LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
FastISel.cpp
Go to the documentation of this file.
1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #define DEBUG_TYPE "isel"
43 #include "llvm/CodeGen/FastISel.h"
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/CodeGen/Analysis.h"
52 #include "llvm/DebugInfo.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/Support/Debug.h"
65 using namespace llvm;
66 
67 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
68  "target-independent selector");
69 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
70  "target-specific selector");
71 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
72 
73 /// startNewBlock - Set the current block to which generated machine
74 /// instructions will be appended, and clear the local CSE map.
75 ///
78 
79  // Instructions are appended to FuncInfo.MBB. If the basic block already
80  // contains labels or copies, use the last instruction as the last local
81  // value.
82  EmitStartPt = 0;
83  if (!FuncInfo.MBB->empty())
86 }
87 
90  // Fallback to SDISel argument lowering code to deal with sret pointer
91  // parameter.
92  return false;
93 
94  if (!FastLowerArguments())
95  return false;
96 
97  // Enter arguments into ValueMap for uses in non-entry BBs.
99  E = FuncInfo.Fn->arg_end(); I != E; ++I) {
101  assert(VI != LocalValueMap.end() && "Missed an argument?");
102  FuncInfo.ValueMap[I] = VI->second;
103  }
104  return true;
105 }
106 
107 void FastISel::flushLocalValueMap() {
111 }
112 
113 bool FastISel::hasTrivialKill(const Value *V) const {
114  // Don't consider constants or arguments to have trivial kills.
115  const Instruction *I = dyn_cast<Instruction>(V);
116  if (!I)
117  return false;
118 
119  // No-op casts are trivially coalesced by fast-isel.
120  if (const CastInst *Cast = dyn_cast<CastInst>(I))
121  if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
122  !hasTrivialKill(Cast->getOperand(0)))
123  return false;
124 
125  // GEPs with all zero indices are trivially coalesced by fast-isel.
126  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
127  if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
128  return false;
129 
130  // Only instructions with a single use in the same basic block are considered
131  // to have trivial kills.
132  return I->hasOneUse() &&
133  !(I->getOpcode() == Instruction::BitCast ||
134  I->getOpcode() == Instruction::PtrToInt ||
135  I->getOpcode() == Instruction::IntToPtr) &&
136  cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
137 }
138 
139 unsigned FastISel::getRegForValue(const Value *V) {
140  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
141  // Don't handle non-simple values in FastISel.
142  if (!RealVT.isSimple())
143  return 0;
144 
145  // Ignore illegal types. We must do this before looking up the value
146  // in ValueMap because Arguments are given virtual registers regardless
147  // of whether FastISel can handle them.
148  MVT VT = RealVT.getSimpleVT();
149  if (!TLI.isTypeLegal(VT)) {
150  // Handle integer promotions, though, because they're common and easy.
151  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
152  VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
153  else
154  return 0;
155  }
156 
157  // Look up the value to see if we already have a register for it.
158  unsigned Reg = lookUpRegForValue(V);
159  if (Reg != 0)
160  return Reg;
161 
162  // In bottom-up mode, just create the virtual register which will be used
163  // to hold the value. It will be materialized later.
164  if (isa<Instruction>(V) &&
165  (!isa<AllocaInst>(V) ||
166  !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
168 
169  SavePoint SaveInsertPt = enterLocalValueArea();
170 
171  // Materialize the value in a register. Emit any instructions in the
172  // local value area.
173  Reg = materializeRegForValue(V, VT);
174 
175  leaveLocalValueArea(SaveInsertPt);
176 
177  return Reg;
178 }
179 
180 /// materializeRegForValue - Helper for getRegForValue. This function is
181 /// called when the value isn't already available in a register and must
182 /// be materialized with new instructions.
183 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
184  unsigned Reg = 0;
185 
186  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
187  if (CI->getValue().getActiveBits() <= 64)
188  Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
189  } else if (isa<AllocaInst>(V)) {
190  Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
191  } else if (isa<ConstantPointerNull>(V)) {
192  // Translate this as an integer zero so that it can be
193  // local-CSE'd with actual integer zeros.
194  Reg =
196  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
197  if (CF->isNullValue()) {
198  Reg = TargetMaterializeFloatZero(CF);
199  } else {
200  // Try to emit the constant directly.
201  Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
202  }
203 
204  if (!Reg) {
205  // Try to emit the constant by using an integer constant with a cast.
206  const APFloat &Flt = CF->getValueAPF();
207  EVT IntVT = TLI.getPointerTy();
208 
209  uint64_t x[2];
210  uint32_t IntBitWidth = IntVT.getSizeInBits();
211  bool isExact;
212  (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
213  APFloat::rmTowardZero, &isExact);
214  if (isExact) {
215  APInt IntVal(IntBitWidth, x);
216 
217  unsigned IntegerReg =
219  if (IntegerReg != 0)
220  Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
221  IntegerReg, /*Kill=*/false);
222  }
223  }
224  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
225  if (!SelectOperator(Op, Op->getOpcode()))
226  if (!isa<Instruction>(Op) ||
227  !TargetSelectInstruction(cast<Instruction>(Op)))
228  return 0;
229  Reg = lookUpRegForValue(Op);
230  } else if (isa<UndefValue>(V)) {
234  }
235 
236  // If target-independent code couldn't handle the value, give target-specific
237  // code a try.
238  if (!Reg && isa<Constant>(V))
239  Reg = TargetMaterializeConstant(cast<Constant>(V));
240 
241  // Don't cache constant materializations in the general ValueMap.
242  // To do so would require tracking what uses they dominate.
243  if (Reg != 0) {
244  LocalValueMap[V] = Reg;
246  }
247  return Reg;
248 }
249 
250 unsigned FastISel::lookUpRegForValue(const Value *V) {
251  // Look up the value to see if we already have a register for it. We
252  // cache values defined by Instructions across blocks, and other values
253  // only locally. This is because Instructions already have the SSA
254  // def-dominates-use requirement enforced.
256  if (I != FuncInfo.ValueMap.end())
257  return I->second;
258  return LocalValueMap[V];
259 }
260 
261 /// UpdateValueMap - Update the value map to include the new mapping for this
262 /// instruction, or insert an extra copy to get the result in a previous
263 /// determined register.
264 /// NOTE: This is only necessary because we might select a block that uses
265 /// a value before we select the block that defines the value. It might be
266 /// possible to fix this by selecting blocks in reverse postorder.
267 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
268  if (!isa<Instruction>(I)) {
269  LocalValueMap[I] = Reg;
270  return;
271  }
272 
273  unsigned &AssignedReg = FuncInfo.ValueMap[I];
274  if (AssignedReg == 0)
275  // Use the new register.
276  AssignedReg = Reg;
277  else if (Reg != AssignedReg) {
278  // Arrange for uses of AssignedReg to be replaced by uses of Reg.
279  for (unsigned i = 0; i < NumRegs; i++)
280  FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
281 
282  AssignedReg = Reg;
283  }
284 }
285 
286 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
287  unsigned IdxN = getRegForValue(Idx);
288  if (IdxN == 0)
289  // Unhandled operand. Halt "fast" selection and bail.
290  return std::pair<unsigned, bool>(0, false);
291 
292  bool IdxNIsKill = hasTrivialKill(Idx);
293 
294  // If the index is smaller or larger than intptr_t, truncate or extend it.
295  MVT PtrVT = TLI.getPointerTy();
296  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
297  if (IdxVT.bitsLT(PtrVT)) {
298  IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
299  IdxN, IdxNIsKill);
300  IdxNIsKill = true;
301  }
302  else if (IdxVT.bitsGT(PtrVT)) {
303  IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
304  IdxN, IdxNIsKill);
305  IdxNIsKill = true;
306  }
307  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
308 }
309 
311  if (getLastLocalValue()) {
313  FuncInfo.MBB = FuncInfo.InsertPt->getParent();
314  ++FuncInfo.InsertPt;
315  } else
317 
318  // Now skip past any EH_LABELs, which must remain at the beginning.
319  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
320  FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
321  ++FuncInfo.InsertPt;
322 }
323 
326  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
327  while (I != E) {
328  MachineInstr *Dead = &*I;
329  ++I;
330  Dead->eraseFromParent();
331  ++NumFastIselDead;
332  }
334 }
335 
338  DebugLoc OldDL = DL;
340  DL = DebugLoc();
341  SavePoint SP = { OldInsertPt, OldDL };
342  return SP;
343 }
344 
346  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
348 
349  // Restore the previous insert position.
350  FuncInfo.InsertPt = OldInsertPt.InsertPt;
351  DL = OldInsertPt.DL;
352 }
353 
354 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
355 /// which has an opcode which directly corresponds to the given ISD opcode.
356 ///
357 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
358  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
359  if (VT == MVT::Other || !VT.isSimple())
360  // Unhandled type. Halt "fast" selection and bail.
361  return false;
362 
363  // We only handle legal types. For example, on x86-32 the instruction
364  // selector contains all of the 64-bit instructions from x86-64,
365  // under the assumption that i64 won't be used if the target doesn't
366  // support it.
367  if (!TLI.isTypeLegal(VT)) {
368  // MVT::i1 is special. Allow AND, OR, or XOR because they
369  // don't require additional zeroing, which makes them easy.
370  if (VT == MVT::i1 &&
371  (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
372  ISDOpcode == ISD::XOR))
373  VT = TLI.getTypeToTransformTo(I->getContext(), VT);
374  else
375  return false;
376  }
377 
378  // Check if the first operand is a constant, and handle it as "ri". At -O0,
379  // we don't have anything that canonicalizes operand order.
380  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
381  if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
382  unsigned Op1 = getRegForValue(I->getOperand(1));
383  if (Op1 == 0) return false;
384 
385  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
386 
387  unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
388  Op1IsKill, CI->getZExtValue(),
389  VT.getSimpleVT());
390  if (ResultReg == 0) return false;
391 
392  // We successfully emitted code for the given LLVM Instruction.
393  UpdateValueMap(I, ResultReg);
394  return true;
395  }
396 
397 
398  unsigned Op0 = getRegForValue(I->getOperand(0));
399  if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
400  return false;
401 
402  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
403 
404  // Check if the second operand is a constant and handle it appropriately.
405  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
406  uint64_t Imm = CI->getZExtValue();
407 
408  // Transform "sdiv exact X, 8" -> "sra X, 3".
409  if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
410  cast<BinaryOperator>(I)->isExact() &&
411  isPowerOf2_64(Imm)) {
412  Imm = Log2_64(Imm);
413  ISDOpcode = ISD::SRA;
414  }
415 
416  // Transform "urem x, pow2" -> "and x, pow2-1".
417  if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
418  isPowerOf2_64(Imm)) {
419  --Imm;
420  ISDOpcode = ISD::AND;
421  }
422 
423  unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
424  Op0IsKill, Imm, VT.getSimpleVT());
425  if (ResultReg == 0) return false;
426 
427  // We successfully emitted code for the given LLVM Instruction.
428  UpdateValueMap(I, ResultReg);
429  return true;
430  }
431 
432  // Check if the second operand is a constant float.
433  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
434  unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
435  ISDOpcode, Op0, Op0IsKill, CF);
436  if (ResultReg != 0) {
437  // We successfully emitted code for the given LLVM Instruction.
438  UpdateValueMap(I, ResultReg);
439  return true;
440  }
441  }
442 
443  unsigned Op1 = getRegForValue(I->getOperand(1));
444  if (Op1 == 0)
445  // Unhandled operand. Halt "fast" selection and bail.
446  return false;
447 
448  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
449 
450  // Now we have both operands in registers. Emit the instruction.
451  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
452  ISDOpcode,
453  Op0, Op0IsKill,
454  Op1, Op1IsKill);
455  if (ResultReg == 0)
456  // Target-specific code wasn't able to find a machine opcode for
457  // the given ISD opcode and type. Halt "fast" selection and bail.
458  return false;
459 
460  // We successfully emitted code for the given LLVM Instruction.
461  UpdateValueMap(I, ResultReg);
462  return true;
463 }
464 
465 bool FastISel::SelectGetElementPtr(const User *I) {
466  unsigned N = getRegForValue(I->getOperand(0));
467  if (N == 0)
468  // Unhandled operand. Halt "fast" selection and bail.
469  return false;
470 
471  bool NIsKill = hasTrivialKill(I->getOperand(0));
472 
473  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
474  // into a single N = N + TotalOffset.
475  uint64_t TotalOffs = 0;
476  // FIXME: What's a good SWAG number for MaxOffs?
477  uint64_t MaxOffs = 2048;
478  Type *Ty = I->getOperand(0)->getType();
479  MVT VT = TLI.getPointerTy();
481  E = I->op_end(); OI != E; ++OI) {
482  const Value *Idx = *OI;
483  if (StructType *StTy = dyn_cast<StructType>(Ty)) {
484  unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
485  if (Field) {
486  // N = N + Offset
487  TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
488  if (TotalOffs >= MaxOffs) {
489  N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
490  if (N == 0)
491  // Unhandled operand. Halt "fast" selection and bail.
492  return false;
493  NIsKill = true;
494  TotalOffs = 0;
495  }
496  }
497  Ty = StTy->getElementType(Field);
498  } else {
499  Ty = cast<SequentialType>(Ty)->getElementType();
500 
501  // If this is a constant subscript, handle it quickly.
502  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
503  if (CI->isZero()) continue;
504  // N = N + Offset
505  TotalOffs +=
506  TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
507  if (TotalOffs >= MaxOffs) {
508  N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
509  if (N == 0)
510  // Unhandled operand. Halt "fast" selection and bail.
511  return false;
512  NIsKill = true;
513  TotalOffs = 0;
514  }
515  continue;
516  }
517  if (TotalOffs) {
518  N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
519  if (N == 0)
520  // Unhandled operand. Halt "fast" selection and bail.
521  return false;
522  NIsKill = true;
523  TotalOffs = 0;
524  }
525 
526  // N = N + Idx * ElementSize;
527  uint64_t ElementSize = TD.getTypeAllocSize(Ty);
528  std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
529  unsigned IdxN = Pair.first;
530  bool IdxNIsKill = Pair.second;
531  if (IdxN == 0)
532  // Unhandled operand. Halt "fast" selection and bail.
533  return false;
534 
535  if (ElementSize != 1) {
536  IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
537  if (IdxN == 0)
538  // Unhandled operand. Halt "fast" selection and bail.
539  return false;
540  IdxNIsKill = true;
541  }
542  N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
543  if (N == 0)
544  // Unhandled operand. Halt "fast" selection and bail.
545  return false;
546  }
547  }
548  if (TotalOffs) {
549  N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
550  if (N == 0)
551  // Unhandled operand. Halt "fast" selection and bail.
552  return false;
553  }
554 
555  // We successfully emitted code for the given LLVM Instruction.
556  UpdateValueMap(I, N);
557  return true;
558 }
559 
560 bool FastISel::SelectCall(const User *I) {
561  const CallInst *Call = cast<CallInst>(I);
562 
563  // Handle simple inline asms.
564  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
565  // Don't attempt to handle constraints.
566  if (!IA->getConstraintString().empty())
567  return false;
568 
569  unsigned ExtraInfo = 0;
570  if (IA->hasSideEffects())
571  ExtraInfo |= InlineAsm::Extra_HasSideEffects;
572  if (IA->isAlignStack())
573  ExtraInfo |= InlineAsm::Extra_IsAlignStack;
574 
577  .addExternalSymbol(IA->getAsmString().c_str())
578  .addImm(ExtraInfo);
579  return true;
580  }
581 
583  ComputeUsesVAFloatArgument(*Call, &MMI);
584 
585  const Function *F = Call->getCalledFunction();
586  if (!F) return false;
587 
588  // Handle selected intrinsic function calls.
589  switch (F->getIntrinsicID()) {
590  default: break;
591  // At -O0 we don't care about the lifetime intrinsics.
594  // The donothing intrinsic does, well, nothing.
596  return true;
597 
598  case Intrinsic::dbg_declare: {
599  const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
600  DIVariable DIVar(DI->getVariable());
601  assert((!DIVar || DIVar.isVariable()) &&
602  "Variable in DbgDeclareInst should be either null or a DIVariable.");
603  if (!DIVar ||
604  !FuncInfo.MF->getMMI().hasDebugInfo()) {
605  DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
606  return true;
607  }
608 
609  const Value *Address = DI->getAddress();
610  if (!Address || isa<UndefValue>(Address)) {
611  DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
612  return true;
613  }
614 
615  unsigned Offset = 0;
617  if (const Argument *Arg = dyn_cast<Argument>(Address))
618  // Some arguments' frame index is recorded during argument lowering.
619  Offset = FuncInfo.getArgumentFrameIndex(Arg);
620  if (Offset)
621  Op = MachineOperand::CreateFI(Offset);
622  if (!Op)
623  if (unsigned Reg = lookUpRegForValue(Address))
624  Op = MachineOperand::CreateReg(Reg, false);
625 
626  // If we have a VLA that has a "use" in a metadata node that's then used
627  // here but it has no other uses, then we have a problem. E.g.,
628  //
629  // int foo (const int *x) {
630  // char a[*x];
631  // return 0;
632  // }
633  //
634  // If we assign 'a' a vreg and fast isel later on has to use the selection
635  // DAG isel, it will want to copy the value to the vreg. However, there are
636  // no uses, which goes counter to what selection DAG isel expects.
637  if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
638  (!isa<AllocaInst>(Address) ||
639  !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
641  false);
642 
643  if (Op) {
644  if (Op->isReg()) {
645  Op->setIsDebug(true);
647  TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
648  DI->getVariable());
649  } else
652  .addOperand(*Op)
653  .addImm(0)
654  .addMetadata(DI->getVariable());
655  } else {
656  // We can't yet handle anything else here because it would require
657  // generating code, thus altering codegen because of debug info.
658  DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
659  }
660  return true;
661  }
662  case Intrinsic::dbg_value: {
663  // This form of DBG_VALUE is target-independent.
664  const DbgValueInst *DI = cast<DbgValueInst>(Call);
666  const Value *V = DI->getValue();
667  if (!V) {
668  // Currently the optimizer can produce this; insert an undef to
669  // help debugging. Probably the optimizer should not do this.
671  .addReg(0U).addImm(DI->getOffset())
672  .addMetadata(DI->getVariable());
673  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
674  if (CI->getBitWidth() > 64)
676  .addCImm(CI).addImm(DI->getOffset())
677  .addMetadata(DI->getVariable());
678  else
680  .addImm(CI->getZExtValue()).addImm(DI->getOffset())
681  .addMetadata(DI->getVariable());
682  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
684  .addFPImm(CF).addImm(DI->getOffset())
685  .addMetadata(DI->getVariable());
686  } else if (unsigned Reg = lookUpRegForValue(V)) {
687  // FIXME: This does not handle register-indirect values at offset 0.
688  bool IsIndirect = DI->getOffset() != 0;
689  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect,
690  Reg, DI->getOffset(), DI->getVariable());
691  } else {
692  // We can't yet handle anything else here because it would require
693  // generating code, thus altering codegen because of debug info.
694  DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
695  }
696  return true;
697  }
698  case Intrinsic::objectsize: {
699  ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
700  unsigned long long Res = CI->isZero() ? -1ULL : 0;
701  Constant *ResCI = ConstantInt::get(Call->getType(), Res);
702  unsigned ResultReg = getRegForValue(ResCI);
703  if (ResultReg == 0)
704  return false;
705  UpdateValueMap(Call, ResultReg);
706  return true;
707  }
708  case Intrinsic::expect: {
709  unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
710  if (ResultReg == 0)
711  return false;
712  UpdateValueMap(Call, ResultReg);
713  return true;
714  }
715  }
716 
717  // Usually, it does not make sense to initialize a value,
718  // make an unrelated function call and use the value, because
719  // it tends to be spilled on the stack. So, we move the pointer
720  // to the last local value to the beginning of the block, so that
721  // all the values which have already been materialized,
722  // appear after the call. It also makes sense to skip intrinsics
723  // since they tend to be inlined.
724  if (!isa<IntrinsicInst>(Call))
725  flushLocalValueMap();
726 
727  // An arbitrary call. Bail.
728  return false;
729 }
730 
731 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
732  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
733  EVT DstVT = TLI.getValueType(I->getType());
734 
735  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
736  DstVT == MVT::Other || !DstVT.isSimple())
737  // Unhandled type. Halt "fast" selection and bail.
738  return false;
739 
740  // Check if the destination type is legal.
741  if (!TLI.isTypeLegal(DstVT))
742  return false;
743 
744  // Check if the source operand is legal.
745  if (!TLI.isTypeLegal(SrcVT))
746  return false;
747 
748  unsigned InputReg = getRegForValue(I->getOperand(0));
749  if (!InputReg)
750  // Unhandled operand. Halt "fast" selection and bail.
751  return false;
752 
753  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
754 
755  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
756  DstVT.getSimpleVT(),
757  Opcode,
758  InputReg, InputRegIsKill);
759  if (!ResultReg)
760  return false;
761 
762  UpdateValueMap(I, ResultReg);
763  return true;
764 }
765 
766 bool FastISel::SelectBitCast(const User *I) {
767  // If the bitcast doesn't change the type, just use the operand value.
768  if (I->getType() == I->getOperand(0)->getType()) {
769  unsigned Reg = getRegForValue(I->getOperand(0));
770  if (Reg == 0)
771  return false;
772  UpdateValueMap(I, Reg);
773  return true;
774  }
775 
776  // Bitcasts of other values become reg-reg copies or BITCAST operators.
777  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
778  EVT DstEVT = TLI.getValueType(I->getType());
779  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
780  !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
781  // Unhandled type. Halt "fast" selection and bail.
782  return false;
783 
784  MVT SrcVT = SrcEVT.getSimpleVT();
785  MVT DstVT = DstEVT.getSimpleVT();
786  unsigned Op0 = getRegForValue(I->getOperand(0));
787  if (Op0 == 0)
788  // Unhandled operand. Halt "fast" selection and bail.
789  return false;
790 
791  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
792 
793  // First, try to perform the bitcast by inserting a reg-reg copy.
794  unsigned ResultReg = 0;
795  if (SrcVT == DstVT) {
796  const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
797  const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
798  // Don't attempt a cross-class copy. It will likely fail.
799  if (SrcClass == DstClass) {
800  ResultReg = createResultReg(DstClass);
802  ResultReg).addReg(Op0);
803  }
804  }
805 
806  // If the reg-reg copy failed, select a BITCAST opcode.
807  if (!ResultReg)
808  ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
809 
810  if (!ResultReg)
811  return false;
812 
813  UpdateValueMap(I, ResultReg);
814  return true;
815 }
816 
817 bool
819  // Just before the terminator instruction, insert instructions to
820  // feed PHI nodes in successor blocks.
821  if (isa<TerminatorInst>(I))
822  if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
823  return false;
824 
825  DL = I->getDebugLoc();
826 
828 
829  // As a special case, don't handle calls to builtin library functions that
830  // may be translated directly to target instructions.
831  if (const CallInst *Call = dyn_cast<CallInst>(I)) {
832  const Function *F = Call->getCalledFunction();
834  if (F && !F->hasLocalLinkage() && F->hasName() &&
835  LibInfo->getLibFunc(F->getName(), Func) &&
837  return false;
838  }
839 
840  // First, try doing target-independent selection.
841  if (SelectOperator(I, I->getOpcode())) {
842  ++NumFastIselSuccessIndependent;
843  DL = DebugLoc();
844  return true;
845  }
846  // Remove dead code. However, ignore call instructions since we've flushed
847  // the local value map and recomputed the insert point.
848  if (!isa<CallInst>(I)) {
850  if (SavedInsertPt != FuncInfo.InsertPt)
851  removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
852  }
853 
854  // Next, try calling the target to attempt to handle the instruction.
855  SavedInsertPt = FuncInfo.InsertPt;
856  if (TargetSelectInstruction(I)) {
857  ++NumFastIselSuccessTarget;
858  DL = DebugLoc();
859  return true;
860  }
861  // Check for dead code and remove as necessary.
863  if (SavedInsertPt != FuncInfo.InsertPt)
864  removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
865 
866  DL = DebugLoc();
867  return false;
868 }
869 
870 /// FastEmitBranch - Emit an unconditional branch to the given block,
871 /// unless it is the immediate (fall-through) successor, and update
872 /// the CFG.
873 void
875 
876  if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
877  FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
878  // For more accurate line information if this is the only instruction
879  // in the block then emit it, otherwise we have the unconditional
880  // fall-through case, which needs no instructions.
881  } else {
882  // The unconditional branch case.
883  TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
885  }
886  FuncInfo.MBB->addSuccessor(MSucc);
887 }
888 
889 /// SelectFNeg - Emit an FNeg operation.
890 ///
891 bool
892 FastISel::SelectFNeg(const User *I) {
893  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
894  if (OpReg == 0) return false;
895 
896  bool OpRegIsKill = hasTrivialKill(I);
897 
898  // If the target has ISD::FNEG, use it.
899  EVT VT = TLI.getValueType(I->getType());
900  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
901  ISD::FNEG, OpReg, OpRegIsKill);
902  if (ResultReg != 0) {
903  UpdateValueMap(I, ResultReg);
904  return true;
905  }
906 
907  // Bitcast the value to integer, twiddle the sign bit with xor,
908  // and then bitcast it back to floating-point.
909  if (VT.getSizeInBits() > 64) return false;
910  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
911  if (!TLI.isTypeLegal(IntVT))
912  return false;
913 
914  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
915  ISD::BITCAST, OpReg, OpRegIsKill);
916  if (IntReg == 0)
917  return false;
918 
919  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
920  IntReg, /*Kill=*/true,
921  UINT64_C(1) << (VT.getSizeInBits()-1),
922  IntVT.getSimpleVT());
923  if (IntResultReg == 0)
924  return false;
925 
926  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
927  ISD::BITCAST, IntResultReg, /*Kill=*/true);
928  if (ResultReg == 0)
929  return false;
930 
931  UpdateValueMap(I, ResultReg);
932  return true;
933 }
934 
935 bool
936 FastISel::SelectExtractValue(const User *U) {
937  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
938  if (!EVI)
939  return false;
940 
941  // Make sure we only try to handle extracts with a legal result. But also
942  // allow i1 because it's easy.
943  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
944  if (!RealVT.isSimple())
945  return false;
946  MVT VT = RealVT.getSimpleVT();
947  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
948  return false;
949 
950  const Value *Op0 = EVI->getOperand(0);
951  Type *AggTy = Op0->getType();
952 
953  // Get the base result register.
954  unsigned ResultReg;
956  if (I != FuncInfo.ValueMap.end())
957  ResultReg = I->second;
958  else if (isa<Instruction>(Op0))
959  ResultReg = FuncInfo.InitializeRegForValue(Op0);
960  else
961  return false; // fast-isel can't handle aggregate constants at the moment
962 
963  // Get the actual result register, which is an offset from the base register.
964  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
965 
966  SmallVector<EVT, 4> AggValueVTs;
967  ComputeValueVTs(TLI, AggTy, AggValueVTs);
968 
969  for (unsigned i = 0; i < VTIndex; i++)
970  ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
971 
972  UpdateValueMap(EVI, ResultReg);
973  return true;
974 }
975 
976 bool
977 FastISel::SelectOperator(const User *I, unsigned Opcode) {
978  switch (Opcode) {
979  case Instruction::Add:
980  return SelectBinaryOp(I, ISD::ADD);
981  case Instruction::FAdd:
982  return SelectBinaryOp(I, ISD::FADD);
983  case Instruction::Sub:
984  return SelectBinaryOp(I, ISD::SUB);
985  case Instruction::FSub:
986  // FNeg is currently represented in LLVM IR as a special case of FSub.
987  if (BinaryOperator::isFNeg(I))
988  return SelectFNeg(I);
989  return SelectBinaryOp(I, ISD::FSUB);
990  case Instruction::Mul:
991  return SelectBinaryOp(I, ISD::MUL);
992  case Instruction::FMul:
993  return SelectBinaryOp(I, ISD::FMUL);
994  case Instruction::SDiv:
995  return SelectBinaryOp(I, ISD::SDIV);
996  case Instruction::UDiv:
997  return SelectBinaryOp(I, ISD::UDIV);
998  case Instruction::FDiv:
999  return SelectBinaryOp(I, ISD::FDIV);
1000  case Instruction::SRem:
1001  return SelectBinaryOp(I, ISD::SREM);
1002  case Instruction::URem:
1003  return SelectBinaryOp(I, ISD::UREM);
1004  case Instruction::FRem:
1005  return SelectBinaryOp(I, ISD::FREM);
1006  case Instruction::Shl:
1007  return SelectBinaryOp(I, ISD::SHL);
1008  case Instruction::LShr:
1009  return SelectBinaryOp(I, ISD::SRL);
1010  case Instruction::AShr:
1011  return SelectBinaryOp(I, ISD::SRA);
1012  case Instruction::And:
1013  return SelectBinaryOp(I, ISD::AND);
1014  case Instruction::Or:
1015  return SelectBinaryOp(I, ISD::OR);
1016  case Instruction::Xor:
1017  return SelectBinaryOp(I, ISD::XOR);
1018 
1019  case Instruction::GetElementPtr:
1020  return SelectGetElementPtr(I);
1021 
1022  case Instruction::Br: {
1023  const BranchInst *BI = cast<BranchInst>(I);
1024 
1025  if (BI->isUnconditional()) {
1026  const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1027  MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1028  FastEmitBranch(MSucc, BI->getDebugLoc());
1029  return true;
1030  }
1031 
1032  // Conditional branches are not handed yet.
1033  // Halt "fast" selection and bail.
1034  return false;
1035  }
1036 
1037  case Instruction::Unreachable:
1038  // Nothing to emit.
1039  return true;
1040 
1041  case Instruction::Alloca:
1042  // FunctionLowering has the static-sized case covered.
1043  if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1044  return true;
1045 
1046  // Dynamic-sized alloca is not handled yet.
1047  return false;
1048 
1049  case Instruction::Call:
1050  return SelectCall(I);
1051 
1052  case Instruction::BitCast:
1053  return SelectBitCast(I);
1054 
1055  case Instruction::FPToSI:
1056  return SelectCast(I, ISD::FP_TO_SINT);
1057  case Instruction::ZExt:
1058  return SelectCast(I, ISD::ZERO_EXTEND);
1059  case Instruction::SExt:
1060  return SelectCast(I, ISD::SIGN_EXTEND);
1061  case Instruction::Trunc:
1062  return SelectCast(I, ISD::TRUNCATE);
1063  case Instruction::SIToFP:
1064  return SelectCast(I, ISD::SINT_TO_FP);
1065 
1066  case Instruction::IntToPtr: // Deliberate fall-through.
1067  case Instruction::PtrToInt: {
1068  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1069  EVT DstVT = TLI.getValueType(I->getType());
1070  if (DstVT.bitsGT(SrcVT))
1071  return SelectCast(I, ISD::ZERO_EXTEND);
1072  if (DstVT.bitsLT(SrcVT))
1073  return SelectCast(I, ISD::TRUNCATE);
1074  unsigned Reg = getRegForValue(I->getOperand(0));
1075  if (Reg == 0) return false;
1076  UpdateValueMap(I, Reg);
1077  return true;
1078  }
1079 
1080  case Instruction::ExtractValue:
1081  return SelectExtractValue(I);
1082 
1083  case Instruction::PHI:
1084  llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1085 
1086  default:
1087  // Unhandled instruction. Halt "fast" selection and bail.
1088  return false;
1089  }
1090 }
1091 
1093  const TargetLibraryInfo *libInfo)
1094  : FuncInfo(funcInfo),
1095  MRI(FuncInfo.MF->getRegInfo()),
1096  MFI(*FuncInfo.MF->getFrameInfo()),
1097  MCP(*FuncInfo.MF->getConstantPool()),
1098  TM(FuncInfo.MF->getTarget()),
1099  TD(*TM.getDataLayout()),
1100  TII(*TM.getInstrInfo()),
1101  TLI(*TM.getTargetLowering()),
1102  TRI(*TM.getRegisterInfo()),
1103  LibInfo(libInfo) {
1104 }
1105 
1107 
1109  return false;
1110 }
1111 
1113  unsigned) {
1114  return 0;
1115 }
1116 
1118  unsigned,
1119  unsigned /*Op0*/, bool /*Op0IsKill*/) {
1120  return 0;
1121 }
1122 
1124  unsigned,
1125  unsigned /*Op0*/, bool /*Op0IsKill*/,
1126  unsigned /*Op1*/, bool /*Op1IsKill*/) {
1127  return 0;
1128 }
1129 
1130 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1131  return 0;
1132 }
1133 
1135  unsigned, const ConstantFP * /*FPImm*/) {
1136  return 0;
1137 }
1138 
1140  unsigned,
1141  unsigned /*Op0*/, bool /*Op0IsKill*/,
1142  uint64_t /*Imm*/) {
1143  return 0;
1144 }
1145 
1147  unsigned,
1148  unsigned /*Op0*/, bool /*Op0IsKill*/,
1149  const ConstantFP * /*FPImm*/) {
1150  return 0;
1151 }
1152 
1154  unsigned,
1155  unsigned /*Op0*/, bool /*Op0IsKill*/,
1156  unsigned /*Op1*/, bool /*Op1IsKill*/,
1157  uint64_t /*Imm*/) {
1158  return 0;
1159 }
1160 
1161 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1162 /// to emit an instruction with an immediate operand using FastEmit_ri.
1163 /// If that fails, it materializes the immediate into a register and try
1164 /// FastEmit_rr instead.
1165 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1166  unsigned Op0, bool Op0IsKill,
1167  uint64_t Imm, MVT ImmType) {
1168  // If this is a multiply by a power of two, emit this as a shift left.
1169  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1170  Opcode = ISD::SHL;
1171  Imm = Log2_64(Imm);
1172  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1173  // div x, 8 -> srl x, 3
1174  Opcode = ISD::SRL;
1175  Imm = Log2_64(Imm);
1176  }
1177 
1178  // Horrible hack (to be removed), check to make sure shift amounts are
1179  // in-range.
1180  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1181  Imm >= VT.getSizeInBits())
1182  return 0;
1183 
1184  // First check if immediate type is legal. If not, we can't use the ri form.
1185  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1186  if (ResultReg != 0)
1187  return ResultReg;
1188  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1189  if (MaterialReg == 0) {
1190  // This is a bit ugly/slow, but failing here means falling out of
1191  // fast-isel, which would be very slow.
1193  VT.getSizeInBits());
1194  MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1195  assert (MaterialReg != 0 && "Unable to materialize imm.");
1196  if (MaterialReg == 0) return 0;
1197  }
1198  return FastEmit_rr(VT, VT, Opcode,
1199  Op0, Op0IsKill,
1200  MaterialReg, /*Kill=*/true);
1201 }
1202 
1204  return MRI.createVirtualRegister(RC);
1205 }
1206 
1207 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1208  const TargetRegisterClass* RC) {
1209  unsigned ResultReg = createResultReg(RC);
1210  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1211 
1212  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1213  return ResultReg;
1214 }
1215 
1216 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1217  const TargetRegisterClass *RC,
1218  unsigned Op0, bool Op0IsKill) {
1219  unsigned ResultReg = createResultReg(RC);
1220  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1221 
1222  if (II.getNumDefs() >= 1)
1223  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1224  .addReg(Op0, Op0IsKill * RegState::Kill);
1225  else {
1227  .addReg(Op0, Op0IsKill * RegState::Kill);
1229  ResultReg).addReg(II.ImplicitDefs[0]);
1230  }
1231 
1232  return ResultReg;
1233 }
1234 
1235 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1236  const TargetRegisterClass *RC,
1237  unsigned Op0, bool Op0IsKill,
1238  unsigned Op1, bool Op1IsKill) {
1239  unsigned ResultReg = createResultReg(RC);
1240  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1241 
1242  if (II.getNumDefs() >= 1)
1243  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1244  .addReg(Op0, Op0IsKill * RegState::Kill)
1245  .addReg(Op1, Op1IsKill * RegState::Kill);
1246  else {
1248  .addReg(Op0, Op0IsKill * RegState::Kill)
1249  .addReg(Op1, Op1IsKill * RegState::Kill);
1251  ResultReg).addReg(II.ImplicitDefs[0]);
1252  }
1253  return ResultReg;
1254 }
1255 
1256 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1257  const TargetRegisterClass *RC,
1258  unsigned Op0, bool Op0IsKill,
1259  unsigned Op1, bool Op1IsKill,
1260  unsigned Op2, bool Op2IsKill) {
1261  unsigned ResultReg = createResultReg(RC);
1262  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1263 
1264  if (II.getNumDefs() >= 1)
1265  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1266  .addReg(Op0, Op0IsKill * RegState::Kill)
1267  .addReg(Op1, Op1IsKill * RegState::Kill)
1268  .addReg(Op2, Op2IsKill * RegState::Kill);
1269  else {
1271  .addReg(Op0, Op0IsKill * RegState::Kill)
1272  .addReg(Op1, Op1IsKill * RegState::Kill)
1273  .addReg(Op2, Op2IsKill * RegState::Kill);
1275  ResultReg).addReg(II.ImplicitDefs[0]);
1276  }
1277  return ResultReg;
1278 }
1279 
1280 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1281  const TargetRegisterClass *RC,
1282  unsigned Op0, bool Op0IsKill,
1283  uint64_t Imm) {
1284  unsigned ResultReg = createResultReg(RC);
1285  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1286 
1287  if (II.getNumDefs() >= 1)
1288  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1289  .addReg(Op0, Op0IsKill * RegState::Kill)
1290  .addImm(Imm);
1291  else {
1293  .addReg(Op0, Op0IsKill * RegState::Kill)
1294  .addImm(Imm);
1296  ResultReg).addReg(II.ImplicitDefs[0]);
1297  }
1298  return ResultReg;
1299 }
1300 
1301 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1302  const TargetRegisterClass *RC,
1303  unsigned Op0, bool Op0IsKill,
1304  uint64_t Imm1, uint64_t Imm2) {
1305  unsigned ResultReg = createResultReg(RC);
1306  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1307 
1308  if (II.getNumDefs() >= 1)
1309  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1310  .addReg(Op0, Op0IsKill * RegState::Kill)
1311  .addImm(Imm1)
1312  .addImm(Imm2);
1313  else {
1315  .addReg(Op0, Op0IsKill * RegState::Kill)
1316  .addImm(Imm1)
1317  .addImm(Imm2);
1319  ResultReg).addReg(II.ImplicitDefs[0]);
1320  }
1321  return ResultReg;
1322 }
1323 
1324 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1325  const TargetRegisterClass *RC,
1326  unsigned Op0, bool Op0IsKill,
1327  const ConstantFP *FPImm) {
1328  unsigned ResultReg = createResultReg(RC);
1329  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1330 
1331  if (II.getNumDefs() >= 1)
1332  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1333  .addReg(Op0, Op0IsKill * RegState::Kill)
1334  .addFPImm(FPImm);
1335  else {
1337  .addReg(Op0, Op0IsKill * RegState::Kill)
1338  .addFPImm(FPImm);
1340  ResultReg).addReg(II.ImplicitDefs[0]);
1341  }
1342  return ResultReg;
1343 }
1344 
1345 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1346  const TargetRegisterClass *RC,
1347  unsigned Op0, bool Op0IsKill,
1348  unsigned Op1, bool Op1IsKill,
1349  uint64_t Imm) {
1350  unsigned ResultReg = createResultReg(RC);
1351  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1352 
1353  if (II.getNumDefs() >= 1)
1354  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1355  .addReg(Op0, Op0IsKill * RegState::Kill)
1356  .addReg(Op1, Op1IsKill * RegState::Kill)
1357  .addImm(Imm);
1358  else {
1360  .addReg(Op0, Op0IsKill * RegState::Kill)
1361  .addReg(Op1, Op1IsKill * RegState::Kill)
1362  .addImm(Imm);
1364  ResultReg).addReg(II.ImplicitDefs[0]);
1365  }
1366  return ResultReg;
1367 }
1368 
1369 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
1370  const TargetRegisterClass *RC,
1371  unsigned Op0, bool Op0IsKill,
1372  unsigned Op1, bool Op1IsKill,
1373  uint64_t Imm1, uint64_t Imm2) {
1374  unsigned ResultReg = createResultReg(RC);
1375  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1376 
1377  if (II.getNumDefs() >= 1)
1378  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1379  .addReg(Op0, Op0IsKill * RegState::Kill)
1380  .addReg(Op1, Op1IsKill * RegState::Kill)
1381  .addImm(Imm1).addImm(Imm2);
1382  else {
1384  .addReg(Op0, Op0IsKill * RegState::Kill)
1385  .addReg(Op1, Op1IsKill * RegState::Kill)
1386  .addImm(Imm1).addImm(Imm2);
1388  ResultReg).addReg(II.ImplicitDefs[0]);
1389  }
1390  return ResultReg;
1391 }
1392 
1393 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1394  const TargetRegisterClass *RC,
1395  uint64_t Imm) {
1396  unsigned ResultReg = createResultReg(RC);
1397  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1398 
1399  if (II.getNumDefs() >= 1)
1400  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1401  else {
1402  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1404  ResultReg).addReg(II.ImplicitDefs[0]);
1405  }
1406  return ResultReg;
1407 }
1408 
1409 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1410  const TargetRegisterClass *RC,
1411  uint64_t Imm1, uint64_t Imm2) {
1412  unsigned ResultReg = createResultReg(RC);
1413  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1414 
1415  if (II.getNumDefs() >= 1)
1416  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1417  .addImm(Imm1).addImm(Imm2);
1418  else {
1419  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1421  ResultReg).addReg(II.ImplicitDefs[0]);
1422  }
1423  return ResultReg;
1424 }
1425 
1427  unsigned Op0, bool Op0IsKill,
1428  uint32_t Idx) {
1429  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1431  "Cannot yet extract from physregs");
1432  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1435  DL, TII.get(TargetOpcode::COPY), ResultReg)
1436  .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1437  return ResultReg;
1438 }
1439 
1440 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1441 /// with all but the least significant bit set to zero.
1442 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1443  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1444 }
1445 
1446 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1447 /// Emit code to ensure constants are copied into registers when needed.
1448 /// Remember the virtual registers that need to be added to the Machine PHI
1449 /// nodes as input. We cannot just directly add them, because expansion
1450 /// might result in multiple MBB's for one BB. As such, the start of the
1451 /// BB might correspond to a different MBB than the end.
1452 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1453  const TerminatorInst *TI = LLVMBB->getTerminator();
1454 
1456  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1457 
1458  // Check successor nodes' PHI nodes that expect a constant to be available
1459  // from this block.
1460  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1461  const BasicBlock *SuccBB = TI->getSuccessor(succ);
1462  if (!isa<PHINode>(SuccBB->begin())) continue;
1463  MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1464 
1465  // If this terminator has multiple identical successors (common for
1466  // switches), only handle each succ once.
1467  if (!SuccsHandled.insert(SuccMBB)) continue;
1468 
1469  MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1470 
1471  // At this point we know that there is a 1-1 correspondence between LLVM PHI
1472  // nodes and Machine PHI nodes, but the incoming operands have not been
1473  // emitted yet.
1474  for (BasicBlock::const_iterator I = SuccBB->begin();
1475  const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1476 
1477  // Ignore dead phi's.
1478  if (PN->use_empty()) continue;
1479 
1480  // Only handle legal types. Two interesting things to note here. First,
1481  // by bailing out early, we may leave behind some dead instructions,
1482  // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1483  // own moves. Second, this check is necessary because FastISel doesn't
1484  // use CreateRegs to create registers, so it always creates
1485  // exactly one register for each non-void instruction.
1486  EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1487  if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1488  // Handle integer promotions, though, because they're common and easy.
1489  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1490  VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1491  else {
1492  FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1493  return false;
1494  }
1495  }
1496 
1497  const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1498 
1499  // Set the DebugLoc for the copy. Prefer the location of the operand
1500  // if there is one; use the location of the PHI otherwise.
1501  DL = PN->getDebugLoc();
1502  if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1503  DL = Inst->getDebugLoc();
1504 
1505  unsigned Reg = getRegForValue(PHIOp);
1506  if (Reg == 0) {
1507  FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1508  return false;
1509  }
1510  FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1511  DL = DebugLoc();
1512  }
1513  }
1514 
1515  return true;
1516 }
1517 
1518 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
1519  assert(LI->hasOneUse() &&
1520  "tryToFoldLoad expected a LoadInst with a single use");
1521  // We know that the load has a single use, but don't know what it is. If it
1522  // isn't one of the folded instructions, then we can't succeed here. Handle
1523  // this by scanning the single-use users of the load until we get to FoldInst.
1524  unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
1525 
1526  const Instruction *TheUser = LI->use_back();
1527  while (TheUser != FoldInst && // Scan up until we find FoldInst.
1528  // Stay in the right block.
1529  TheUser->getParent() == FoldInst->getParent() &&
1530  --MaxUsers) { // Don't scan too far.
1531  // If there are multiple or no uses of this instruction, then bail out.
1532  if (!TheUser->hasOneUse())
1533  return false;
1534 
1535  TheUser = TheUser->use_back();
1536  }
1537 
1538  // If we didn't find the fold instruction, then we failed to collapse the
1539  // sequence.
1540  if (TheUser != FoldInst)
1541  return false;
1542 
1543  // Don't try to fold volatile loads. Target has to deal with alignment
1544  // constraints.
1545  if (LI->isVolatile())
1546  return false;
1547 
1548  // Figure out which vreg this is going into. If there is no assigned vreg yet
1549  // then there actually was no reference to it. Perhaps the load is referenced
1550  // by a dead instruction.
1551  unsigned LoadReg = getRegForValue(LI);
1552  if (LoadReg == 0)
1553  return false;
1554 
1555  // We can't fold if this vreg has no uses or more than one use. Multiple uses
1556  // may mean that the instruction got lowered to multiple MIs, or the use of
1557  // the loaded value ended up being multiple operands of the result.
1558  if (!MRI.hasOneUse(LoadReg))
1559  return false;
1560 
1562  MachineInstr *User = &*RI;
1563 
1564  // Set the insertion point properly. Folding the load can cause generation of
1565  // other random instructions (like sign extends) for addressing modes; make
1566  // sure they get inserted in a logical place before the new instruction.
1567  FuncInfo.InsertPt = User;
1568  FuncInfo.MBB = User->getParent();
1569 
1570  // Ask the target to try folding the load.
1571  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
1572 }
1573 
1574 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
1575  // Must be an add.
1576  if (!isa<AddOperator>(Add))
1577  return false;
1578  // Type size needs to match.
1579  if (TD.getTypeSizeInBits(GEP->getType()) !=
1580  TD.getTypeSizeInBits(Add->getType()))
1581  return false;
1582  // Must be in the same basic block.
1583  if (isa<Instruction>(Add) &&
1584  FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
1585  return false;
1586  // Must have a constant operand.
1587  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
1588 }
1589 
const Value * getCalledValue() const
const MachineInstrBuilder & addMetadata(const MDNode *MD) const
virtual unsigned FastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm)
Definition: FastISel.cpp:1130
void ComputeValueVTs(const TargetLowering &TLI, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > *Offsets=0, uint64_t StartingOffset=0)
DebugLoc DL
Definition: FastISel.h:54
LLVMContext & getContext() const
Definition: Function.cpp:167
LLVM Argument representation.
Definition: Argument.h:35
static const Value * getFNegArgument(const Value *BinOp)
unsigned FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm)
Definition: FastISel.cpp:1345
bool hasName() const
Definition: Value.h:117
unsigned getNumRegisters(LLVMContext &Context, EVT VT) const
unsigned FastEmitInst_i(unsigned MachineInstrOpcode, const TargetRegisterClass *RC, uint64_t Imm)
Definition: FastISel.cpp:1393
unsigned FastEmitInst_ii(unsigned MachineInstrOpcode, const TargetRegisterClass *RC, uint64_t Imm1, uint64_t Imm2)
Emit a MachineInstr with a two immediate operands.
Definition: FastISel.cpp:1409
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
unsigned createVirtualRegister(const TargetRegisterClass *RegClass)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
void leaveLocalValueArea(SavePoint Old)
Reset InsertPt to the given old insert position.
Definition: FastISel.cpp:345
static bool isVirtualRegister(unsigned Reg)
virtual bool tryToFoldLoadIntoMI(MachineInstr *, unsigned, const LoadInst *)
The specified machine instr operand is a vreg, and that vreg is being provided by the specified load ...
Definition: FastISel.h:138
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
virtual unsigned TargetMaterializeAlloca(const AllocaInst *C)
Emit an alloca address in a register using target-specific logic.
Definition: FastISel.h:353
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
virtual bool TargetSelectInstruction(const Instruction *I)=0
arg_iterator arg_end()
Definition: Function.h:418
F(f)
unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm)
Definition: FastISel.cpp:1280
uint64_t getOffset() const
op_iterator op_begin()
Definition: User.h:116
bool bitsLT(EVT VT) const
bitsLT - Return true if this has less bits than VT.
Definition: ValueTypes.h:735
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
EVT getValueType(Type *Ty, bool AllowUnknown=false) const
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, unsigned Op2, bool Op2IsKill)
Definition: FastISel.cpp:1256
ArrayRef< unsigned > getIndices() const
virtual unsigned FastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm)
Definition: FastISel.cpp:1146
DenseMap< const Value *, unsigned > LocalValueMap
Definition: FastISel.h:49
STATISTIC(NumFastIselSuccessIndependent,"Number of insts selected by ""target-independent selector")
bool isUnconditional() const
const HexagonInstrInfo * TII
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
Base class of casting instructions.
Definition: InstrTypes.h:387
bool getLibFunc(StringRef funcName, LibFunc::Func &F) const
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false)
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const
Definition: APFloat.cpp:2157
#define llvm_unreachable(msg)
bool hasOptimizedCodeGen(LibFunc::Func F) const
bool canFoldAddIntoGEP(const User *GEP, const Value *Add)
Check if Add is an add that can be safely folded into GEP.
Definition: FastISel.cpp:1574
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * EmitStartPt
Definition: FastISel.h:71
const TargetRegisterClass * getRegClass(unsigned Reg) const
virtual MVT getPointerTy(uint32_t=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
int getArgumentFrameIndex(const Argument *A)
getArgumentFrameIndex - Get frame index for the byval argument.
unsigned FastEmitInst_rii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm1, uint64_t Imm2)
Emit a MachineInstr with one register operand and two immediate operands.
Definition: FastISel.cpp:1301
unsigned getRegForValue(const Value *V)
Definition: FastISel.cpp:139
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
BasicBlock * getSuccessor(unsigned i) const
unsigned FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm)
Definition: FastISel.cpp:1324
unsigned FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC)
Definition: FastISel.cpp:1207
MDNode * getVariable() const
Definition: IntrinsicInst.h:84
MachineInstr * getLastLocalValue()
Definition: FastISel.h:76
const TargetRegisterClass * constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
unsigned getKillRegState(bool B)
const BasicBlock * getBasicBlock() const
unsigned lookUpRegForValue(const Value *V)
Definition: FastISel.cpp:250
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
virtual unsigned TargetMaterializeConstant(const Constant *C)
Definition: FastISel.h:348
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
bundle_iterator< MachineInstr, instr_iterator > iterator
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
bool isTypeLegal(EVT VT) const
bool SelectInstruction(const Instruction *I)
Definition: FastISel.cpp:818
unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill)
Definition: FastISel.cpp:1216
virtual ~FastISel()
Definition: FastISel.cpp:1106
* if(!EatIfPresent(lltok::kw_thread_local)) return false
std::vector< std::pair< MachineInstr *, unsigned > > PHINodesToUpdate
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool SelectOperator(const User *I, unsigned Opcode)
Definition: FastISel.cpp:977
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
virtual unsigned FastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, bool Op0IsKill)
Definition: FastISel.cpp:1117
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
unsigned getIntrinsicID() const LLVM_READONLY
Definition: Function.cpp:371
LLVM Constant Representation.
Definition: Constant.h:41
void removeDeadCode(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E)
Remove all dead instructions between the I and E.
Definition: FastISel.cpp:324
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
unsigned FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill)
Definition: FastISel.cpp:1442
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
op_iterator op_end()
Definition: User.h:118
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst)
We're checking to see if we can fold LI into FoldInst. Note that we could have a sequence where multi...
Definition: FastISel.cpp:1518
void FastEmitBranch(MachineBasicBlock *MBB, DebugLoc DL)
Definition: FastISel.cpp:874
unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill)
Definition: FastISel.cpp:1235
iterator end()
Definition: DenseMap.h:57
Value * getOperand(unsigned i) const
Definition: User.h:88
arg_iterator arg_begin()
Definition: Function.h:410
Integer representation type.
Definition: DerivedTypes.h:37
bool LowerArguments()
Definition: FastISel.cpp:88
const TargetRegisterInfo & TRI
Definition: FastISel.h:59
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
MDNode * getVariable() const
virtual unsigned FastEmit_(MVT VT, MVT RetVT, unsigned Opcode)
Definition: FastISel.cpp:1112
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
const TargetInstrInfo & TII
Definition: FastISel.h:57
MachineBasicBlock * MBB
MBB - The current block.
MachineInstr * LastLocalValue
Definition: FastISel.h:66
void recomputeInsertPt()
Definition: FastISel.cpp:310
bool bitsGT(EVT VT) const
bitsGT - Return true if this has more bits than VT.
Definition: ValueTypes.h:723
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
Class for constant integers.
Definition: Constants.h:51
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
DenseMap< unsigned, unsigned > RegFixups
RegFixups - Registers which need to be replaced after isel is done.
Type * getType() const
Definition: Value.h:111
const MachineInstrBuilder & addCImm(const ConstantInt *Val) const
bool isVolatile() const
Definition: Instructions.h:170
const TargetLibraryInfo * LibInfo
Definition: FastISel.h:60
unsigned FastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill, uint64_t Imm, MVT ImmType)
This method is a wrapper of FastEmit_ri.
Definition: FastISel.cpp:1165
bool hasOneUse(unsigned RegNo) const
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
Function * getCalledFunction() const
bool isZero() const
Definition: Constants.h:160
virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl< MachineOperand > &Cond, DebugLoc DL) const
void startNewBlock()
Definition: FastISel.cpp:76
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
virtual bool FastLowerArguments()
Definition: FastISel.cpp:1108
virtual unsigned FastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill)
Definition: FastISel.cpp:1123
Value * getArgOperand(unsigned i) const
Class for arbitrary precision integers.
Definition: APInt.h:75
Value * getIncomingValueForBlock(const BasicBlock *BB) const
virtual const TargetRegisterClass * getRegClassFor(MVT VT) const
Instruction * use_back()
Definition: Instruction.h:49
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
bool isPowerOf2_64(uint64_t Value)
Definition: MathExtras.h:360
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
SavePoint enterLocalValueArea()
Definition: FastISel.cpp:336
use_iterator use_begin()
Definition: Value.h:150
virtual unsigned FastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, bool Op0IsKill, uint64_t Imm)
Definition: FastISel.cpp:1139
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
MachineRegisterInfo & MRI
Definition: FastISel.h:51
static bool isFNeg(const Value *V, bool IgnoreZeroSign=false)
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
DBG_VALUE - a mapping of the llvm.dbg.value intrinsic.
Definition: TargetOpcodes.h:69
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
MachineBasicBlock::iterator InsertPt
MBB - The current insert position inside the current block.
FastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
Definition: FastISel.cpp:1092
size_t size() const
Definition: BasicBlock.h:203
DenseMap< const AllocaInst *, int > StaticAllocaMap
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Definition: ValueTypes.cpp:275
const TargetLowering & TLI
Definition: FastISel.h:58
unsigned createResultReg(const TargetRegisterClass *RC)
Definition: FastISel.cpp:1203
MachineInstr * getVRegDef(unsigned Reg) const
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
unsigned FastEmitInst_rrii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm1, uint64_t Imm2)
Definition: FastISel.cpp:1369
unsigned getReg() const
getReg - Returns the register number.
bool use_empty() const
Definition: Value.h:149
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
void UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs=1)
Definition: FastISel.cpp:267
MachineBasicBlock::iterator InsertPt
Definition: FastISel.h:152
const uint16_t * ImplicitDefs
Definition: MCInstrDesc.h:147
bool isSimple() const
Definition: ValueTypes.h:640
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
virtual unsigned FastEmit_f(MVT VT, MVT RetVT, unsigned Opcode, const ConstantFP *FPImm)
Definition: FastISel.cpp:1134
virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
Value * getAddress() const
static const Function * getParent(const Value *V)
uint64_t getTypeSizeInBits(Type *Ty) const
Definition: DataLayout.h:459
const Value * getValue() const
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
DenseMap< const BasicBlock *, MachineBasicBlock * > MBBMap
MBBMap - A mapping from LLVM basic blocks to their machine code entry.
MachineModuleInfo & getMMI() const
reg_iterator reg_begin(unsigned RegNo) const
const MCRegisterInfo & MRI
unsigned FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx)
Definition: FastISel.cpp:1426
virtual unsigned FastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm)
Definition: FastISel.cpp:1153
FunctionLoweringInfo & FuncInfo
Definition: FastISel.h:50
void setIsDebug(bool Val=true)
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
void ComputeUsesVAFloatArgument(const CallInst &I, MachineModuleInfo *MMI)
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
virtual unsigned TargetMaterializeFloatZero(const ConstantFP *CF)
Definition: FastISel.h:357
DenseMap< const Value *, unsigned > ValueMap
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Definition: ValueTypes.h:607
void addSuccessor(MachineBasicBlock *succ, uint32_t weight=0)
static MachineOperand CreateFI(int Idx)
unsigned Log2_64(uint64_t Value)
Definition: MathExtras.h:449
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
MVT getSimpleVT() const
Definition: ValueTypes.h:749
unsigned InitializeRegForValue(const Value *V)
std::pair< unsigned, bool > getRegForGEPIndex(const Value *V)
Definition: FastISel.cpp:286
const Use * const_op_iterator
Definition: User.h:114
const DataLayout & TD
Definition: FastISel.h:56