LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ARMFastISel.cpp
Go to the documentation of this file.
1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/Support/CallSite.h"
49 using namespace llvm;
50 
52 
53 namespace {
54 
55  // All possible address modes, plus some.
56  typedef struct Address {
57  enum {
58  RegBase,
59  FrameIndexBase
60  } BaseType;
61 
62  union {
63  unsigned Reg;
64  int FI;
65  } Base;
66 
67  int Offset;
68 
69  // Innocuous defaults for our address.
70  Address()
71  : BaseType(RegBase), Offset(0) {
72  Base.Reg = 0;
73  }
74  } Address;
75 
76 class ARMFastISel : public FastISel {
77 
78  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
79  /// make the right decision when generating code for different targets.
80  const ARMSubtarget *Subtarget;
81  const TargetMachine &TM;
82  const TargetInstrInfo &TII;
83  const TargetLowering &TLI;
84  ARMFunctionInfo *AFI;
85 
86  // Convenience variables to avoid some queries.
87  bool isThumb2;
88  LLVMContext *Context;
89 
90  public:
91  explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
92  const TargetLibraryInfo *libInfo)
93  : FastISel(funcInfo, libInfo),
94  TM(funcInfo.MF->getTarget()),
95  TII(*TM.getInstrInfo()),
96  TLI(*TM.getTargetLowering()) {
97  Subtarget = &TM.getSubtarget<ARMSubtarget>();
98  AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
99  isThumb2 = AFI->isThumbFunction();
100  Context = &funcInfo.Fn->getContext();
101  }
102 
103  // Code from FastISel.cpp.
104  private:
105  unsigned FastEmitInst_(unsigned MachineInstOpcode,
106  const TargetRegisterClass *RC);
107  unsigned FastEmitInst_r(unsigned MachineInstOpcode,
108  const TargetRegisterClass *RC,
109  unsigned Op0, bool Op0IsKill);
110  unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
111  const TargetRegisterClass *RC,
112  unsigned Op0, bool Op0IsKill,
113  unsigned Op1, bool Op1IsKill);
114  unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
115  const TargetRegisterClass *RC,
116  unsigned Op0, bool Op0IsKill,
117  unsigned Op1, bool Op1IsKill,
118  unsigned Op2, bool Op2IsKill);
119  unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
120  const TargetRegisterClass *RC,
121  unsigned Op0, bool Op0IsKill,
122  uint64_t Imm);
123  unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
124  const TargetRegisterClass *RC,
125  unsigned Op0, bool Op0IsKill,
126  const ConstantFP *FPImm);
127  unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
128  const TargetRegisterClass *RC,
129  unsigned Op0, bool Op0IsKill,
130  unsigned Op1, bool Op1IsKill,
131  uint64_t Imm);
132  unsigned FastEmitInst_i(unsigned MachineInstOpcode,
133  const TargetRegisterClass *RC,
134  uint64_t Imm);
135  unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
136  const TargetRegisterClass *RC,
137  uint64_t Imm1, uint64_t Imm2);
138 
139  unsigned FastEmitInst_extractsubreg(MVT RetVT,
140  unsigned Op0, bool Op0IsKill,
141  uint32_t Idx);
142 
143  // Backend specific FastISel code.
144  private:
145  virtual bool TargetSelectInstruction(const Instruction *I);
146  virtual unsigned TargetMaterializeConstant(const Constant *C);
147  virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
148  virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
149  const LoadInst *LI);
150  virtual bool FastLowerArguments();
151  private:
152  #include "ARMGenFastISel.inc"
153 
154  // Instruction selection routines.
155  private:
156  bool SelectLoad(const Instruction *I);
157  bool SelectStore(const Instruction *I);
158  bool SelectBranch(const Instruction *I);
159  bool SelectIndirectBr(const Instruction *I);
160  bool SelectCmp(const Instruction *I);
161  bool SelectFPExt(const Instruction *I);
162  bool SelectFPTrunc(const Instruction *I);
163  bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
164  bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
165  bool SelectIToFP(const Instruction *I, bool isSigned);
166  bool SelectFPToI(const Instruction *I, bool isSigned);
167  bool SelectDiv(const Instruction *I, bool isSigned);
168  bool SelectRem(const Instruction *I, bool isSigned);
169  bool SelectCall(const Instruction *I, const char *IntrMemName);
170  bool SelectIntrinsicCall(const IntrinsicInst &I);
171  bool SelectSelect(const Instruction *I);
172  bool SelectRet(const Instruction *I);
173  bool SelectTrunc(const Instruction *I);
174  bool SelectIntExt(const Instruction *I);
175  bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
176 
177  // Utility routines.
178  private:
179  unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum,
180  unsigned Op);
181  bool isTypeLegal(Type *Ty, MVT &VT);
182  bool isLoadTypeLegal(Type *Ty, MVT &VT);
183  bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
184  bool isZExt);
185  bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
186  unsigned Alignment = 0, bool isZExt = true,
187  bool allocReg = true);
188  bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
189  unsigned Alignment = 0);
190  bool ARMComputeAddress(const Value *Obj, Address &Addr);
191  void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
192  bool ARMIsMemCpySmall(uint64_t Len);
193  bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
194  unsigned Alignment);
195  unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
196  unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
197  unsigned ARMMaterializeInt(const Constant *C, MVT VT);
198  unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
199  unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
200  unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
201  unsigned ARMSelectCallOp(bool UseReg);
202  unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
203 
204  // Call handling routines.
205  private:
206  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
207  bool Return,
208  bool isVarArg);
209  bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
210  SmallVectorImpl<unsigned> &ArgRegs,
211  SmallVectorImpl<MVT> &ArgVTs,
213  SmallVectorImpl<unsigned> &RegArgs,
214  CallingConv::ID CC,
215  unsigned &NumBytes,
216  bool isVarArg);
217  unsigned getLibcallReg(const Twine &Name);
218  bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
219  const Instruction *I, CallingConv::ID CC,
220  unsigned &NumBytes, bool isVarArg);
221  bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
222 
223  // OptionalDef handling routines.
224  private:
225  bool isARMNEONPred(const MachineInstr *MI);
226  bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
227  const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
228  void AddLoadStoreOperands(MVT VT, Address &Addr,
229  const MachineInstrBuilder &MIB,
230  unsigned Flags, bool useAM3);
231 };
232 
233 } // end anonymous namespace
234 
235 #include "ARMGenCallingConv.inc"
236 
237 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
238 // we don't care about implicit defs here, just places we'll need to add a
239 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
240 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
241  if (!MI->hasOptionalDef())
242  return false;
243 
244  // Look to see if our OptionalDef is defining CPSR or CCR.
245  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
246  const MachineOperand &MO = MI->getOperand(i);
247  if (!MO.isReg() || !MO.isDef()) continue;
248  if (MO.getReg() == ARM::CPSR)
249  *CPSR = true;
250  }
251  return true;
252 }
253 
254 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
255  const MCInstrDesc &MCID = MI->getDesc();
256 
257  // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
258  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
259  AFI->isThumb2Function())
260  return MI->isPredicable();
261 
262  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
263  if (MCID.OpInfo[i].isPredicate())
264  return true;
265 
266  return false;
267 }
268 
269 // If the machine is predicable go ahead and add the predicate operands, if
270 // it needs default CC operands add those.
271 // TODO: If we want to support thumb1 then we'll need to deal with optional
272 // CPSR defs that need to be added before the remaining operands. See s_cc_out
273 // for descriptions why.
274 const MachineInstrBuilder &
275 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
276  MachineInstr *MI = &*MIB;
277 
278  // Do we use a predicate? or...
279  // Are we NEON in ARM mode and have a predicate operand? If so, I know
280  // we're not predicable but add it anyways.
281  if (isARMNEONPred(MI))
282  AddDefaultPred(MIB);
283 
284  // Do we optionally set a predicate? Preds is size > 0 iff the predicate
285  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
286  bool CPSR = false;
287  if (DefinesOptionalPredicate(MI, &CPSR)) {
288  if (CPSR)
289  AddDefaultT1CC(MIB);
290  else
291  AddDefaultCC(MIB);
292  }
293  return MIB;
294 }
295 
296 unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II,
297  unsigned Op, unsigned OpNum) {
299  const TargetRegisterClass *RegClass =
300  TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
301  if (!MRI.constrainRegClass(Op, RegClass)) {
302  // If it's not legal to COPY between the register classes, something
303  // has gone very wrong before we got here.
304  unsigned NewOp = createResultReg(RegClass);
305  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
306  TII.get(TargetOpcode::COPY), NewOp).addReg(Op));
307  return NewOp;
308  }
309  }
310  return Op;
311 }
312 
313 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
314  const TargetRegisterClass* RC) {
315  unsigned ResultReg = createResultReg(RC);
316  const MCInstrDesc &II = TII.get(MachineInstOpcode);
317 
318  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
319  return ResultReg;
320 }
321 
322 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
323  const TargetRegisterClass *RC,
324  unsigned Op0, bool Op0IsKill) {
325  unsigned ResultReg = createResultReg(RC);
326  const MCInstrDesc &II = TII.get(MachineInstOpcode);
327 
328  // Make sure the input operand is sufficiently constrained to be legal
329  // for this instruction.
330  Op0 = constrainOperandRegClass(II, Op0, 1);
331  if (II.getNumDefs() >= 1) {
332  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
333  .addReg(Op0, Op0IsKill * RegState::Kill));
334  } else {
335  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
336  .addReg(Op0, Op0IsKill * RegState::Kill));
337  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
338  TII.get(TargetOpcode::COPY), ResultReg)
339  .addReg(II.ImplicitDefs[0]));
340  }
341  return ResultReg;
342 }
343 
344 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
345  const TargetRegisterClass *RC,
346  unsigned Op0, bool Op0IsKill,
347  unsigned Op1, bool Op1IsKill) {
348  unsigned ResultReg = createResultReg(RC);
349  const MCInstrDesc &II = TII.get(MachineInstOpcode);
350 
351  // Make sure the input operands are sufficiently constrained to be legal
352  // for this instruction.
353  Op0 = constrainOperandRegClass(II, Op0, 1);
354  Op1 = constrainOperandRegClass(II, Op1, 2);
355 
356  if (II.getNumDefs() >= 1) {
357  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
358  .addReg(Op0, Op0IsKill * RegState::Kill)
359  .addReg(Op1, Op1IsKill * RegState::Kill));
360  } else {
361  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
362  .addReg(Op0, Op0IsKill * RegState::Kill)
363  .addReg(Op1, Op1IsKill * RegState::Kill));
364  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
365  TII.get(TargetOpcode::COPY), ResultReg)
366  .addReg(II.ImplicitDefs[0]));
367  }
368  return ResultReg;
369 }
370 
371 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
372  const TargetRegisterClass *RC,
373  unsigned Op0, bool Op0IsKill,
374  unsigned Op1, bool Op1IsKill,
375  unsigned Op2, bool Op2IsKill) {
376  unsigned ResultReg = createResultReg(RC);
377  const MCInstrDesc &II = TII.get(MachineInstOpcode);
378 
379  // Make sure the input operands are sufficiently constrained to be legal
380  // for this instruction.
381  Op0 = constrainOperandRegClass(II, Op0, 1);
382  Op1 = constrainOperandRegClass(II, Op1, 2);
383  Op2 = constrainOperandRegClass(II, Op1, 3);
384 
385  if (II.getNumDefs() >= 1) {
386  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
387  .addReg(Op0, Op0IsKill * RegState::Kill)
388  .addReg(Op1, Op1IsKill * RegState::Kill)
389  .addReg(Op2, Op2IsKill * RegState::Kill));
390  } else {
391  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
392  .addReg(Op0, Op0IsKill * RegState::Kill)
393  .addReg(Op1, Op1IsKill * RegState::Kill)
394  .addReg(Op2, Op2IsKill * RegState::Kill));
395  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
396  TII.get(TargetOpcode::COPY), ResultReg)
397  .addReg(II.ImplicitDefs[0]));
398  }
399  return ResultReg;
400 }
401 
402 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
403  const TargetRegisterClass *RC,
404  unsigned Op0, bool Op0IsKill,
405  uint64_t Imm) {
406  unsigned ResultReg = createResultReg(RC);
407  const MCInstrDesc &II = TII.get(MachineInstOpcode);
408 
409  // Make sure the input operand is sufficiently constrained to be legal
410  // for this instruction.
411  Op0 = constrainOperandRegClass(II, Op0, 1);
412  if (II.getNumDefs() >= 1) {
413  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
414  .addReg(Op0, Op0IsKill * RegState::Kill)
415  .addImm(Imm));
416  } else {
417  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
418  .addReg(Op0, Op0IsKill * RegState::Kill)
419  .addImm(Imm));
420  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
421  TII.get(TargetOpcode::COPY), ResultReg)
422  .addReg(II.ImplicitDefs[0]));
423  }
424  return ResultReg;
425 }
426 
427 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
428  const TargetRegisterClass *RC,
429  unsigned Op0, bool Op0IsKill,
430  const ConstantFP *FPImm) {
431  unsigned ResultReg = createResultReg(RC);
432  const MCInstrDesc &II = TII.get(MachineInstOpcode);
433 
434  // Make sure the input operand is sufficiently constrained to be legal
435  // for this instruction.
436  Op0 = constrainOperandRegClass(II, Op0, 1);
437  if (II.getNumDefs() >= 1) {
438  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
439  .addReg(Op0, Op0IsKill * RegState::Kill)
440  .addFPImm(FPImm));
441  } else {
442  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
443  .addReg(Op0, Op0IsKill * RegState::Kill)
444  .addFPImm(FPImm));
445  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
446  TII.get(TargetOpcode::COPY), ResultReg)
447  .addReg(II.ImplicitDefs[0]));
448  }
449  return ResultReg;
450 }
451 
452 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
453  const TargetRegisterClass *RC,
454  unsigned Op0, bool Op0IsKill,
455  unsigned Op1, bool Op1IsKill,
456  uint64_t Imm) {
457  unsigned ResultReg = createResultReg(RC);
458  const MCInstrDesc &II = TII.get(MachineInstOpcode);
459 
460  // Make sure the input operands are sufficiently constrained to be legal
461  // for this instruction.
462  Op0 = constrainOperandRegClass(II, Op0, 1);
463  Op1 = constrainOperandRegClass(II, Op1, 2);
464  if (II.getNumDefs() >= 1) {
465  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
466  .addReg(Op0, Op0IsKill * RegState::Kill)
467  .addReg(Op1, Op1IsKill * RegState::Kill)
468  .addImm(Imm));
469  } else {
470  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
471  .addReg(Op0, Op0IsKill * RegState::Kill)
472  .addReg(Op1, Op1IsKill * RegState::Kill)
473  .addImm(Imm));
474  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
475  TII.get(TargetOpcode::COPY), ResultReg)
476  .addReg(II.ImplicitDefs[0]));
477  }
478  return ResultReg;
479 }
480 
481 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
482  const TargetRegisterClass *RC,
483  uint64_t Imm) {
484  unsigned ResultReg = createResultReg(RC);
485  const MCInstrDesc &II = TII.get(MachineInstOpcode);
486 
487  if (II.getNumDefs() >= 1) {
488  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
489  .addImm(Imm));
490  } else {
491  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
492  .addImm(Imm));
493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494  TII.get(TargetOpcode::COPY), ResultReg)
495  .addReg(II.ImplicitDefs[0]));
496  }
497  return ResultReg;
498 }
499 
500 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
501  const TargetRegisterClass *RC,
502  uint64_t Imm1, uint64_t Imm2) {
503  unsigned ResultReg = createResultReg(RC);
504  const MCInstrDesc &II = TII.get(MachineInstOpcode);
505 
506  if (II.getNumDefs() >= 1) {
507  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
508  .addImm(Imm1).addImm(Imm2));
509  } else {
510  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
511  .addImm(Imm1).addImm(Imm2));
512  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
513  TII.get(TargetOpcode::COPY),
514  ResultReg)
515  .addReg(II.ImplicitDefs[0]));
516  }
517  return ResultReg;
518 }
519 
520 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
521  unsigned Op0, bool Op0IsKill,
522  uint32_t Idx) {
523  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
525  "Cannot yet extract from physregs");
526 
527  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
528  DL, TII.get(TargetOpcode::COPY), ResultReg)
529  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
530  return ResultReg;
531 }
532 
533 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
534 // checks from the various callers.
535 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
536  if (VT == MVT::f64) return 0;
537 
538  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
539  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
540  TII.get(ARM::VMOVSR), MoveReg)
541  .addReg(SrcReg));
542  return MoveReg;
543 }
544 
545 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
546  if (VT == MVT::i64) return 0;
547 
548  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
549  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
550  TII.get(ARM::VMOVRS), MoveReg)
551  .addReg(SrcReg));
552  return MoveReg;
553 }
554 
555 // For double width floating point we need to materialize two constants
556 // (the high and the low) into integer registers then use a move to get
557 // the combined constant into an FP reg.
558 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
559  const APFloat Val = CFP->getValueAPF();
560  bool is64bit = VT == MVT::f64;
561 
562  // This checks to see if we can use VFP3 instructions to materialize
563  // a constant, otherwise we have to go through the constant pool.
564  if (TLI.isFPImmLegal(Val, VT)) {
565  int Imm;
566  unsigned Opc;
567  if (is64bit) {
568  Imm = ARM_AM::getFP64Imm(Val);
569  Opc = ARM::FCONSTD;
570  } else {
571  Imm = ARM_AM::getFP32Imm(Val);
572  Opc = ARM::FCONSTS;
573  }
574  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
575  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
576  DestReg)
577  .addImm(Imm));
578  return DestReg;
579  }
580 
581  // Require VFP2 for loading fp constants.
582  if (!Subtarget->hasVFP2()) return false;
583 
584  // MachineConstantPool wants an explicit alignment.
585  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
586  if (Align == 0) {
587  // TODO: Figure out if this is correct.
588  Align = TD.getTypeAllocSize(CFP->getType());
589  }
590  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
591  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
592  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
593 
594  // The extra reg is for addrmode5.
595  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
596  DestReg)
597  .addConstantPoolIndex(Idx)
598  .addReg(0));
599  return DestReg;
600 }
601 
602 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
603 
604  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
605  return false;
606 
607  // If we can do this in a single instruction without a constant pool entry
608  // do so now.
609  const ConstantInt *CI = cast<ConstantInt>(C);
610  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
611  unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
612  const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
613  &ARM::GPRRegClass;
614  unsigned ImmReg = createResultReg(RC);
615  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
616  TII.get(Opc), ImmReg)
617  .addImm(CI->getZExtValue()));
618  return ImmReg;
619  }
620 
621  // Use MVN to emit negative constants.
622  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
623  unsigned Imm = (unsigned)~(CI->getSExtValue());
624  bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
625  (ARM_AM::getSOImmVal(Imm) != -1);
626  if (UseImm) {
627  unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
628  unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
629  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
630  TII.get(Opc), ImmReg)
631  .addImm(Imm));
632  return ImmReg;
633  }
634  }
635 
636  // Load from constant pool. For now 32-bit only.
637  if (VT != MVT::i32)
638  return false;
639 
640  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
641 
642  // MachineConstantPool wants an explicit alignment.
643  unsigned Align = TD.getPrefTypeAlignment(C->getType());
644  if (Align == 0) {
645  // TODO: Figure out if this is correct.
646  Align = TD.getTypeAllocSize(C->getType());
647  }
648  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
649 
650  if (isThumb2)
651  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
652  TII.get(ARM::t2LDRpci), DestReg)
653  .addConstantPoolIndex(Idx));
654  else
655  // The extra immediate is for addrmode2.
656  DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
657  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
658  TII.get(ARM::LDRcp), DestReg)
659  .addConstantPoolIndex(Idx)
660  .addImm(0));
661 
662  return DestReg;
663 }
664 
665 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
666  // For now 32-bit only.
667  if (VT != MVT::i32) return 0;
668 
669  Reloc::Model RelocM = TM.getRelocationModel();
670  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
671  const TargetRegisterClass *RC = isThumb2 ?
672  (const TargetRegisterClass*)&ARM::rGPRRegClass :
673  (const TargetRegisterClass*)&ARM::GPRRegClass;
674  unsigned DestReg = createResultReg(RC);
675 
676  // FastISel TLS support on non-Darwin is broken, punt to SelectionDAG.
677  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
678  bool IsThreadLocal = GVar && GVar->isThreadLocal();
679  if (!Subtarget->isTargetDarwin() && IsThreadLocal) return 0;
680 
681  // Use movw+movt when possible, it avoids constant pool entries.
682  // Darwin targets don't support movt with Reloc::Static, see
683  // ARMTargetLowering::LowerGlobalAddressDarwin. Other targets only support
684  // static movt relocations.
685  if (Subtarget->useMovt() &&
686  Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
687  unsigned Opc;
688  switch (RelocM) {
689  case Reloc::PIC_:
690  Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
691  break;
692  case Reloc::DynamicNoPIC:
693  Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
694  break;
695  default:
696  Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
697  break;
698  }
699  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
700  DestReg).addGlobalAddress(GV));
701  } else {
702  // MachineConstantPool wants an explicit alignment.
703  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
704  if (Align == 0) {
705  // TODO: Figure out if this is correct.
706  Align = TD.getTypeAllocSize(GV->getType());
707  }
708 
709  if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
710  return ARMLowerPICELF(GV, Align, VT);
711 
712  // Grab index.
713  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
714  (Subtarget->isThumb() ? 4 : 8);
715  unsigned Id = AFI->createPICLabelUId();
718  PCAdj);
719  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
720 
721  // Load value.
723  if (isThumb2) {
724  unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
725  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
726  .addConstantPoolIndex(Idx);
727  if (RelocM == Reloc::PIC_)
728  MIB.addImm(Id);
729  AddOptionalDefs(MIB);
730  } else {
731  // The extra immediate is for addrmode2.
732  DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
733  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
734  DestReg)
735  .addConstantPoolIndex(Idx)
736  .addImm(0);
737  AddOptionalDefs(MIB);
738 
739  if (RelocM == Reloc::PIC_) {
740  unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
741  unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
742 
743  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
744  DL, TII.get(Opc), NewDestReg)
745  .addReg(DestReg)
746  .addImm(Id);
747  AddOptionalDefs(MIB);
748  return NewDestReg;
749  }
750  }
751  }
752 
753  if (IsIndirect) {
755  unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
756  if (isThumb2)
757  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
758  TII.get(ARM::t2LDRi12), NewDestReg)
759  .addReg(DestReg)
760  .addImm(0);
761  else
762  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
763  NewDestReg)
764  .addReg(DestReg)
765  .addImm(0);
766  DestReg = NewDestReg;
767  AddOptionalDefs(MIB);
768  }
769 
770  return DestReg;
771 }
772 
773 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
774  EVT CEVT = TLI.getValueType(C->getType(), true);
775 
776  // Only handle simple types.
777  if (!CEVT.isSimple()) return 0;
778  MVT VT = CEVT.getSimpleVT();
779 
780  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
781  return ARMMaterializeFP(CFP, VT);
782  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
783  return ARMMaterializeGV(GV, VT);
784  else if (isa<ConstantInt>(C))
785  return ARMMaterializeInt(C, VT);
786 
787  return 0;
788 }
789 
790 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
791 
792 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
793  // Don't handle dynamic allocas.
794  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
795 
796  MVT VT;
797  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
798 
800  FuncInfo.StaticAllocaMap.find(AI);
801 
802  // This will get lowered later into the correct offsets and registers
803  // via rewriteXFrameIndex.
804  if (SI != FuncInfo.StaticAllocaMap.end()) {
805  const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
806  unsigned ResultReg = createResultReg(RC);
807  unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
808  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
809  TII.get(Opc), ResultReg)
810  .addFrameIndex(SI->second)
811  .addImm(0));
812  return ResultReg;
813  }
814 
815  return 0;
816 }
817 
818 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
819  EVT evt = TLI.getValueType(Ty, true);
820 
821  // Only handle simple types.
822  if (evt == MVT::Other || !evt.isSimple()) return false;
823  VT = evt.getSimpleVT();
824 
825  // Handle all legal types, i.e. a register that will directly hold this
826  // value.
827  return TLI.isTypeLegal(VT);
828 }
829 
830 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
831  if (isTypeLegal(Ty, VT)) return true;
832 
833  // If this is a type than can be sign or zero-extended to a basic operation
834  // go ahead and accept it now.
835  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
836  return true;
837 
838  return false;
839 }
840 
841 // Computes the address to get to an object.
842 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
843  // Some boilerplate from the X86 FastISel.
844  const User *U = NULL;
845  unsigned Opcode = Instruction::UserOp1;
846  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
847  // Don't walk into other basic blocks unless the object is an alloca from
848  // another block, otherwise it may not have a virtual register assigned.
849  if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
850  FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
851  Opcode = I->getOpcode();
852  U = I;
853  }
854  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
855  Opcode = C->getOpcode();
856  U = C;
857  }
858 
859  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
860  if (Ty->getAddressSpace() > 255)
861  // Fast instruction selection doesn't support the special
862  // address spaces.
863  return false;
864 
865  switch (Opcode) {
866  default:
867  break;
868  case Instruction::BitCast:
869  // Look through bitcasts.
870  return ARMComputeAddress(U->getOperand(0), Addr);
871  case Instruction::IntToPtr:
872  // Look past no-op inttoptrs.
873  if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
874  return ARMComputeAddress(U->getOperand(0), Addr);
875  break;
876  case Instruction::PtrToInt:
877  // Look past no-op ptrtoints.
878  if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
879  return ARMComputeAddress(U->getOperand(0), Addr);
880  break;
881  case Instruction::GetElementPtr: {
882  Address SavedAddr = Addr;
883  int TmpOffset = Addr.Offset;
884 
885  // Iterate through the GEP folding the constants into offsets where
886  // we can.
888  for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
889  i != e; ++i, ++GTI) {
890  const Value *Op = *i;
891  if (StructType *STy = dyn_cast<StructType>(*GTI)) {
892  const StructLayout *SL = TD.getStructLayout(STy);
893  unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
894  TmpOffset += SL->getElementOffset(Idx);
895  } else {
896  uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
897  for (;;) {
898  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
899  // Constant-offset addressing.
900  TmpOffset += CI->getSExtValue() * S;
901  break;
902  }
903  if (canFoldAddIntoGEP(U, Op)) {
904  // A compatible add with a constant operand. Fold the constant.
905  ConstantInt *CI =
906  cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
907  TmpOffset += CI->getSExtValue() * S;
908  // Iterate on the other operand.
909  Op = cast<AddOperator>(Op)->getOperand(0);
910  continue;
911  }
912  // Unsupported
913  goto unsupported_gep;
914  }
915  }
916  }
917 
918  // Try to grab the base operand now.
919  Addr.Offset = TmpOffset;
920  if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
921 
922  // We failed, restore everything and try the other options.
923  Addr = SavedAddr;
924 
925  unsupported_gep:
926  break;
927  }
928  case Instruction::Alloca: {
929  const AllocaInst *AI = cast<AllocaInst>(Obj);
931  FuncInfo.StaticAllocaMap.find(AI);
932  if (SI != FuncInfo.StaticAllocaMap.end()) {
933  Addr.BaseType = Address::FrameIndexBase;
934  Addr.Base.FI = SI->second;
935  return true;
936  }
937  break;
938  }
939  }
940 
941  // Try to get this in a register if nothing else has worked.
942  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
943  return Addr.Base.Reg != 0;
944 }
945 
946 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
947  bool needsLowering = false;
948  switch (VT.SimpleTy) {
949  default: llvm_unreachable("Unhandled load/store type!");
950  case MVT::i1:
951  case MVT::i8:
952  case MVT::i16:
953  case MVT::i32:
954  if (!useAM3) {
955  // Integer loads/stores handle 12-bit offsets.
956  needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
957  // Handle negative offsets.
958  if (needsLowering && isThumb2)
959  needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
960  Addr.Offset > -256);
961  } else {
962  // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
963  needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
964  }
965  break;
966  case MVT::f32:
967  case MVT::f64:
968  // Floating point operands handle 8-bit offsets.
969  needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
970  break;
971  }
972 
973  // If this is a stack pointer and the offset needs to be simplified then
974  // put the alloca address into a register, set the base type back to
975  // register and continue. This should almost never happen.
976  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
977  const TargetRegisterClass *RC = isThumb2 ?
978  (const TargetRegisterClass*)&ARM::tGPRRegClass :
979  (const TargetRegisterClass*)&ARM::GPRRegClass;
980  unsigned ResultReg = createResultReg(RC);
981  unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
982  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
983  TII.get(Opc), ResultReg)
984  .addFrameIndex(Addr.Base.FI)
985  .addImm(0));
986  Addr.Base.Reg = ResultReg;
987  Addr.BaseType = Address::RegBase;
988  }
989 
990  // Since the offset is too large for the load/store instruction
991  // get the reg+offset into a register.
992  if (needsLowering) {
993  Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
994  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
995  Addr.Offset = 0;
996  }
997 }
998 
999 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
1000  const MachineInstrBuilder &MIB,
1001  unsigned Flags, bool useAM3) {
1002  // addrmode5 output depends on the selection dag addressing dividing the
1003  // offset by 4 that it then later multiplies. Do this here as well.
1004  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
1005  Addr.Offset /= 4;
1006 
1007  // Frame base works a bit differently. Handle it separately.
1008  if (Addr.BaseType == Address::FrameIndexBase) {
1009  int FI = Addr.Base.FI;
1010  int Offset = Addr.Offset;
1011  MachineMemOperand *MMO =
1012  FuncInfo.MF->getMachineMemOperand(
1014  Flags,
1015  MFI.getObjectSize(FI),
1016  MFI.getObjectAlignment(FI));
1017  // Now add the rest of the operands.
1018  MIB.addFrameIndex(FI);
1019 
1020  // ARM halfword load/stores and signed byte loads need an additional
1021  // operand.
1022  if (useAM3) {
1023  signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
1024  MIB.addReg(0);
1025  MIB.addImm(Imm);
1026  } else {
1027  MIB.addImm(Addr.Offset);
1028  }
1029  MIB.addMemOperand(MMO);
1030  } else {
1031  // Now add the rest of the operands.
1032  MIB.addReg(Addr.Base.Reg);
1033 
1034  // ARM halfword load/stores and signed byte loads need an additional
1035  // operand.
1036  if (useAM3) {
1037  signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
1038  MIB.addReg(0);
1039  MIB.addImm(Imm);
1040  } else {
1041  MIB.addImm(Addr.Offset);
1042  }
1043  }
1044  AddOptionalDefs(MIB);
1045 }
1046 
1047 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
1048  unsigned Alignment, bool isZExt, bool allocReg) {
1049  unsigned Opc;
1050  bool useAM3 = false;
1051  bool needVMOV = false;
1052  const TargetRegisterClass *RC;
1053  switch (VT.SimpleTy) {
1054  // This is mostly going to be Neon/vector support.
1055  default: return false;
1056  case MVT::i1:
1057  case MVT::i8:
1058  if (isThumb2) {
1059  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1060  Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
1061  else
1062  Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
1063  } else {
1064  if (isZExt) {
1065  Opc = ARM::LDRBi12;
1066  } else {
1067  Opc = ARM::LDRSB;
1068  useAM3 = true;
1069  }
1070  }
1071  RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1072  break;
1073  case MVT::i16:
1074  if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1075  return false;
1076 
1077  if (isThumb2) {
1078  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1079  Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1080  else
1081  Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1082  } else {
1083  Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1084  useAM3 = true;
1085  }
1086  RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1087  break;
1088  case MVT::i32:
1089  if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1090  return false;
1091 
1092  if (isThumb2) {
1093  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1094  Opc = ARM::t2LDRi8;
1095  else
1096  Opc = ARM::t2LDRi12;
1097  } else {
1098  Opc = ARM::LDRi12;
1099  }
1100  RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1101  break;
1102  case MVT::f32:
1103  if (!Subtarget->hasVFP2()) return false;
1104  // Unaligned loads need special handling. Floats require word-alignment.
1105  if (Alignment && Alignment < 4) {
1106  needVMOV = true;
1107  VT = MVT::i32;
1108  Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1109  RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1110  } else {
1111  Opc = ARM::VLDRS;
1112  RC = TLI.getRegClassFor(VT);
1113  }
1114  break;
1115  case MVT::f64:
1116  if (!Subtarget->hasVFP2()) return false;
1117  // FIXME: Unaligned loads need special handling. Doublewords require
1118  // word-alignment.
1119  if (Alignment && Alignment < 4)
1120  return false;
1121 
1122  Opc = ARM::VLDRD;
1123  RC = TLI.getRegClassFor(VT);
1124  break;
1125  }
1126  // Simplify this down to something we can handle.
1127  ARMSimplifyAddress(Addr, VT, useAM3);
1128 
1129  // Create the base instruction, then add the operands.
1130  if (allocReg)
1131  ResultReg = createResultReg(RC);
1132  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1133  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1134  TII.get(Opc), ResultReg);
1135  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1136 
1137  // If we had an unaligned load of a float we've converted it to an regular
1138  // load. Now we must move from the GRP to the FP register.
1139  if (needVMOV) {
1140  unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1141  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1142  TII.get(ARM::VMOVSR), MoveReg)
1143  .addReg(ResultReg));
1144  ResultReg = MoveReg;
1145  }
1146  return true;
1147 }
1148 
1149 bool ARMFastISel::SelectLoad(const Instruction *I) {
1150  // Atomic loads need special handling.
1151  if (cast<LoadInst>(I)->isAtomic())
1152  return false;
1153 
1154  // Verify we have a legal type before going any further.
1155  MVT VT;
1156  if (!isLoadTypeLegal(I->getType(), VT))
1157  return false;
1158 
1159  // See if we can handle this address.
1160  Address Addr;
1161  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1162 
1163  unsigned ResultReg;
1164  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1165  return false;
1166  UpdateValueMap(I, ResultReg);
1167  return true;
1168 }
1169 
1170 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1171  unsigned Alignment) {
1172  unsigned StrOpc;
1173  bool useAM3 = false;
1174  switch (VT.SimpleTy) {
1175  // This is mostly going to be Neon/vector support.
1176  default: return false;
1177  case MVT::i1: {
1178  unsigned Res = createResultReg(isThumb2 ?
1179  (const TargetRegisterClass*)&ARM::tGPRRegClass :
1180  (const TargetRegisterClass*)&ARM::GPRRegClass);
1181  unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1182  SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1183  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1184  TII.get(Opc), Res)
1185  .addReg(SrcReg).addImm(1));
1186  SrcReg = Res;
1187  } // Fallthrough here.
1188  case MVT::i8:
1189  if (isThumb2) {
1190  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1191  StrOpc = ARM::t2STRBi8;
1192  else
1193  StrOpc = ARM::t2STRBi12;
1194  } else {
1195  StrOpc = ARM::STRBi12;
1196  }
1197  break;
1198  case MVT::i16:
1199  if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1200  return false;
1201 
1202  if (isThumb2) {
1203  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1204  StrOpc = ARM::t2STRHi8;
1205  else
1206  StrOpc = ARM::t2STRHi12;
1207  } else {
1208  StrOpc = ARM::STRH;
1209  useAM3 = true;
1210  }
1211  break;
1212  case MVT::i32:
1213  if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1214  return false;
1215 
1216  if (isThumb2) {
1217  if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1218  StrOpc = ARM::t2STRi8;
1219  else
1220  StrOpc = ARM::t2STRi12;
1221  } else {
1222  StrOpc = ARM::STRi12;
1223  }
1224  break;
1225  case MVT::f32:
1226  if (!Subtarget->hasVFP2()) return false;
1227  // Unaligned stores need special handling. Floats require word-alignment.
1228  if (Alignment && Alignment < 4) {
1229  unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1230  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1231  TII.get(ARM::VMOVRS), MoveReg)
1232  .addReg(SrcReg));
1233  SrcReg = MoveReg;
1234  VT = MVT::i32;
1235  StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1236  } else {
1237  StrOpc = ARM::VSTRS;
1238  }
1239  break;
1240  case MVT::f64:
1241  if (!Subtarget->hasVFP2()) return false;
1242  // FIXME: Unaligned stores need special handling. Doublewords require
1243  // word-alignment.
1244  if (Alignment && Alignment < 4)
1245  return false;
1246 
1247  StrOpc = ARM::VSTRD;
1248  break;
1249  }
1250  // Simplify this down to something we can handle.
1251  ARMSimplifyAddress(Addr, VT, useAM3);
1252 
1253  // Create the base instruction, then add the operands.
1254  SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1255  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1256  TII.get(StrOpc))
1257  .addReg(SrcReg);
1258  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1259  return true;
1260 }
1261 
1262 bool ARMFastISel::SelectStore(const Instruction *I) {
1263  Value *Op0 = I->getOperand(0);
1264  unsigned SrcReg = 0;
1265 
1266  // Atomic stores need special handling.
1267  if (cast<StoreInst>(I)->isAtomic())
1268  return false;
1269 
1270  // Verify we have a legal type before going any further.
1271  MVT VT;
1272  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1273  return false;
1274 
1275  // Get the value to be stored into a register.
1276  SrcReg = getRegForValue(Op0);
1277  if (SrcReg == 0) return false;
1278 
1279  // See if we can handle this address.
1280  Address Addr;
1281  if (!ARMComputeAddress(I->getOperand(1), Addr))
1282  return false;
1283 
1284  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1285  return false;
1286  return true;
1287 }
1288 
1290  switch (Pred) {
1291  // Needs two compares...
1292  case CmpInst::FCMP_ONE:
1293  case CmpInst::FCMP_UEQ:
1294  default:
1295  // AL is our "false" for now. The other two need more compares.
1296  return ARMCC::AL;
1297  case CmpInst::ICMP_EQ:
1298  case CmpInst::FCMP_OEQ:
1299  return ARMCC::EQ;
1300  case CmpInst::ICMP_SGT:
1301  case CmpInst::FCMP_OGT:
1302  return ARMCC::GT;
1303  case CmpInst::ICMP_SGE:
1304  case CmpInst::FCMP_OGE:
1305  return ARMCC::GE;
1306  case CmpInst::ICMP_UGT:
1307  case CmpInst::FCMP_UGT:
1308  return ARMCC::HI;
1309  case CmpInst::FCMP_OLT:
1310  return ARMCC::MI;
1311  case CmpInst::ICMP_ULE:
1312  case CmpInst::FCMP_OLE:
1313  return ARMCC::LS;
1314  case CmpInst::FCMP_ORD:
1315  return ARMCC::VC;
1316  case CmpInst::FCMP_UNO:
1317  return ARMCC::VS;
1318  case CmpInst::FCMP_UGE:
1319  return ARMCC::PL;
1320  case CmpInst::ICMP_SLT:
1321  case CmpInst::FCMP_ULT:
1322  return ARMCC::LT;
1323  case CmpInst::ICMP_SLE:
1324  case CmpInst::FCMP_ULE:
1325  return ARMCC::LE;
1326  case CmpInst::FCMP_UNE:
1327  case CmpInst::ICMP_NE:
1328  return ARMCC::NE;
1329  case CmpInst::ICMP_UGE:
1330  return ARMCC::HS;
1331  case CmpInst::ICMP_ULT:
1332  return ARMCC::LO;
1333  }
1334 }
1335 
1336 bool ARMFastISel::SelectBranch(const Instruction *I) {
1337  const BranchInst *BI = cast<BranchInst>(I);
1338  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1339  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1340 
1341  // Simple branch support.
1342 
1343  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1344  // behavior.
1345  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1346  if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1347 
1348  // Get the compare predicate.
1349  // Try to take advantage of fallthrough opportunities.
1350  CmpInst::Predicate Predicate = CI->getPredicate();
1351  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1352  std::swap(TBB, FBB);
1353  Predicate = CmpInst::getInversePredicate(Predicate);
1354  }
1355 
1356  ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1357 
1358  // We may not handle every CC for now.
1359  if (ARMPred == ARMCC::AL) return false;
1360 
1361  // Emit the compare.
1362  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1363  return false;
1364 
1365  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1366  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1367  .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1368  FastEmitBranch(FBB, DL);
1369  FuncInfo.MBB->addSuccessor(TBB);
1370  return true;
1371  }
1372  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1373  MVT SourceVT;
1374  if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1375  (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1376  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1377  unsigned OpReg = getRegForValue(TI->getOperand(0));
1378  OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1379  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1380  TII.get(TstOpc))
1381  .addReg(OpReg).addImm(1));
1382 
1383  unsigned CCMode = ARMCC::NE;
1384  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1385  std::swap(TBB, FBB);
1386  CCMode = ARMCC::EQ;
1387  }
1388 
1389  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1390  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1391  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1392 
1393  FastEmitBranch(FBB, DL);
1394  FuncInfo.MBB->addSuccessor(TBB);
1395  return true;
1396  }
1397  } else if (const ConstantInt *CI =
1398  dyn_cast<ConstantInt>(BI->getCondition())) {
1399  uint64_t Imm = CI->getZExtValue();
1400  MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1401  FastEmitBranch(Target, DL);
1402  return true;
1403  }
1404 
1405  unsigned CmpReg = getRegForValue(BI->getCondition());
1406  if (CmpReg == 0) return false;
1407 
1408  // We've been divorced from our compare! Our block was split, and
1409  // now our compare lives in a predecessor block. We musn't
1410  // re-compare here, as the children of the compare aren't guaranteed
1411  // live across the block boundary (we *could* check for this).
1412  // Regardless, the compare has been done in the predecessor block,
1413  // and it left a value for us in a virtual register. Ergo, we test
1414  // the one-bit value left in the virtual register.
1415  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1416  CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1417  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1418  .addReg(CmpReg).addImm(1));
1419 
1420  unsigned CCMode = ARMCC::NE;
1421  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1422  std::swap(TBB, FBB);
1423  CCMode = ARMCC::EQ;
1424  }
1425 
1426  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1427  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1428  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1429  FastEmitBranch(FBB, DL);
1430  FuncInfo.MBB->addSuccessor(TBB);
1431  return true;
1432 }
1433 
1434 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1435  unsigned AddrReg = getRegForValue(I->getOperand(0));
1436  if (AddrReg == 0) return false;
1437 
1438  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1439  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
1440  .addReg(AddrReg));
1441 
1442  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1443  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1444  FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1445 
1446  return true;
1447 }
1448 
1449 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1450  bool isZExt) {
1451  Type *Ty = Src1Value->getType();
1452  EVT SrcEVT = TLI.getValueType(Ty, true);
1453  if (!SrcEVT.isSimple()) return false;
1454  MVT SrcVT = SrcEVT.getSimpleVT();
1455 
1456  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1457  if (isFloat && !Subtarget->hasVFP2())
1458  return false;
1459 
1460  // Check to see if the 2nd operand is a constant that we can encode directly
1461  // in the compare.
1462  int Imm = 0;
1463  bool UseImm = false;
1464  bool isNegativeImm = false;
1465  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1466  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1467  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1468  if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1469  SrcVT == MVT::i1) {
1470  const APInt &CIVal = ConstInt->getValue();
1471  Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1472  // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1473  // then a cmn, because there is no way to represent 2147483648 as a
1474  // signed 32-bit int.
1475  if (Imm < 0 && Imm != (int)0x80000000) {
1476  isNegativeImm = true;
1477  Imm = -Imm;
1478  }
1479  UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1480  (ARM_AM::getSOImmVal(Imm) != -1);
1481  }
1482  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1483  if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1484  if (ConstFP->isZero() && !ConstFP->isNegative())
1485  UseImm = true;
1486  }
1487 
1488  unsigned CmpOpc;
1489  bool isICmp = true;
1490  bool needsExt = false;
1491  switch (SrcVT.SimpleTy) {
1492  default: return false;
1493  // TODO: Verify compares.
1494  case MVT::f32:
1495  isICmp = false;
1496  CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1497  break;
1498  case MVT::f64:
1499  isICmp = false;
1500  CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1501  break;
1502  case MVT::i1:
1503  case MVT::i8:
1504  case MVT::i16:
1505  needsExt = true;
1506  // Intentional fall-through.
1507  case MVT::i32:
1508  if (isThumb2) {
1509  if (!UseImm)
1510  CmpOpc = ARM::t2CMPrr;
1511  else
1512  CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1513  } else {
1514  if (!UseImm)
1515  CmpOpc = ARM::CMPrr;
1516  else
1517  CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1518  }
1519  break;
1520  }
1521 
1522  unsigned SrcReg1 = getRegForValue(Src1Value);
1523  if (SrcReg1 == 0) return false;
1524 
1525  unsigned SrcReg2 = 0;
1526  if (!UseImm) {
1527  SrcReg2 = getRegForValue(Src2Value);
1528  if (SrcReg2 == 0) return false;
1529  }
1530 
1531  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1532  if (needsExt) {
1533  SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1534  if (SrcReg1 == 0) return false;
1535  if (!UseImm) {
1536  SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1537  if (SrcReg2 == 0) return false;
1538  }
1539  }
1540 
1541  const MCInstrDesc &II = TII.get(CmpOpc);
1542  SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1543  if (!UseImm) {
1544  SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1545  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1546  .addReg(SrcReg1).addReg(SrcReg2));
1547  } else {
1548  MachineInstrBuilder MIB;
1549  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1550  .addReg(SrcReg1);
1551 
1552  // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1553  if (isICmp)
1554  MIB.addImm(Imm);
1555  AddOptionalDefs(MIB);
1556  }
1557 
1558  // For floating point we need to move the result to a comparison register
1559  // that we can then use for branches.
1560  if (Ty->isFloatTy() || Ty->isDoubleTy())
1561  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1562  TII.get(ARM::FMSTAT)));
1563  return true;
1564 }
1565 
1566 bool ARMFastISel::SelectCmp(const Instruction *I) {
1567  const CmpInst *CI = cast<CmpInst>(I);
1568 
1569  // Get the compare predicate.
1570  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1571 
1572  // We may not handle every CC for now.
1573  if (ARMPred == ARMCC::AL) return false;
1574 
1575  // Emit the compare.
1576  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1577  return false;
1578 
1579  // Now set a register based on the comparison. Explicitly set the predicates
1580  // here.
1581  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1582  const TargetRegisterClass *RC = isThumb2 ?
1583  (const TargetRegisterClass*)&ARM::rGPRRegClass :
1584  (const TargetRegisterClass*)&ARM::GPRRegClass;
1585  unsigned DestReg = createResultReg(RC);
1586  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1587  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1588  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1589  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1590  .addReg(ZeroReg).addImm(1)
1591  .addImm(ARMPred).addReg(ARM::CPSR);
1592 
1593  UpdateValueMap(I, DestReg);
1594  return true;
1595 }
1596 
1597 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1598  // Make sure we have VFP and that we're extending float to double.
1599  if (!Subtarget->hasVFP2()) return false;
1600 
1601  Value *V = I->getOperand(0);
1602  if (!I->getType()->isDoubleTy() ||
1603  !V->getType()->isFloatTy()) return false;
1604 
1605  unsigned Op = getRegForValue(V);
1606  if (Op == 0) return false;
1607 
1608  unsigned Result = createResultReg(&ARM::DPRRegClass);
1609  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1610  TII.get(ARM::VCVTDS), Result)
1611  .addReg(Op));
1612  UpdateValueMap(I, Result);
1613  return true;
1614 }
1615 
1616 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1617  // Make sure we have VFP and that we're truncating double to float.
1618  if (!Subtarget->hasVFP2()) return false;
1619 
1620  Value *V = I->getOperand(0);
1621  if (!(I->getType()->isFloatTy() &&
1622  V->getType()->isDoubleTy())) return false;
1623 
1624  unsigned Op = getRegForValue(V);
1625  if (Op == 0) return false;
1626 
1627  unsigned Result = createResultReg(&ARM::SPRRegClass);
1628  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1629  TII.get(ARM::VCVTSD), Result)
1630  .addReg(Op));
1631  UpdateValueMap(I, Result);
1632  return true;
1633 }
1634 
1635 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1636  // Make sure we have VFP.
1637  if (!Subtarget->hasVFP2()) return false;
1638 
1639  MVT DstVT;
1640  Type *Ty = I->getType();
1641  if (!isTypeLegal(Ty, DstVT))
1642  return false;
1643 
1644  Value *Src = I->getOperand(0);
1645  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1646  if (!SrcEVT.isSimple())
1647  return false;
1648  MVT SrcVT = SrcEVT.getSimpleVT();
1649  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1650  return false;
1651 
1652  unsigned SrcReg = getRegForValue(Src);
1653  if (SrcReg == 0) return false;
1654 
1655  // Handle sign-extension.
1656  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1657  SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1658  /*isZExt*/!isSigned);
1659  if (SrcReg == 0) return false;
1660  }
1661 
1662  // The conversion routine works on fp-reg to fp-reg and the operand above
1663  // was an integer, move it to the fp registers if possible.
1664  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1665  if (FP == 0) return false;
1666 
1667  unsigned Opc;
1668  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1669  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1670  else return false;
1671 
1672  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1673  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1674  ResultReg)
1675  .addReg(FP));
1676  UpdateValueMap(I, ResultReg);
1677  return true;
1678 }
1679 
1680 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1681  // Make sure we have VFP.
1682  if (!Subtarget->hasVFP2()) return false;
1683 
1684  MVT DstVT;
1685  Type *RetTy = I->getType();
1686  if (!isTypeLegal(RetTy, DstVT))
1687  return false;
1688 
1689  unsigned Op = getRegForValue(I->getOperand(0));
1690  if (Op == 0) return false;
1691 
1692  unsigned Opc;
1693  Type *OpTy = I->getOperand(0)->getType();
1694  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1695  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1696  else return false;
1697 
1698  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1699  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1700  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1701  ResultReg)
1702  .addReg(Op));
1703 
1704  // This result needs to be in an integer register, but the conversion only
1705  // takes place in fp-regs.
1706  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1707  if (IntReg == 0) return false;
1708 
1709  UpdateValueMap(I, IntReg);
1710  return true;
1711 }
1712 
1713 bool ARMFastISel::SelectSelect(const Instruction *I) {
1714  MVT VT;
1715  if (!isTypeLegal(I->getType(), VT))
1716  return false;
1717 
1718  // Things need to be register sized for register moves.
1719  if (VT != MVT::i32) return false;
1720 
1721  unsigned CondReg = getRegForValue(I->getOperand(0));
1722  if (CondReg == 0) return false;
1723  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1724  if (Op1Reg == 0) return false;
1725 
1726  // Check to see if we can use an immediate in the conditional move.
1727  int Imm = 0;
1728  bool UseImm = false;
1729  bool isNegativeImm = false;
1730  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1731  assert (VT == MVT::i32 && "Expecting an i32.");
1732  Imm = (int)ConstInt->getValue().getZExtValue();
1733  if (Imm < 0) {
1734  isNegativeImm = true;
1735  Imm = ~Imm;
1736  }
1737  UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1738  (ARM_AM::getSOImmVal(Imm) != -1);
1739  }
1740 
1741  unsigned Op2Reg = 0;
1742  if (!UseImm) {
1743  Op2Reg = getRegForValue(I->getOperand(2));
1744  if (Op2Reg == 0) return false;
1745  }
1746 
1747  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1748  CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
1749  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1750  .addReg(CondReg).addImm(0));
1751 
1752  unsigned MovCCOpc;
1753  const TargetRegisterClass *RC;
1754  if (!UseImm) {
1755  RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1756  MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1757  } else {
1758  RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1759  if (!isNegativeImm)
1760  MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1761  else
1762  MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1763  }
1764  unsigned ResultReg = createResultReg(RC);
1765  if (!UseImm) {
1766  Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1767  Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1768  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1769  .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1770  } else {
1771  Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1772  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1773  .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1774  }
1775  UpdateValueMap(I, ResultReg);
1776  return true;
1777 }
1778 
1779 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1780  MVT VT;
1781  Type *Ty = I->getType();
1782  if (!isTypeLegal(Ty, VT))
1783  return false;
1784 
1785  // If we have integer div support we should have selected this automagically.
1786  // In case we have a real miss go ahead and return false and we'll pick
1787  // it up later.
1788  if (Subtarget->hasDivide()) return false;
1789 
1790  // Otherwise emit a libcall.
1792  if (VT == MVT::i8)
1793  LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1794  else if (VT == MVT::i16)
1795  LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1796  else if (VT == MVT::i32)
1797  LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1798  else if (VT == MVT::i64)
1799  LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1800  else if (VT == MVT::i128)
1801  LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1802  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1803 
1804  return ARMEmitLibcall(I, LC);
1805 }
1806 
1807 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1808  MVT VT;
1809  Type *Ty = I->getType();
1810  if (!isTypeLegal(Ty, VT))
1811  return false;
1812 
1814  if (VT == MVT::i8)
1815  LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1816  else if (VT == MVT::i16)
1817  LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1818  else if (VT == MVT::i32)
1819  LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1820  else if (VT == MVT::i64)
1821  LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1822  else if (VT == MVT::i128)
1823  LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1824  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1825 
1826  return ARMEmitLibcall(I, LC);
1827 }
1828 
1829 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1830  EVT DestVT = TLI.getValueType(I->getType(), true);
1831 
1832  // We can get here in the case when we have a binary operation on a non-legal
1833  // type and the target independent selector doesn't know how to handle it.
1834  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1835  return false;
1836 
1837  unsigned Opc;
1838  switch (ISDOpcode) {
1839  default: return false;
1840  case ISD::ADD:
1841  Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1842  break;
1843  case ISD::OR:
1844  Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1845  break;
1846  case ISD::SUB:
1847  Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1848  break;
1849  }
1850 
1851  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1852  if (SrcReg1 == 0) return false;
1853 
1854  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1855  // in the instruction, rather then materializing the value in a register.
1856  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1857  if (SrcReg2 == 0) return false;
1858 
1859  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1860  SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1861  SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1862  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1863  TII.get(Opc), ResultReg)
1864  .addReg(SrcReg1).addReg(SrcReg2));
1865  UpdateValueMap(I, ResultReg);
1866  return true;
1867 }
1868 
1869 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1870  EVT FPVT = TLI.getValueType(I->getType(), true);
1871  if (!FPVT.isSimple()) return false;
1872  MVT VT = FPVT.getSimpleVT();
1873 
1874  // We can get here in the case when we want to use NEON for our fp
1875  // operations, but can't figure out how to. Just use the vfp instructions
1876  // if we have them.
1877  // FIXME: It'd be nice to use NEON instructions.
1878  Type *Ty = I->getType();
1879  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1880  if (isFloat && !Subtarget->hasVFP2())
1881  return false;
1882 
1883  unsigned Opc;
1884  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1885  switch (ISDOpcode) {
1886  default: return false;
1887  case ISD::FADD:
1888  Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1889  break;
1890  case ISD::FSUB:
1891  Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1892  break;
1893  case ISD::FMUL:
1894  Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1895  break;
1896  }
1897  unsigned Op1 = getRegForValue(I->getOperand(0));
1898  if (Op1 == 0) return false;
1899 
1900  unsigned Op2 = getRegForValue(I->getOperand(1));
1901  if (Op2 == 0) return false;
1902 
1903  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1904  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1905  TII.get(Opc), ResultReg)
1906  .addReg(Op1).addReg(Op2));
1907  UpdateValueMap(I, ResultReg);
1908  return true;
1909 }
1910 
1911 // Call Handling Code
1912 
1913 // This is largely taken directly from CCAssignFnForNode
1914 // TODO: We may not support all of this.
1915 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1916  bool Return,
1917  bool isVarArg) {
1918  switch (CC) {
1919  default:
1920  llvm_unreachable("Unsupported calling convention");
1921  case CallingConv::Fast:
1922  if (Subtarget->hasVFP2() && !isVarArg) {
1923  if (!Subtarget->isAAPCS_ABI())
1924  return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1925  // For AAPCS ABI targets, just use VFP variant of the calling convention.
1926  return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1927  }
1928  // Fallthrough
1929  case CallingConv::C:
1930  // Use target triple & subtarget features to do actual dispatch.
1931  if (Subtarget->isAAPCS_ABI()) {
1932  if (Subtarget->hasVFP2() &&
1933  TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1934  return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1935  else
1936  return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1937  } else
1938  return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1940  if (!isVarArg)
1941  return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1942  // Fall through to soft float variant, variadic functions don't
1943  // use hard floating point ABI.
1945  return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1946  case CallingConv::ARM_APCS:
1947  return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1948  case CallingConv::GHC:
1949  if (Return)
1950  llvm_unreachable("Can't return in GHC call convention");
1951  else
1952  return CC_ARM_APCS_GHC;
1953  }
1954 }
1955 
1956 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1957  SmallVectorImpl<unsigned> &ArgRegs,
1958  SmallVectorImpl<MVT> &ArgVTs,
1960  SmallVectorImpl<unsigned> &RegArgs,
1961  CallingConv::ID CC,
1962  unsigned &NumBytes,
1963  bool isVarArg) {
1965  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1966  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1967  CCAssignFnForCall(CC, false, isVarArg));
1968 
1969  // Check that we can handle all of the arguments. If we can't, then bail out
1970  // now before we add code to the MBB.
1971  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1972  CCValAssign &VA = ArgLocs[i];
1973  MVT ArgVT = ArgVTs[VA.getValNo()];
1974 
1975  // We don't handle NEON/vector parameters yet.
1976  if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1977  return false;
1978 
1979  // Now copy/store arg to correct locations.
1980  if (VA.isRegLoc() && !VA.needsCustom()) {
1981  continue;
1982  } else if (VA.needsCustom()) {
1983  // TODO: We need custom lowering for vector (v2f64) args.
1984  if (VA.getLocVT() != MVT::f64 ||
1985  // TODO: Only handle register args for now.
1986  !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1987  return false;
1988  } else {
1989  switch (ArgVT.SimpleTy) {
1990  default:
1991  return false;
1992  case MVT::i1:
1993  case MVT::i8:
1994  case MVT::i16:
1995  case MVT::i32:
1996  break;
1997  case MVT::f32:
1998  if (!Subtarget->hasVFP2())
1999  return false;
2000  break;
2001  case MVT::f64:
2002  if (!Subtarget->hasVFP2())
2003  return false;
2004  break;
2005  }
2006  }
2007  }
2008 
2009  // At the point, we are able to handle the call's arguments in fast isel.
2010 
2011  // Get a count of how many bytes are to be pushed on the stack.
2012  NumBytes = CCInfo.getNextStackOffset();
2013 
2014  // Issue CALLSEQ_START
2015  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2016  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2017  TII.get(AdjStackDown))
2018  .addImm(NumBytes));
2019 
2020  // Process the args.
2021  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2022  CCValAssign &VA = ArgLocs[i];
2023  unsigned Arg = ArgRegs[VA.getValNo()];
2024  MVT ArgVT = ArgVTs[VA.getValNo()];
2025 
2026  assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
2027  "We don't handle NEON/vector parameters yet.");
2028 
2029  // Handle arg promotion, etc.
2030  switch (VA.getLocInfo()) {
2031  case CCValAssign::Full: break;
2032  case CCValAssign::SExt: {
2033  MVT DestVT = VA.getLocVT();
2034  Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
2035  assert (Arg != 0 && "Failed to emit a sext");
2036  ArgVT = DestVT;
2037  break;
2038  }
2039  case CCValAssign::AExt:
2040  // Intentional fall-through. Handle AExt and ZExt.
2041  case CCValAssign::ZExt: {
2042  MVT DestVT = VA.getLocVT();
2043  Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
2044  assert (Arg != 0 && "Failed to emit a zext");
2045  ArgVT = DestVT;
2046  break;
2047  }
2048  case CCValAssign::BCvt: {
2049  unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
2050  /*TODO: Kill=*/false);
2051  assert(BC != 0 && "Failed to emit a bitcast!");
2052  Arg = BC;
2053  ArgVT = VA.getLocVT();
2054  break;
2055  }
2056  default: llvm_unreachable("Unknown arg promotion!");
2057  }
2058 
2059  // Now copy/store arg to correct locations.
2060  if (VA.isRegLoc() && !VA.needsCustom()) {
2061  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2062  VA.getLocReg())
2063  .addReg(Arg);
2064  RegArgs.push_back(VA.getLocReg());
2065  } else if (VA.needsCustom()) {
2066  // TODO: We need custom lowering for vector (v2f64) args.
2067  assert(VA.getLocVT() == MVT::f64 &&
2068  "Custom lowering for v2f64 args not available");
2069 
2070  CCValAssign &NextVA = ArgLocs[++i];
2071 
2072  assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2073  "We only handle register args!");
2074 
2075  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2076  TII.get(ARM::VMOVRRD), VA.getLocReg())
2077  .addReg(NextVA.getLocReg(), RegState::Define)
2078  .addReg(Arg));
2079  RegArgs.push_back(VA.getLocReg());
2080  RegArgs.push_back(NextVA.getLocReg());
2081  } else {
2082  assert(VA.isMemLoc());
2083  // Need to store on the stack.
2084  Address Addr;
2085  Addr.BaseType = Address::RegBase;
2086  Addr.Base.Reg = ARM::SP;
2087  Addr.Offset = VA.getLocMemOffset();
2088 
2089  bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2090  assert(EmitRet && "Could not emit a store for argument!");
2091  }
2092  }
2093 
2094  return true;
2095 }
2096 
2097 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2098  const Instruction *I, CallingConv::ID CC,
2099  unsigned &NumBytes, bool isVarArg) {
2100  // Issue CALLSEQ_END
2101  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2102  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2103  TII.get(AdjStackUp))
2104  .addImm(NumBytes).addImm(0));
2105 
2106  // Now the return value.
2107  if (RetVT != MVT::isVoid) {
2109  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2110  CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2111 
2112  // Copy all of the result registers out of their specified physreg.
2113  if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2114  // For this move we copy into two registers and then move into the
2115  // double fp reg we want.
2116  MVT DestVT = RVLocs[0].getValVT();
2117  const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2118  unsigned ResultReg = createResultReg(DstRC);
2119  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2120  TII.get(ARM::VMOVDRR), ResultReg)
2121  .addReg(RVLocs[0].getLocReg())
2122  .addReg(RVLocs[1].getLocReg()));
2123 
2124  UsedRegs.push_back(RVLocs[0].getLocReg());
2125  UsedRegs.push_back(RVLocs[1].getLocReg());
2126 
2127  // Finally update the result.
2128  UpdateValueMap(I, ResultReg);
2129  } else {
2130  assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2131  MVT CopyVT = RVLocs[0].getValVT();
2132 
2133  // Special handling for extended integers.
2134  if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2135  CopyVT = MVT::i32;
2136 
2137  const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2138 
2139  unsigned ResultReg = createResultReg(DstRC);
2140  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2141  ResultReg).addReg(RVLocs[0].getLocReg());
2142  UsedRegs.push_back(RVLocs[0].getLocReg());
2143 
2144  // Finally update the result.
2145  UpdateValueMap(I, ResultReg);
2146  }
2147  }
2148 
2149  return true;
2150 }
2151 
2152 bool ARMFastISel::SelectRet(const Instruction *I) {
2153  const ReturnInst *Ret = cast<ReturnInst>(I);
2154  const Function &F = *I->getParent()->getParent();
2155 
2156  if (!FuncInfo.CanLowerReturn)
2157  return false;
2158 
2159  // Build a list of return value registers.
2160  SmallVector<unsigned, 4> RetRegs;
2161 
2162  CallingConv::ID CC = F.getCallingConv();
2163  if (Ret->getNumOperands() > 0) {
2165  GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
2166 
2167  // Analyze operands of the call, assigning locations to each operand.
2169  CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2170  CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2171  F.isVarArg()));
2172 
2173  const Value *RV = Ret->getOperand(0);
2174  unsigned Reg = getRegForValue(RV);
2175  if (Reg == 0)
2176  return false;
2177 
2178  // Only handle a single return value for now.
2179  if (ValLocs.size() != 1)
2180  return false;
2181 
2182  CCValAssign &VA = ValLocs[0];
2183 
2184  // Don't bother handling odd stuff for now.
2185  if (VA.getLocInfo() != CCValAssign::Full)
2186  return false;
2187  // Only handle register returns for now.
2188  if (!VA.isRegLoc())
2189  return false;
2190 
2191  unsigned SrcReg = Reg + VA.getValNo();
2192  EVT RVEVT = TLI.getValueType(RV->getType());
2193  if (!RVEVT.isSimple()) return false;
2194  MVT RVVT = RVEVT.getSimpleVT();
2195  MVT DestVT = VA.getValVT();
2196  // Special handling for extended integers.
2197  if (RVVT != DestVT) {
2198  if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2199  return false;
2200 
2201  assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2202 
2203  // Perform extension if flagged as either zext or sext. Otherwise, do
2204  // nothing.
2205  if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2206  SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2207  if (SrcReg == 0) return false;
2208  }
2209  }
2210 
2211  // Make the copy.
2212  unsigned DstReg = VA.getLocReg();
2213  const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2214  // Avoid a cross-class copy. This is very unlikely.
2215  if (!SrcRC->contains(DstReg))
2216  return false;
2217  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2218  DstReg).addReg(SrcReg);
2219 
2220  // Add register to return instruction.
2221  RetRegs.push_back(VA.getLocReg());
2222  }
2223 
2224  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2225  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2226  TII.get(RetOpc));
2227  AddOptionalDefs(MIB);
2228  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2229  MIB.addReg(RetRegs[i], RegState::Implicit);
2230  return true;
2231 }
2232 
2233 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2234  if (UseReg)
2235  return isThumb2 ? ARM::tBLXr : ARM::BLX;
2236  else
2237  return isThumb2 ? ARM::tBL : ARM::BL;
2238 }
2239 
2240 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2241  // Manually compute the global's type to avoid building it when unnecessary.
2242  Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2243  EVT LCREVT = TLI.getValueType(GVTy);
2244  if (!LCREVT.isSimple()) return 0;
2245 
2246  GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false,
2247  GlobalValue::ExternalLinkage, 0, Name);
2248  assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2249  return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2250 }
2251 
2252 // A quick function that will emit a call for a named libcall in F with the
2253 // vector of passed arguments for the Instruction in I. We can assume that we
2254 // can emit a call for any libcall we can produce. This is an abridged version
2255 // of the full call infrastructure since we won't need to worry about things
2256 // like computed function pointers or strange arguments at call sites.
2257 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2258 // with X86.
2259 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2260  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2261 
2262  // Handle *simple* calls for now.
2263  Type *RetTy = I->getType();
2264  MVT RetVT;
2265  if (RetTy->isVoidTy())
2266  RetVT = MVT::isVoid;
2267  else if (!isTypeLegal(RetTy, RetVT))
2268  return false;
2269 
2270  // Can't handle non-double multi-reg retvals.
2271  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2273  CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2274  CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2275  if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2276  return false;
2277  }
2278 
2279  // Set up the argument vectors.
2281  SmallVector<unsigned, 8> ArgRegs;
2282  SmallVector<MVT, 8> ArgVTs;
2284  Args.reserve(I->getNumOperands());
2285  ArgRegs.reserve(I->getNumOperands());
2286  ArgVTs.reserve(I->getNumOperands());
2287  ArgFlags.reserve(I->getNumOperands());
2288  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2289  Value *Op = I->getOperand(i);
2290  unsigned Arg = getRegForValue(Op);
2291  if (Arg == 0) return false;
2292 
2293  Type *ArgTy = Op->getType();
2294  MVT ArgVT;
2295  if (!isTypeLegal(ArgTy, ArgVT)) return false;
2296 
2298  unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2299  Flags.setOrigAlign(OriginalAlignment);
2300 
2301  Args.push_back(Op);
2302  ArgRegs.push_back(Arg);
2303  ArgVTs.push_back(ArgVT);
2304  ArgFlags.push_back(Flags);
2305  }
2306 
2307  // Handle the arguments now that we've gotten them.
2308  SmallVector<unsigned, 4> RegArgs;
2309  unsigned NumBytes;
2310  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2311  RegArgs, CC, NumBytes, false))
2312  return false;
2313 
2314  unsigned CalleeReg = 0;
2315  if (EnableARMLongCalls) {
2316  CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2317  if (CalleeReg == 0) return false;
2318  }
2319 
2320  // Issue the call.
2321  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2322  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2323  DL, TII.get(CallOpc));
2324  // BL / BLX don't take a predicate, but tBL / tBLX do.
2325  if (isThumb2)
2326  AddDefaultPred(MIB);
2327  if (EnableARMLongCalls)
2328  MIB.addReg(CalleeReg);
2329  else
2330  MIB.addExternalSymbol(TLI.getLibcallName(Call));
2331 
2332  // Add implicit physical register uses to the call.
2333  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2334  MIB.addReg(RegArgs[i], RegState::Implicit);
2335 
2336  // Add a register mask with the call-preserved registers.
2337  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2338  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2339 
2340  // Finish off the call including any return values.
2341  SmallVector<unsigned, 4> UsedRegs;
2342  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2343 
2344  // Set all unused physreg defs as dead.
2345  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2346 
2347  return true;
2348 }
2349 
2350 bool ARMFastISel::SelectCall(const Instruction *I,
2351  const char *IntrMemName = 0) {
2352  const CallInst *CI = cast<CallInst>(I);
2353  const Value *Callee = CI->getCalledValue();
2354 
2355  // Can't handle inline asm.
2356  if (isa<InlineAsm>(Callee)) return false;
2357 
2358  // Allow SelectionDAG isel to handle tail calls.
2359  if (CI->isTailCall()) return false;
2360 
2361  // Check the calling convention.
2362  ImmutableCallSite CS(CI);
2363  CallingConv::ID CC = CS.getCallingConv();
2364 
2365  // TODO: Avoid some calling conventions?
2366 
2367  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2368  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2369  bool isVarArg = FTy->isVarArg();
2370 
2371  // Handle *simple* calls for now.
2372  Type *RetTy = I->getType();
2373  MVT RetVT;
2374  if (RetTy->isVoidTy())
2375  RetVT = MVT::isVoid;
2376  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2377  RetVT != MVT::i8 && RetVT != MVT::i1)
2378  return false;
2379 
2380  // Can't handle non-double multi-reg retvals.
2381  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2382  RetVT != MVT::i16 && RetVT != MVT::i32) {
2384  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2385  CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2386  if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2387  return false;
2388  }
2389 
2390  // Set up the argument vectors.
2392  SmallVector<unsigned, 8> ArgRegs;
2393  SmallVector<MVT, 8> ArgVTs;
2395  unsigned arg_size = CS.arg_size();
2396  Args.reserve(arg_size);
2397  ArgRegs.reserve(arg_size);
2398  ArgVTs.reserve(arg_size);
2399  ArgFlags.reserve(arg_size);
2400  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2401  i != e; ++i) {
2402  // If we're lowering a memory intrinsic instead of a regular call, skip the
2403  // last two arguments, which shouldn't be passed to the underlying function.
2404  if (IntrMemName && e-i <= 2)
2405  break;
2406 
2408  unsigned AttrInd = i - CS.arg_begin() + 1;
2409  if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2410  Flags.setSExt();
2411  if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2412  Flags.setZExt();
2413 
2414  // FIXME: Only handle *easy* calls for now.
2415  if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2416  CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2417  CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2418  CS.paramHasAttr(AttrInd, Attribute::ByVal))
2419  return false;
2420 
2421  Type *ArgTy = (*i)->getType();
2422  MVT ArgVT;
2423  if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2424  ArgVT != MVT::i1)
2425  return false;
2426 
2427  unsigned Arg = getRegForValue(*i);
2428  if (Arg == 0)
2429  return false;
2430 
2431  unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2432  Flags.setOrigAlign(OriginalAlignment);
2433 
2434  Args.push_back(*i);
2435  ArgRegs.push_back(Arg);
2436  ArgVTs.push_back(ArgVT);
2437  ArgFlags.push_back(Flags);
2438  }
2439 
2440  // Handle the arguments now that we've gotten them.
2441  SmallVector<unsigned, 4> RegArgs;
2442  unsigned NumBytes;
2443  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2444  RegArgs, CC, NumBytes, isVarArg))
2445  return false;
2446 
2447  bool UseReg = false;
2448  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2449  if (!GV || EnableARMLongCalls) UseReg = true;
2450 
2451  unsigned CalleeReg = 0;
2452  if (UseReg) {
2453  if (IntrMemName)
2454  CalleeReg = getLibcallReg(IntrMemName);
2455  else
2456  CalleeReg = getRegForValue(Callee);
2457 
2458  if (CalleeReg == 0) return false;
2459  }
2460 
2461  // Issue the call.
2462  unsigned CallOpc = ARMSelectCallOp(UseReg);
2463  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2464  DL, TII.get(CallOpc));
2465 
2466  unsigned char OpFlags = 0;
2467 
2468  // Add MO_PLT for global address or external symbol in the PIC relocation
2469  // model.
2470  if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2471  OpFlags = ARMII::MO_PLT;
2472 
2473  // ARM calls don't take a predicate, but tBL / tBLX do.
2474  if(isThumb2)
2475  AddDefaultPred(MIB);
2476  if (UseReg)
2477  MIB.addReg(CalleeReg);
2478  else if (!IntrMemName)
2479  MIB.addGlobalAddress(GV, 0, OpFlags);
2480  else
2481  MIB.addExternalSymbol(IntrMemName, OpFlags);
2482 
2483  // Add implicit physical register uses to the call.
2484  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2485  MIB.addReg(RegArgs[i], RegState::Implicit);
2486 
2487  // Add a register mask with the call-preserved registers.
2488  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2489  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2490 
2491  // Finish off the call including any return values.
2492  SmallVector<unsigned, 4> UsedRegs;
2493  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2494  return false;
2495 
2496  // Set all unused physreg defs as dead.
2497  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2498 
2499  return true;
2500 }
2501 
2502 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2503  return Len <= 16;
2504 }
2505 
2506 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2507  uint64_t Len, unsigned Alignment) {
2508  // Make sure we don't bloat code by inlining very large memcpy's.
2509  if (!ARMIsMemCpySmall(Len))
2510  return false;
2511 
2512  while (Len) {
2513  MVT VT;
2514  if (!Alignment || Alignment >= 4) {
2515  if (Len >= 4)
2516  VT = MVT::i32;
2517  else if (Len >= 2)
2518  VT = MVT::i16;
2519  else {
2520  assert (Len == 1 && "Expected a length of 1!");
2521  VT = MVT::i8;
2522  }
2523  } else {
2524  // Bound based on alignment.
2525  if (Len >= 2 && Alignment == 2)
2526  VT = MVT::i16;
2527  else {
2528  VT = MVT::i8;
2529  }
2530  }
2531 
2532  bool RV;
2533  unsigned ResultReg;
2534  RV = ARMEmitLoad(VT, ResultReg, Src);
2535  assert (RV == true && "Should be able to handle this load.");
2536  RV = ARMEmitStore(VT, ResultReg, Dest);
2537  assert (RV == true && "Should be able to handle this store.");
2538  (void)RV;
2539 
2540  unsigned Size = VT.getSizeInBits()/8;
2541  Len -= Size;
2542  Dest.Offset += Size;
2543  Src.Offset += Size;
2544  }
2545 
2546  return true;
2547 }
2548 
2549 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2550  // FIXME: Handle more intrinsics.
2551  switch (I.getIntrinsicID()) {
2552  default: return false;
2553  case Intrinsic::frameaddress: {
2554  MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2555  MFI->setFrameAddressIsTaken(true);
2556 
2557  unsigned LdrOpc;
2558  const TargetRegisterClass *RC;
2559  if (isThumb2) {
2560  LdrOpc = ARM::t2LDRi12;
2561  RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2562  } else {
2563  LdrOpc = ARM::LDRi12;
2564  RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2565  }
2566 
2567  const ARMBaseRegisterInfo *RegInfo =
2568  static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2569  unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2570  unsigned SrcReg = FramePtr;
2571 
2572  // Recursively load frame address
2573  // ldr r0 [fp]
2574  // ldr r0 [r0]
2575  // ldr r0 [r0]
2576  // ...
2577  unsigned DestReg;
2578  unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2579  while (Depth--) {
2580  DestReg = createResultReg(RC);
2581  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2582  TII.get(LdrOpc), DestReg)
2583  .addReg(SrcReg).addImm(0));
2584  SrcReg = DestReg;
2585  }
2586  UpdateValueMap(&I, SrcReg);
2587  return true;
2588  }
2589  case Intrinsic::memcpy:
2590  case Intrinsic::memmove: {
2591  const MemTransferInst &MTI = cast<MemTransferInst>(I);
2592  // Don't handle volatile.
2593  if (MTI.isVolatile())
2594  return false;
2595 
2596  // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2597  // we would emit dead code because we don't currently handle memmoves.
2598  bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2599  if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2600  // Small memcpy's are common enough that we want to do them without a call
2601  // if possible.
2602  uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2603  if (ARMIsMemCpySmall(Len)) {
2604  Address Dest, Src;
2605  if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2606  !ARMComputeAddress(MTI.getRawSource(), Src))
2607  return false;
2608  unsigned Alignment = MTI.getAlignment();
2609  if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2610  return true;
2611  }
2612  }
2613 
2614  if (!MTI.getLength()->getType()->isIntegerTy(32))
2615  return false;
2616 
2617  if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2618  return false;
2619 
2620  const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2621  return SelectCall(&I, IntrMemName);
2622  }
2623  case Intrinsic::memset: {
2624  const MemSetInst &MSI = cast<MemSetInst>(I);
2625  // Don't handle volatile.
2626  if (MSI.isVolatile())
2627  return false;
2628 
2629  if (!MSI.getLength()->getType()->isIntegerTy(32))
2630  return false;
2631 
2632  if (MSI.getDestAddressSpace() > 255)
2633  return false;
2634 
2635  return SelectCall(&I, "memset");
2636  }
2637  case Intrinsic::trap: {
2638  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(
2639  Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2640  return true;
2641  }
2642  }
2643 }
2644 
2645 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2646  // The high bits for a type smaller than the register size are assumed to be
2647  // undefined.
2648  Value *Op = I->getOperand(0);
2649 
2650  EVT SrcVT, DestVT;
2651  SrcVT = TLI.getValueType(Op->getType(), true);
2652  DestVT = TLI.getValueType(I->getType(), true);
2653 
2654  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2655  return false;
2656  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2657  return false;
2658 
2659  unsigned SrcReg = getRegForValue(Op);
2660  if (!SrcReg) return false;
2661 
2662  // Because the high bits are undefined, a truncate doesn't generate
2663  // any code.
2664  UpdateValueMap(I, SrcReg);
2665  return true;
2666 }
2667 
2668 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2669  bool isZExt) {
2670  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2671  return 0;
2672  if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2673  return 0;
2674 
2675  // Table of which combinations can be emitted as a single instruction,
2676  // and which will require two.
2677  static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2678  // ARM Thumb
2679  // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2680  // ext: s z s z s z s z
2681  /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2682  /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2683  /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2684  };
2685 
2686  // Target registers for:
2687  // - For ARM can never be PC.
2688  // - For 16-bit Thumb are restricted to lower 8 registers.
2689  // - For 32-bit Thumb are restricted to non-SP and non-PC.
2690  static const TargetRegisterClass *RCTbl[2][2] = {
2691  // Instructions: Two Single
2692  /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2693  /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2694  };
2695 
2696  // Table governing the instruction(s) to be emitted.
2697  static const struct InstructionTable {
2698  uint32_t Opc : 16;
2699  uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2700  uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2701  uint32_t Imm : 8; // All instructions have either a shift or a mask.
2702  } IT[2][2][3][2] = {
2703  { // Two instructions (first is left shift, second is in this table).
2704  { // ARM Opc S Shift Imm
2705  /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2706  /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2707  /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2708  /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2709  /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2710  /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2711  },
2712  { // Thumb Opc S Shift Imm
2713  /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2714  /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2715  /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2716  /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2717  /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2718  /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2719  }
2720  },
2721  { // Single instruction.
2722  { // ARM Opc S Shift Imm
2723  /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2724  /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2725  /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2726  /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2727  /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2728  /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2729  },
2730  { // Thumb Opc S Shift Imm
2731  /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2732  /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2733  /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2734  /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2735  /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2736  /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2737  }
2738  }
2739  };
2740 
2741  unsigned SrcBits = SrcVT.getSizeInBits();
2742  unsigned DestBits = DestVT.getSizeInBits();
2743  (void) DestBits;
2744  assert((SrcBits < DestBits) && "can only extend to larger types");
2745  assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2746  "other sizes unimplemented");
2747  assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2748  "other sizes unimplemented");
2749 
2750  bool hasV6Ops = Subtarget->hasV6Ops();
2751  unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2752  assert((Bitness < 3) && "sanity-check table bounds");
2753 
2754  bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2755  const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2756  const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2757  unsigned Opc = ITP->Opc;
2758  assert(ARM::KILL != Opc && "Invalid table entry");
2759  unsigned hasS = ITP->hasS;
2760  ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2761  assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2762  "only MOVsi has shift operand addressing mode");
2763  unsigned Imm = ITP->Imm;
2764 
2765  // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2766  bool setsCPSR = &ARM::tGPRRegClass == RC;
2767  unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2768  unsigned ResultReg;
2769  // MOVsi encodes shift and immediate in shift operand addressing mode.
2770  // The following condition has the same value when emitting two
2771  // instruction sequences: both are shifts.
2772  bool ImmIsSO = (Shift != ARM_AM::no_shift);
2773 
2774  // Either one or two instructions are emitted.
2775  // They're always of the form:
2776  // dst = in OP imm
2777  // CPSR is set only by 16-bit Thumb instructions.
2778  // Predicate, if any, is AL.
2779  // S bit, if available, is always 0.
2780  // When two are emitted the first's result will feed as the second's input,
2781  // that value is then dead.
2782  unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2783  for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2784  ResultReg = createResultReg(RC);
2785  bool isLsl = (0 == Instr) && !isSingleInstr;
2786  unsigned Opcode = isLsl ? LSLOpc : Opc;
2787  ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2788  unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2789  bool isKill = 1 == Instr;
2791  *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg);
2792  if (setsCPSR)
2793  MIB.addReg(ARM::CPSR, RegState::Define);
2794  SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2795  AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2796  if (hasS)
2797  AddDefaultCC(MIB);
2798  // Second instruction consumes the first's result.
2799  SrcReg = ResultReg;
2800  }
2801 
2802  return ResultReg;
2803 }
2804 
2805 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2806  // On ARM, in general, integer casts don't involve legal types; this code
2807  // handles promotable integers.
2808  Type *DestTy = I->getType();
2809  Value *Src = I->getOperand(0);
2810  Type *SrcTy = Src->getType();
2811 
2812  bool isZExt = isa<ZExtInst>(I);
2813  unsigned SrcReg = getRegForValue(Src);
2814  if (!SrcReg) return false;
2815 
2816  EVT SrcEVT, DestEVT;
2817  SrcEVT = TLI.getValueType(SrcTy, true);
2818  DestEVT = TLI.getValueType(DestTy, true);
2819  if (!SrcEVT.isSimple()) return false;
2820  if (!DestEVT.isSimple()) return false;
2821 
2822  MVT SrcVT = SrcEVT.getSimpleVT();
2823  MVT DestVT = DestEVT.getSimpleVT();
2824  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2825  if (ResultReg == 0) return false;
2826  UpdateValueMap(I, ResultReg);
2827  return true;
2828 }
2829 
2830 bool ARMFastISel::SelectShift(const Instruction *I,
2831  ARM_AM::ShiftOpc ShiftTy) {
2832  // We handle thumb2 mode by target independent selector
2833  // or SelectionDAG ISel.
2834  if (isThumb2)
2835  return false;
2836 
2837  // Only handle i32 now.
2838  EVT DestVT = TLI.getValueType(I->getType(), true);
2839  if (DestVT != MVT::i32)
2840  return false;
2841 
2842  unsigned Opc = ARM::MOVsr;
2843  unsigned ShiftImm;
2844  Value *Src2Value = I->getOperand(1);
2845  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2846  ShiftImm = CI->getZExtValue();
2847 
2848  // Fall back to selection DAG isel if the shift amount
2849  // is zero or greater than the width of the value type.
2850  if (ShiftImm == 0 || ShiftImm >=32)
2851  return false;
2852 
2853  Opc = ARM::MOVsi;
2854  }
2855 
2856  Value *Src1Value = I->getOperand(0);
2857  unsigned Reg1 = getRegForValue(Src1Value);
2858  if (Reg1 == 0) return false;
2859 
2860  unsigned Reg2 = 0;
2861  if (Opc == ARM::MOVsr) {
2862  Reg2 = getRegForValue(Src2Value);
2863  if (Reg2 == 0) return false;
2864  }
2865 
2866  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2867  if(ResultReg == 0) return false;
2868 
2869  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2870  TII.get(Opc), ResultReg)
2871  .addReg(Reg1);
2872 
2873  if (Opc == ARM::MOVsi)
2874  MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2875  else if (Opc == ARM::MOVsr) {
2876  MIB.addReg(Reg2);
2877  MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2878  }
2879 
2880  AddOptionalDefs(MIB);
2881  UpdateValueMap(I, ResultReg);
2882  return true;
2883 }
2884 
2885 // TODO: SoftFP support.
2886 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2887 
2888  switch (I->getOpcode()) {
2889  case Instruction::Load:
2890  return SelectLoad(I);
2891  case Instruction::Store:
2892  return SelectStore(I);
2893  case Instruction::Br:
2894  return SelectBranch(I);
2895  case Instruction::IndirectBr:
2896  return SelectIndirectBr(I);
2897  case Instruction::ICmp:
2898  case Instruction::FCmp:
2899  return SelectCmp(I);
2900  case Instruction::FPExt:
2901  return SelectFPExt(I);
2902  case Instruction::FPTrunc:
2903  return SelectFPTrunc(I);
2904  case Instruction::SIToFP:
2905  return SelectIToFP(I, /*isSigned*/ true);
2906  case Instruction::UIToFP:
2907  return SelectIToFP(I, /*isSigned*/ false);
2908  case Instruction::FPToSI:
2909  return SelectFPToI(I, /*isSigned*/ true);
2910  case Instruction::FPToUI:
2911  return SelectFPToI(I, /*isSigned*/ false);
2912  case Instruction::Add:
2913  return SelectBinaryIntOp(I, ISD::ADD);
2914  case Instruction::Or:
2915  return SelectBinaryIntOp(I, ISD::OR);
2916  case Instruction::Sub:
2917  return SelectBinaryIntOp(I, ISD::SUB);
2918  case Instruction::FAdd:
2919  return SelectBinaryFPOp(I, ISD::FADD);
2920  case Instruction::FSub:
2921  return SelectBinaryFPOp(I, ISD::FSUB);
2922  case Instruction::FMul:
2923  return SelectBinaryFPOp(I, ISD::FMUL);
2924  case Instruction::SDiv:
2925  return SelectDiv(I, /*isSigned*/ true);
2926  case Instruction::UDiv:
2927  return SelectDiv(I, /*isSigned*/ false);
2928  case Instruction::SRem:
2929  return SelectRem(I, /*isSigned*/ true);
2930  case Instruction::URem:
2931  return SelectRem(I, /*isSigned*/ false);
2932  case Instruction::Call:
2933  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2934  return SelectIntrinsicCall(*II);
2935  return SelectCall(I);
2936  case Instruction::Select:
2937  return SelectSelect(I);
2938  case Instruction::Ret:
2939  return SelectRet(I);
2940  case Instruction::Trunc:
2941  return SelectTrunc(I);
2942  case Instruction::ZExt:
2943  case Instruction::SExt:
2944  return SelectIntExt(I);
2945  case Instruction::Shl:
2946  return SelectShift(I, ARM_AM::lsl);
2947  case Instruction::LShr:
2948  return SelectShift(I, ARM_AM::lsr);
2949  case Instruction::AShr:
2950  return SelectShift(I, ARM_AM::asr);
2951  default: break;
2952  }
2953  return false;
2954 }
2955 
2956 namespace {
2957 // This table describes sign- and zero-extend instructions which can be
2958 // folded into a preceding load. All of these extends have an immediate
2959 // (sometimes a mask and sometimes a shift) that's applied after
2960 // extension.
2961 const struct FoldableLoadExtendsStruct {
2962  uint16_t Opc[2]; // ARM, Thumb.
2963  uint8_t ExpectedImm;
2964  uint8_t isZExt : 1;
2965  uint8_t ExpectedVT : 7;
2966 } FoldableLoadExtends[] = {
2967  { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2968  { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2969  { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2970  { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2971  { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2972 };
2973 }
2974 
2975 /// \brief The specified machine instr operand is a vreg, and that
2976 /// vreg is being provided by the specified load instruction. If possible,
2977 /// try to fold the load as an operand to the instruction, returning true if
2978 /// successful.
2979 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2980  const LoadInst *LI) {
2981  // Verify we have a legal type before going any further.
2982  MVT VT;
2983  if (!isLoadTypeLegal(LI->getType(), VT))
2984  return false;
2985 
2986  // Combine load followed by zero- or sign-extend.
2987  // ldrb r1, [r0] ldrb r1, [r0]
2988  // uxtb r2, r1 =>
2989  // mov r3, r2 mov r3, r1
2990  if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2991  return false;
2992  const uint64_t Imm = MI->getOperand(2).getImm();
2993 
2994  bool Found = false;
2995  bool isZExt;
2996  for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2997  i != e; ++i) {
2998  if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2999  (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
3000  MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
3001  Found = true;
3002  isZExt = FoldableLoadExtends[i].isZExt;
3003  }
3004  }
3005  if (!Found) return false;
3006 
3007  // See if we can handle this address.
3008  Address Addr;
3009  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
3010 
3011  unsigned ResultReg = MI->getOperand(0).getReg();
3012  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
3013  return false;
3014  MI->eraseFromParent();
3015  return true;
3016 }
3017 
3018 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
3019  unsigned Align, MVT VT) {
3020  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
3023  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
3024 
3025  unsigned Opc;
3026  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
3027  // Load value.
3028  if (isThumb2) {
3029  DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
3030  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
3031  TII.get(ARM::t2LDRpci), DestReg1)
3032  .addConstantPoolIndex(Idx));
3033  Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
3034  } else {
3035  // The extra immediate is for addrmode2.
3036  DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
3037  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
3038  DL, TII.get(ARM::LDRcp), DestReg1)
3039  .addConstantPoolIndex(Idx).addImm(0));
3040  Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
3041  }
3042 
3043  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
3044  if (GlobalBaseReg == 0) {
3045  GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
3046  AFI->setGlobalBaseReg(GlobalBaseReg);
3047  }
3048 
3049  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
3050  DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
3051  DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
3052  GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
3053  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
3054  DL, TII.get(Opc), DestReg2)
3055  .addReg(DestReg1)
3056  .addReg(GlobalBaseReg);
3057  if (!UseGOTOFF)
3058  MIB.addImm(0);
3059  AddOptionalDefs(MIB);
3060 
3061  return DestReg2;
3062 }
3063 
3064 bool ARMFastISel::FastLowerArguments() {
3065  if (!FuncInfo.CanLowerReturn)
3066  return false;
3067 
3068  const Function *F = FuncInfo.Fn;
3069  if (F->isVarArg())
3070  return false;
3071 
3072  CallingConv::ID CC = F->getCallingConv();
3073  switch (CC) {
3074  default:
3075  return false;
3076  case CallingConv::Fast:
3077  case CallingConv::C:
3080  case CallingConv::ARM_APCS:
3081  break;
3082  }
3083 
3084  // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3085  // which are passed in r0 - r3.
3086  unsigned Idx = 1;
3087  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3088  I != E; ++I, ++Idx) {
3089  if (Idx > 4)
3090  return false;
3091 
3092  if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3095  return false;
3096 
3097  Type *ArgTy = I->getType();
3098  if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3099  return false;
3100 
3101  EVT ArgVT = TLI.getValueType(ArgTy);
3102  if (!ArgVT.isSimple()) return false;
3103  switch (ArgVT.getSimpleVT().SimpleTy) {
3104  case MVT::i8:
3105  case MVT::i16:
3106  case MVT::i32:
3107  break;
3108  default:
3109  return false;
3110  }
3111  }
3112 
3113 
3114  static const uint16_t GPRArgRegs[] = {
3115  ARM::R0, ARM::R1, ARM::R2, ARM::R3
3116  };
3117 
3118  const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3119  Idx = 0;
3120  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3121  I != E; ++I, ++Idx) {
3122  unsigned SrcReg = GPRArgRegs[Idx];
3123  unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3124  // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3125  // Without this, EmitLiveInCopies may eliminate the livein if its only
3126  // use is a bitcast (which isn't turned into an instruction).
3127  unsigned ResultReg = createResultReg(RC);
3128  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
3129  ResultReg).addReg(DstReg, getKillRegState(true));
3130  UpdateValueMap(I, ResultReg);
3131  }
3132 
3133  return true;
3134 }
3135 
3136 namespace llvm {
3138  const TargetLibraryInfo *libInfo) {
3139  const TargetMachine &TM = funcInfo.MF->getTarget();
3140 
3141  const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
3142  // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
3143  bool UseFastISel = false;
3144  UseFastISel |= Subtarget->isTargetIOS() && !Subtarget->isThumb1Only();
3145  UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
3146  UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
3147 
3148  if (UseFastISel) {
3149  // iOS always has a FP for backtracking, force other targets
3150  // to keep their FP when doing FastISel. The emitted code is
3151  // currently superior, and in cases like test-suite's lencod
3152  // FastISel isn't quite correct when FP is eliminated.
3153  TM.Options.NoFramePointerElim = true;
3154  return new ARMFastISel(funcInfo, libInfo);
3155  }
3156  return 0;
3157  }
3158 }
unsigned getAlignment() const
unsigned getFrameRegister(const MachineFunction &MF) const
void setFrameAddressIsTaken(bool T)
cl::opt< bool > EnableARMLongCalls
const Value * getCalledValue() const
void push_back(const T &Elt)
Definition: SmallVector.h:236
The memory access reads data.
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
The memory access writes data.
MVT getValVT() const
void reserve(unsigned N)
Definition: SmallVector.h:425
bool isPredicate() const
Definition: MCInstrDesc.h:83
LLVMContext & getContext() const
Definition: Function.cpp:167
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
Sign extended before/after call.
Definition: Attributes.h:97
LocInfo getLocInfo() const
bool isVolatile() const
Force argument to be passed in register.
Definition: Attributes.h:76
Intrinsic::ID getIntrinsicID() const
Definition: IntrinsicInst.h:43
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
static unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
Nested function static chain.
Definition: Attributes.h:79
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:85
static bool isVirtualRegister(unsigned Reg)
static PointerType * getInt32PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:292
Predicate getInversePredicate() const
Return the inverse of the instruction's predicate.
Definition: InstrTypes.h:737
bool isPredicable(QueryType Type=AllInBundle) const
Definition: MachineInstr.h:404
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
Externally visible function.
Definition: GlobalValue.h:34
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
F(f)
#define R2(n)
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return true if the attribute exists at the given index.
Definition: Attributes.cpp:818
bool isThumb1Only() const
Definition: ARMSubtarget.h:320
unsigned getValNo() const
op_iterator op_begin()
Definition: User.h:116
bool isRegLoc() const
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
CallingConv::ID getCallingConv() const
Definition: Function.h:161
static MachinePointerInfo getFixedStack(int FI, int64_t offset=0)
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
static const MachineInstrBuilder & AddDefaultPred(const MachineInstrBuilder &MIB)
const HexagonInstrInfo * TII
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT,"arm-default-it","Generate IT block based on arch"), clEnumValN(RestrictedIT,"arm-restrict-it","Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT,"arm-no-restrict-it","Allow IT blocks based on ARMv7"), clEnumValEnd))
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred)
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
#define llvm_unreachable(msg)
Definition: Use.h:60
bool isReg() const
isReg - Tests if this is a MO_Register operand.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
Abstract Stack Frame Information.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
bool isThumb() const
Definition: ARMSubtarget.h:319
const MachineInstrBuilder & addImm(int64_t Val) const
Hidden pointer to structure to return.
Definition: Attributes.h:105
bool isNegative() const
Definition: Constants.h:155
unsigned getNumOperands() const
Definition: MachineInstr.h:265
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
unsigned getLocReg() const
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
int getOpcode() const
Definition: MachineInstr.h:261
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
static int getT2SOImmVal(unsigned Arg)
BasicBlock * getSuccessor(unsigned i) const
Pass structure by value.
Definition: Attributes.h:73
bool isArrayTy() const
Definition: Type.h:216
static int getFP32Imm(const APInt &Imm)
int64_t getImm() const
void setOrigAlign(unsigned A)
Type * getElementType() const
Definition: DerivedTypes.h:319
This class represents a truncation of integer types.
unsigned getKillRegState(bool B)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
bool isTargetIOS() const
Definition: ARMSubtarget.h:302
User::const_op_iterator arg_iterator
Definition: CallSite.h:133
void GetReturnInfo(Type *ReturnType, AttributeSet attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI)
unsigned NoFramePointerElim
Definition: TargetOptions.h:65
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
bool isVectorTy() const
Definition: Type.h:229
MVT getLocVT() const
const MCRegisterClass & getRegClass(unsigned i) const
Returns the register class associated with the enumeration value. See class MCOperandInfo.
LLVM Constant Representation.
Definition: Constant.h:41
PointerType * getType() const
Definition: Instructions.h:91
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:190
bool hasHiddenVisibility() const
Definition: GlobalValue.h:89
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
Value * getRawDest() const
op_iterator op_end()
Definition: User.h:118
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:586
Value * getOperand(unsigned i) const
Definition: User.h:88
Zero extended before/after call.
Definition: Attributes.h:110
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
arg_iterator arg_begin()
Definition: Function.h:410
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
static bool isAtomic(Instruction *I)
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
signed greater than
Definition: InstrTypes.h:678
bool needsCustom() const
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
bool isTargetNaCl() const
Definition: ARMSubtarget.h:304
static const MachineInstrBuilder & AddDefaultCC(const MachineInstrBuilder &MIB)
static int getFP64Imm(const APInt &Imm)
Class for constant integers.
Definition: Constants.h:51
const STC & getSubtarget() const
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Instr is a return instruction.
Definition: GCMetadata.h:52
Type * getType() const
Definition: Value.h:111
CCValAssign - Represent assignment of one arg/retval to a location.
signed less than
Definition: InstrTypes.h:680
Value * getLength() const
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
const MachineInstrBuilder & addFrameIndex(int Idx) const
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
bool isMemLoc() const
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
static int getSOImmVal(unsigned Arg)
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned char TargetFlags=0) const
bool isStructTy() const
Definition: Type.h:212
PointerType * getType() const
getType - Global values are always pointers.
Definition: GlobalValue.h:107
Value * getCondition() const
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
unsigned greater or equal
Definition: InstrTypes.h:675
unsigned getAlignment() const
Definition: Instructions.h:181
bool isTargetLinux() const
Definition: ARMSubtarget.h:305
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned char TargetFlags=0) const
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
#define I(x, y, z)
Definition: MD5.cpp:54
void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
bool hasOneUse() const
Definition: Value.h:161
bool isTailCall() const
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
const TargetMachine & getTarget() const
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
const APFloat & getValueAPF() const
Definition: Constants.h:263
Value * getRawSource() const
unsigned getReg() const
getReg - Returns the register number.
bool isUnsigned() const
Determine if this instruction is using an unsigned comparison.
Definition: InstrTypes.h:786
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const uint16_t * ImplicitDefs
Definition: MCInstrDesc.h:147
bool isSimple() const
Definition: ValueTypes.h:640
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
unsigned getDestAddressSpace() const
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:298
unsigned greater than
Definition: InstrTypes.h:674
const MCRegisterInfo & MRI
bool hasOptionalDef(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:334
unsigned getLocMemOffset() const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
unsigned getSourceAddressSpace() const
bool isVarArg() const
Definition: Function.cpp:175
static const uint16_t GPRArgRegs[]
const BasicBlock * getParent() const
Definition: Instruction.h:52
static ARMConstantPoolConstant * Create(const Constant *C, unsigned ID)
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
MVT getSimpleVT() const
Definition: ValueTypes.h:749
static const MachineInstrBuilder & AddDefaultT1CC(const MachineInstrBuilder &MIB, bool isDead=false)
signed greater or equal
Definition: InstrTypes.h:679
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
gep_type_iterator gep_type_begin(const User *GEP)
bool contains(unsigned Reg) const