LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PPCFastISel.cpp
Go to the documentation of this file.
1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define DEBUG_TYPE "ppcfastisel"
17 #include "PPC.h"
18 #include "PPCISelLowering.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
22 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/FastISel.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/Support/Debug.h"
39 
40 //===----------------------------------------------------------------------===//
41 //
42 // TBD:
43 // FastLowerArguments: Handle simple cases.
44 // PPCMaterializeGV: Handle TLS.
45 // SelectCall: Handle function pointers.
46 // SelectCall: Handle multi-register return values.
47 // SelectCall: Optimize away nops for local calls.
48 // processCallArgs: Handle bit-converted arguments.
49 // finishCall: Handle multi-register return values.
50 // PPCComputeAddress: Handle parameter references as FrameIndex's.
51 // PPCEmitCmp: Handle immediate as operand 1.
52 // SelectCall: Handle small byval arguments.
53 // SelectIntrinsicCall: Implement.
54 // SelectSelect: Implement.
55 // Consider factoring isTypeLegal into the base class.
56 // Implement switches and jump tables.
57 //
58 //===----------------------------------------------------------------------===//
59 using namespace llvm;
60 
61 namespace {
62 
63 typedef struct Address {
64  enum {
65  RegBase,
66  FrameIndexBase
67  } BaseType;
68 
69  union {
70  unsigned Reg;
71  int FI;
72  } Base;
73 
74  long Offset;
75 
76  // Innocuous defaults for our address.
77  Address()
78  : BaseType(RegBase), Offset(0) {
79  Base.Reg = 0;
80  }
81 } Address;
82 
83 class PPCFastISel : public FastISel {
84 
85  const TargetMachine &TM;
86  const TargetInstrInfo &TII;
87  const TargetLowering &TLI;
88  const PPCSubtarget &PPCSubTarget;
89  LLVMContext *Context;
90 
91  public:
92  explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
93  const TargetLibraryInfo *LibInfo)
94  : FastISel(FuncInfo, LibInfo),
95  TM(FuncInfo.MF->getTarget()),
96  TII(*TM.getInstrInfo()),
97  TLI(*TM.getTargetLowering()),
98  PPCSubTarget(
99  *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
100  ),
101  Context(&FuncInfo.Fn->getContext()) { }
102 
103  // Backend specific FastISel code.
104  private:
105  virtual bool TargetSelectInstruction(const Instruction *I);
106  virtual unsigned TargetMaterializeConstant(const Constant *C);
107  virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
108  virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
109  const LoadInst *LI);
110  virtual bool FastLowerArguments();
111  virtual unsigned FastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm);
112  virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
113  const TargetRegisterClass *RC,
114  unsigned Op0, bool Op0IsKill,
115  uint64_t Imm);
116  virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
117  const TargetRegisterClass *RC,
118  unsigned Op0, bool Op0IsKill);
119  virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
120  const TargetRegisterClass *RC,
121  unsigned Op0, bool Op0IsKill,
122  unsigned Op1, bool Op1IsKill);
123 
124  // Instruction selection routines.
125  private:
126  bool SelectLoad(const Instruction *I);
127  bool SelectStore(const Instruction *I);
128  bool SelectBranch(const Instruction *I);
129  bool SelectIndirectBr(const Instruction *I);
130  bool SelectCmp(const Instruction *I);
131  bool SelectFPExt(const Instruction *I);
132  bool SelectFPTrunc(const Instruction *I);
133  bool SelectIToFP(const Instruction *I, bool IsSigned);
134  bool SelectFPToI(const Instruction *I, bool IsSigned);
135  bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
136  bool SelectCall(const Instruction *I);
137  bool SelectRet(const Instruction *I);
138  bool SelectTrunc(const Instruction *I);
139  bool SelectIntExt(const Instruction *I);
140 
141  // Utility routines.
142  private:
143  bool isTypeLegal(Type *Ty, MVT &VT);
144  bool isLoadTypeLegal(Type *Ty, MVT &VT);
145  bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
146  bool isZExt, unsigned DestReg);
147  bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
148  const TargetRegisterClass *RC, bool IsZExt = true,
149  unsigned FP64LoadOpc = PPC::LFD);
150  bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
151  bool PPCComputeAddress(const Value *Obj, Address &Addr);
152  void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
153  unsigned &IndexReg);
154  bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
155  unsigned DestReg, bool IsZExt);
156  unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
157  unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
158  unsigned PPCMaterializeInt(const Constant *C, MVT VT);
159  unsigned PPCMaterialize32BitInt(int64_t Imm,
160  const TargetRegisterClass *RC);
161  unsigned PPCMaterialize64BitInt(int64_t Imm,
162  const TargetRegisterClass *RC);
163  unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
164  unsigned SrcReg, bool IsSigned);
165  unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
166 
167  // Call handling routines.
168  private:
169  bool processCallArgs(SmallVectorImpl<Value*> &Args,
170  SmallVectorImpl<unsigned> &ArgRegs,
171  SmallVectorImpl<MVT> &ArgVTs,
173  SmallVectorImpl<unsigned> &RegArgs,
174  CallingConv::ID CC,
175  unsigned &NumBytes,
176  bool IsVarArg);
177  void finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
178  const Instruction *I, CallingConv::ID CC,
179  unsigned &NumBytes, bool IsVarArg);
180  CCAssignFn *usePPC32CCs(unsigned Flag);
181 
182  private:
183  #include "PPCGenFastISel.inc"
184 
185 };
186 
187 } // end anonymous namespace
188 
189 #include "PPCGenCallingConv.inc"
190 
191 // Function whose sole purpose is to kill compiler warnings
192 // stemming from unused functions included from PPCGenCallingConv.inc.
193 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
194  if (Flag == 1)
195  return CC_PPC32_SVR4;
196  else if (Flag == 2)
197  return CC_PPC32_SVR4_ByVal;
198  else if (Flag == 3)
199  return CC_PPC32_SVR4_VarArg;
200  else
201  return RetCC_PPC;
202 }
203 
205  switch (Pred) {
206  // These are not representable with any single compare.
207  case CmpInst::FCMP_FALSE:
208  case CmpInst::FCMP_UEQ:
209  case CmpInst::FCMP_UGT:
210  case CmpInst::FCMP_UGE:
211  case CmpInst::FCMP_ULT:
212  case CmpInst::FCMP_ULE:
213  case CmpInst::FCMP_UNE:
214  case CmpInst::FCMP_TRUE:
215  default:
216  return Optional<PPC::Predicate>();
217 
218  case CmpInst::FCMP_OEQ:
219  case CmpInst::ICMP_EQ:
220  return PPC::PRED_EQ;
221 
222  case CmpInst::FCMP_OGT:
223  case CmpInst::ICMP_UGT:
224  case CmpInst::ICMP_SGT:
225  return PPC::PRED_GT;
226 
227  case CmpInst::FCMP_OGE:
228  case CmpInst::ICMP_UGE:
229  case CmpInst::ICMP_SGE:
230  return PPC::PRED_GE;
231 
232  case CmpInst::FCMP_OLT:
233  case CmpInst::ICMP_ULT:
234  case CmpInst::ICMP_SLT:
235  return PPC::PRED_LT;
236 
237  case CmpInst::FCMP_OLE:
238  case CmpInst::ICMP_ULE:
239  case CmpInst::ICMP_SLE:
240  return PPC::PRED_LE;
241 
242  case CmpInst::FCMP_ONE:
243  case CmpInst::ICMP_NE:
244  return PPC::PRED_NE;
245 
246  case CmpInst::FCMP_ORD:
247  return PPC::PRED_NU;
248 
249  case CmpInst::FCMP_UNO:
250  return PPC::PRED_UN;
251  }
252 }
253 
254 // Determine whether the type Ty is simple enough to be handled by
255 // fast-isel, and return its equivalent machine type in VT.
256 // FIXME: Copied directly from ARM -- factor into base class?
257 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
258  EVT Evt = TLI.getValueType(Ty, true);
259 
260  // Only handle simple types.
261  if (Evt == MVT::Other || !Evt.isSimple()) return false;
262  VT = Evt.getSimpleVT();
263 
264  // Handle all legal types, i.e. a register that will directly hold this
265  // value.
266  return TLI.isTypeLegal(VT);
267 }
268 
269 // Determine whether the type Ty is simple enough to be handled by
270 // fast-isel as a load target, and return its equivalent machine type in VT.
271 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
272  if (isTypeLegal(Ty, VT)) return true;
273 
274  // If this is a type than can be sign or zero-extended to a basic operation
275  // go ahead and accept it now.
276  if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
277  return true;
278  }
279 
280  return false;
281 }
282 
283 // Given a value Obj, create an Address object Addr that represents its
284 // address. Return false if we can't handle it.
285 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
286  const User *U = NULL;
287  unsigned Opcode = Instruction::UserOp1;
288  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
289  // Don't walk into other basic blocks unless the object is an alloca from
290  // another block, otherwise it may not have a virtual register assigned.
291  if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
292  FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
293  Opcode = I->getOpcode();
294  U = I;
295  }
296  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
297  Opcode = C->getOpcode();
298  U = C;
299  }
300 
301  switch (Opcode) {
302  default:
303  break;
304  case Instruction::BitCast:
305  // Look through bitcasts.
306  return PPCComputeAddress(U->getOperand(0), Addr);
307  case Instruction::IntToPtr:
308  // Look past no-op inttoptrs.
309  if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
310  return PPCComputeAddress(U->getOperand(0), Addr);
311  break;
312  case Instruction::PtrToInt:
313  // Look past no-op ptrtoints.
314  if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
315  return PPCComputeAddress(U->getOperand(0), Addr);
316  break;
317  case Instruction::GetElementPtr: {
318  Address SavedAddr = Addr;
319  long TmpOffset = Addr.Offset;
320 
321  // Iterate through the GEP folding the constants into offsets where
322  // we can.
324  for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
325  II != IE; ++II, ++GTI) {
326  const Value *Op = *II;
327  if (StructType *STy = dyn_cast<StructType>(*GTI)) {
328  const StructLayout *SL = TD.getStructLayout(STy);
329  unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
330  TmpOffset += SL->getElementOffset(Idx);
331  } else {
332  uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
333  for (;;) {
334  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
335  // Constant-offset addressing.
336  TmpOffset += CI->getSExtValue() * S;
337  break;
338  }
339  if (canFoldAddIntoGEP(U, Op)) {
340  // A compatible add with a constant operand. Fold the constant.
341  ConstantInt *CI =
342  cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
343  TmpOffset += CI->getSExtValue() * S;
344  // Iterate on the other operand.
345  Op = cast<AddOperator>(Op)->getOperand(0);
346  continue;
347  }
348  // Unsupported
349  goto unsupported_gep;
350  }
351  }
352  }
353 
354  // Try to grab the base operand now.
355  Addr.Offset = TmpOffset;
356  if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
357 
358  // We failed, restore everything and try the other options.
359  Addr = SavedAddr;
360 
361  unsupported_gep:
362  break;
363  }
364  case Instruction::Alloca: {
365  const AllocaInst *AI = cast<AllocaInst>(Obj);
367  FuncInfo.StaticAllocaMap.find(AI);
368  if (SI != FuncInfo.StaticAllocaMap.end()) {
369  Addr.BaseType = Address::FrameIndexBase;
370  Addr.Base.FI = SI->second;
371  return true;
372  }
373  break;
374  }
375  }
376 
377  // FIXME: References to parameters fall through to the behavior
378  // below. They should be able to reference a frame index since
379  // they are stored to the stack, so we can get "ld rx, offset(r1)"
380  // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
381  // just contain the parameter. Try to handle this with a FI.
382 
383  // Try to get this in a register if nothing else has worked.
384  if (Addr.Base.Reg == 0)
385  Addr.Base.Reg = getRegForValue(Obj);
386 
387  // Prevent assignment of base register to X0, which is inappropriate
388  // for loads and stores alike.
389  if (Addr.Base.Reg != 0)
390  MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
391 
392  return Addr.Base.Reg != 0;
393 }
394 
395 // Fix up some addresses that can't be used directly. For example, if
396 // an offset won't fit in an instruction field, we may need to move it
397 // into an index register.
398 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
399  unsigned &IndexReg) {
400 
401  // Check whether the offset fits in the instruction field.
402  if (!isInt<16>(Addr.Offset))
403  UseOffset = false;
404 
405  // If this is a stack pointer and the offset needs to be simplified then
406  // put the alloca address into a register, set the base type back to
407  // register and continue. This should almost never happen.
408  if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
409  unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
410  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
411  ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
412  Addr.Base.Reg = ResultReg;
413  Addr.BaseType = Address::RegBase;
414  }
415 
416  if (!UseOffset) {
417  IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
418  : Type::getInt64Ty(*Context));
419  const ConstantInt *Offset =
420  ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
421  IndexReg = PPCMaterializeInt(Offset, MVT::i64);
422  assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
423  }
424 }
425 
426 // Emit a load instruction if possible, returning true if we succeeded,
427 // otherwise false. See commentary below for how the register class of
428 // the load is determined.
429 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
430  const TargetRegisterClass *RC,
431  bool IsZExt, unsigned FP64LoadOpc) {
432  unsigned Opc;
433  bool UseOffset = true;
434 
435  // If ResultReg is given, it determines the register class of the load.
436  // Otherwise, RC is the register class to use. If the result of the
437  // load isn't anticipated in this block, both may be zero, in which
438  // case we must make a conservative guess. In particular, don't assign
439  // R0 or X0 to the result register, as the result may be used in a load,
440  // store, add-immediate, or isel that won't permit this. (Though
441  // perhaps the spill and reload of live-exit values would handle this?)
442  const TargetRegisterClass *UseRC =
443  (ResultReg ? MRI.getRegClass(ResultReg) :
444  (RC ? RC :
445  (VT == MVT::f64 ? &PPC::F8RCRegClass :
446  (VT == MVT::f32 ? &PPC::F4RCRegClass :
447  (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
448  &PPC::GPRC_and_GPRC_NOR0RegClass)))));
449 
450  bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
451 
452  switch (VT.SimpleTy) {
453  default: // e.g., vector types not handled
454  return false;
455  case MVT::i8:
456  Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
457  break;
458  case MVT::i16:
459  Opc = (IsZExt ?
460  (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
461  (Is32BitInt ? PPC::LHA : PPC::LHA8));
462  break;
463  case MVT::i32:
464  Opc = (IsZExt ?
465  (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
466  (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
467  if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
468  UseOffset = false;
469  break;
470  case MVT::i64:
471  Opc = PPC::LD;
472  assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
473  "64-bit load with 32-bit target??");
474  UseOffset = ((Addr.Offset & 3) == 0);
475  break;
476  case MVT::f32:
477  Opc = PPC::LFS;
478  break;
479  case MVT::f64:
480  Opc = FP64LoadOpc;
481  break;
482  }
483 
484  // If necessary, materialize the offset into a register and use
485  // the indexed form. Also handle stack pointers with special needs.
486  unsigned IndexReg = 0;
487  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
488  if (ResultReg == 0)
489  ResultReg = createResultReg(UseRC);
490 
491  // Note: If we still have a frame index here, we know the offset is
492  // in range, as otherwise PPCSimplifyAddress would have converted it
493  // into a RegBase.
494  if (Addr.BaseType == Address::FrameIndexBase) {
495 
496  MachineMemOperand *MMO =
497  FuncInfo.MF->getMachineMemOperand(
498  MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
499  MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
500  MFI.getObjectAlignment(Addr.Base.FI));
501 
502  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
503  .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
504 
505  // Base reg with offset in range.
506  } else if (UseOffset) {
507 
508  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
509  .addImm(Addr.Offset).addReg(Addr.Base.Reg);
510 
511  // Indexed form.
512  } else {
513  // Get the RR opcode corresponding to the RI one. FIXME: It would be
514  // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
515  // is hard to get at.
516  switch (Opc) {
517  default: llvm_unreachable("Unexpected opcode!");
518  case PPC::LBZ: Opc = PPC::LBZX; break;
519  case PPC::LBZ8: Opc = PPC::LBZX8; break;
520  case PPC::LHZ: Opc = PPC::LHZX; break;
521  case PPC::LHZ8: Opc = PPC::LHZX8; break;
522  case PPC::LHA: Opc = PPC::LHAX; break;
523  case PPC::LHA8: Opc = PPC::LHAX8; break;
524  case PPC::LWZ: Opc = PPC::LWZX; break;
525  case PPC::LWZ8: Opc = PPC::LWZX8; break;
526  case PPC::LWA: Opc = PPC::LWAX; break;
527  case PPC::LWA_32: Opc = PPC::LWAX_32; break;
528  case PPC::LD: Opc = PPC::LDX; break;
529  case PPC::LFS: Opc = PPC::LFSX; break;
530  case PPC::LFD: Opc = PPC::LFDX; break;
531  }
532  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
533  .addReg(Addr.Base.Reg).addReg(IndexReg);
534  }
535 
536  return true;
537 }
538 
539 // Attempt to fast-select a load instruction.
540 bool PPCFastISel::SelectLoad(const Instruction *I) {
541  // FIXME: No atomic loads are supported.
542  if (cast<LoadInst>(I)->isAtomic())
543  return false;
544 
545  // Verify we have a legal type before going any further.
546  MVT VT;
547  if (!isLoadTypeLegal(I->getType(), VT))
548  return false;
549 
550  // See if we can handle this address.
551  Address Addr;
552  if (!PPCComputeAddress(I->getOperand(0), Addr))
553  return false;
554 
555  // Look at the currently assigned register for this instruction
556  // to determine the required register class. This is necessary
557  // to constrain RA from using R0/X0 when this is not legal.
558  unsigned AssignedReg = FuncInfo.ValueMap[I];
559  const TargetRegisterClass *RC =
560  AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
561 
562  unsigned ResultReg = 0;
563  if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
564  return false;
565  UpdateValueMap(I, ResultReg);
566  return true;
567 }
568 
569 // Emit a store instruction to store SrcReg at Addr.
570 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
571  assert(SrcReg && "Nothing to store!");
572  unsigned Opc;
573  bool UseOffset = true;
574 
575  const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
576  bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
577 
578  switch (VT.SimpleTy) {
579  default: // e.g., vector types not handled
580  return false;
581  case MVT::i8:
582  Opc = Is32BitInt ? PPC::STB : PPC::STB8;
583  break;
584  case MVT::i16:
585  Opc = Is32BitInt ? PPC::STH : PPC::STH8;
586  break;
587  case MVT::i32:
588  assert(Is32BitInt && "Not GPRC for i32??");
589  Opc = PPC::STW;
590  break;
591  case MVT::i64:
592  Opc = PPC::STD;
593  UseOffset = ((Addr.Offset & 3) == 0);
594  break;
595  case MVT::f32:
596  Opc = PPC::STFS;
597  break;
598  case MVT::f64:
599  Opc = PPC::STFD;
600  break;
601  }
602 
603  // If necessary, materialize the offset into a register and use
604  // the indexed form. Also handle stack pointers with special needs.
605  unsigned IndexReg = 0;
606  PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
607 
608  // Note: If we still have a frame index here, we know the offset is
609  // in range, as otherwise PPCSimplifyAddress would have converted it
610  // into a RegBase.
611  if (Addr.BaseType == Address::FrameIndexBase) {
612  MachineMemOperand *MMO =
613  FuncInfo.MF->getMachineMemOperand(
614  MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
615  MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
616  MFI.getObjectAlignment(Addr.Base.FI));
617 
618  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)).addReg(SrcReg)
619  .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
620 
621  // Base reg with offset in range.
622  } else if (UseOffset)
623  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
624  .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
625 
626  // Indexed form.
627  else {
628  // Get the RR opcode corresponding to the RI one. FIXME: It would be
629  // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
630  // is hard to get at.
631  switch (Opc) {
632  default: llvm_unreachable("Unexpected opcode!");
633  case PPC::STB: Opc = PPC::STBX; break;
634  case PPC::STH : Opc = PPC::STHX; break;
635  case PPC::STW : Opc = PPC::STWX; break;
636  case PPC::STB8: Opc = PPC::STBX8; break;
637  case PPC::STH8: Opc = PPC::STHX8; break;
638  case PPC::STW8: Opc = PPC::STWX8; break;
639  case PPC::STD: Opc = PPC::STDX; break;
640  case PPC::STFS: Opc = PPC::STFSX; break;
641  case PPC::STFD: Opc = PPC::STFDX; break;
642  }
643  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
644  .addReg(SrcReg).addReg(Addr.Base.Reg).addReg(IndexReg);
645  }
646 
647  return true;
648 }
649 
650 // Attempt to fast-select a store instruction.
651 bool PPCFastISel::SelectStore(const Instruction *I) {
652  Value *Op0 = I->getOperand(0);
653  unsigned SrcReg = 0;
654 
655  // FIXME: No atomics loads are supported.
656  if (cast<StoreInst>(I)->isAtomic())
657  return false;
658 
659  // Verify we have a legal type before going any further.
660  MVT VT;
661  if (!isLoadTypeLegal(Op0->getType(), VT))
662  return false;
663 
664  // Get the value to be stored into a register.
665  SrcReg = getRegForValue(Op0);
666  if (SrcReg == 0)
667  return false;
668 
669  // See if we can handle this address.
670  Address Addr;
671  if (!PPCComputeAddress(I->getOperand(1), Addr))
672  return false;
673 
674  if (!PPCEmitStore(VT, SrcReg, Addr))
675  return false;
676 
677  return true;
678 }
679 
680 // Attempt to fast-select a branch instruction.
681 bool PPCFastISel::SelectBranch(const Instruction *I) {
682  const BranchInst *BI = cast<BranchInst>(I);
683  MachineBasicBlock *BrBB = FuncInfo.MBB;
684  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
685  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
686 
687  // For now, just try the simplest case where it's fed by a compare.
688  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
689  Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
690  if (!OptPPCPred)
691  return false;
692 
693  PPC::Predicate PPCPred = OptPPCPred.getValue();
694 
695  // Take advantage of fall-through opportunities.
696  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
697  std::swap(TBB, FBB);
698  PPCPred = PPC::InvertPredicate(PPCPred);
699  }
700 
701  unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
702 
703  if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
704  CondReg))
705  return false;
706 
707  BuildMI(*BrBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCC))
708  .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
709  FastEmitBranch(FBB, DL);
710  FuncInfo.MBB->addSuccessor(TBB);
711  return true;
712 
713  } else if (const ConstantInt *CI =
714  dyn_cast<ConstantInt>(BI->getCondition())) {
715  uint64_t Imm = CI->getZExtValue();
716  MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
717  FastEmitBranch(Target, DL);
718  return true;
719  }
720 
721  // FIXME: ARM looks for a case where the block containing the compare
722  // has been split from the block containing the branch. If this happens,
723  // there is a vreg available containing the result of the compare. I'm
724  // not sure we can do much, as we've lost the predicate information with
725  // the compare instruction -- we have a 4-bit CR but don't know which bit
726  // to test here.
727  return false;
728 }
729 
730 // Attempt to emit a compare of the two source values. Signed and unsigned
731 // comparisons are supported. Return false if we can't handle it.
732 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
733  bool IsZExt, unsigned DestReg) {
734  Type *Ty = SrcValue1->getType();
735  EVT SrcEVT = TLI.getValueType(Ty, true);
736  if (!SrcEVT.isSimple())
737  return false;
738  MVT SrcVT = SrcEVT.getSimpleVT();
739 
740  // See if operand 2 is an immediate encodeable in the compare.
741  // FIXME: Operands are not in canonical order at -O0, so an immediate
742  // operand in position 1 is a lost opportunity for now. We are
743  // similar to ARM in this regard.
744  long Imm = 0;
745  bool UseImm = false;
746 
747  // Only 16-bit integer constants can be represented in compares for
748  // PowerPC. Others will be materialized into a register.
749  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
750  if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
751  SrcVT == MVT::i8 || SrcVT == MVT::i1) {
752  const APInt &CIVal = ConstInt->getValue();
753  Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
754  if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
755  UseImm = true;
756  }
757  }
758 
759  unsigned CmpOpc;
760  bool NeedsExt = false;
761  switch (SrcVT.SimpleTy) {
762  default: return false;
763  case MVT::f32:
764  CmpOpc = PPC::FCMPUS;
765  break;
766  case MVT::f64:
767  CmpOpc = PPC::FCMPUD;
768  break;
769  case MVT::i1:
770  case MVT::i8:
771  case MVT::i16:
772  NeedsExt = true;
773  // Intentional fall-through.
774  case MVT::i32:
775  if (!UseImm)
776  CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
777  else
778  CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
779  break;
780  case MVT::i64:
781  if (!UseImm)
782  CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
783  else
784  CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
785  break;
786  }
787 
788  unsigned SrcReg1 = getRegForValue(SrcValue1);
789  if (SrcReg1 == 0)
790  return false;
791 
792  unsigned SrcReg2 = 0;
793  if (!UseImm) {
794  SrcReg2 = getRegForValue(SrcValue2);
795  if (SrcReg2 == 0)
796  return false;
797  }
798 
799  if (NeedsExt) {
800  unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
801  if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
802  return false;
803  SrcReg1 = ExtReg;
804 
805  if (!UseImm) {
806  unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
807  if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
808  return false;
809  SrcReg2 = ExtReg;
810  }
811  }
812 
813  if (!UseImm)
814  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
815  .addReg(SrcReg1).addReg(SrcReg2);
816  else
817  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc), DestReg)
818  .addReg(SrcReg1).addImm(Imm);
819 
820  return true;
821 }
822 
823 // Attempt to fast-select a floating-point extend instruction.
824 bool PPCFastISel::SelectFPExt(const Instruction *I) {
825  Value *Src = I->getOperand(0);
826  EVT SrcVT = TLI.getValueType(Src->getType(), true);
827  EVT DestVT = TLI.getValueType(I->getType(), true);
828 
829  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
830  return false;
831 
832  unsigned SrcReg = getRegForValue(Src);
833  if (!SrcReg)
834  return false;
835 
836  // No code is generated for a FP extend.
837  UpdateValueMap(I, SrcReg);
838  return true;
839 }
840 
841 // Attempt to fast-select a floating-point truncate instruction.
842 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
843  Value *Src = I->getOperand(0);
844  EVT SrcVT = TLI.getValueType(Src->getType(), true);
845  EVT DestVT = TLI.getValueType(I->getType(), true);
846 
847  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
848  return false;
849 
850  unsigned SrcReg = getRegForValue(Src);
851  if (!SrcReg)
852  return false;
853 
854  // Round the result to single precision.
855  unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP), DestReg)
857  .addReg(SrcReg);
858 
859  UpdateValueMap(I, DestReg);
860  return true;
861 }
862 
863 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
864 // FIXME: When direct register moves are implemented (see PowerISA 2.08),
865 // those should be used instead of moving via a stack slot when the
866 // subtarget permits.
867 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
868 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
869 // case to 8 bytes which produces tighter code but wastes stack space.
870 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
871  bool IsSigned) {
872 
873  // If necessary, extend 32-bit int to 64-bit.
874  if (SrcVT == MVT::i32) {
875  unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
876  if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
877  return 0;
878  SrcReg = TmpReg;
879  }
880 
881  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
882  Address Addr;
883  Addr.BaseType = Address::FrameIndexBase;
884  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
885 
886  // Store the value from the GPR.
887  if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
888  return 0;
889 
890  // Load the integer value into an FPR. The kind of load used depends
891  // on a number of conditions.
892  unsigned LoadOpc = PPC::LFD;
893 
894  if (SrcVT == MVT::i32) {
895  Addr.Offset = 4;
896  if (!IsSigned)
897  LoadOpc = PPC::LFIWZX;
898  else if (PPCSubTarget.hasLFIWAX())
899  LoadOpc = PPC::LFIWAX;
900  }
901 
902  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
903  unsigned ResultReg = 0;
904  if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
905  return 0;
906 
907  return ResultReg;
908 }
909 
910 // Attempt to fast-select an integer-to-floating-point conversion.
911 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
912  MVT DstVT;
913  Type *DstTy = I->getType();
914  if (!isTypeLegal(DstTy, DstVT))
915  return false;
916 
917  if (DstVT != MVT::f32 && DstVT != MVT::f64)
918  return false;
919 
920  Value *Src = I->getOperand(0);
921  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
922  if (!SrcEVT.isSimple())
923  return false;
924 
925  MVT SrcVT = SrcEVT.getSimpleVT();
926 
927  if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
928  SrcVT != MVT::i32 && SrcVT != MVT::i64)
929  return false;
930 
931  unsigned SrcReg = getRegForValue(Src);
932  if (SrcReg == 0)
933  return false;
934 
935  // We can only lower an unsigned convert if we have the newer
936  // floating-point conversion operations.
937  if (!IsSigned && !PPCSubTarget.hasFPCVT())
938  return false;
939 
940  // FIXME: For now we require the newer floating-point conversion operations
941  // (which are present only on P7 and A2 server models) when converting
942  // to single-precision float. Otherwise we have to generate a lot of
943  // fiddly code to avoid double rounding. If necessary, the fiddly code
944  // can be found in PPCTargetLowering::LowerINT_TO_FP().
945  if (DstVT == MVT::f32 && !PPCSubTarget.hasFPCVT())
946  return false;
947 
948  // Extend the input if necessary.
949  if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
950  unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
951  if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
952  return false;
953  SrcVT = MVT::i64;
954  SrcReg = TmpReg;
955  }
956 
957  // Move the integer value to an FPR.
958  unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
959  if (FPReg == 0)
960  return false;
961 
962  // Determine the opcode for the conversion.
963  const TargetRegisterClass *RC = &PPC::F8RCRegClass;
964  unsigned DestReg = createResultReg(RC);
965  unsigned Opc;
966 
967  if (DstVT == MVT::f32)
968  Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
969  else
970  Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
971 
972  // Generate the convert.
973  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
974  .addReg(FPReg);
975 
976  UpdateValueMap(I, DestReg);
977  return true;
978 }
979 
980 // Move the floating-point value in SrcReg into an integer destination
981 // register, and return the register (or zero if we can't handle it).
982 // FIXME: When direct register moves are implemented (see PowerISA 2.08),
983 // those should be used instead of moving via a stack slot when the
984 // subtarget permits.
985 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
986  unsigned SrcReg, bool IsSigned) {
987  // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
988  // Note that if have STFIWX available, we could use a 4-byte stack
989  // slot for i32, but this being fast-isel we'll just go with the
990  // easiest code gen possible.
991  Address Addr;
992  Addr.BaseType = Address::FrameIndexBase;
993  Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
994 
995  // Store the value from the FPR.
996  if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
997  return 0;
998 
999  // Reload it into a GPR. If we want an i32, modify the address
1000  // to have a 4-byte offset so we load from the right place.
1001  if (VT == MVT::i32)
1002  Addr.Offset = 4;
1003 
1004  // Look at the currently assigned register for this instruction
1005  // to determine the required register class.
1006  unsigned AssignedReg = FuncInfo.ValueMap[I];
1007  const TargetRegisterClass *RC =
1008  AssignedReg ? MRI.getRegClass(AssignedReg) : 0;
1009 
1010  unsigned ResultReg = 0;
1011  if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1012  return 0;
1013 
1014  return ResultReg;
1015 }
1016 
1017 // Attempt to fast-select a floating-point-to-integer conversion.
1018 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1019  MVT DstVT, SrcVT;
1020  Type *DstTy = I->getType();
1021  if (!isTypeLegal(DstTy, DstVT))
1022  return false;
1023 
1024  if (DstVT != MVT::i32 && DstVT != MVT::i64)
1025  return false;
1026 
1027  Value *Src = I->getOperand(0);
1028  Type *SrcTy = Src->getType();
1029  if (!isTypeLegal(SrcTy, SrcVT))
1030  return false;
1031 
1032  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1033  return false;
1034 
1035  unsigned SrcReg = getRegForValue(Src);
1036  if (SrcReg == 0)
1037  return false;
1038 
1039  // Convert f32 to f64 if necessary. This is just a meaningless copy
1040  // to get the register class right. COPY_TO_REGCLASS is needed since
1041  // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1042  const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1043  if (InRC == &PPC::F4RCRegClass) {
1044  unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1045  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1046  TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1047  .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1048  SrcReg = TmpReg;
1049  }
1050 
1051  // Determine the opcode for the conversion, which takes place
1052  // entirely within FPRs.
1053  unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1054  unsigned Opc;
1055 
1056  if (DstVT == MVT::i32)
1057  if (IsSigned)
1058  Opc = PPC::FCTIWZ;
1059  else
1060  Opc = PPCSubTarget.hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1061  else
1062  Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1063 
1064  // Generate the convert.
1065  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1066  .addReg(SrcReg);
1067 
1068  // Now move the integer value from a float register to an integer register.
1069  unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1070  if (IntReg == 0)
1071  return false;
1072 
1073  UpdateValueMap(I, IntReg);
1074  return true;
1075 }
1076 
1077 // Attempt to fast-select a binary integer operation that isn't already
1078 // handled automatically.
1079 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1080  EVT DestVT = TLI.getValueType(I->getType(), true);
1081 
1082  // We can get here in the case when we have a binary operation on a non-legal
1083  // type and the target independent selector doesn't know how to handle it.
1084  if (DestVT != MVT::i16 && DestVT != MVT::i8)
1085  return false;
1086 
1087  // Look at the currently assigned register for this instruction
1088  // to determine the required register class. If there is no register,
1089  // make a conservative choice (don't assign R0).
1090  unsigned AssignedReg = FuncInfo.ValueMap[I];
1091  const TargetRegisterClass *RC =
1092  (AssignedReg ? MRI.getRegClass(AssignedReg) :
1093  &PPC::GPRC_and_GPRC_NOR0RegClass);
1094  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1095 
1096  unsigned Opc;
1097  switch (ISDOpcode) {
1098  default: return false;
1099  case ISD::ADD:
1100  Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1101  break;
1102  case ISD::OR:
1103  Opc = IsGPRC ? PPC::OR : PPC::OR8;
1104  break;
1105  case ISD::SUB:
1106  Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1107  break;
1108  }
1109 
1110  unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1111  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1112  if (SrcReg1 == 0) return false;
1113 
1114  // Handle case of small immediate operand.
1115  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1116  const APInt &CIVal = ConstInt->getValue();
1117  int Imm = (int)CIVal.getSExtValue();
1118  bool UseImm = true;
1119  if (isInt<16>(Imm)) {
1120  switch (Opc) {
1121  default:
1122  llvm_unreachable("Missing case!");
1123  case PPC::ADD4:
1124  Opc = PPC::ADDI;
1125  MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1126  break;
1127  case PPC::ADD8:
1128  Opc = PPC::ADDI8;
1129  MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1130  break;
1131  case PPC::OR:
1132  Opc = PPC::ORI;
1133  break;
1134  case PPC::OR8:
1135  Opc = PPC::ORI8;
1136  break;
1137  case PPC::SUBF:
1138  if (Imm == -32768)
1139  UseImm = false;
1140  else {
1141  Opc = PPC::ADDI;
1142  MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1143  Imm = -Imm;
1144  }
1145  break;
1146  case PPC::SUBF8:
1147  if (Imm == -32768)
1148  UseImm = false;
1149  else {
1150  Opc = PPC::ADDI8;
1151  MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1152  Imm = -Imm;
1153  }
1154  break;
1155  }
1156 
1157  if (UseImm) {
1158  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1159  .addReg(SrcReg1).addImm(Imm);
1160  UpdateValueMap(I, ResultReg);
1161  return true;
1162  }
1163  }
1164  }
1165 
1166  // Reg-reg case.
1167  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1168  if (SrcReg2 == 0) return false;
1169 
1170  // Reverse operands for subtract-from.
1171  if (ISDOpcode == ISD::SUB)
1172  std::swap(SrcReg1, SrcReg2);
1173 
1174  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1175  .addReg(SrcReg1).addReg(SrcReg2);
1176  UpdateValueMap(I, ResultReg);
1177  return true;
1178 }
1179 
1180 // Handle arguments to a call that we're attempting to fast-select.
1181 // Return false if the arguments are too complex for us at the moment.
1182 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1183  SmallVectorImpl<unsigned> &ArgRegs,
1184  SmallVectorImpl<MVT> &ArgVTs,
1186  SmallVectorImpl<unsigned> &RegArgs,
1187  CallingConv::ID CC,
1188  unsigned &NumBytes,
1189  bool IsVarArg) {
1191  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1192  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1193 
1194  // Bail out if we can't handle any of the arguments.
1195  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1196  CCValAssign &VA = ArgLocs[I];
1197  MVT ArgVT = ArgVTs[VA.getValNo()];
1198 
1199  // Skip vector arguments for now, as well as long double and
1200  // uint128_t, and anything that isn't passed in a register.
1201  if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 ||
1202  !VA.isRegLoc() || VA.needsCustom())
1203  return false;
1204 
1205  // Skip bit-converted arguments for now.
1206  if (VA.getLocInfo() == CCValAssign::BCvt)
1207  return false;
1208  }
1209 
1210  // Get a count of how many bytes are to be pushed onto the stack.
1211  NumBytes = CCInfo.getNextStackOffset();
1212 
1213  // Issue CALLSEQ_START.
1214  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1215  TII.get(TII.getCallFrameSetupOpcode()))
1216  .addImm(NumBytes);
1217 
1218  // Prepare to assign register arguments. Every argument uses up a
1219  // GPR protocol register even if it's passed in a floating-point
1220  // register.
1221  unsigned NextGPR = PPC::X3;
1222  unsigned NextFPR = PPC::F1;
1223 
1224  // Process arguments.
1225  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1226  CCValAssign &VA = ArgLocs[I];
1227  unsigned Arg = ArgRegs[VA.getValNo()];
1228  MVT ArgVT = ArgVTs[VA.getValNo()];
1229 
1230  // Handle argument promotion and bitcasts.
1231  switch (VA.getLocInfo()) {
1232  default:
1233  llvm_unreachable("Unknown loc info!");
1234  case CCValAssign::Full:
1235  break;
1236  case CCValAssign::SExt: {
1237  MVT DestVT = VA.getLocVT();
1238  const TargetRegisterClass *RC =
1239  (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1240  unsigned TmpReg = createResultReg(RC);
1241  if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1242  llvm_unreachable("Failed to emit a sext!");
1243  ArgVT = DestVT;
1244  Arg = TmpReg;
1245  break;
1246  }
1247  case CCValAssign::AExt:
1248  case CCValAssign::ZExt: {
1249  MVT DestVT = VA.getLocVT();
1250  const TargetRegisterClass *RC =
1251  (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1252  unsigned TmpReg = createResultReg(RC);
1253  if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1254  llvm_unreachable("Failed to emit a zext!");
1255  ArgVT = DestVT;
1256  Arg = TmpReg;
1257  break;
1258  }
1259  case CCValAssign::BCvt: {
1260  // FIXME: Not yet handled.
1261  llvm_unreachable("Should have bailed before getting here!");
1262  break;
1263  }
1264  }
1265 
1266  // Copy this argument to the appropriate register.
1267  unsigned ArgReg;
1268  if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1269  ArgReg = NextFPR++;
1270  ++NextGPR;
1271  } else
1272  ArgReg = NextGPR++;
1273 
1274  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1275  ArgReg).addReg(Arg);
1276  RegArgs.push_back(ArgReg);
1277  }
1278 
1279  return true;
1280 }
1281 
1282 // For a call that we've determined we can fast-select, finish the
1283 // call sequence and generate a copy to obtain the return value (if any).
1284 void PPCFastISel::finishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1285  const Instruction *I, CallingConv::ID CC,
1286  unsigned &NumBytes, bool IsVarArg) {
1287  // Issue CallSEQ_END.
1288  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1289  TII.get(TII.getCallFrameDestroyOpcode()))
1290  .addImm(NumBytes).addImm(0);
1291 
1292  // Next, generate a copy to obtain the return value.
1293  // FIXME: No multi-register return values yet, though I don't foresee
1294  // any real difficulties there.
1295  if (RetVT != MVT::isVoid) {
1297  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1298  CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1299  CCValAssign &VA = RVLocs[0];
1300  assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1301  assert(VA.isRegLoc() && "Can only return in registers!");
1302 
1303  MVT DestVT = VA.getValVT();
1304  MVT CopyVT = DestVT;
1305 
1306  // Ints smaller than a register still arrive in a full 64-bit
1307  // register, so make sure we recognize this.
1308  if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1309  CopyVT = MVT::i64;
1310 
1311  unsigned SourcePhysReg = VA.getLocReg();
1312  unsigned ResultReg = 0;
1313 
1314  if (RetVT == CopyVT) {
1315  const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1316  ResultReg = createResultReg(CpyRC);
1317 
1318  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1319  TII.get(TargetOpcode::COPY), ResultReg)
1320  .addReg(SourcePhysReg);
1321 
1322  // If necessary, round the floating result to single precision.
1323  } else if (CopyVT == MVT::f64) {
1324  ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1325  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::FRSP),
1326  ResultReg).addReg(SourcePhysReg);
1327 
1328  // If only the low half of a general register is needed, generate
1329  // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1330  // used along the fast-isel path (not lowered), and downstream logic
1331  // also doesn't like a direct subreg copy on a physical reg.)
1332  } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1333  ResultReg = createResultReg(&PPC::GPRCRegClass);
1334  // Convert physical register from G8RC to GPRC.
1335  SourcePhysReg -= PPC::X0 - PPC::R0;
1336  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1337  TII.get(TargetOpcode::COPY), ResultReg)
1338  .addReg(SourcePhysReg);
1339  }
1340 
1341  assert(ResultReg && "ResultReg unset!");
1342  UsedRegs.push_back(SourcePhysReg);
1343  UpdateValueMap(I, ResultReg);
1344  }
1345 }
1346 
1347 // Attempt to fast-select a call instruction.
1348 bool PPCFastISel::SelectCall(const Instruction *I) {
1349  const CallInst *CI = cast<CallInst>(I);
1350  const Value *Callee = CI->getCalledValue();
1351 
1352  // Can't handle inline asm.
1353  if (isa<InlineAsm>(Callee))
1354  return false;
1355 
1356  // Allow SelectionDAG isel to handle tail calls.
1357  if (CI->isTailCall())
1358  return false;
1359 
1360  // Obtain calling convention.
1361  ImmutableCallSite CS(CI);
1362  CallingConv::ID CC = CS.getCallingConv();
1363 
1364  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1365  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1366  bool IsVarArg = FTy->isVarArg();
1367 
1368  // Not ready for varargs yet.
1369  if (IsVarArg)
1370  return false;
1371 
1372  // Handle simple calls for now, with legal return types and
1373  // those that can be extended.
1374  Type *RetTy = I->getType();
1375  MVT RetVT;
1376  if (RetTy->isVoidTy())
1377  RetVT = MVT::isVoid;
1378  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1379  RetVT != MVT::i8)
1380  return false;
1381 
1382  // FIXME: No multi-register return values yet.
1383  if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1384  RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1385  RetVT != MVT::f64) {
1387  CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
1388  CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1389  if (RVLocs.size() > 1)
1390  return false;
1391  }
1392 
1393  // Bail early if more than 8 arguments, as we only currently
1394  // handle arguments passed in registers.
1395  unsigned NumArgs = CS.arg_size();
1396  if (NumArgs > 8)
1397  return false;
1398 
1399  // Set up the argument vectors.
1401  SmallVector<unsigned, 8> ArgRegs;
1402  SmallVector<MVT, 8> ArgVTs;
1404 
1405  Args.reserve(NumArgs);
1406  ArgRegs.reserve(NumArgs);
1407  ArgVTs.reserve(NumArgs);
1408  ArgFlags.reserve(NumArgs);
1409 
1410  for (ImmutableCallSite::arg_iterator II = CS.arg_begin(), IE = CS.arg_end();
1411  II != IE; ++II) {
1412  // FIXME: ARM does something for intrinsic calls here, check into that.
1413 
1414  unsigned AttrIdx = II - CS.arg_begin() + 1;
1415 
1416  // Only handle easy calls for now. It would be reasonably easy
1417  // to handle <= 8-byte structures passed ByVal in registers, but we
1418  // have to ensure they are right-justified in the register.
1419  if (CS.paramHasAttr(AttrIdx, Attribute::InReg) ||
1420  CS.paramHasAttr(AttrIdx, Attribute::StructRet) ||
1421  CS.paramHasAttr(AttrIdx, Attribute::Nest) ||
1422  CS.paramHasAttr(AttrIdx, Attribute::ByVal))
1423  return false;
1424 
1426  if (CS.paramHasAttr(AttrIdx, Attribute::SExt))
1427  Flags.setSExt();
1428  if (CS.paramHasAttr(AttrIdx, Attribute::ZExt))
1429  Flags.setZExt();
1430 
1431  Type *ArgTy = (*II)->getType();
1432  MVT ArgVT;
1433  if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1434  return false;
1435 
1436  if (ArgVT.isVector())
1437  return false;
1438 
1439  unsigned Arg = getRegForValue(*II);
1440  if (Arg == 0)
1441  return false;
1442 
1443  unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1444  Flags.setOrigAlign(OriginalAlignment);
1445 
1446  Args.push_back(*II);
1447  ArgRegs.push_back(Arg);
1448  ArgVTs.push_back(ArgVT);
1449  ArgFlags.push_back(Flags);
1450  }
1451 
1452  // Process the arguments.
1453  SmallVector<unsigned, 8> RegArgs;
1454  unsigned NumBytes;
1455 
1456  if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1457  RegArgs, CC, NumBytes, IsVarArg))
1458  return false;
1459 
1460  // FIXME: No handling for function pointers yet. This requires
1461  // implementing the function descriptor (OPD) setup.
1462  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1463  if (!GV)
1464  return false;
1465 
1466  // Build direct call with NOP for TOC restore.
1467  // FIXME: We can and should optimize away the NOP for local calls.
1468  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1469  TII.get(PPC::BL8_NOP));
1470  // Add callee.
1471  MIB.addGlobalAddress(GV);
1472 
1473  // Add implicit physical register uses to the call.
1474  for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1475  MIB.addReg(RegArgs[II], RegState::Implicit);
1476 
1477  // Add a register mask with the call-preserved registers. Proper
1478  // defs for return values will be added by setPhysRegsDeadExcept().
1479  MIB.addRegMask(TRI.getCallPreservedMask(CC));
1480 
1481  // Finish off the call including any return values.
1482  SmallVector<unsigned, 4> UsedRegs;
1483  finishCall(RetVT, UsedRegs, I, CC, NumBytes, IsVarArg);
1484 
1485  // Set all unused physregs defs as dead.
1486  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1487 
1488  return true;
1489 }
1490 
1491 // Attempt to fast-select a return instruction.
1492 bool PPCFastISel::SelectRet(const Instruction *I) {
1493 
1494  if (!FuncInfo.CanLowerReturn)
1495  return false;
1496 
1497  const ReturnInst *Ret = cast<ReturnInst>(I);
1498  const Function &F = *I->getParent()->getParent();
1499 
1500  // Build a list of return value registers.
1501  SmallVector<unsigned, 4> RetRegs;
1502  CallingConv::ID CC = F.getCallingConv();
1503 
1504  if (Ret->getNumOperands() > 0) {
1506  GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1507 
1508  // Analyze operands of the call, assigning locations to each operand.
1510  CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, *Context);
1511  CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1512  const Value *RV = Ret->getOperand(0);
1513 
1514  // FIXME: Only one output register for now.
1515  if (ValLocs.size() > 1)
1516  return false;
1517 
1518  // Special case for returning a constant integer of any size.
1519  // Materialize the constant as an i64 and copy it to the return
1520  // register. This avoids an unnecessary extend or truncate.
1521  if (isa<ConstantInt>(*RV)) {
1522  const Constant *C = cast<Constant>(RV);
1523  unsigned SrcReg = PPCMaterializeInt(C, MVT::i64);
1524  unsigned RetReg = ValLocs[0].getLocReg();
1525  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1526  RetReg).addReg(SrcReg);
1527  RetRegs.push_back(RetReg);
1528 
1529  } else {
1530  unsigned Reg = getRegForValue(RV);
1531 
1532  if (Reg == 0)
1533  return false;
1534 
1535  // Copy the result values into the output registers.
1536  for (unsigned i = 0; i < ValLocs.size(); ++i) {
1537 
1538  CCValAssign &VA = ValLocs[i];
1539  assert(VA.isRegLoc() && "Can only return in registers!");
1540  RetRegs.push_back(VA.getLocReg());
1541  unsigned SrcReg = Reg + VA.getValNo();
1542 
1543  EVT RVEVT = TLI.getValueType(RV->getType());
1544  if (!RVEVT.isSimple())
1545  return false;
1546  MVT RVVT = RVEVT.getSimpleVT();
1547  MVT DestVT = VA.getLocVT();
1548 
1549  if (RVVT != DestVT && RVVT != MVT::i8 &&
1550  RVVT != MVT::i16 && RVVT != MVT::i32)
1551  return false;
1552 
1553  if (RVVT != DestVT) {
1554  switch (VA.getLocInfo()) {
1555  default:
1556  llvm_unreachable("Unknown loc info!");
1557  case CCValAssign::Full:
1558  llvm_unreachable("Full value assign but types don't match?");
1559  case CCValAssign::AExt:
1560  case CCValAssign::ZExt: {
1561  const TargetRegisterClass *RC =
1562  (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1563  unsigned TmpReg = createResultReg(RC);
1564  if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1565  return false;
1566  SrcReg = TmpReg;
1567  break;
1568  }
1569  case CCValAssign::SExt: {
1570  const TargetRegisterClass *RC =
1571  (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1572  unsigned TmpReg = createResultReg(RC);
1573  if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1574  return false;
1575  SrcReg = TmpReg;
1576  break;
1577  }
1578  }
1579  }
1580 
1581  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1582  TII.get(TargetOpcode::COPY), RetRegs[i])
1583  .addReg(SrcReg);
1584  }
1585  }
1586  }
1587 
1588  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1589  TII.get(PPC::BLR));
1590 
1591  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1592  MIB.addReg(RetRegs[i], RegState::Implicit);
1593 
1594  return true;
1595 }
1596 
1597 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1598 // signed and zero extensions are supported. Return false if we
1599 // can't handle it.
1600 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1601  unsigned DestReg, bool IsZExt) {
1602  if (DestVT != MVT::i32 && DestVT != MVT::i64)
1603  return false;
1604  if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1605  return false;
1606 
1607  // Signed extensions use EXTSB, EXTSH, EXTSW.
1608  if (!IsZExt) {
1609  unsigned Opc;
1610  if (SrcVT == MVT::i8)
1611  Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1612  else if (SrcVT == MVT::i16)
1613  Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1614  else {
1615  assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1616  Opc = PPC::EXTSW_32_64;
1617  }
1618  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1619  .addReg(SrcReg);
1620 
1621  // Unsigned 32-bit extensions use RLWINM.
1622  } else if (DestVT == MVT::i32) {
1623  unsigned MB;
1624  if (SrcVT == MVT::i8)
1625  MB = 24;
1626  else {
1627  assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1628  MB = 16;
1629  }
1630  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLWINM),
1631  DestReg)
1632  .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1633 
1634  // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1635  } else {
1636  unsigned MB;
1637  if (SrcVT == MVT::i8)
1638  MB = 56;
1639  else if (SrcVT == MVT::i16)
1640  MB = 48;
1641  else
1642  MB = 32;
1643  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1644  TII.get(PPC::RLDICL_32_64), DestReg)
1645  .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1646  }
1647 
1648  return true;
1649 }
1650 
1651 // Attempt to fast-select an indirect branch instruction.
1652 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1653  unsigned AddrReg = getRegForValue(I->getOperand(0));
1654  if (AddrReg == 0)
1655  return false;
1656 
1657  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::MTCTR8))
1658  .addReg(AddrReg);
1659  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::BCTR8));
1660 
1661  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1662  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1663  FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1664 
1665  return true;
1666 }
1667 
1668 // Attempt to fast-select an integer truncate instruction.
1669 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1670  Value *Src = I->getOperand(0);
1671  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1672  EVT DestVT = TLI.getValueType(I->getType(), true);
1673 
1674  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1675  return false;
1676 
1677  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1678  return false;
1679 
1680  unsigned SrcReg = getRegForValue(Src);
1681  if (!SrcReg)
1682  return false;
1683 
1684  // The only interesting case is when we need to switch register classes.
1685  if (SrcVT == MVT::i64) {
1686  unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1687  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1688  ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1689  SrcReg = ResultReg;
1690  }
1691 
1692  UpdateValueMap(I, SrcReg);
1693  return true;
1694 }
1695 
1696 // Attempt to fast-select an integer extend instruction.
1697 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1698  Type *DestTy = I->getType();
1699  Value *Src = I->getOperand(0);
1700  Type *SrcTy = Src->getType();
1701 
1702  bool IsZExt = isa<ZExtInst>(I);
1703  unsigned SrcReg = getRegForValue(Src);
1704  if (!SrcReg) return false;
1705 
1706  EVT SrcEVT, DestEVT;
1707  SrcEVT = TLI.getValueType(SrcTy, true);
1708  DestEVT = TLI.getValueType(DestTy, true);
1709  if (!SrcEVT.isSimple())
1710  return false;
1711  if (!DestEVT.isSimple())
1712  return false;
1713 
1714  MVT SrcVT = SrcEVT.getSimpleVT();
1715  MVT DestVT = DestEVT.getSimpleVT();
1716 
1717  // If we know the register class needed for the result of this
1718  // instruction, use it. Otherwise pick the register class of the
1719  // correct size that does not contain X0/R0, since we don't know
1720  // whether downstream uses permit that assignment.
1721  unsigned AssignedReg = FuncInfo.ValueMap[I];
1722  const TargetRegisterClass *RC =
1723  (AssignedReg ? MRI.getRegClass(AssignedReg) :
1724  (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1725  &PPC::GPRC_and_GPRC_NOR0RegClass));
1726  unsigned ResultReg = createResultReg(RC);
1727 
1728  if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1729  return false;
1730 
1731  UpdateValueMap(I, ResultReg);
1732  return true;
1733 }
1734 
1735 // Attempt to fast-select an instruction that wasn't handled by
1736 // the table-generated machinery.
1737 bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
1738 
1739  switch (I->getOpcode()) {
1740  case Instruction::Load:
1741  return SelectLoad(I);
1742  case Instruction::Store:
1743  return SelectStore(I);
1744  case Instruction::Br:
1745  return SelectBranch(I);
1746  case Instruction::IndirectBr:
1747  return SelectIndirectBr(I);
1748  case Instruction::FPExt:
1749  return SelectFPExt(I);
1750  case Instruction::FPTrunc:
1751  return SelectFPTrunc(I);
1752  case Instruction::SIToFP:
1753  return SelectIToFP(I, /*IsSigned*/ true);
1754  case Instruction::UIToFP:
1755  return SelectIToFP(I, /*IsSigned*/ false);
1756  case Instruction::FPToSI:
1757  return SelectFPToI(I, /*IsSigned*/ true);
1758  case Instruction::FPToUI:
1759  return SelectFPToI(I, /*IsSigned*/ false);
1760  case Instruction::Add:
1761  return SelectBinaryIntOp(I, ISD::ADD);
1762  case Instruction::Or:
1763  return SelectBinaryIntOp(I, ISD::OR);
1764  case Instruction::Sub:
1765  return SelectBinaryIntOp(I, ISD::SUB);
1766  case Instruction::Call:
1767  if (dyn_cast<IntrinsicInst>(I))
1768  return false;
1769  return SelectCall(I);
1770  case Instruction::Ret:
1771  return SelectRet(I);
1772  case Instruction::Trunc:
1773  return SelectTrunc(I);
1774  case Instruction::ZExt:
1775  case Instruction::SExt:
1776  return SelectIntExt(I);
1777  // Here add other flavors of Instruction::XXX that automated
1778  // cases don't catch. For example, switches are terminators
1779  // that aren't yet handled.
1780  default:
1781  break;
1782  }
1783  return false;
1784 }
1785 
1786 // Materialize a floating-point constant into a register, and return
1787 // the register number (or zero if we failed to handle it).
1788 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1789  // No plans to handle long double here.
1790  if (VT != MVT::f32 && VT != MVT::f64)
1791  return 0;
1792 
1793  // All FP constants are loaded from the constant pool.
1794  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
1795  assert(Align > 0 && "Unexpectedly missing alignment information!");
1796  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1797  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1798  CodeModel::Model CModel = TM.getCodeModel();
1799 
1800  MachineMemOperand *MMO =
1801  FuncInfo.MF->getMachineMemOperand(
1803  (VT == MVT::f32) ? 4 : 8, Align);
1804 
1805  unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1806  unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1807 
1808  // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1809  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1810  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
1811  TmpReg)
1812  .addConstantPoolIndex(Idx).addReg(PPC::X2);
1813  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1814  .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1815  } else {
1816  // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1817  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1818  TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1819  // But for large code model, we must generate a LDtocL followed
1820  // by the LF[SD].
1821  if (CModel == CodeModel::Large) {
1822  unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1823  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1824  TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1825  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1826  .addImm(0).addReg(TmpReg2);
1827  } else
1828  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
1829  .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1830  .addReg(TmpReg)
1831  .addMemOperand(MMO);
1832  }
1833 
1834  return DestReg;
1835 }
1836 
1837 // Materialize the address of a global value into a register, and return
1838 // the register number (or zero if we failed to handle it).
1839 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1840  assert(VT == MVT::i64 && "Non-address!");
1841  const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1842  unsigned DestReg = createResultReg(RC);
1843 
1844  // Global values may be plain old object addresses, TLS object
1845  // addresses, constant pool entries, or jump tables. How we generate
1846  // code for these may depend on small, medium, or large code model.
1847  CodeModel::Model CModel = TM.getCodeModel();
1848 
1849  // FIXME: Jump tables are not yet required because fast-isel doesn't
1850  // handle switches; if that changes, we need them as well. For now,
1851  // what follows assumes everything's a generic (or TLS) global address.
1852  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1853  if (!GVar) {
1854  // If GV is an alias, use the aliasee for determining thread-locality.
1855  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1856  GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1857  }
1858 
1859  // FIXME: We don't yet handle the complexity of TLS.
1860  bool IsTLS = GVar && GVar->isThreadLocal();
1861  if (IsTLS)
1862  return 0;
1863 
1864  // For small code model, generate a simple TOC load.
1865  if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1866  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtoc), DestReg)
1867  .addGlobalAddress(GV).addReg(PPC::X2);
1868  else {
1869  // If the address is an externally defined symbol, a symbol with
1870  // common or externally available linkage, a function address, or a
1871  // jump table address (not yet needed), or if we are generating code
1872  // for large code model, we generate:
1873  // LDtocL(GV, ADDIStocHA(%X2, GV))
1874  // Otherwise we generate:
1875  // ADDItocL(ADDIStocHA(%X2, GV), GV)
1876  // Either way, start with the ADDIStocHA:
1877  unsigned HighPartReg = createResultReg(RC);
1878  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
1879  HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1880 
1881  // !GVar implies a function address. An external variable is one
1882  // without an initializer.
1883  // If/when switches are implemented, jump tables should be handled
1884  // on the "if" path here.
1885  if (CModel == CodeModel::Large || !GVar || !GVar->hasInitializer() ||
1887  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocL),
1888  DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1889  else
1890  // Otherwise generate the ADDItocL.
1891  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDItocL),
1892  DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1893  }
1894 
1895  return DestReg;
1896 }
1897 
1898 // Materialize a 32-bit integer constant into a register, and return
1899 // the register number (or zero if we failed to handle it).
1900 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1901  const TargetRegisterClass *RC) {
1902  unsigned Lo = Imm & 0xFFFF;
1903  unsigned Hi = (Imm >> 16) & 0xFFFF;
1904 
1905  unsigned ResultReg = createResultReg(RC);
1906  bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1907 
1908  if (isInt<16>(Imm))
1909  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1910  TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1911  .addImm(Imm);
1912  else if (Lo) {
1913  // Both Lo and Hi have nonzero bits.
1914  unsigned TmpReg = createResultReg(RC);
1915  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1916  TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1917  .addImm(Hi);
1918  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1919  TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1920  .addReg(TmpReg).addImm(Lo);
1921  } else
1922  // Just Hi bits.
1923  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1924  TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
1925  .addImm(Hi);
1926 
1927  return ResultReg;
1928 }
1929 
1930 // Materialize a 64-bit integer constant into a register, and return
1931 // the register number (or zero if we failed to handle it).
1932 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
1933  const TargetRegisterClass *RC) {
1934  unsigned Remainder = 0;
1935  unsigned Shift = 0;
1936 
1937  // If the value doesn't fit in 32 bits, see if we can shift it
1938  // so that it fits in 32 bits.
1939  if (!isInt<32>(Imm)) {
1940  Shift = countTrailingZeros<uint64_t>(Imm);
1941  int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
1942 
1943  if (isInt<32>(ImmSh))
1944  Imm = ImmSh;
1945  else {
1946  Remainder = Imm;
1947  Shift = 32;
1948  Imm >>= 32;
1949  }
1950  }
1951 
1952  // Handle the high-order 32 bits (if shifted) or the whole 32 bits
1953  // (if not shifted).
1954  unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
1955  if (!Shift)
1956  return TmpReg1;
1957 
1958  // If upper 32 bits were not zero, we've built them and need to shift
1959  // them into place.
1960  unsigned TmpReg2;
1961  if (Imm) {
1962  TmpReg2 = createResultReg(RC);
1963  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
1964  TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
1965  } else
1966  TmpReg2 = TmpReg1;
1967 
1968  unsigned TmpReg3, Hi, Lo;
1969  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
1970  TmpReg3 = createResultReg(RC);
1971  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
1972  TmpReg3).addReg(TmpReg2).addImm(Hi);
1973  } else
1974  TmpReg3 = TmpReg2;
1975 
1976  if ((Lo = Remainder & 0xFFFF)) {
1977  unsigned ResultReg = createResultReg(RC);
1978  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
1979  ResultReg).addReg(TmpReg3).addImm(Lo);
1980  return ResultReg;
1981  }
1982 
1983  return TmpReg3;
1984 }
1985 
1986 
1987 // Materialize an integer constant into a register, and return
1988 // the register number (or zero if we failed to handle it).
1989 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
1990 
1991  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
1992  VT != MVT::i8 && VT != MVT::i1)
1993  return 0;
1994 
1995  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
1996  &PPC::GPRCRegClass);
1997 
1998  // If the constant is in range, use a load-immediate.
1999  const ConstantInt *CI = cast<ConstantInt>(C);
2000  if (isInt<16>(CI->getSExtValue())) {
2001  unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2002  unsigned ImmReg = createResultReg(RC);
2003  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
2004  .addImm(CI->getSExtValue());
2005  return ImmReg;
2006  }
2007 
2008  // Construct the constant piecewise.
2009  int64_t Imm = CI->getZExtValue();
2010 
2011  if (VT == MVT::i64)
2012  return PPCMaterialize64BitInt(Imm, RC);
2013  else if (VT == MVT::i32)
2014  return PPCMaterialize32BitInt(Imm, RC);
2015 
2016  return 0;
2017 }
2018 
2019 // Materialize a constant into a register, and return the register
2020 // number (or zero if we failed to handle it).
2021 unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
2022  EVT CEVT = TLI.getValueType(C->getType(), true);
2023 
2024  // Only handle simple types.
2025  if (!CEVT.isSimple()) return 0;
2026  MVT VT = CEVT.getSimpleVT();
2027 
2028  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2029  return PPCMaterializeFP(CFP, VT);
2030  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2031  return PPCMaterializeGV(GV, VT);
2032  else if (isa<ConstantInt>(C))
2033  return PPCMaterializeInt(C, VT);
2034 
2035  return 0;
2036 }
2037 
2038 // Materialize the address created by an alloca into a register, and
2039 // return the register number (or zero if we failed to handle it).
2040 unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
2041  // Don't handle dynamic allocas.
2042  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2043 
2044  MVT VT;
2045  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2046 
2048  FuncInfo.StaticAllocaMap.find(AI);
2049 
2050  if (SI != FuncInfo.StaticAllocaMap.end()) {
2051  unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2052  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDI8),
2053  ResultReg).addFrameIndex(SI->second).addImm(0);
2054  return ResultReg;
2055  }
2056 
2057  return 0;
2058 }
2059 
2060 // Fold loads into extends when possible.
2061 // FIXME: We can have multiple redundant extend/trunc instructions
2062 // following a load. The folding only picks up one. Extend this
2063 // to check subsequent instructions for the same pattern and remove
2064 // them. Thus ResultReg should be the def reg for the last redundant
2065 // instruction in a chain, and all intervening instructions can be
2066 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2067 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
2068 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2069  const LoadInst *LI) {
2070  // Verify we have a legal type before going any further.
2071  MVT VT;
2072  if (!isLoadTypeLegal(LI->getType(), VT))
2073  return false;
2074 
2075  // Combine load followed by zero- or sign-extend.
2076  bool IsZExt = false;
2077  switch(MI->getOpcode()) {
2078  default:
2079  return false;
2080 
2081  case PPC::RLDICL:
2082  case PPC::RLDICL_32_64: {
2083  IsZExt = true;
2084  unsigned MB = MI->getOperand(3).getImm();
2085  if ((VT == MVT::i8 && MB <= 56) ||
2086  (VT == MVT::i16 && MB <= 48) ||
2087  (VT == MVT::i32 && MB <= 32))
2088  break;
2089  return false;
2090  }
2091 
2092  case PPC::RLWINM:
2093  case PPC::RLWINM8: {
2094  IsZExt = true;
2095  unsigned MB = MI->getOperand(3).getImm();
2096  if ((VT == MVT::i8 && MB <= 24) ||
2097  (VT == MVT::i16 && MB <= 16))
2098  break;
2099  return false;
2100  }
2101 
2102  case PPC::EXTSB:
2103  case PPC::EXTSB8:
2104  case PPC::EXTSB8_32_64:
2105  /* There is no sign-extending load-byte instruction. */
2106  return false;
2107 
2108  case PPC::EXTSH:
2109  case PPC::EXTSH8:
2110  case PPC::EXTSH8_32_64: {
2111  if (VT != MVT::i16 && VT != MVT::i8)
2112  return false;
2113  break;
2114  }
2115 
2116  case PPC::EXTSW:
2117  case PPC::EXTSW_32_64: {
2118  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2119  return false;
2120  break;
2121  }
2122  }
2123 
2124  // See if we can handle this address.
2125  Address Addr;
2126  if (!PPCComputeAddress(LI->getOperand(0), Addr))
2127  return false;
2128 
2129  unsigned ResultReg = MI->getOperand(0).getReg();
2130 
2131  if (!PPCEmitLoad(VT, ResultReg, Addr, 0, IsZExt))
2132  return false;
2133 
2134  MI->eraseFromParent();
2135  return true;
2136 }
2137 
2138 // Attempt to lower call arguments in a faster way than done by
2139 // the selection DAG code.
2140 bool PPCFastISel::FastLowerArguments() {
2141  // Defer to normal argument lowering for now. It's reasonably
2142  // efficient. Consider doing something like ARM to handle the
2143  // case where all args fit in registers, no varargs, no float
2144  // or vector args.
2145  return false;
2146 }
2147 
2148 // Handle materializing integer constants into a register. This is not
2149 // automatically generated for PowerPC, so must be explicitly created here.
2150 unsigned PPCFastISel::FastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2151 
2152  if (Opc != ISD::Constant)
2153  return 0;
2154 
2155  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2156  VT != MVT::i8 && VT != MVT::i1)
2157  return 0;
2158 
2159  const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2160  &PPC::GPRCRegClass);
2161  if (VT == MVT::i64)
2162  return PPCMaterialize64BitInt(Imm, RC);
2163  else
2164  return PPCMaterialize32BitInt(Imm, RC);
2165 }
2166 
2167 // Override for ADDI and ADDI8 to set the correct register class
2168 // on RHS operand 0. The automatic infrastructure naively assumes
2169 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2170 // for these cases. At the moment, none of the other automatically
2171 // generated RI instructions require special treatment. However, once
2172 // SelectSelect is implemented, "isel" requires similar handling.
2173 //
2174 // Also be conservative about the output register class. Avoid
2175 // assigning R0 or X0 to the output register for GPRC and G8RC
2176 // register classes, as any such result could be used in ADDI, etc.,
2177 // where those regs have another meaning.
2178 unsigned PPCFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
2179  const TargetRegisterClass *RC,
2180  unsigned Op0, bool Op0IsKill,
2181  uint64_t Imm) {
2182  if (MachineInstOpcode == PPC::ADDI)
2183  MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2184  else if (MachineInstOpcode == PPC::ADDI8)
2185  MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2186 
2187  const TargetRegisterClass *UseRC =
2188  (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2189  (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2190 
2191  return FastISel::FastEmitInst_ri(MachineInstOpcode, UseRC,
2192  Op0, Op0IsKill, Imm);
2193 }
2194 
2195 // Override for instructions with one register operand to avoid use of
2196 // R0/X0. The automatic infrastructure isn't aware of the context so
2197 // we must be conservative.
2198 unsigned PPCFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
2199  const TargetRegisterClass* RC,
2200  unsigned Op0, bool Op0IsKill) {
2201  const TargetRegisterClass *UseRC =
2202  (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2203  (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2204 
2205  return FastISel::FastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2206 }
2207 
2208 // Override for instructions with two register operands to avoid use
2209 // of R0/X0. The automatic infrastructure isn't aware of the context
2210 // so we must be conservative.
2211 unsigned PPCFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
2212  const TargetRegisterClass* RC,
2213  unsigned Op0, bool Op0IsKill,
2214  unsigned Op1, bool Op1IsKill) {
2215  const TargetRegisterClass *UseRC =
2216  (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2217  (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2218 
2219  return FastISel::FastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2220  Op1, Op1IsKill);
2221 }
2222 
2223 namespace llvm {
2224  // Create the fast instruction selector for PowerPC64 ELF.
2226  const TargetLibraryInfo *LibInfo) {
2227  const TargetMachine &TM = FuncInfo.MF->getTarget();
2228 
2229  // Only available on 64-bit ELF for now.
2230  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
2231  if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
2232  return new PPCFastISel(FuncInfo, LibInfo);
2233 
2234  return 0;
2235  }
2236 }
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
const Value * getCalledValue() const
void push_back(const T &Elt)
Definition: SmallVector.h:236
The memory access reads data.
FastISel * createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
The memory access writes data.
MVT getValVT() const
void reserve(unsigned N)
Definition: SmallVector.h:425
LLVMContext & getContext() const
Definition: Function.cpp:167
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
Sign extended before/after call.
Definition: Attributes.h:97
LocInfo getLocInfo() const
Force argument to be passed in register.
Definition: Attributes.h:76
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
Nested function static chain.
Definition: Attributes.h:79
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:195
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
bool hasSuperClassEq(const TargetRegisterClass *RC) const
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm)
Definition: FastISel.cpp:1280
static MachinePointerInfo getConstantPool()
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
unsigned getValNo() const
op_iterator op_begin()
Definition: User.h:116
bool isRegLoc() const
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static MachinePointerInfo getFixedStack(int FI, int64_t offset=0)
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
bool hasCommonLinkage() const
Definition: GlobalValue.h:215
const HexagonInstrInfo * TII
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
#define llvm_unreachable(msg)
Definition: Use.h:60
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
const MachineInstrBuilder & addImm(int64_t Val) const
Hidden pointer to structure to return.
Definition: Attributes.h:105
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
unsigned getLocReg() const
int getOpcode() const
Definition: MachineInstr.h:261
const T & getValue() const LLVM_LVALUE_FUNCTION
Definition: Optional.h:115
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
BasicBlock * getSuccessor(unsigned i) const
Pass structure by value.
Definition: Attributes.h:73
int64_t getImm() const
void setOrigAlign(unsigned A)
Type * getElementType() const
Definition: DerivedTypes.h:319
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
User::const_op_iterator arg_iterator
Definition: CallSite.h:133
void GetReturnInfo(Type *ReturnType, AttributeSet attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI)
unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill)
Definition: FastISel.cpp:1216
MVT getLocVT() const
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
LLVM Constant Representation.
Definition: Constant.h:41
PointerType * getType() const
Definition: Instructions.h:91
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:190
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
op_iterator op_end()
Definition: User.h:118
unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill)
Definition: FastISel.cpp:1235
Value * getOperand(unsigned i) const
Definition: User.h:88
Zero extended before/after call.
Definition: Attributes.h:110
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
Integer representation type.
Definition: DerivedTypes.h:37
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:668
static bool isAtomic(Instruction *I)
bool isSVR4ABI() const
Definition: PPCSubtarget.h:209
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
signed greater than
Definition: InstrTypes.h:678
bool needsCustom() const
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
Class for constant integers.
Definition: Constants.h:51
const STC & getSubtarget() const
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
CCValAssign - Represent assignment of one arg/retval to a location.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:27
signed less than
Definition: InstrTypes.h:680
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Get a ConstantInt for a specific signed value.
Definition: Constants.cpp:507
const MachineInstrBuilder & addFrameIndex(int Idx) const
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
signed less or equal
Definition: InstrTypes.h:681
bool isPPC64() const
Definition: PPCSubtarget.h:154
bool hasInitializer() const
Class for arbitrary precision integers.
Definition: APInt.h:75
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned char TargetFlags=0) const
Predicate InvertPredicate(Predicate Opcode)
Invert the specified predicate. != -> ==, < -> >=.
Value * getCondition() const
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
unsigned greater or equal
Definition: InstrTypes.h:675
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
#define I(x, y, z)
Definition: MD5.cpp:54
void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
bool isTailCall() const
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
const TargetMachine & getTarget() const
bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:272
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
unsigned getReg() const
getReg - Returns the register number.
bool isSimple() const
Definition: ValueTypes.h:640
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:298
unsigned greater than
Definition: InstrTypes.h:674
const MCRegisterInfo & MRI
static Optional< PPC::Predicate > getComparePred(CmpInst::Predicate Pred)
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
MVT getSimpleVT() const
Definition: ValueTypes.h:749
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:653
signed greater or equal
Definition: InstrTypes.h:679
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
gep_type_iterator gep_type_begin(const User *GEP)