::FPToUI:
2679  case Instruction::FPToSI:
2680  case Instruction::FPExt:
2681  case Instruction::PtrToInt:
2682  case Instruction::IntToPtr:
2683  case Instruction::SIToFP:
2684  case Instruction::UIToFP:
2685  case Instruction::Trunc:
2686  case Instruction::FPTrunc:
2687  case Instruction::BitCast: {
2688  CastInst *CI = dyn_cast<CastInst>(it);
2689  setDebugLocFromInst(Builder, it);
2690  /// Optimize the special case where the source is the induction
2691  /// variable. Notice that we can only optimize the 'trunc' case
2692  /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2693  /// c. other casts depend on pointer size.
2694  if (CI->getOperand(0) == OldInduction &&
2695  it->getOpcode() == Instruction::Trunc) {
2696  Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2697  CI->getType());
2698  Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2699  for (unsigned Part = 0; Part < UF; ++Part)
2700  Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2701  break;
2702  }
2703  /// Vectorize casts.
2704  Type *DestTy = (VF == 1) ? CI->getType() :
2705  VectorType::get(CI->getType(), VF);
2706 
2707  VectorParts &A = getVectorValue(it->getOperand(0));
2708  for (unsigned Part = 0; Part < UF; ++Part)
2709  Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2710  break;
2711  }
2712 
2713  case Instruction::Call: {
2714  // Ignore dbg intrinsics.
2715  if (isa<DbgInfoIntrinsic>(it))
2716  break;
2717  setDebugLocFromInst(Builder, it);
2718 
2719  Module *M = BB->getParent()->getParent();
2720  CallInst *CI = cast<CallInst>(it);
2722  assert(ID && "Not an intrinsic call!");
2723  switch (ID) {
2726  scalarizeInstruction(it);
2727  break;
2728  default:
2729  for (unsigned Part = 0; Part < UF; ++Part) {
2731  for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2732  VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2733  Args.push_back(Arg[Part]);
2734  }
2735  Type *Tys[] = {CI->getType()};
2736  if (VF > 1)
2737  Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2738 
2739  Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2740  Entry[Part] = Builder.CreateCall(F, Args);
2741  }
2742  break;
2743  }
2744  break;
2745  }
2746 
2747  default:
2748  // All other instructions are unsupported. Scalarize them.
2749  scalarizeInstruction(it);
2750  break;
2751  }// end of switch.
2752  }// end of for_each instr.
2753 }
2754 
2755 void InnerLoopVectorizer::updateAnalysis() {
2756  // Forget the original basic block.
2757  SE->forgetLoop(OrigLoop);
2758 
2759  // Update the dominator tree information.
2760  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2761  "Entry does not dominate exit.");
2762 
2763  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2764  DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2765  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2766  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2767  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2768  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2769  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2770  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2771 
2772  DEBUG(DT->verifyAnalysis());
2773 }
2774 
2775 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2776  if (!EnableIfConversion)
2777  return false;
2778 
2779  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2780 
2781  // A list of pointers that we can safely read and write to.
2782  SmallPtrSet<Value *, 8> SafePointes;
2783 
2784  // Collect safe addresses.
2785  for (Loop::block_iterator BI = TheLoop->block_begin(),
2786  BE = TheLoop->block_end(); BI != BE; ++BI) {
2787  BasicBlock *BB = *BI;
2788 
2789  if (blockNeedsPredication(BB))
2790  continue;
2791 
2792  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2793  if (LoadInst *LI = dyn_cast<LoadInst>(I))
2794  SafePointes.insert(LI->getPointerOperand());
2795  else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2796  SafePointes.insert(SI->getPointerOperand());
2797  }
2798  }
2799 
2800  // Collect the blocks that need predication.
2801  for (Loop::block_iterator BI = TheLoop->block_begin(),
2802  BE = TheLoop->block_end(); BI != BE; ++BI) {
2803  BasicBlock *BB = *BI;
2804 
2805  // We don't support switch statements inside loops.
2806  if (!isa<BranchInst>(BB->getTerminator()))
2807  return false;
2808 
2809  // We must be able to predicate all blocks that need to be predicated.
2810  if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2811  return false;
2812  }
2813 
2814  // We can if-convert this loop.
2815  return true;
2816 }
2817 
2818 bool LoopVectorizationLegality::canVectorize() {
2819  // We must have a loop in canonical form. Loops with indirectbr in them cannot
2820  // be canonicalized.
2821  if (!TheLoop->getLoopPreheader())
2822  return false;
2823 
2824  // We can only vectorize innermost loops.
2825  if (TheLoop->getSubLoopsVector().size())
2826  return false;
2827 
2828  // We must have a single backedge.
2829  if (TheLoop->getNumBackEdges() != 1)
2830  return false;
2831 
2832  // We must have a single exiting block.
2833  if (!TheLoop->getExitingBlock())
2834  return false;
2835 
2836  // We need to have a loop header.
2837  DEBUG(dbgs() << "LV: Found a loop: " <<
2838  TheLoop->getHeader()->getName() << '\n');
2839 
2840  // Check if we can if-convert non single-bb loops.
2841  unsigned NumBlocks = TheLoop->getNumBlocks();
2842  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2843  DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2844  return false;
2845  }
2846 
2847  // ScalarEvolution needs to be able to find the exit count.
2848  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2849  if (ExitCount == SE->getCouldNotCompute()) {
2850  DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2851  return false;
2852  }
2853 
2854  // Do not loop-vectorize loops with a tiny trip count.
2855  BasicBlock *Latch = TheLoop->getLoopLatch();
2856  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2857  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2858  DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2859  "This loop is not worth vectorizing.\n");
2860  return false;
2861  }
2862 
2863  // Check if we can vectorize the instructions and CFG in this loop.
2864  if (!canVectorizeInstrs()) {
2865  DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2866  return false;
2867  }
2868 
2869  // Go over each instruction and look at memory deps.
2870  if (!canVectorizeMemory()) {
2871  DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2872  return false;
2873  }
2874 
2875  // Collect all of the variables that remain uniform after vectorization.
2876  collectLoopUniforms();
2877 
2878  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2879  (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2880  <<"!\n");
2881 
2882  // Okay! We can vectorize. At this point we don't have any other mem analysis
2883  // which may limit our maximum vectorization factor, so just return true with
2884  // no restrictions.
2885  return true;
2886 }
2887 
2889  if (Ty->isPointerTy())
2890  return DL.getIntPtrType(Ty);
2891 
2892  // It is possible that char's or short's overflow when we ask for the loop's
2893  // trip count, work around this by changing the type size.
2894  if (Ty->getScalarSizeInBits() < 32)
2895  return Type::getInt32Ty(Ty->getContext());
2896 
2897  return Ty;
2898 }
2899 
2900 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2901  Ty0 = convertPointerToIntegerType(DL, Ty0);
2902  Ty1 = convertPointerToIntegerType(DL, Ty1);
2903  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2904  return Ty0;
2905  return Ty1;
2906 }
2907 
2908 /// \brief Check that the instruction has outside loop users and is not an
2909 /// identified reduction variable.
2910 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2911  SmallPtrSet<Value *, 4> &Reductions) {
2912  // Reduction instructions are allowed to have exit users. All other
2913  // instructions must not have external users.
2914  if (!Reductions.count(Inst))
2915  //Check that all of the users of the loop are inside the BB.
2916  for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2917  I != E; ++I) {
2918  Instruction *U = cast<Instruction>(*I);
2919  // This user may be a reduction exit value.
2920  if (!TheLoop->contains(U)) {
2921  DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2922  return true;
2923  }
2924  }
2925  return false;
2926 }
2927 
2928 bool LoopVectorizationLegality::canVectorizeInstrs() {
2929  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2930  BasicBlock *Header = TheLoop->getHeader();
2931 
2932  // Look for the attribute signaling the absence of NaNs.
2933  Function &F = *Header->getParent();
2934  if (F.hasFnAttribute("no-nans-fp-math"))
2935  HasFunNoNaNAttr = F.getAttributes().getAttribute(
2936  AttributeSet::FunctionIndex,
2937  "no-nans-fp-math").getValueAsString() == "true";
2938 
2939  // For each block in the loop.
2940  for (Loop::block_iterator bb = TheLoop->block_begin(),
2941  be = TheLoop->block_end(); bb != be; ++bb) {
2942 
2943  // Scan the instructions in the block and look for hazards.
2944  for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2945  ++it) {
2946 
2947  if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2948  Type *PhiTy = Phi->getType();
2949  // Check that this PHI type is allowed.
2950  if (!PhiTy->isIntegerTy() &&
2951  !PhiTy->isFloatingPointTy() &&
2952  !PhiTy->isPointerTy()) {
2953  DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2954  return false;
2955  }
2956 
2957  // If this PHINode is not in the header block, then we know that we
2958  // can convert it to select during if-conversion. No need to check if
2959  // the PHIs in this block are induction or reduction variables.
2960  if (*bb != Header) {
2961  // Check that this instruction has no outside users or is an
2962  // identified reduction value with an outside user.
2963  if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2964  continue;
2965  return false;
2966  }
2967 
2968  // We only allow if-converted PHIs with more than two incoming values.
2969  if (Phi->getNumIncomingValues() != 2) {
2970  DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2971  return false;
2972  }
2973 
2974  // This is the value coming from the preheader.
2975  Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2976  // Check if this is an induction variable.
2977  InductionKind IK = isInductionVariable(Phi);
2978 
2979  if (IK_NoInduction != IK) {
2980  // Get the widest type.
2981  if (!WidestIndTy)
2982  WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2983  else
2984  WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2985 
2986  // Int inductions are special because we only allow one IV.
2987  if (IK == IK_IntInduction) {
2988  // Use the phi node with the widest type as induction. Use the last
2989  // one if there are multiple (no good reason for doing this other
2990  // than it is expedient).
2991  if (!Induction || PhiTy == WidestIndTy)
2992  Induction = Phi;
2993  }
2994 
2995  DEBUG(dbgs() << "LV: Found an induction variable.\n");
2996  Inductions[Phi] = InductionInfo(StartValue, IK);
2997 
2998  // Until we explicitly handle the case of an induction variable with
2999  // an outside loop user we have to give up vectorizing this loop.
3000  if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3001  return false;
3002 
3003  continue;
3004  }
3005 
3006  if (AddReductionVar(Phi, RK_IntegerAdd)) {
3007  DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3008  continue;
3009  }
3010  if (AddReductionVar(Phi, RK_IntegerMult)) {
3011  DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3012  continue;
3013  }
3014  if (AddReductionVar(Phi, RK_IntegerOr)) {
3015  DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3016  continue;
3017  }
3018  if (AddReductionVar(Phi, RK_IntegerAnd)) {
3019  DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3020  continue;
3021  }
3022  if (AddReductionVar(Phi, RK_IntegerXor)) {
3023  DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3024  continue;
3025  }
3026  if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3027  DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3028  continue;
3029  }
3030  if (AddReductionVar(Phi, RK_FloatMult)) {
3031  DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3032  continue;
3033  }
3034  if (AddReductionVar(Phi, RK_FloatAdd)) {
3035  DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3036  continue;
3037  }
3038  if (AddReductionVar(Phi, RK_FloatMinMax)) {
3039  DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3040  "\n");
3041  continue;
3042  }
3043 
3044  DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3045  return false;
3046  }// end of PHI handling
3047 
3048  // We still don't handle functions. However, we can ignore dbg intrinsic
3049  // calls and we do handle certain intrinsic and libm functions.
3050  CallInst *CI = dyn_cast<CallInst>(it);
3051  if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3052  DEBUG(dbgs() << "LV: Found a call site.\n");
3053  return false;
3054  }
3055 
3056  // Check that the instruction return type is vectorizable.
3057  // Also, we can't vectorize extractelement instructions.
3058  if ((!VectorType::isValidElementType(it->getType()) &&
3059  !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3060  DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3061  return false;
3062  }
3063 
3064  // Check that the stored type is vectorizable.
3065  if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3066  Type *T = ST->getValueOperand()->getType();
3068  return false;
3069  }
3070 
3071  // Reduction instructions are allowed to have exit users.
3072  // All other instructions must not have external users.
3073  if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3074  return false;
3075 
3076  } // next instr.
3077 
3078  }
3079 
3080  if (!Induction) {
3081  DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3082  if (Inductions.empty())
3083  return false;
3084  }
3085 
3086  return true;
3087 }
3088 
3089 void LoopVectorizationLegality::collectLoopUniforms() {
3090  // We now know that the loop is vectorizable!
3091  // Collect variables that will remain uniform after vectorization.
3092  std::vector<Value*> Worklist;
3093  BasicBlock *Latch = TheLoop->getLoopLatch();
3094 
3095  // Start with the conditional branch and walk up the block.
3096  Worklist.push_back(Latch->getTerminator()->getOperand(0));
3097 
3098  while (Worklist.size()) {
3099  Instruction *I = dyn_cast<Instruction>(Worklist.back());
3100  Worklist.pop_back();
3101 
3102  // Look at instructions inside this loop.
3103  // Stop when reaching PHI nodes.
3104  // TODO: we need to follow values all over the loop, not only in this block.
3105  if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3106  continue;
3107 
3108  // This is a known uniform.
3109  Uniforms.insert(I);
3110 
3111  // Insert all operands.
3112  Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3113  }
3114 }
3115 
3116 namespace {
3117 /// \brief Analyses memory accesses in a loop.
3118 ///
3119 /// Checks whether run time pointer checks are needed and builds sets for data
3120 /// dependence checking.
3121 class AccessAnalysis {
3122 public:
3123  /// \brief Read or write access location.
3124  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3125  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3126 
3127  /// \brief Set of potential dependent memory accesses.
3128  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3129 
3130  AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3131  DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3132  AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3133 
3134  /// \brief Register a load and whether it is only read from.
3135  void addLoad(Value *Ptr, bool IsReadOnly) {
3136  Accesses.insert(MemAccessInfo(Ptr, false));
3137  if (IsReadOnly)
3138  ReadOnlyPtr.insert(Ptr);
3139  }
3140 
3141  /// \brief Register a store.
3142  void addStore(Value *Ptr) {
3143  Accesses.insert(MemAccessInfo(Ptr, true));
3144  }
3145 
3146  /// \brief Check whether we can check the pointers at runtime for
3147  /// non-intersection.
3148  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3149  unsigned &NumComparisons, ScalarEvolution *SE,
3150  Loop *TheLoop, bool ShouldCheckStride = false);
3151 
3152  /// \brief Goes over all memory accesses, checks whether a RT check is needed
3153  /// and builds sets of dependent accesses.
3154  void buildDependenceSets() {
3155  // Process read-write pointers first.
3156  processMemAccesses(false);
3157  // Next, process read pointers.
3158  processMemAccesses(true);
3159  }
3160 
3161  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3162 
3163  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3164  void resetDepChecks() { CheckDeps.clear(); }
3165 
3166  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3167 
3168 private:
3169  typedef SetVector<MemAccessInfo> PtrAccessSet;
3170  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3171 
3172  /// \brief Go over all memory access or only the deferred ones if
3173  /// \p UseDeferred is true and check whether runtime pointer checks are needed
3174  /// and build sets of dependency check candidates.
3175  void processMemAccesses(bool UseDeferred);
3176 
3177  /// Set of all accesses.
3178  PtrAccessSet Accesses;
3179 
3180  /// Set of access to check after all writes have been processed.
3181  PtrAccessSet DeferredAccesses;
3182 
3183  /// Map of pointers to last access encountered.
3184  UnderlyingObjToAccessMap ObjToLastAccess;
3185 
3186  /// Set of accesses that need a further dependence check.
3187  MemAccessInfoSet CheckDeps;
3188 
3189  /// Set of pointers that are read only.
3190  SmallPtrSet<Value*, 16> ReadOnlyPtr;
3191 
3192  /// Set of underlying objects already written to.
3193  SmallPtrSet<Value*, 16> WriteObjects;
3194 
3195  DataLayout *DL;
3196 
3197  /// Sets of potentially dependent accesses - members of one set share an
3198  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3199  /// dependence check.
3200  DepCandidates &DepCands;
3201 
3202  bool AreAllWritesIdentified;
3203  bool AreAllReadsIdentified;
3204  bool IsRTCheckNeeded;
3205 };
3206 
3207 } // end anonymous namespace
3208 
3209 /// \brief Check whether a pointer can participate in a runtime bounds check.
3211  const SCEV *PtrScev = SE->getSCEV(Ptr);
3212  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3213  if (!AR)
3214  return false;
3215 
3216  return AR->isAffine();
3217 }
3218 
3219 /// \brief Check the stride of the pointer and ensure that it does not wrap in
3220 /// the address space.
3221 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3222  const Loop *Lp);
3223 
3224 bool AccessAnalysis::canCheckPtrAtRT(
3225  LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3226  unsigned &NumComparisons, ScalarEvolution *SE,
3227  Loop *TheLoop, bool ShouldCheckStride) {
3228  // Find pointers with computable bounds. We are going to use this information
3229  // to place a runtime bound check.
3230  unsigned NumReadPtrChecks = 0;
3231  unsigned NumWritePtrChecks = 0;
3232  bool CanDoRT = true;
3233 
3234  bool IsDepCheckNeeded = isDependencyCheckNeeded();
3235  // We assign consecutive id to access from different dependence sets.
3236  // Accesses within the same set don't need a runtime check.
3237  unsigned RunningDepId = 1;
3238  DenseMap<Value *, unsigned> DepSetId;
3239 
3240  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3241  AI != AE; ++AI) {
3242  const MemAccessInfo &Access = *AI;
3243  Value *Ptr = Access.getPointer();
3244  bool IsWrite = Access.getInt();
3245 
3246  // Just add write checks if we have both.
3247  if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3248  continue;
3249 
3250  if (IsWrite)
3251  ++NumWritePtrChecks;
3252  else
3253  ++NumReadPtrChecks;
3254 
3255  if (hasComputableBounds(SE, Ptr) &&
3256  // When we run after a failing dependency check we have to make sure we
3257  // don't have wrapping pointers.
3258  (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
3259  // The id of the dependence set.
3260  unsigned DepId;
3261 
3262  if (IsDepCheckNeeded) {
3263  Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3264  unsigned &LeaderId = DepSetId[Leader];
3265  if (!LeaderId)
3266  LeaderId = RunningDepId++;
3267  DepId = LeaderId;
3268  } else
3269  // Each access has its own dependence set.
3270  DepId = RunningDepId++;
3271 
3272  RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3273 
3274  DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3275  } else {
3276  CanDoRT = false;
3277  }
3278  }
3279 
3280  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3281  NumComparisons = 0; // Only one dependence set.
3282  else {
3283  NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3284  NumWritePtrChecks - 1));
3285  }
3286 
3287  // If the pointers that we would use for the bounds comparison have different
3288  // address spaces, assume the values aren't directly comparable, so we can't
3289  // use them for the runtime check. We also have to assume they could
3290  // overlap. In the future there should be metadata for whether address spaces
3291  // are disjoint.
3292  unsigned NumPointers = RtCheck.Pointers.size();
3293  for (unsigned i = 0; i < NumPointers; ++i) {
3294  for (unsigned j = i + 1; j < NumPointers; ++j) {
3295  // Only need to check pointers between two different dependency sets.
3296  if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3297  continue;
3298 
3299  Value *PtrI = RtCheck.Pointers[i];
3300  Value *PtrJ = RtCheck.Pointers[j];
3301 
3302  unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3303  unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3304  if (ASi != ASj) {
3305  DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3306  " different address spaces\n");
3307  return false;
3308  }
3309  }
3310  }
3311 
3312  return CanDoRT;
3313 }
3314 
3316  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3317 }
3318 
3319 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3320  // We process the set twice: first we process read-write pointers, last we
3321  // process read-only pointers. This allows us to skip dependence tests for
3322  // read-only pointers.
3323 
3324  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3325  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3326  const MemAccessInfo &Access = *AI;
3327  Value *Ptr = Access.getPointer();
3328  bool IsWrite = Access.getInt();
3329 
3330  DepCands.insert(Access);
3331 
3332  // Memorize read-only pointers for later processing and skip them in the
3333  // first round (they need to be checked after we have seen all write
3334  // pointers). Note: we also mark pointer that are not consecutive as
3335  // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3336  // second check for "!IsWrite".
3337  bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3338  if (!UseDeferred && IsReadOnlyPtr) {
3339  DeferredAccesses.insert(Access);
3340  continue;
3341  }
3342 
3343  bool NeedDepCheck = false;
3344  // Check whether there is the possiblity of dependency because of underlying
3345  // objects being the same.
3346  typedef SmallVector<Value*, 16> ValueVector;
3347  ValueVector TempObjects;
3348  GetUnderlyingObjects(Ptr, TempObjects, DL);
3349  for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3350  UI != UE; ++UI) {
3351  Value *UnderlyingObj = *UI;
3352 
3353  // If this is a write then it needs to be an identified object. If this a
3354  // read and all writes (so far) are identified function scope objects we
3355  // don't need an identified underlying object but only an Argument (the
3356  // next write is going to invalidate this assumption if it is
3357  // unidentified).
3358  // This is a micro-optimization for the case where all writes are
3359  // identified and we have one argument pointer.
3360  // Otherwise, we do need a runtime check.
3361  if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3362  (!IsWrite && (!AreAllWritesIdentified ||
3363  !isa<Argument>(UnderlyingObj)) &&
3364  !isIdentifiedObject(UnderlyingObj))) {
3365  DEBUG(dbgs() << "LV: Found an unidentified " <<
3366  (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3367  "\n");
3368  IsRTCheckNeeded = (IsRTCheckNeeded ||
3369  !isIdentifiedObject(UnderlyingObj) ||
3370  !AreAllReadsIdentified);
3371 
3372  if (IsWrite)
3373  AreAllWritesIdentified = false;
3374  if (!IsWrite)
3375  AreAllReadsIdentified = false;
3376  }
3377 
3378  // If this is a write - check other reads and writes for conflicts. If
3379  // this is a read only check other writes for conflicts (but only if there
3380  // is no other write to the ptr - this is an optimization to catch "a[i] =
3381  // a[i] + " without having to do a dependence check).
3382  if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3383  NeedDepCheck = true;
3384 
3385  if (IsWrite)
3386  WriteObjects.insert(UnderlyingObj);
3387 
3388  // Create sets of pointers connected by shared underlying objects.
3389  UnderlyingObjToAccessMap::iterator Prev =
3390  ObjToLastAccess.find(UnderlyingObj);
3391  if (Prev != ObjToLastAccess.end())
3392  DepCands.unionSets(Access, Prev->second);
3393 
3394  ObjToLastAccess[UnderlyingObj] = Access;
3395  }
3396 
3397  if (NeedDepCheck)
3398  CheckDeps.insert(Access);
3399  }
3400 }
3401 
3402 namespace {
3403 /// \brief Checks memory dependences among accesses to the same underlying
3404 /// object to determine whether there vectorization is legal or not (and at
3405 /// which vectorization factor).
3406 ///
3407 /// This class works under the assumption that we already checked that memory
3408 /// locations with different underlying pointers are "must-not alias".
3409 /// We use the ScalarEvolution framework to symbolically evalutate access
3410 /// functions pairs. Since we currently don't restructure the loop we can rely
3411 /// on the program order of memory accesses to determine their safety.
3412 /// At the moment we will only deem accesses as safe for:
3413 /// * A negative constant distance assuming program order.
3414 ///
3415 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
3416 /// a[i] = tmp; y = a[i];
3417 ///
3418 /// The latter case is safe because later checks guarantuee that there can't
3419 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
3420 /// the same variable: a header phi can only be an induction or a reduction, a
3421 /// reduction can't have a memory sink, an induction can't have a memory
3422 /// source). This is important and must not be violated (or we have to
3423 /// resort to checking for cycles through memory).
3424 ///
3425 /// * A positive constant distance assuming program order that is bigger
3426 /// than the biggest memory access.
3427 ///
3428 /// tmp = a[i] OR b[i] = x
3429 /// a[i+2] = tmp y = b[i+2];
3430 ///
3431 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3432 ///
3433 /// * Zero distances and all accesses have the same size.
3434 ///
3435 class MemoryDepChecker {
3436 public:
3437  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3438  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3439 
3440  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
3441  : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
3442  ShouldRetryWithRuntimeCheck(false) {}
3443 
3444  /// \brief Register the location (instructions are given increasing numbers)
3445  /// of a write access.
3446  void addAccess(StoreInst *SI) {
3447  Value *Ptr = SI->getPointerOperand();
3448  Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3449  InstMap.push_back(SI);
3450  ++AccessIdx;
3451  }
3452 
3453  /// \brief Register the location (instructions are given increasing numbers)
3454  /// of a write access.
3455  void addAccess(LoadInst *LI) {
3456  Value *Ptr = LI->getPointerOperand();
3457  Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3458  InstMap.push_back(LI);
3459  ++AccessIdx;
3460  }
3461 
3462  /// \brief Check whether the dependencies between the accesses are safe.
3463  ///
3464  /// Only checks sets with elements in \p CheckDeps.
3465  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3466  MemAccessInfoSet &CheckDeps);
3467 
3468  /// \brief The maximum number of bytes of a vector register we can vectorize
3469  /// the accesses safely with.
3470  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3471 
3472  /// \brief In same cases when the dependency check fails we can still
3473  /// vectorize the loop with a dynamic array access check.
3474  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
3475 
3476 private:
3477  ScalarEvolution *SE;
3478  DataLayout *DL;
3479  const Loop *InnermostLoop;
3480 
3481  /// \brief Maps access locations (ptr, read/write) to program order.
3483 
3484  /// \brief Memory access instructions in program order.
3486 
3487  /// \brief The program order index to be used for the next instruction.
3488  unsigned AccessIdx;
3489 
3490  // We can access this many bytes in parallel safely.
3491  unsigned MaxSafeDepDistBytes;
3492 
3493  /// \brief If we see a non constant dependence distance we can still try to
3494  /// vectorize this loop with runtime checks.
3495  bool ShouldRetryWithRuntimeCheck;
3496 
3497  /// \brief Check whether there is a plausible dependence between the two
3498  /// accesses.
3499  ///
3500  /// Access \p A must happen before \p B in program order. The two indices
3501  /// identify the index into the program order map.
3502  ///
3503  /// This function checks whether there is a plausible dependence (or the
3504  /// absence of such can't be proved) between the two accesses. If there is a
3505  /// plausible dependence but the dependence distance is bigger than one
3506  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3507  /// distance is smaller than any other distance encountered so far).
3508  /// Otherwise, this function returns true signaling a possible dependence.
3509  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3510  const MemAccessInfo &B, unsigned BIdx);
3511 
3512  /// \brief Check whether the data dependence could prevent store-load
3513  /// forwarding.
3514  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3515 };
3516 
3517 } // end anonymous namespace
3518 
3519 static bool isInBoundsGep(Value *Ptr) {
3520  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3521  return GEP->isInBounds();
3522  return false;
3523 }
3524 
3525 /// \brief Check whether the access through \p Ptr has a constant stride.
3526 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3527  const Loop *Lp) {
3528  const Type *Ty = Ptr->getType();
3529  assert(Ty->isPointerTy() && "Unexpected non ptr");
3530 
3531  // Make sure that the pointer does not point to aggregate types.
3532  const PointerType *PtrTy = cast<PointerType>(Ty);
3533  if (PtrTy->getElementType()->isAggregateType()) {
3534  DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3535  "\n");
3536  return 0;
3537  }
3538 
3539  const SCEV *PtrScev = SE->getSCEV(Ptr);
3540  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3541  if (!AR) {
3542  DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3543  << *Ptr << " SCEV: " << *PtrScev << "\n");
3544  return 0;
3545  }
3546 
3547  // The accesss function must stride over the innermost loop.
3548  if (Lp != AR->getLoop()) {
3549  DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3550  *Ptr << " SCEV: " << *PtrScev << "\n");
3551  }
3552 
3553  // The address calculation must not wrap. Otherwise, a dependence could be
3554  // inverted.
3555  // An inbounds getelementptr that is a AddRec with a unit stride
3556  // cannot wrap per definition. The unit stride requirement is checked later.
3557  // An getelementptr without an inbounds attribute and unit stride would have
3558  // to access the pointer value "0" which is undefined behavior in address
3559  // space 0, therefore we can also vectorize this case.
3560  bool IsInBoundsGEP = isInBoundsGep(Ptr);
3561  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3562  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3563  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3564  DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3565  << *Ptr << " SCEV: " << *PtrScev << "\n");
3566  return 0;
3567  }
3568 
3569  // Check the step is constant.
3570  const SCEV *Step = AR->getStepRecurrence(*SE);
3571 
3572  // Calculate the pointer stride and check if it is consecutive.
3573  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3574  if (!C) {
3575  DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3576  " SCEV: " << *PtrScev << "\n");
3577  return 0;
3578  }
3579 
3580  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3581  const APInt &APStepVal = C->getValue()->getValue();
3582 
3583  // Huge step value - give up.
3584  if (APStepVal.getBitWidth() > 64)
3585  return 0;
3586 
3587  int64_t StepVal = APStepVal.getSExtValue();
3588 
3589  // Strided access.
3590  int64_t Stride = StepVal / Size;
3591  int64_t Rem = StepVal % Size;
3592  if (Rem)
3593  return 0;
3594 
3595  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3596  // know we can't "wrap around the address space". In case of address space
3597  // zero we know that this won't happen without triggering undefined behavior.
3598  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3599  Stride != 1 && Stride != -1)
3600  return 0;
3601 
3602  return Stride;
3603 }
3604 
3605 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3606  unsigned TypeByteSize) {
3607  // If loads occur at a distance that is not a multiple of a feasible vector
3608  // factor store-load forwarding does not take place.
3609  // Positive dependences might cause troubles because vectorizing them might
3610  // prevent store-load forwarding making vectorized code run a lot slower.
3611  // a[i] = a[i-3] ^ a[i-8];
3612  // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3613  // hence on your typical architecture store-load forwarding does not take
3614  // place. Vectorizing in such cases does not make sense.
3615  // Store-load forwarding distance.
3616  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3617  // Maximum vector factor.
3618  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3619  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3620  MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3621 
3622  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3623  vf *= 2) {
3624  if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3625  MaxVFWithoutSLForwardIssues = (vf >>=1);
3626  break;
3627  }
3628  }
3629 
3630  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3631  DEBUG(dbgs() << "LV: Distance " << Distance <<
3632  " that could cause a store-load forwarding conflict\n");
3633  return true;
3634  }
3635 
3636  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3637  MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3638  MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3639  return false;
3640 }
3641 
3642 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3643  const MemAccessInfo &B, unsigned BIdx) {
3644  assert (AIdx < BIdx && "Must pass arguments in program order");
3645 
3646  Value *APtr = A.getPointer();
3647  Value *BPtr = B.getPointer();
3648  bool AIsWrite = A.getInt();
3649  bool BIsWrite = B.getInt();
3650 
3651  // Two reads are independent.
3652  if (!AIsWrite && !BIsWrite)
3653  return false;
3654 
3655  const SCEV *AScev = SE->getSCEV(APtr);
3656  const SCEV *BScev = SE->getSCEV(BPtr);
3657 
3658  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3659  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3660 
3661  const SCEV *Src = AScev;
3662  const SCEV *Sink = BScev;
3663 
3664  // If the induction step is negative we have to invert source and sink of the
3665  // dependence.
3666  if (StrideAPtr < 0) {
3667  //Src = BScev;
3668  //Sink = AScev;
3669  std::swap(APtr, BPtr);
3670  std::swap(Src, Sink);
3671  std::swap(AIsWrite, BIsWrite);
3672  std::swap(AIdx, BIdx);
3673  std::swap(StrideAPtr, StrideBPtr);
3674  }
3675 
3676  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3677 
3678  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3679  << "(Induction step: " << StrideAPtr << ")\n");
3680  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3681  << *InstMap[BIdx] << ": " << *Dist << "\n");
3682 
3683  // Need consecutive accesses. We don't want to vectorize
3684  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3685  // the address space.
3686  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3687  DEBUG(dbgs() << "Non-consecutive pointer access\n");
3688  return true;
3689  }
3690 
3691  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3692  if (!C) {
3693  DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3694  ShouldRetryWithRuntimeCheck = true;
3695  return true;
3696  }
3697 
3698  Type *ATy = APtr->getType()->getPointerElementType();
3699  Type *BTy = BPtr->getType()->getPointerElementType();
3700  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3701 
3702  // Negative distances are not plausible dependencies.
3703  const APInt &Val = C->getValue()->getValue();
3704  if (Val.isNegative()) {
3705  bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3706  if (IsTrueDataDependence &&
3707  (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3708  ATy != BTy))
3709  return true;
3710 
3711  DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3712  return false;
3713  }
3714 
3715  // Write to the same location with the same size.
3716  // Could be improved to assert type sizes are the same (i32 == float, etc).
3717  if (Val == 0) {
3718  if (ATy == BTy)
3719  return false;
3720  DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3721  return true;
3722  }
3723 
3724  assert(Val.isStrictlyPositive() && "Expect a positive value");
3725 
3726  // Positive distance bigger than max vectorization factor.
3727  if (ATy != BTy) {
3728  DEBUG(dbgs() <<
3729  "LV: ReadWrite-Write positive dependency with different types\n");
3730  return false;
3731  }
3732 
3733  unsigned Distance = (unsigned) Val.getZExtValue();
3734 
3735  // Bail out early if passed-in parameters make vectorization not feasible.
3736  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3737  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3738 
3739  // The distance must be bigger than the size needed for a vectorized version
3740  // of the operation and the size of the vectorized operation must not be
3741  // bigger than the currrent maximum size.
3742  if (Distance < 2*TypeByteSize ||
3743  2*TypeByteSize > MaxSafeDepDistBytes ||
3744  Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3745  DEBUG(dbgs() << "LV: Failure because of Positive distance "
3746  << Val.getSExtValue() << '\n');
3747  return true;
3748  }
3749 
3750  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3751  Distance : MaxSafeDepDistBytes;
3752 
3753  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3754  if (IsTrueDataDependence &&
3755  couldPreventStoreLoadForward(Distance, TypeByteSize))
3756  return true;
3757 
3758  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3759  " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3760 
3761  return false;
3762 }
3763 
3764 bool
3765 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3766  MemAccessInfoSet &CheckDeps) {
3767 
3768  MaxSafeDepDistBytes = -1U;
3769  while (!CheckDeps.empty()) {
3770  MemAccessInfo CurAccess = *CheckDeps.begin();
3771 
3772  // Get the relevant memory access set.
3774  AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3775 
3776  // Check accesses within this set.
3778  AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3779 
3780  // Check every access pair.
3781  while (AI != AE) {
3782  CheckDeps.erase(*AI);
3784  while (OI != AE) {
3785  // Check every accessing instruction pair in program order.
3786  for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3787  I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3788  for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3789  I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3790  if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3791  return false;
3792  if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3793  return false;
3794  }
3795  ++OI;
3796  }
3797  AI++;
3798  }
3799  }
3800  return true;
3801 }
3802 
3803 bool LoopVectorizationLegality::canVectorizeMemory() {
3804 
3805  typedef SmallVector<Value*, 16> ValueVector;
3806  typedef SmallPtrSet<Value*, 16> ValueSet;
3807 
3808  // Holds the Load and Store *instructions*.
3809  ValueVector Loads;
3810  ValueVector Stores;
3811 
3812  // Holds all the different accesses in the loop.
3813  unsigned NumReads = 0;
3814  unsigned NumReadWrites = 0;
3815 
3816  PtrRtCheck.Pointers.clear();
3817  PtrRtCheck.Need = false;
3818 
3819  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3820  MemoryDepChecker DepChecker(SE, DL, TheLoop);
3821 
3822  // For each block.
3823  for (Loop::block_iterator bb = TheLoop->block_begin(),
3824  be = TheLoop->block_end(); bb != be; ++bb) {
3825 
3826  // Scan the BB and collect legal loads and stores.
3827  for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3828  ++it) {
3829 
3830  // If this is a load, save it. If this instruction can read from memory
3831  // but is not a load, then we quit. Notice that we don't handle function
3832  // calls that read or write.
3833  if (it->mayReadFromMemory()) {
3834  // Many math library functions read the rounding mode. We will only
3835  // vectorize a loop if it contains known function calls that don't set
3836  // the flag. Therefore, it is safe to ignore this read from memory.
3837  CallInst *Call = dyn_cast<CallInst>(it);
3838  if (Call && getIntrinsicIDForCall(Call, TLI))
3839  continue;
3840 
3841  LoadInst *Ld = dyn_cast<LoadInst>(it);
3842  if (!Ld) return false;
3843  if (!Ld->isSimple() && !IsAnnotatedParallel) {
3844  DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3845  return false;
3846  }
3847  Loads.push_back(Ld);
3848  DepChecker.addAccess(Ld);
3849  continue;
3850  }
3851 
3852  // Save 'store' instructions. Abort if other instructions write to memory.
3853  if (it->mayWriteToMemory()) {
3854  StoreInst *St = dyn_cast<StoreInst>(it);
3855  if (!St) return false;
3856  if (!St->isSimple() && !IsAnnotatedParallel) {
3857  DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3858  return false;
3859  }
3860  Stores.push_back(St);
3861  DepChecker.addAccess(St);
3862  }
3863  } // Next instr.
3864  } // Next block.
3865 
3866  // Now we have two lists that hold the loads and the stores.
3867  // Next, we find the pointers that they use.
3868 
3869  // Check if we see any stores. If there are no stores, then we don't
3870  // care if the pointers are *restrict*.
3871  if (!Stores.size()) {
3872  DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3873  return true;
3874  }
3875 
3876  AccessAnalysis::DepCandidates DependentAccesses;
3877  AccessAnalysis Accesses(DL, DependentAccesses);
3878 
3879  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3880  // multiple times on the same object. If the ptr is accessed twice, once
3881  // for read and once for write, it will only appear once (on the write
3882  // list). This is okay, since we are going to check for conflicts between
3883  // writes and between reads and writes, but not between reads and reads.
3884  ValueSet Seen;
3885 
3886  ValueVector::iterator I, IE;
3887  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3888  StoreInst *ST = cast<StoreInst>(*I);
3889  Value* Ptr = ST->getPointerOperand();
3890 
3891  if (isUniform(Ptr)) {
3892  DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3893  return false;
3894  }
3895 
3896  // If we did *not* see this pointer before, insert it to the read-write
3897  // list. At this phase it is only a 'write' list.
3898  if (Seen.insert(Ptr)) {
3899  ++NumReadWrites;
3900  Accesses.addStore(Ptr);
3901  }
3902  }
3903 
3904  if (IsAnnotatedParallel) {
3905  DEBUG(dbgs()
3906  << "LV: A loop annotated parallel, ignore memory dependency "
3907  << "checks.\n");
3908  return true;
3909  }
3910 
3911  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3912  LoadInst *LD = cast<LoadInst>(*I);
3913  Value* Ptr = LD->getPointerOperand();
3914  // If we did *not* see this pointer before, insert it to the
3915  // read list. If we *did* see it before, then it is already in
3916  // the read-write list. This allows us to vectorize expressions
3917  // such as A[i] += x; Because the address of A[i] is a read-write
3918  // pointer. This only works if the index of A[i] is consecutive.
3919  // If the address of i is unknown (for example A[B[i]]) then we may
3920  // read a few words, modify, and write a few words, and some of the
3921  // words may be written to the same address.
3922  bool IsReadOnlyPtr = false;
3923  if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3924  ++NumReads;
3925  IsReadOnlyPtr = true;
3926  }
3927  Accesses.addLoad(Ptr, IsReadOnlyPtr);
3928  }
3929 
3930  // If we write (or read-write) to a single destination and there are no
3931  // other reads in this loop then is it safe to vectorize.
3932  if (NumReadWrites == 1 && NumReads == 0) {
3933  DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3934  return true;
3935  }
3936 
3937  // Build dependence sets and check whether we need a runtime pointer bounds
3938  // check.
3939  Accesses.buildDependenceSets();
3940  bool NeedRTCheck = Accesses.isRTCheckNeeded();
3941 
3942  // Find pointers with computable bounds. We are going to use this information
3943  // to place a runtime bound check.
3944  unsigned NumComparisons = 0;
3945  bool CanDoRT = false;
3946  if (NeedRTCheck)
3947  CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3948 
3949 
3950  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3951  " pointer comparisons.\n");
3952 
3953  // If we only have one set of dependences to check pointers among we don't
3954  // need a runtime check.
3955  if (NumComparisons == 0 && NeedRTCheck)
3956  NeedRTCheck = false;
3957 
3958  // Check that we did not collect too many pointers or found an unsizeable
3959  // pointer.
3960  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3961  PtrRtCheck.reset();
3962  CanDoRT = false;
3963  }
3964 
3965  if (CanDoRT) {
3966  DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3967  }
3968 
3969  if (NeedRTCheck && !CanDoRT) {
3970  DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3971  "the array bounds.\n");
3972  PtrRtCheck.reset();
3973  return false;
3974  }
3975 
3976  PtrRtCheck.Need = NeedRTCheck;
3977 
3978  bool CanVecMem = true;
3979  if (Accesses.isDependencyCheckNeeded()) {
3980  DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3981  CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3982  Accesses.getDependenciesToCheck());
3983  MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3984 
3985  if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
3986  DEBUG(dbgs() << "LV: Retrying with memory checks\n");
3987  NeedRTCheck = true;
3988 
3989  // Clear the dependency checks. We assume they are not needed.
3990  Accesses.resetDepChecks();
3991 
3992  PtrRtCheck.reset();
3993  PtrRtCheck.Need = true;
3994 
3995  CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
3996  TheLoop, true);
3997  // Check that we did not collect too many pointers or found an unsizeable
3998  // pointer.
3999  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4000  DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4001  PtrRtCheck.reset();
4002  return false;
4003  }
4004 
4005  CanVecMem = true;
4006  }
4007  }
4008 
4009  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4010  " need a runtime memory check.\n");
4011 
4012  return CanVecMem;
4013 }
4014 
4017  unsigned NumUses = 0;
4018  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4019  if (Insts.count(dyn_cast<Instruction>(*Use)))
4020  ++NumUses;
4021  if (NumUses > 1)
4022  return true;
4023  }
4024 
4025  return false;
4026 }
4027 
4029  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4030  if (!Set.count(dyn_cast<Instruction>(*Use)))
4031  return false;
4032  return true;
4033 }
4034 
4035 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4036  ReductionKind Kind) {
4037  if (Phi->getNumIncomingValues() != 2)
4038  return false;
4039 
4040  // Reduction variables are only found in the loop header block.
4041  if (Phi->getParent() != TheLoop->getHeader())
4042  return false;
4043 
4044  // Obtain the reduction start value from the value that comes from the loop
4045  // preheader.
4046  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4047 
4048  // ExitInstruction is the single value which is used outside the loop.
4049  // We only allow for a single reduction value to be used outside the loop.
4050  // This includes users of the reduction, variables (which form a cycle
4051  // which ends in the phi node).
4052  Instruction *ExitInstruction = 0;
4053  // Indicates that we found a reduction operation in our scan.
4054  bool FoundReduxOp = false;
4055 
4056  // We start with the PHI node and scan for all of the users of this
4057  // instruction. All users must be instructions that can be used as reduction
4058  // variables (such as ADD). We must have a single out-of-block user. The cycle
4059  // must include the original PHI.
4060  bool FoundStartPHI = false;
4061 
4062  // To recognize min/max patterns formed by a icmp select sequence, we store
4063  // the number of instruction we saw from the recognized min/max pattern,
4064  // to make sure we only see exactly the two instructions.
4065  unsigned NumCmpSelectPatternInst = 0;
4066  ReductionInstDesc ReduxDesc(false, 0);
4067 
4068  SmallPtrSet<Instruction *, 8> VisitedInsts;
4070  Worklist.push_back(Phi);
4071  VisitedInsts.insert(Phi);
4072 
4073  // A value in the reduction can be used:
4074  // - By the reduction:
4075  // - Reduction operation:
4076  // - One use of reduction value (safe).
4077  // - Multiple use of reduction value (not safe).
4078  // - PHI:
4079  // - All uses of the PHI must be the reduction (safe).
4080  // - Otherwise, not safe.
4081  // - By one instruction outside of the loop (safe).
4082  // - By further instructions outside of the loop (not safe).
4083  // - By an instruction that is not part of the reduction (not safe).
4084  // This is either:
4085  // * An instruction type other than PHI or the reduction operation.
4086  // * A PHI in the header other than the initial PHI.
4087  while (!Worklist.empty()) {
4088  Instruction *Cur = Worklist.back();
4089  Worklist.pop_back();
4090 
4091  // No Users.
4092  // If the instruction has no users then this is a broken chain and can't be
4093  // a reduction variable.
4094  if (Cur->use_empty())
4095  return false;
4096 
4097  bool IsAPhi = isa<PHINode>(Cur);
4098 
4099  // A header PHI use other than the original PHI.
4100  if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4101  return false;
4102 
4103  // Reductions of instructions such as Div, and Sub is only possible if the
4104  // LHS is the reduction variable.
4105  if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4106  !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4107  !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4108  return false;
4109 
4110  // Any reduction instruction must be of one of the allowed kinds.
4111  ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4112  if (!ReduxDesc.IsReduction)
4113  return false;
4114 
4115  // A reduction operation must only have one use of the reduction value.
4116  if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4117  hasMultipleUsesOf(Cur, VisitedInsts))
4118  return false;
4119 
4120  // All inputs to a PHI node must be a reduction value.
4121  if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4122  return false;
4123 
4124  if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4125  isa<SelectInst>(Cur)))
4126  ++NumCmpSelectPatternInst;
4127  if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4128  isa<SelectInst>(Cur)))
4129  ++NumCmpSelectPatternInst;
4130 
4131  // Check whether we found a reduction operator.
4132  FoundReduxOp |= !IsAPhi;
4133 
4134  // Process users of current instruction. Push non PHI nodes after PHI nodes
4135  // onto the stack. This way we are going to have seen all inputs to PHI
4136  // nodes once we get to them.
4139  for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4140  ++UI) {
4141  Instruction *Usr = cast<Instruction>(*UI);
4142 
4143  // Check if we found the exit user.
4144  BasicBlock *Parent = Usr->getParent();
4145  if (!TheLoop->contains(Parent)) {
4146  // Exit if you find multiple outside users or if the header phi node is
4147  // being used. In this case the user uses the value of the previous
4148  // iteration, in which case we would loose "VF-1" iterations of the
4149  // reduction operation if we vectorize.
4150  if (ExitInstruction != 0 || Cur == Phi)
4151  return false;
4152 
4153  // The instruction used by an outside user must be the last instruction
4154  // before we feed back to the reduction phi. Otherwise, we loose VF-1
4155  // operations on the value.
4156  if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4157  return false;
4158 
4159  ExitInstruction = Cur;
4160  continue;
4161  }
4162 
4163  // Process instructions only once (termination).
4164  if (VisitedInsts.insert(Usr)) {
4165  if (isa<PHINode>(Usr))
4166  PHIs.push_back(Usr);
4167  else
4168  NonPHIs.push_back(Usr);
4169  }
4170  // Remember that we completed the cycle.
4171  if (Usr == Phi)
4172  FoundStartPHI = true;
4173  }
4174  Worklist.append(PHIs.begin(), PHIs.end());
4175  Worklist.append(NonPHIs.begin(), NonPHIs.end());
4176  }
4177 
4178  // This means we have seen one but not the other instruction of the
4179  // pattern or more than just a select and cmp.
4180  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4181  NumCmpSelectPatternInst != 2)
4182  return false;
4183 
4184  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4185  return false;
4186 
4187  // We found a reduction var if we have reached the original phi node and we
4188  // only have a single instruction with out-of-loop users.
4189 
4190  // This instruction is allowed to have out-of-loop users.
4191  AllowedExit.insert(ExitInstruction);
4192 
4193  // Save the description of this reduction variable.
4194  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4195  ReduxDesc.MinMaxKind);
4196  Reductions[Phi] = RD;
4197  // We've ended the cycle. This is a reduction variable if we have an
4198  // outside user and it has a binary op.
4199 
4200  return true;
4201 }
4202 
4203 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4204 /// pattern corresponding to a min(X, Y) or max(X, Y).
4205 LoopVectorizationLegality::ReductionInstDesc
4206 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4207  ReductionInstDesc &Prev) {
4208 
4209  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4210  "Expect a select instruction");
4211  Instruction *Cmp = 0;
4212  SelectInst *Select = 0;
4213 
4214  // We must handle the select(cmp()) as a single instruction. Advance to the
4215  // select.
4216  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4217  if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4218  return ReductionInstDesc(false, I);
4219  return ReductionInstDesc(Select, Prev.MinMaxKind);
4220  }
4221 
4222  // Only handle single use cases for now.
4223  if (!(Select = dyn_cast<SelectInst>(I)))
4224  return ReductionInstDesc(false, I);
4225  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4226  !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4227  return ReductionInstDesc(false, I);
4228  if (!Cmp->hasOneUse())
4229  return ReductionInstDesc(false, I);
4230 
4231  Value *CmpLeft;
4232  Value *CmpRight;
4233 
4234  // Look for a min/max pattern.
4235  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4236  return ReductionInstDesc(Select, MRK_UIntMin);
4237  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4238  return ReductionInstDesc(Select, MRK_UIntMax);
4239  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4240  return ReductionInstDesc(Select, MRK_SIntMax);
4241  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4242  return ReductionInstDesc(Select, MRK_SIntMin);
4243  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4244  return ReductionInstDesc(Select, MRK_FloatMin);
4245  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4246  return ReductionInstDesc(Select, MRK_FloatMax);
4247  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4248  return ReductionInstDesc(Select, MRK_FloatMin);
4249  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4250  return ReductionInstDesc(Select, MRK_FloatMax);
4251 
4252  return ReductionInstDesc(false, I);
4253 }
4254 
4255 LoopVectorizationLegality::ReductionInstDesc
4256 LoopVectorizationLegality::isReductionInstr(Instruction *I,
4257  ReductionKind Kind,
4258  ReductionInstDesc &Prev) {
4259  bool FP = I->getType()->isFloatingPointTy();
4260  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4261  switch (I->getOpcode()) {
4262  default:
4263  return ReductionInstDesc(false, I);
4264  case Instruction::PHI:
4265  if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4266  Kind != RK_FloatMinMax))
4267  return ReductionInstDesc(false, I);
4268  return ReductionInstDesc(I, Prev.MinMaxKind);
4269  case Instruction::Sub:
4270  case Instruction::Add:
4271  return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4272  case Instruction::Mul:
4273  return ReductionInstDesc(Kind == RK_IntegerMult, I);
4274  case Instruction::And:
4275  return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4276  case Instruction::Or:
4277  return ReductionInstDesc(Kind == RK_IntegerOr, I);
4278  case Instruction::Xor:
4279  return ReductionInstDesc(Kind == RK_IntegerXor, I);
4280  case Instruction::FMul:
4281  return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4282  case Instruction::FAdd:
4283  return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4284  case Instruction::FCmp:
4285  case Instruction::ICmp:
4286  case Instruction::Select:
4287  if (Kind != RK_IntegerMinMax &&
4288  (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4289  return ReductionInstDesc(false, I);
4290  return isMinMaxSelectCmpPattern(I, Prev);
4291  }
4292 }
4293 
4294 LoopVectorizationLegality::InductionKind
4295 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4296  Type *PhiTy = Phi->getType();
4297  // We only handle integer and pointer inductions variables.
4298  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4299  return IK_NoInduction;
4300 
4301  // Check that the PHI is consecutive.
4302  const SCEV *PhiScev = SE->getSCEV(Phi);
4303  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4304  if (!AR) {
4305  DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4306  return IK_NoInduction;
4307  }
4308  const SCEV *Step = AR->getStepRecurrence(*SE);
4309 
4310  // Integer inductions need to have a stride of one.
4311  if (PhiTy->isIntegerTy()) {
4312  if (Step->isOne())
4313  return IK_IntInduction;
4314  if (Step->isAllOnesValue())
4315  return IK_ReverseIntInduction;
4316  return IK_NoInduction;
4317  }
4318 
4319  // Calculate the pointer stride and check if it is consecutive.
4320  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4321  if (!C)
4322  return IK_NoInduction;
4323 
4324  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4325  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4326  if (C->getValue()->equalsInt(Size))
4327  return IK_PtrInduction;
4328  else if (C->getValue()->equalsInt(0 - Size))
4329  return IK_ReversePtrInduction;
4330 
4331  return IK_NoInduction;
4332 }
4333 
4334 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4335  Value *In0 = const_cast<Value*>(V);
4336  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4337  if (!PN)
4338  return false;
4339 
4340  return Inductions.count(PN);
4341 }
4342 
4343 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
4344  assert(TheLoop->contains(BB) && "Unknown block used");
4345 
4346  // Blocks that do not dominate the latch need predication.
4347  BasicBlock* Latch = TheLoop->getLoopLatch();
4348  return !DT->dominates(BB, Latch);
4349 }
4350 
4351 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4352  SmallPtrSet<Value *, 8>& SafePtrs) {
4353  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4354  // We might be able to hoist the load.
4355  if (it->mayReadFromMemory()) {
4356  LoadInst *LI = dyn_cast<LoadInst>(it);
4357  if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4358  return false;
4359  }
4360 
4361  // We don't predicate stores at the moment.
4362  if (it->mayWriteToMemory() || it->mayThrow())
4363  return false;
4364 
4365  // The instructions below can trap.
4366  switch (it->getOpcode()) {
4367  default: continue;
4368  case Instruction::UDiv:
4369  case Instruction::SDiv:
4370  case Instruction::URem:
4371  case Instruction::SRem:
4372  return false;
4373  }
4374  }
4375 
4376  return true;
4377 }
4378 
4380 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4381  unsigned UserVF) {
4382  // Width 1 means no vectorize
4383  VectorizationFactor Factor = { 1U, 0U };
4384  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4385  DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4386  return Factor;
4387  }
4388 
4389  // Find the trip count.
4390  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4391  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4392 
4393  unsigned WidestType = getWidestType();
4394  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4395  unsigned MaxSafeDepDist = -1U;
4396  if (Legal->getMaxSafeDepDistBytes() != -1U)
4397  MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4398  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4399  WidestRegister : MaxSafeDepDist);
4400  unsigned MaxVectorSize = WidestRegister / WidestType;
4401  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4402  DEBUG(dbgs() << "LV: The Widest register is: "
4403  << WidestRegister << " bits.\n");
4404 
4405  if (MaxVectorSize == 0) {
4406  DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4407  MaxVectorSize = 1;
4408  }
4409 
4410  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4411  " into one vector!");
4412 
4413  unsigned VF = MaxVectorSize;
4414 
4415  // If we optimize the program for size, avoid creating the tail loop.
4416  if (OptForSize) {
4417  // If we are unable to calculate the trip count then don't try to vectorize.
4418  if (TC < 2) {
4419  DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4420  return Factor;
4421  }
4422 
4423  // Find the maximum SIMD width that can fit within the trip count.
4424  VF = TC % MaxVectorSize;
4425 
4426  if (VF == 0)
4427  VF = MaxVectorSize;
4428 
4429  // If the trip count that we found modulo the vectorization factor is not
4430  // zero then we require a tail.
4431  if (VF < 2) {
4432  DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4433  return Factor;
4434  }
4435  }
4436 
4437  if (UserVF != 0) {
4438  assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4439  DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4440 
4441  Factor.Width = UserVF;
4442  return Factor;
4443  }
4444 
4445  float Cost = expectedCost(1);
4446  unsigned Width = 1;
4447  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4448  for (unsigned i=2; i <= VF; i*=2) {
4449  // Notice that the vector loop needs to be executed less times, so
4450  // we need to divide the cost of the vector loops by the width of
4451  // the vector elements.
4452  float VectorCost = expectedCost(i) / (float)i;
4453  DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4454  (int)VectorCost << ".\n");
4455  if (VectorCost < Cost) {
4456  Cost = VectorCost;
4457  Width = i;
4458  }
4459  }
4460 
4461  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4462  Factor.Width = Width;
4463  Factor.Cost = Width * Cost;
4464  return Factor;
4465 }
4466 
4467 unsigned LoopVectorizationCostModel::getWidestType() {
4468  unsigned MaxWidth = 8;
4469 
4470  // For each block.
4471  for (Loop::block_iterator bb = TheLoop->block_begin(),
4472  be = TheLoop->block_end(); bb != be; ++bb) {
4473  BasicBlock *BB = *bb;
4474 
4475  // For each instruction in the loop.
4476  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4477  Type *T = it->getType();
4478 
4479  // Only examine Loads, Stores and PHINodes.
4480  if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4481  continue;
4482 
4483  // Examine PHI nodes that are reduction variables.
4484  if (PHINode *PN = dyn_cast<PHINode>(it))
4485  if (!Legal->getReductionVars()->count(PN))
4486  continue;
4487 
4488  // Examine the stored values.
4489  if (StoreInst *ST = dyn_cast<StoreInst>(it))
4490  T = ST->getValueOperand()->getType();
4491 
4492  // Ignore loaded pointer types and stored pointer types that are not
4493  // consecutive. However, we do want to take consecutive stores/loads of
4494  // pointer vectors into account.
4495  if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4496  continue;
4497 
4498  MaxWidth = std::max(MaxWidth,
4499  (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4500  }
4501  }
4502 
4503  return MaxWidth;
4504 }
4505 
4506 unsigned
4507 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4508  unsigned UserUF,
4509  unsigned VF,
4510  unsigned LoopCost) {
4511 
4512  // -- The unroll heuristics --
4513  // We unroll the loop in order to expose ILP and reduce the loop overhead.
4514  // There are many micro-architectural considerations that we can't predict
4515  // at this level. For example frontend pressure (on decode or fetch) due to
4516  // code size, or the number and capabilities of the execution ports.
4517  //
4518  // We use the following heuristics to select the unroll factor:
4519  // 1. If the code has reductions the we unroll in order to break the cross
4520  // iteration dependency.
4521  // 2. If the loop is really small then we unroll in order to reduce the loop
4522  // overhead.
4523  // 3. We don't unroll if we think that we will spill registers to memory due
4524  // to the increased register pressure.
4525 
4526  // Use the user preference, unless 'auto' is selected.
4527  if (UserUF != 0)
4528  return UserUF;
4529 
4530  // When we optimize for size we don't unroll.
4531  if (OptForSize)
4532  return 1;
4533 
4534  // We used the distance for the unroll factor.
4535  if (Legal->getMaxSafeDepDistBytes() != -1U)
4536  return 1;
4537 
4538  // Do not unroll loops with a relatively small trip count.
4539  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4540  TheLoop->getLoopLatch());
4541  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4542  return 1;
4543 
4544  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4545  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4546  " vector registers\n");
4547 
4548  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4549  // We divide by these constants so assume that we have at least one
4550  // instruction that uses at least one register.
4551  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4552  R.NumInstructions = std::max(R.NumInstructions, 1U);
4553 
4554  // We calculate the unroll factor using the following formula.
4555  // Subtract the number of loop invariants from the number of available
4556  // registers. These registers are used by all of the unrolled instances.
4557  // Next, divide the remaining registers by the number of registers that is
4558  // required by the loop, in order to estimate how many parallel instances
4559  // fit without causing spills.
4560  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4561 
4562  // Clamp the unroll factor ranges to reasonable factors.
4563  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4564 
4565  // If we did not calculate the cost for VF (because the user selected the VF)
4566  // then we calculate the cost of VF here.
4567  if (LoopCost == 0)
4568  LoopCost = expectedCost(VF);
4569 
4570  // Clamp the calculated UF to be between the 1 and the max unroll factor
4571  // that the target allows.
4572  if (UF > MaxUnrollSize)
4573  UF = MaxUnrollSize;
4574  else if (UF < 1)
4575  UF = 1;
4576 
4577  bool HasReductions = Legal->getReductionVars()->size();
4578 
4579  // Decide if we want to unroll if we decided that it is legal to vectorize
4580  // but not profitable.
4581  if (VF == 1) {
4582  if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4583  LoopCost > SmallLoopCost)
4584  return 1;
4585 
4586  return UF;
4587  }
4588 
4589  if (HasReductions) {
4590  DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4591  return UF;
4592  }
4593 
4594  // We want to unroll tiny loops in order to reduce the loop overhead.
4595  // We assume that the cost overhead is 1 and we use the cost model
4596  // to estimate the cost of the loop and unroll until the cost of the
4597  // loop overhead is about 5% of the cost of the loop.
4598  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4599  if (LoopCost < SmallLoopCost) {
4600  DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4601  unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4602  return std::min(NewUF, UF);
4603  }
4604 
4605  DEBUG(dbgs() << "LV: Not Unrolling.\n");
4606  return 1;
4607 }
4608 
4609 LoopVectorizationCostModel::RegisterUsage
4610 LoopVectorizationCostModel::calculateRegisterUsage() {
4611  // This function calculates the register usage by measuring the highest number
4612  // of values that are alive at a single location. Obviously, this is a very
4613  // rough estimation. We scan the loop in a topological order in order and
4614  // assign a number to each instruction. We use RPO to ensure that defs are
4615  // met before their users. We assume that each instruction that has in-loop
4616  // users starts an interval. We record every time that an in-loop value is
4617  // used, so we have a list of the first and last occurrences of each
4618  // instruction. Next, we transpose this data structure into a multi map that
4619  // holds the list of intervals that *end* at a specific location. This multi
4620  // map allows us to perform a linear search. We scan the instructions linearly
4621  // and record each time that a new interval starts, by placing it in a set.
4622  // If we find this value in the multi-map then we remove it from the set.
4623  // The max register usage is the maximum size of the set.
4624  // We also search for instructions that are defined outside the loop, but are
4625  // used inside the loop. We need this number separately from the max-interval
4626  // usage number because when we unroll, loop-invariant values do not take
4627  // more register.
4628  LoopBlocksDFS DFS(TheLoop);
4629  DFS.perform(LI);
4630 
4631  RegisterUsage R;
4632  R.NumInstructions = 0;
4633 
4634  // Each 'key' in the map opens a new interval. The values
4635  // of the map are the index of the 'last seen' usage of the
4636  // instruction that is the key.
4638  // Maps instruction to its index.
4640  // Marks the end of each interval.
4641  IntervalMap EndPoint;
4642  // Saves the list of instruction indices that are used in the loop.
4644  // Saves the list of values that are used in the loop but are
4645  // defined outside the loop, such as arguments and constants.
4646  SmallPtrSet<Value*, 8> LoopInvariants;
4647 
4648  unsigned Index = 0;
4649  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4650  be = DFS.endRPO(); bb != be; ++bb) {
4651  R.NumInstructions += (*bb)->size();
4652  for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4653  ++it) {
4654  Instruction *I = it;
4655  IdxToInstr[Index++] = I;
4656 
4657  // Save the end location of each USE.
4658  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4659  Value *U = I->getOperand(i);
4660  Instruction *Instr = dyn_cast<Instruction>(U);
4661 
4662  // Ignore non-instruction values such as arguments, constants, etc.
4663  if (!Instr) continue;
4664 
4665  // If this instruction is outside the loop then record it and continue.
4666  if (!TheLoop->contains(Instr)) {
4667  LoopInvariants.insert(Instr);
4668  continue;
4669  }
4670 
4671  // Overwrite previous end points.
4672  EndPoint[Instr] = Index;
4673  Ends.insert(Instr);
4674  }
4675  }
4676  }
4677 
4678  // Saves the list of intervals that end with the index in 'key'.
4679  typedef SmallVector<Instruction*, 2> InstrList;
4680  DenseMap<unsigned, InstrList> TransposeEnds;
4681 
4682  // Transpose the EndPoints to a list of values that end at each index.
4683  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4684  it != e; ++it)
4685  TransposeEnds[it->second].push_back(it->first);
4686 
4687  SmallSet<Instruction*, 8> OpenIntervals;
4688  unsigned MaxUsage = 0;
4689 
4690 
4691  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4692  for (unsigned int i = 0; i < Index; ++i) {
4693  Instruction *I = IdxToInstr[i];
4694  // Ignore instructions that are never used within the loop.
4695  if (!Ends.count(I)) continue;
4696 
4697  // Remove all of the instructions that end at this location.
4698  InstrList &List = TransposeEnds[i];
4699  for (unsigned int j=0, e = List.size(); j < e; ++j)
4700  OpenIntervals.erase(List[j]);
4701 
4702  // Count the number of live interals.
4703  MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4704 
4705  DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4706  OpenIntervals.size() << '\n');
4707 
4708  // Add the current instruction to the list of open intervals.
4709  OpenIntervals.insert(I);
4710  }
4711 
4712  unsigned Invariant = LoopInvariants.size();
4713  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4714  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4715  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4716 
4717  R.LoopInvariantRegs = Invariant;
4718  R.MaxLocalUsers = MaxUsage;
4719  return R;
4720 }
4721 
4722 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4723  unsigned Cost = 0;
4724 
4725  // For each block.
4726  for (Loop::block_iterator bb = TheLoop->block_begin(),
4727  be = TheLoop->block_end(); bb != be; ++bb) {
4728  unsigned BlockCost = 0;
4729  BasicBlock *BB = *bb;
4730 
4731  // For each instruction in the old loop.
4732  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4733  // Skip dbg intrinsics.
4734  if (isa<DbgInfoIntrinsic>(it))
4735  continue;
4736 
4737  unsigned C = getInstructionCost(it, VF);
4738  BlockCost += C;
4739  DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4740  VF << " For instruction: " << *it << '\n');
4741  }
4742 
4743  // We assume that if-converted blocks have a 50% chance of being executed.
4744  // When the code is scalar then some of the blocks are avoided due to CF.
4745  // When the code is vectorized we execute all code paths.
4746  if (VF == 1 && Legal->blockNeedsPredication(*bb))
4747  BlockCost /= 2;
4748 
4749  Cost += BlockCost;
4750  }
4751 
4752  return Cost;
4753 }
4754 
4755 /// \brief Check whether the address computation for a non-consecutive memory
4756 /// access looks like an unlikely candidate for being merged into the indexing
4757 /// mode.
4758 ///
4759 /// We look for a GEP which has one index that is an induction variable and all
4760 /// other indices are loop invariant. If the stride of this access is also
4761 /// within a small bound we decide that this address computation can likely be
4762 /// merged into the addressing mode.
4763 /// In all other cases, we identify the address computation as complex.
4765  LoopVectorizationLegality *Legal,
4766  ScalarEvolution *SE,
4767  const Loop *TheLoop) {
4769  if (!Gep)
4770  return true;
4771 
4772  // We are looking for a gep with all loop invariant indices except for one
4773  // which should be an induction variable.
4774  unsigned NumOperands = Gep->getNumOperands();
4775  for (unsigned i = 1; i < NumOperands; ++i) {
4776  Value *Opd = Gep->getOperand(i);
4777  if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4778  !Legal->isInductionVariable(Opd))
4779  return true;
4780  }
4781 
4782  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4783  // can likely be merged into the address computation.
4784  unsigned MaxMergeDistance = 64;
4785 
4786  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4787  if (!AddRec)
4788  return true;
4789 
4790  // Check the step is constant.
4791  const SCEV *Step = AddRec->getStepRecurrence(*SE);
4792  // Calculate the pointer stride and check if it is consecutive.
4793  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4794  if (!C)
4795  return true;
4796 
4797  const APInt &APStepVal = C->getValue()->getValue();
4798 
4799  // Huge step value - give up.
4800  if (APStepVal.getBitWidth() > 64)
4801  return true;
4802 
4803  int64_t StepVal = APStepVal.getSExtValue();
4804 
4805  return StepVal > MaxMergeDistance;
4806 }
4807 
4808 unsigned
4809 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4810  // If we know that this instruction will remain uniform, check the cost of
4811  // the scalar version.
4812  if (Legal->isUniformAfterVectorization(I))
4813  VF = 1;
4814 
4815  Type *RetTy = I->getType();
4816  Type *VectorTy = ToVectorTy(RetTy, VF);
4817 
4818  // TODO: We need to estimate the cost of intrinsic calls.
4819  switch (I->getOpcode()) {
4820  case Instruction::GetElementPtr:
4821  // We mark this instruction as zero-cost because the cost of GEPs in
4822  // vectorized code depends on whether the corresponding memory instruction
4823  // is scalarized or not. Therefore, we handle GEPs with the memory
4824  // instruction cost.
4825  return 0;
4826  case Instruction::Br: {
4827  return TTI.getCFInstrCost(I->getOpcode());
4828  }
4829  case Instruction::PHI:
4830  //TODO: IF-converted IFs become selects.
4831  return 0;
4832  case Instruction::Add:
4833  case Instruction::FAdd:
4834  case Instruction::Sub:
4835  case Instruction::FSub:
4836  case Instruction::Mul:
4837  case Instruction::FMul:
4838  case Instruction::UDiv:
4839  case Instruction::SDiv:
4840  case Instruction::FDiv:
4841  case Instruction::URem:
4842  case Instruction::SRem:
4843  case Instruction::FRem:
4844  case Instruction::Shl:
4845  case Instruction::LShr:
4846  case Instruction::AShr:
4847  case Instruction::And:
4848  case Instruction::Or:
4849  case Instruction::Xor: {
4850  // Certain instructions can be cheaper to vectorize if they have a constant
4851  // second vector operand. One example of this are shifts on x86.
4856 
4857  if (isa<ConstantInt>(I->getOperand(1)))
4859 
4860  return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4861  }
4862  case Instruction::Select: {
4863  SelectInst *SI = cast<SelectInst>(I);
4864  const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4865  bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4866  Type *CondTy = SI->getCondition()->getType();
4867  if (!ScalarCond)
4868  CondTy = VectorType::get(CondTy, VF);
4869 
4870  return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4871  }
4872  case Instruction::ICmp:
4873  case Instruction::FCmp: {
4874  Type *ValTy = I->getOperand(0)->getType();
4875  VectorTy = ToVectorTy(ValTy, VF);
4876  return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4877  }
4878  case Instruction::Store:
4879  case Instruction::Load: {
4880  StoreInst *SI = dyn_cast<StoreInst>(I);
4881  LoadInst *LI = dyn_cast<LoadInst>(I);
4882  Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4883  LI->getType());
4884  VectorTy = ToVectorTy(ValTy, VF);
4885 
4886  unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4887  unsigned AS = SI ? SI->getPointerAddressSpace() :
4888  LI->getPointerAddressSpace();
4889  Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4890  // We add the cost of address computation here instead of with the gep
4891  // instruction because only here we know whether the operation is
4892  // scalarized.
4893  if (VF == 1)
4894  return TTI.getAddressComputationCost(VectorTy) +
4895  TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4896 
4897  // Scalarized loads/stores.
4898  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4899  bool Reverse = ConsecutiveStride < 0;
4900  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4901  unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4902  if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4903  bool IsComplexComputation =
4904  isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4905  unsigned Cost = 0;
4906  // The cost of extracting from the value vector and pointer vector.
4907  Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4908  for (unsigned i = 0; i < VF; ++i) {
4909  // The cost of extracting the pointer operand.
4910  Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4911  // In case of STORE, the cost of ExtractElement from the vector.
4912  // In case of LOAD, the cost of InsertElement into the returned
4913  // vector.
4914  Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4915  Instruction::InsertElement,
4916  VectorTy, i);
4917  }
4918 
4919  // The cost of the scalar loads/stores.
4920  Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4921  Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4922  Alignment, AS);
4923  return Cost;
4924  }
4925 
4926  // Wide load/stores.
4927  unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4928  Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4929 
4930  if (Reverse)
4931  Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4932  VectorTy, 0);
4933  return Cost;
4934  }
4935  case Instruction::ZExt:
4936  case Instruction::SExt:
4937  case Instruction::FPToUI:
4938  case Instruction::FPToSI:
4939  case Instruction::FPExt:
4940  case Instruction::PtrToInt:
4941  case Instruction::IntToPtr:
4942  case Instruction::SIToFP:
4943  case Instruction::UIToFP:
4944  case Instruction::Trunc:
4945  case Instruction::FPTrunc:
4946  case Instruction::BitCast: {
4947  // We optimize the truncation of induction variable.
4948  // The cost of these is the same as the scalar operation.
4949  if (I->getOpcode() == Instruction::Trunc &&
4950  Legal->isInductionVariable(I->getOperand(0)))
4951  return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4952  I->getOperand(0)->getType());
4953 
4954  Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4955  return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4956  }
4957  case Instruction::Call: {
4958  CallInst *CI = cast<CallInst>(I);
4959  Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4960  assert(ID && "Not an intrinsic call!");
4961  Type *RetTy = ToVectorTy(CI->getType(), VF);
4963  for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4964  Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4965  return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4966  }
4967  default: {
4968  // We are scalarizing the instruction. Return the cost of the scalar
4969  // instruction, plus the cost of insert and extract into vector
4970  // elements, times the vector width.
4971  unsigned Cost = 0;
4972 
4973  if (!RetTy->isVoidTy() && VF != 1) {
4974  unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4975  VectorTy);
4976  unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4977  VectorTy);
4978 
4979  // The cost of inserting the results plus extracting each one of the
4980  // operands.
4981  Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4982  }
4983 
4984  // The cost of executing VF copies of the scalar instruction. This opcode
4985  // is unknown. Assume that it is the same as 'mul'.
4986  Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4987  return Cost;
4988  }
4989  }// end of switch.
4990 }
4991 
4992 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4993  if (Scalar->isVoidTy() || VF == 1)
4994  return Scalar;
4995  return VectorType::get(Scalar, VF);
4996 }
4997 
4998 char LoopVectorize::ID = 0;
4999 static const char lv_name[] = "Loop Vectorization";
5000 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5006 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5007 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5008 
5009 namespace llvm {
5010  Pass *createLoopVectorizePass(bool NoUnrolling) {
5011  return new LoopVectorize(NoUnrolling);
5012  }
5013 }
5014 
5015 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5016  // Check for a store.
5017  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5018  return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5019 
5020  // Check for a load.
5021  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5022  return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5023 
5024  return false;
5025 }
5026 
5027 
5028 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
5029  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5030  // Holds vector parameters or scalars, in case of uniform vals.
5032 
5033  setDebugLocFromInst(Builder, Instr);
5034 
5035  // Find all of the vectorized parameters.
5036  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5037  Value *SrcOp = Instr->getOperand(op);
5038 
5039  // If we are accessing the old induction variable, use the new one.
5040  if (SrcOp == OldInduction) {
5041  Params.push_back(getVectorValue(SrcOp));
5042  continue;
5043  }
5044 
5045  // Try using previously calculated values.
5046  Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5047 
5048  // If the src is an instruction that appeared earlier in the basic block
5049  // then it should already be vectorized.
5050  if (SrcInst && OrigLoop->contains(SrcInst)) {
5051  assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5052  // The parameter is a vector value from earlier.
5053  Params.push_back(WidenMap.get(SrcInst));
5054  } else {
5055  // The parameter is a scalar from outside the loop. Maybe even a constant.
5056  VectorParts Scalars;
5057  Scalars.append(UF, SrcOp);
5058  Params.push_back(Scalars);
5059  }
5060  }
5061 
5062  assert(Params.size() == Instr->getNumOperands() &&
5063  "Invalid number of operands");
5064 
5065  // Does this instruction return a value ?
5066  bool IsVoidRetTy = Instr->getType()->isVoidTy();
5067 
5068  Value *UndefVec = IsVoidRetTy ? 0 :
5069  UndefValue::get(Instr->getType());
5070  // Create a new entry in the WidenMap and initialize it to Undef or Null.
5071  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5072 
5073  // For each vector unroll 'part':
5074  for (unsigned Part = 0; Part < UF; ++Part) {
5075  // For each scalar that we create:
5076 
5077  Instruction *Cloned = Instr->clone();
5078  if (!IsVoidRetTy)
5079  Cloned->setName(Instr->getName() + ".cloned");
5080  // Replace the operands of the cloned instructions with extracted scalars.
5081  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5082  Value *Op = Params[op][Part];
5083  Cloned->setOperand(op, Op);
5084  }
5085 
5086  // Place the cloned scalar in the new loop.
5087  Builder.Insert(Cloned);
5088 
5089  // If the original scalar returns a value we need to place it in a vector
5090  // so that future users will be able to use it.
5091  if (!IsVoidRetTy)
5092  VecResults[Part] = Cloned;
5093  }
5094 }
5095 
5096 void
5097 InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
5098  LoopVectorizationLegality*) {
5099  return scalarizeInstruction(Instr);
5100 }
5101 
5102 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5103  return Vec;
5104 }
5105 
5106 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5107  return V;
5108 }
5109 
5110 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
5111  bool Negate) {
5112  // When unrolling and the VF is 1, we only need to add a simple scalar.
5113  Type *ITy = Val->getType();
5114  assert(!ITy->isVectorTy() && "Val must be a scalar");
5115  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
5116  return Builder.CreateAdd(Val, C, "induction");
5117 }
5118 
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
Definition: PatternMatch.h:958
static bool Check(DecodeStatus &Out, DecodeStatus In)
VectorType::iterator iterator
Definition: MapVector.h:40
const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
Value * getValueOperand()
Definition: Instructions.h:343
use_iterator use_end()
Definition: Value.h:152
void replaceOperandWith(unsigned i, Value *NewVal)
replaceOperandWith - Replace a specific operand.
Definition: Metadata.cpp:108
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
void setHasNoSignedWrap(bool b=true)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
StringRef getString() const
Definition: Metadata.h:46
AnalysisUsage & addPreserved()
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
Pass * createLoopVectorizePass(bool NoUnrolling=false)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const
Get the absolute value;.
Definition: APInt.h:1521
void addIncoming(Value *V, BasicBlock *BB)
static bool hasMultipleUsesOf(Instruction *I, SmallPtrSet< Instruction *, 8 > &Insts)
static PassRegistry * getPassRegistry()
const_iterator begin() const
Definition: IntervalMap.h:1110
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
void SetCurrentDebugLocation(const DebugLoc &L)
Set location information used by debugging information.
Definition: IRBuilder.h:118
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1280
bool isOne() const
void GetUnderlyingObjects(Value *V, SmallVectorImpl< Value * > &Objects, const DataLayout *TD=0, unsigned MaxLookup=6)
const SCEV * getConstant(ConstantInt *V)
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
LLVMContext & getContext() const
double rint(double x);
bool isAnnotatedParallel() const
Definition: LoopInfo.cpp:290
match_zero m_Zero()
Definition: PatternMatch.h:137
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:38
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
long double copysignl(long double x, long double y);
unsigned getNumOperands() const
Definition: User.h:108
long double rintl(long double x);
long double truncl(long double x);
value_op_iterator value_op_begin()
Definition: User.h:153
bool isSimple() const
Definition: Instructions.h:338
virtual void getAnalysisUsage(AnalysisUsage &) const
Definition: Pass.cpp:75
double cos(double x);
static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, const Loop *Lp)
Check the stride of the pointer and ensure that it does not wrap in the address space.
float truncf(float x);
static unsigned getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind)
This function translates the reduction kind to an LLVM binary operator.
long double sinl(long double x);
unsigned less than
Definition: InstrTypes.h:676
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
float exp2f(float x);
StringRef substr(size_t Start, size_t N=npos) const
Definition: StringRef.h:392
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Don't vectorize loops with a constant ""trip count that is smaller than this ""value."))
We don't vectorize loops with a known constant trip count below this number.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
float expf(float x);
void initializeLoopVectorizePass(PassRegistry &)
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
bool isLoopInvariant(const SCEV *S, const Loop *L)
value_op_iterator value_op_end()
Definition: User.h:156
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
long double expl(long double x);
static bool isInBoundsGep(Value *Ptr)
double nearbyint(double x);
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
bool isNoAliasCall(const Value *V)
MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > m_UnordFMax(const LHS &L, const RHS &R)
Match an 'unordered' floating point maximum function. Floating point has one special value 'NaN'...
const_iterator end() const
Definition: IntervalMap.h:1122
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: Type.cpp:218
member_iterator member_begin(iterator I) const
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return true if the attribute exists at the given index.
Definition: Attributes.cpp:818
bool isSimple() const
Definition: Instructions.h:218
bool erase(const T &V)
Definition: SmallSet.h:86
op_iterator op_begin()
Definition: User.h:116
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
long double nearbyintl(long double x);
Type * getPointerElementType() const
Definition: Type.h:373
double trunc(double x);
static MDNode * get(LLVMContext &Context, ArrayRef< Value * > Vals)
Definition: Metadata.cpp:268
const SCEV * getStart() const
StringRef getName() const
Definition: Value.cpp:167
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
iterator begin()
Definition: BasicBlock.h:193
long double roundl(long double x);
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:322
bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
long double fabsl(long double x);
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
static error_code advance(T &it, size_t Val)
static const unsigned RuntimeMemoryCheckThreshold
static const unsigned MaxUnrollFactor
Maximum vectorization unroll count.
long double cosl(long double x);
double round(double x);
bool isIdenticalTo(const Instruction *I) const
Base class of casting instructions.
Definition: InstrTypes.h:387
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const
#define llvm_unreachable(msg)
Definition: Use.h:60
void setHasNoUnsignedWrap(bool b=true)
member_iterator member_end() const
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
double copysign(double x, double y);
unsigned getNumArgOperands() const
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:923
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
double log10(double x);
MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > m_UnordFMin(const LHS &L, const RHS &R)
Match an 'unordered' floating point minimum function. Floating point has one special value 'NaN'...
void setName(const Twine &Name)
Definition: Value.cpp:175
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Instruction * clone() const
const std::string & getModuleIdentifier() const
Definition: Module.h:228
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
#define false
Definition: ConvertUTF.c:64
bool isIdentifiedObject(const Value *V)
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:351
float log10f(float x);
Value * CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1287
iterator findValue(const ElemTy &V) const
static Intrinsic::ID getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI)
static Type * getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1)
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
Definition: LoopInfoImpl.h:185
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
bool isAssociative() const
void addChildLoop(LoopT *NewChild)
Definition: LoopInfo.h:252
static bool isValidElementType(Type *ElemTy)
Definition: Type.cpp:721
Represents a floating point comparison operator.
BasicBlock * getSuccessor(unsigned i) const
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an 'ordered' floating point minimum function. Floating point has one special value 'NaN'...
Definition: PatternMatch.h:988
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
Definition: PatternMatch.h:946
bool isFloatingPointTy() const
Definition: Type.h:162
std::set< ECValue >::const_iterator iterator
iterator* - Provides a way to iterate over all values in the set.
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I, Intrinsic::ID ValidIntrinsicID)
bool insert(const T &V)
Definition: SmallSet.h:59
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
double log2(double x);
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
Reverse the order of the vector.
Type * getElementType() const
Definition: DerivedTypes.h:319
unsigned getNumIncomingValues() const
float log2f(float x);
Value * createMinMaxOp(IRBuilder<> &Builder, LoopVectorizationLegality::MinMaxReductionKind RK, Value *Left, Value *Right)
const SCEV * getCouldNotCompute()
#define P(N)
#define true
Definition: ConvertUTF.c:65
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I, Intrinsic::ID ValidIntrinsicID)
float floorf(float x);
unsigned getAlignment() const
Definition: Instructions.h:301
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
Definition: PatternMatch.h:952
float ceilf(float x);
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
long double floorl(long double x);
static bool isFunctionScopeIdentifiedObject(Value *Ptr)
bool isVectorTy() const
Definition: Type.h:229
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3, const T4 &arg4, const T5 &arg5, const T6 &arg6)
Definition: Hashing.h:674
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
Instr is a loop (backwards branch).
Definition: GCMetadata.h:51
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
float cosf(float x);
float logf(float x);
char & LCSSAID
Definition: LCSSA.cpp:94
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static bool isLikelyComplexAddressComputation(Value *Ptr, LoopVectorizationLegality *Legal, ScalarEvolution *SE, const Loop *TheLoop)
Check whether the address computation for a non-consecutive memory access looks like an unlikely cand...
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
float roundf(float x);
float rintf(float x);
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static const unsigned MaxVectorWidth
Maximum simd width.
MDNode * getLoopID() const
Definition: LoopInfo.cpp:236
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
op_iterator op_end()
Definition: User.h:118
bool verifyFunction(const Function &F, VerifierFailureAction action=AbortProcessAction)
Definition: Verifier.cpp:2417
BasicBlock * getIncomingBlock(unsigned i) const
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
float fabsf(float x);
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
double log(double x);
double pow(double x, double y);
std::vector< BasicBlock * >::const_reverse_iterator RPOIterator
Definition: LoopIterator.h:42
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
Value * getPointerOperand()
Definition: Instructions.h:223
bool isCommutative() const
Definition: Instruction.h:269
float nearbyintf(float x);
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
PointerType * getPointerTo(unsigned AddrSpace=0)
Definition: Type.cpp:756
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
double exp(double x);
signed greater than
Definition: InstrTypes.h:678
char & LoopSimplifyID
void setIsExact(bool b=true)
bool isConditional() const
void setLoopID(MDNode *LoopID) const
Definition: LoopInfo.cpp:270
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Definition: Constants.cpp:1021
See the file comment.
Definition: ValueMap.h:75
bool startswith(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:208
#define LV_NAME
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSet< Value *, 4 > &Reductions)
Check that the instruction has outside loop users and is not an identified reduction variable...
Class for constant integers.
Definition: Constants.h:51
long double log10l(long double x);
Value * getIncomingValue(unsigned i) const
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
iterator end()
Definition: BasicBlock.h:195
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:262
static unsigned getGEPInductionOperand(DataLayout *DL, const GetElementPtrInst *Gep)
Find the operand of the GEP that should be checked for consecutive stores. This ignores trailing indi...
bool isAllOnesValue() const
Type * getType() const
Definition: Value.h:111
AddressSpace
Definition: NVPTXBaseInfo.h:22
signed less than
Definition: InstrTypes.h:680
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
SequentialType * getType() const
Definition: Instructions.h:764
unsigned size() const
Definition: SmallPtrSet.h:75
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:335
bool equalsInt(uint64_t V) const
Determine if this constant's value is same as an unsigned char.
Definition: Constants.h:132
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
Function * getCalledFunction() const
double fabs(double x);
ConstantInt * getValue() const
static Constant * get(Type *Ty, double V)
Definition: Constants.cpp:557
bool isExact() const
isExact - Determine whether the exact flag is set.
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
double long double log2l(long double x);
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
Value * getArgOperand(unsigned i) const
Class for arbitrary precision integers.
Definition: APInt.h:75
long double logl(long double x);
Value * getIncomingValueForBlock(const BasicBlock *BB) const
bool isIntegerTy() const
Definition: Type.h:196
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="")
Definition: IRBuilder.h:1336
float powf(float x, float y);
static Type * convertPointerToIntegerType(DataLayout &DL, Type *Ty)
unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock)
static const char lv_name[]
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition: Hashing.h:487
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
std::vector< BlockT * >::const_iterator block_iterator
Definition: LoopInfo.h:139
double sin(double x);
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
static cl::opt< unsigned > VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, cl::desc("Sets the vectorization unroll count. ""Zero is autoselect."))
bool count(const T &V) const
count - Return true if the element is in the set.
Definition: SmallSet.h:48
block_iterator block_end() const
Definition: LoopInfo.h:141
long double ceill(long double x);
use_iterator use_begin()
Definition: Value.h:150
static cl::opt< bool > EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization."))
static CmpInst * Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=0)
Create a CmpInst.
Value * getCondition() const
void forgetLoop(const Loop *L)
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:200
bool isAggregateType() const
Definition: Type.h:270
double ceil(double x);
static const size_t npos
Definition: StringRef.h:45
unsigned size() const
Definition: SmallSet.h:43
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
unsigned getNumBlocks() const
getNumBlocks - Get the number of blocks in this loop in constant time.
Definition: LoopInfo.h:144
unsigned getAlignment() const
Definition: Instructions.h:181
double floor(double x);
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
static const unsigned SmallLoopCost
The cost of a loop that is considered 'small' by the unroller.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
Definition: PatternMatch.h:940
const Type * getScalarType() const
Definition: Type.cpp:51
const Loop * getLoop() const
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:298
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
Attribute getAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return the attribute object that exists at the given index.
Definition: Attributes.cpp:847
iterator begin()
Definition: MapVector.h:47
const SCEV * getBackedgeTakenCount(const Loop *L)
StringRef getValueAsString() const
Return the attribute's value as a string. This requires the attribute to be a string attribute...
Definition: Attributes.cpp:127
bool use_empty() const
Definition: Value.h:149
float sinf(float x);
iterator end()
Definition: MapVector.h:55
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an 'ordered' floating point maximum function. Floating point has one special value 'NaN'...
Definition: PatternMatch.h:973
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
const ElemTy & getLeaderValue(const ElemTy &V) const
bool hasNoUnsignedWrap() const
hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
const SCEV * getSCEV(Value *V)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
A vector that has set insertion semantics.
Definition: SetVector.h:37
static VectorType * get(Type *ElementType, unsigned NumElements)
Definition: Type.cpp:706
Disable implicit floating point insts.
Definition: Attributes.h:84
long double exp2l(long double x);
double exp2(double x);
static const unsigned TinyTripCountUnrollThreshold
We don't unroll loops with a known constant trip count below this number.
bool empty() const
Definition: LoopInfo.h:134
#define DEBUG(X)
Definition: Debug.h:97
static cl::opt< unsigned > VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."))
block_iterator block_begin() const
Definition: LoopInfo.h:140
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
unsigned greater than
Definition: InstrTypes.h:674
OperandValueKind
Additional information about an operand's possible values.
bool isNoAliasArgument(const Value *V)
iterator getFirstInsertionPt()
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:170
static bool areAllUsesIn(Instruction *I, SmallPtrSet< Instruction *, 8 > &Set)
void setIncomingValue(unsigned i, Value *V)
long double powl(long double x, long double y);
float copysignf(float x, float y);
Value * getPointerOperand()
Definition: Instructions.h:346
int getBasicBlockIndex(const BasicBlock *BB) const
const BasicBlock * getParent() const
Definition: Instruction.h:52
static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr)
Check whether a pointer can participate in a runtime bounds check.
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
gep_type_iterator gep_type_begin(const User *GEP)