LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ARMISelLowering.cpp
Go to the documentation of this file.
1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "arm-isel"
16 #include "ARMISelLowering.h"
17 #include "ARM.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "ARMPerfectShuffle.h"
22 #include "ARMSubtarget.h"
23 #include "ARMTargetMachine.h"
24 #include "ARMTargetObjectFile.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCSectionMachO.h"
51 #include <utility>
52 using namespace llvm;
53 
54 STATISTIC(NumTailCalls, "Number of tail calls");
55 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
56 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
57 
58 // This option should go away when tail calls fully work.
59 static cl::opt<bool>
60 EnableARMTailCalls("arm-tail-calls", cl::Hidden,
61  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
62  cl::init(false));
63 
65 EnableARMLongCalls("arm-long-calls", cl::Hidden,
66  cl::desc("Generate calls via indirect call instructions"),
67  cl::init(false));
68 
69 static cl::opt<bool>
70 ARMInterworking("arm-interworking", cl::Hidden,
71  cl::desc("Enable / disable ARM interworking (for debugging only)"),
72  cl::init(true));
73 
74 namespace {
75  class ARMCCState : public CCState {
76  public:
77  ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
80  : CCState(CC, isVarArg, MF, TM, locs, C) {
81  assert(((PC == Call) || (PC == Prologue)) &&
82  "ARMCCState users must specify whether their context is call"
83  "or prologue generation.");
84  CallOrPrologue = PC;
85  }
86  };
87 }
88 
89 // The APCS parameter registers.
90 static const uint16_t GPRArgRegs[] = {
91  ARM::R0, ARM::R1, ARM::R2, ARM::R3
92 };
93 
94 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
95  MVT PromotedBitwiseVT) {
96  if (VT != PromotedLdStVT) {
98  AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
99 
101  AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
102  }
103 
104  MVT ElemTy = VT.getVectorElementType();
105  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
109  if (ElemTy == MVT::i32) {
114  } else {
119  }
128  if (VT.isInteger()) {
132  }
133 
134  // Promote all bit-wise operations.
135  if (VT.isInteger() && VT != PromotedBitwiseVT) {
137  AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
139  AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
141  AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
142  }
143 
144  // Neon does not support vector divide/remainder operations.
151 }
152 
153 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
154  addRegisterClass(VT, &ARM::DPRRegClass);
155  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
156 }
157 
158 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
159  addRegisterClass(VT, &ARM::QPRRegClass);
160  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
161 }
162 
165  return new TargetLoweringObjectFileMachO();
166 
167  return new ARMElfTargetObjectFile();
168 }
169 
171  : TargetLowering(TM, createTLOF(TM)) {
172  Subtarget = &TM.getSubtarget<ARMSubtarget>();
173  RegInfo = TM.getRegisterInfo();
174  Itins = TM.getInstrItineraryData();
175 
177 
178  if (Subtarget->isTargetIOS()) {
179  // Uses VFP for Thumb libfuncs if available.
180  if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
181  Subtarget->hasARMOps()) {
182  // Single-precision floating-point arithmetic.
183  setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
184  setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
185  setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
186  setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
187 
188  // Double-precision floating-point arithmetic.
189  setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
190  setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
191  setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
192  setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
193 
194  // Single-precision comparisons.
195  setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
196  setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
197  setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
198  setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
199  setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
200  setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
201  setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
202  setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
203 
212 
213  // Double-precision comparisons.
214  setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
215  setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
216  setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
217  setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
218  setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
219  setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
220  setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
221  setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
222 
231 
232  // Floating-point to integer conversions.
233  // i64 conversions are done via library routines even when generating VFP
234  // instructions, so use the same ones.
235  setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
236  setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
237  setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
238  setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
239 
240  // Conversions between floating types.
241  setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
242  setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
243 
244  // Integer to floating-point conversions.
245  // i64 conversions are done via library routines even when generating VFP
246  // instructions, so use the same ones.
247  // FIXME: There appears to be some naming inconsistency in ARM libgcc:
248  // e.g., __floatunsidf vs. __floatunssidfvfp.
249  setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
250  setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
251  setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
252  setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
253  }
254  }
255 
256  // These libcalls are not available in 32-bit.
260 
261  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
262  // Double-precision floating-point arithmetic helper functions
263  // RTABI chapter 4.1.2, Table 2
264  setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
265  setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
266  setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
267  setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
272 
273  // Double-precision floating-point comparison helper functions
274  // RTABI chapter 4.1.2, Table 3
275  setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
277  setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
279  setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
281  setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
283  setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
285  setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
287  setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
289  setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
299 
300  // Single-precision floating-point arithmetic helper functions
301  // RTABI chapter 4.1.2, Table 4
302  setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
303  setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
304  setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
305  setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
310 
311  // Single-precision floating-point comparison helper functions
312  // RTABI chapter 4.1.2, Table 5
313  setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
315  setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
317  setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
319  setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
321  setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
323  setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
325  setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
327  setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
337 
338  // Floating-point to integer conversions.
339  // RTABI chapter 4.1.2, Table 6
340  setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
341  setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
342  setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
343  setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
344  setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
345  setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
346  setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
347  setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
356 
357  // Conversions between floating types.
358  // RTABI chapter 4.1.2, Table 7
359  setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
360  setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
363 
364  // Integer to floating-point conversions.
365  // RTABI chapter 4.1.2, Table 8
366  setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
367  setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
368  setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
369  setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
370  setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
371  setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
372  setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
373  setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
382 
383  // Long long helper functions
384  // RTABI chapter 4.2, Table 9
385  setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
386  setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
387  setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
388  setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
395 
396  // Integer division functions
397  // RTABI chapter 4.3.1
398  setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
399  setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
400  setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
401  setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
402  setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
403  setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
404  setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
405  setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
414 
415  // Memory operations
416  // RTABI chapter 4.3.4
417  setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
418  setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
419  setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
423  }
424 
425  // Use divmod compiler-rt calls for iOS 5.0 and later.
426  if (Subtarget->getTargetTriple().isiOS() &&
427  !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
428  setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
429  setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
430  }
431 
432  if (Subtarget->isThumb1Only())
433  addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
434  else
435  addRegisterClass(MVT::i32, &ARM::GPRRegClass);
436  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
437  !Subtarget->isThumb1Only()) {
438  addRegisterClass(MVT::f32, &ARM::SPRRegClass);
439  if (!Subtarget->isFPOnlySP())
440  addRegisterClass(MVT::f64, &ARM::DPRRegClass);
441 
443  }
444 
445  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446  VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
447  for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
448  InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
450  (MVT::SimpleValueType)InnerVT, Expand);
454  }
455 
458 
459  if (Subtarget->hasNEON()) {
460  addDRTypeForNEON(MVT::v2f32);
461  addDRTypeForNEON(MVT::v8i8);
462  addDRTypeForNEON(MVT::v4i16);
463  addDRTypeForNEON(MVT::v2i32);
464  addDRTypeForNEON(MVT::v1i64);
465 
466  addQRTypeForNEON(MVT::v4f32);
467  addQRTypeForNEON(MVT::v2f64);
468  addQRTypeForNEON(MVT::v16i8);
469  addQRTypeForNEON(MVT::v8i16);
470  addQRTypeForNEON(MVT::v4i32);
471  addQRTypeForNEON(MVT::v2i64);
472 
473  // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
474  // neither Neon nor VFP support any arithmetic operations on it.
475  // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476  // supported for v4f32.
480  // FIXME: Code duplication: FDIV and FREM are expanded always, see
481  // ARMTargetLowering::addTypeForNEON method for details.
484  // FIXME: Create unittest.
485  // In another words, find a way when "copysign" appears in DAG with vector
486  // operands.
488  // FIXME: Code duplication: SETCC has custom operation action, see
489  // ARMTargetLowering::addTypeForNEON method for details.
491  // FIXME: Create unittest for FNEG and for FABS.
504  // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
511 
527 
528  // Mark v2f32 intrinsics.
544 
545  // Neon does not support some operations on v1i64 and v2i64 types.
547  // Custom handling for some quad-vector types to detect VMULL.
551  // Custom handling for some vector types to avoid expensive expansions
558  // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
559  // a destination type that is wider than the source, and nor does
560  // it have a FP_TO_[SU]INT instruction with a narrower destination than
561  // source.
566 
569 
570  // NEON does not have single instruction CTPOP for vectors with element
571  // types wider than 8-bits. However, custom lowering can leverage the
572  // v8i8/v16i8 vcnt instruction.
577 
578  // NEON only has FMA instructions as of VFP4.
579  if (!Subtarget->hasVFP4()) {
582  }
583 
601 
602  // It is legal to extload from v4i8 to v4i16 or v4i32.
603  MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
605  MVT::v2i32};
606  for (unsigned i = 0; i < 6; ++i) {
610  }
611  }
612 
613  // ARM and Thumb2 support UMLAL/SMLAL.
614  if (!Subtarget->isThumb1Only())
616 
617 
619 
620  // ARM does not have f32 extending load.
622 
623  // ARM does not have i1 sign extending load.
625 
626  // ARM supports all 4 flavors of integer indexed load / store.
627  if (!Subtarget->isThumb1Only()) {
628  for (unsigned im = (unsigned)ISD::PRE_INC;
629  im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
638  }
639  }
640 
641  // i64 operation support.
644  if (Subtarget->isThumb1Only()) {
647  }
648  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
649  || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
651 
657 
658  if (!Subtarget->isThumb1Only()) {
659  // FIXME: We should do this for Thumb1 as well.
664  }
665 
666  // ARM does not have ROTL.
670  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
672 
673  // These just redirect to CTTZ and CTLZ on ARM.
676 
678 
679  // Only ARMv6 has BSWAP.
680  if (!Subtarget->hasV6Ops())
682 
683  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
684  !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
685  // These are expanded into libcalls if the cpu doesn't have HW divider.
688  }
689 
690  // FIXME: Also set divmod for SREM on EABI
693  // Register based DivRem for AEABI (RTABI 4.2)
694  if (Subtarget->isTargetAEABI()) {
695  setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod");
696  setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
697  setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
698  setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
699  setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod");
700  setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
701  setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
702  setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
703 
712 
715  } else {
718  }
719 
725 
727 
728  // Use the default implementation.
735 
736  if (!Subtarget->isTargetDarwin()) {
737  // Non-Darwin platforms may return values in these registers via the
738  // personality function.
741  }
742 
744  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
745  // the default expansion.
746  if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
747  // ATOMIC_FENCE needs custom lowering; the other 32-bit ones are legal and
748  // handled normally.
750  // Custom lowering for 64-bit ops
762  // On v8, we have particularly efficient implementations of atomic fences
763  // if they can be combined with nearby atomic loads and stores.
764  if (!Subtarget->hasV8Ops()) {
765  // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
767  }
769  } else {
770  // If there's anything we can use as a barrier, go through custom lowering
771  // for ATOMIC_FENCE.
773  Subtarget->hasAnyDataBarrier() ? Custom : Expand);
774 
775  // Set them all for expansion, which will force libcalls.
788  // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
789  // Unordered/Monotonic case.
792  }
793 
795 
796  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
797  if (!Subtarget->hasV6Ops()) {
800  }
802 
803  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
804  !Subtarget->isThumb1Only()) {
805  // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
806  // iff target supports vfp2.
809  }
810 
811  // We want to custom lower some of our intrinsics.
813  if (Subtarget->isTargetDarwin()) {
816  setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
817  }
818 
828 
834 
835  // We don't support sin/cos/fmod/copysign/pow
844  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
845  !Subtarget->isThumb1Only()) {
848  }
851 
852  if (!Subtarget->hasVFP4()) {
855  }
856 
857  // Various VFP goodness
858  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
859  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
860  if (Subtarget->hasVFP2()) {
865  }
866  // Special handling for half-precision FP.
867  if (!Subtarget->hasFP16()) {
870  }
871  }
872 
873  // Combine sin / cos into one node or libcall if possible.
874  if (Subtarget->hasSinCos()) {
875  setLibcallName(RTLIB::SINCOS_F32, "sincosf");
877  if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
878  // For iOS, we don't want to the normal expansion of a libcall to
879  // sincos. We want to issue a libcall to __sincos_stret.
882  }
883  }
884 
885  // We have target-specific dag combine patterns for the following nodes:
886  // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
893 
894  if (Subtarget->hasV6Ops())
896 
898 
899  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
900  !Subtarget->hasVFP2())
902  else
904 
905  //// temporary - rewrite interface to use type
906  MaxStoresPerMemset = 8;
907  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
908  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
909  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
910  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
911  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
912 
913  // On ARM arguments smaller than 4 bytes are extended, so all arguments
914  // are at least 4 bytes aligned.
916 
917  // Prefer likely predicted branches to selects on out-of-order cores.
918  PredictableSelectIsExpensive = Subtarget->isLikeA9();
919 
920  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
921 }
922 
923 static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
924  bool isThumb2, unsigned &LdrOpc,
925  unsigned &StrOpc) {
926  static const unsigned LoadBares[4][2] = {{ARM::LDREXB, ARM::t2LDREXB},
927  {ARM::LDREXH, ARM::t2LDREXH},
928  {ARM::LDREX, ARM::t2LDREX},
929  {ARM::LDREXD, ARM::t2LDREXD}};
930  static const unsigned LoadAcqs[4][2] = {{ARM::LDAEXB, ARM::t2LDAEXB},
931  {ARM::LDAEXH, ARM::t2LDAEXH},
932  {ARM::LDAEX, ARM::t2LDAEX},
933  {ARM::LDAEXD, ARM::t2LDAEXD}};
934  static const unsigned StoreBares[4][2] = {{ARM::STREXB, ARM::t2STREXB},
935  {ARM::STREXH, ARM::t2STREXH},
936  {ARM::STREX, ARM::t2STREX},
937  {ARM::STREXD, ARM::t2STREXD}};
938  static const unsigned StoreRels[4][2] = {{ARM::STLEXB, ARM::t2STLEXB},
939  {ARM::STLEXH, ARM::t2STLEXH},
940  {ARM::STLEX, ARM::t2STLEX},
941  {ARM::STLEXD, ARM::t2STLEXD}};
942 
943  const unsigned (*LoadOps)[2], (*StoreOps)[2];
944  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
945  LoadOps = LoadAcqs;
946  else
947  LoadOps = LoadBares;
948 
949  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
950  StoreOps = StoreRels;
951  else
952  StoreOps = StoreBares;
953 
954  assert(isPowerOf2_32(Size) && Size <= 8 &&
955  "unsupported size for atomic binary op!");
956 
957  LdrOpc = LoadOps[Log2_32(Size)][isThumb2];
958  StrOpc = StoreOps[Log2_32(Size)][isThumb2];
959 }
960 
961 // FIXME: It might make sense to define the representative register class as the
962 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
963 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
964 // SPR's representative would be DPR_VFP2. This should work well if register
965 // pressure tracking were modified such that a register use would increment the
966 // pressure of the register class's representative and all of it's super
967 // classes' representatives transitively. We have not implemented this because
968 // of the difficulty prior to coalescing of modeling operand register classes
969 // due to the common occurrence of cross class copies and subregister insertions
970 // and extractions.
971 std::pair<const TargetRegisterClass*, uint8_t>
973  const TargetRegisterClass *RRC = 0;
974  uint8_t Cost = 1;
975  switch (VT.SimpleTy) {
976  default:
978  // Use DPR as representative register class for all floating point
979  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
980  // the cost is 1 for both f32 and f64.
981  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
982  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
983  RRC = &ARM::DPRRegClass;
984  // When NEON is used for SP, only half of the register file is available
985  // because operations that define both SP and DP results will be constrained
986  // to the VFP2 class (D0-D15). We currently model this constraint prior to
987  // coalescing by double-counting the SP regs. See the FIXME above.
988  if (Subtarget->useNEONForSinglePrecisionFP())
989  Cost = 2;
990  break;
991  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
992  case MVT::v4f32: case MVT::v2f64:
993  RRC = &ARM::DPRRegClass;
994  Cost = 2;
995  break;
996  case MVT::v4i64:
997  RRC = &ARM::DPRRegClass;
998  Cost = 4;
999  break;
1000  case MVT::v8i64:
1001  RRC = &ARM::DPRRegClass;
1002  Cost = 8;
1003  break;
1004  }
1005  return std::make_pair(RRC, Cost);
1006 }
1007 
1008 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1009  switch (Opcode) {
1010  default: return 0;
1011  case ARMISD::Wrapper: return "ARMISD::Wrapper";
1012  case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
1013  case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1014  case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1015  case ARMISD::CALL: return "ARMISD::CALL";
1016  case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1017  case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1018  case ARMISD::tCALL: return "ARMISD::tCALL";
1019  case ARMISD::BRCOND: return "ARMISD::BRCOND";
1020  case ARMISD::BR_JT: return "ARMISD::BR_JT";
1021  case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1022  case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1023  case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1024  case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1025  case ARMISD::CMP: return "ARMISD::CMP";
1026  case ARMISD::CMN: return "ARMISD::CMN";
1027  case ARMISD::CMPZ: return "ARMISD::CMPZ";
1028  case ARMISD::CMPFP: return "ARMISD::CMPFP";
1029  case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1030  case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1031  case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1032 
1033  case ARMISD::CMOV: return "ARMISD::CMOV";
1034 
1035  case ARMISD::RBIT: return "ARMISD::RBIT";
1036 
1037  case ARMISD::FTOSI: return "ARMISD::FTOSI";
1038  case ARMISD::FTOUI: return "ARMISD::FTOUI";
1039  case ARMISD::SITOF: return "ARMISD::SITOF";
1040  case ARMISD::UITOF: return "ARMISD::UITOF";
1041 
1042  case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1043  case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1044  case ARMISD::RRX: return "ARMISD::RRX";
1045 
1046  case ARMISD::ADDC: return "ARMISD::ADDC";
1047  case ARMISD::ADDE: return "ARMISD::ADDE";
1048  case ARMISD::SUBC: return "ARMISD::SUBC";
1049  case ARMISD::SUBE: return "ARMISD::SUBE";
1050 
1051  case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1052  case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1053 
1054  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1055  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
1056 
1057  case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1058 
1059  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1060 
1061  case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1062 
1063  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1064 
1065  case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1066 
1067  case ARMISD::VCEQ: return "ARMISD::VCEQ";
1068  case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
1069  case ARMISD::VCGE: return "ARMISD::VCGE";
1070  case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
1071  case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
1072  case ARMISD::VCGEU: return "ARMISD::VCGEU";
1073  case ARMISD::VCGT: return "ARMISD::VCGT";
1074  case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
1075  case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
1076  case ARMISD::VCGTU: return "ARMISD::VCGTU";
1077  case ARMISD::VTST: return "ARMISD::VTST";
1078 
1079  case ARMISD::VSHL: return "ARMISD::VSHL";
1080  case ARMISD::VSHRs: return "ARMISD::VSHRs";
1081  case ARMISD::VSHRu: return "ARMISD::VSHRu";
1082  case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
1083  case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
1084  case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
1085  case ARMISD::VSHRN: return "ARMISD::VSHRN";
1086  case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
1087  case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
1088  case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
1089  case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
1090  case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
1091  case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
1092  case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
1093  case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
1094  case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
1095  case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
1096  case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
1097  case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
1098  case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1099  case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1100  case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1101  case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1102  case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1103  case ARMISD::VDUP: return "ARMISD::VDUP";
1104  case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1105  case ARMISD::VEXT: return "ARMISD::VEXT";
1106  case ARMISD::VREV64: return "ARMISD::VREV64";
1107  case ARMISD::VREV32: return "ARMISD::VREV32";
1108  case ARMISD::VREV16: return "ARMISD::VREV16";
1109  case ARMISD::VZIP: return "ARMISD::VZIP";
1110  case ARMISD::VUZP: return "ARMISD::VUZP";
1111  case ARMISD::VTRN: return "ARMISD::VTRN";
1112  case ARMISD::VTBL1: return "ARMISD::VTBL1";
1113  case ARMISD::VTBL2: return "ARMISD::VTBL2";
1114  case ARMISD::VMULLs: return "ARMISD::VMULLs";
1115  case ARMISD::VMULLu: return "ARMISD::VMULLu";
1116  case ARMISD::UMLAL: return "ARMISD::UMLAL";
1117  case ARMISD::SMLAL: return "ARMISD::SMLAL";
1118  case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1119  case ARMISD::FMAX: return "ARMISD::FMAX";
1120  case ARMISD::FMIN: return "ARMISD::FMIN";
1121  case ARMISD::VMAXNM: return "ARMISD::VMAX";
1122  case ARMISD::VMINNM: return "ARMISD::VMIN";
1123  case ARMISD::BFI: return "ARMISD::BFI";
1124  case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1125  case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1126  case ARMISD::VBSL: return "ARMISD::VBSL";
1127  case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1128  case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1129  case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1130  case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1131  case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1132  case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1133  case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1134  case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1135  case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1136  case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1137  case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1138  case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1139  case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1140  case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1141  case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1142  case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1143  case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1144  case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1145  case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1146  case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1147  }
1148 }
1149 
1151  if (!VT.isVector()) return getPointerTy();
1153 }
1154 
1155 /// getRegClassFor - Return the register class that should be used for the
1156 /// specified value type.
1158  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1159  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1160  // load / store 4 to 8 consecutive D registers.
1161  if (Subtarget->hasNEON()) {
1162  if (VT == MVT::v4i64)
1163  return &ARM::QQPRRegClass;
1164  if (VT == MVT::v8i64)
1165  return &ARM::QQQQPRRegClass;
1166  }
1167  return TargetLowering::getRegClassFor(VT);
1168 }
1169 
1170 // Create a fast isel object.
1171 FastISel *
1173  const TargetLibraryInfo *libInfo) const {
1174  return ARM::createFastISel(funcInfo, libInfo);
1175 }
1176 
1177 /// getMaximalGlobalOffset - Returns the maximal possible offset which can
1178 /// be used for loads / stores from the global.
1180  return (Subtarget->isThumb1Only() ? 127 : 4095);
1181 }
1182 
1184  unsigned NumVals = N->getNumValues();
1185  if (!NumVals)
1186  return Sched::RegPressure;
1187 
1188  for (unsigned i = 0; i != NumVals; ++i) {
1189  EVT VT = N->getValueType(i);
1190  if (VT == MVT::Glue || VT == MVT::Other)
1191  continue;
1192  if (VT.isFloatingPoint() || VT.isVector())
1193  return Sched::ILP;
1194  }
1195 
1196  if (!N->isMachineOpcode())
1197  return Sched::RegPressure;
1198 
1199  // Load are scheduled for latency even if there instruction itinerary
1200  // is not available.
1202  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1203 
1204  if (MCID.getNumDefs() == 0)
1205  return Sched::RegPressure;
1206  if (!Itins->isEmpty() &&
1207  Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1208  return Sched::ILP;
1209 
1210  return Sched::RegPressure;
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // Lowering Code
1215 //===----------------------------------------------------------------------===//
1216 
1217 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1219  switch (CC) {
1220  default: llvm_unreachable("Unknown condition code!");
1221  case ISD::SETNE: return ARMCC::NE;
1222  case ISD::SETEQ: return ARMCC::EQ;
1223  case ISD::SETGT: return ARMCC::GT;
1224  case ISD::SETGE: return ARMCC::GE;
1225  case ISD::SETLT: return ARMCC::LT;
1226  case ISD::SETLE: return ARMCC::LE;
1227  case ISD::SETUGT: return ARMCC::HI;
1228  case ISD::SETUGE: return ARMCC::HS;
1229  case ISD::SETULT: return ARMCC::LO;
1230  case ISD::SETULE: return ARMCC::LS;
1231  }
1232 }
1233 
1234 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1236  ARMCC::CondCodes &CondCode2) {
1237  CondCode2 = ARMCC::AL;
1238  switch (CC) {
1239  default: llvm_unreachable("Unknown FP condition!");
1240  case ISD::SETEQ:
1241  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1242  case ISD::SETGT:
1243  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1244  case ISD::SETGE:
1245  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1246  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1247  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1248  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1249  case ISD::SETO: CondCode = ARMCC::VC; break;
1250  case ISD::SETUO: CondCode = ARMCC::VS; break;
1251  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1252  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1253  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1254  case ISD::SETLT:
1255  case ISD::SETULT: CondCode = ARMCC::LT; break;
1256  case ISD::SETLE:
1257  case ISD::SETULE: CondCode = ARMCC::LE; break;
1258  case ISD::SETNE:
1259  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1260  }
1261 }
1262 
1263 //===----------------------------------------------------------------------===//
1264 // Calling Convention Implementation
1265 //===----------------------------------------------------------------------===//
1266 
1267 #include "ARMGenCallingConv.inc"
1268 
1269 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1270 /// given CallingConvention value.
1271 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1272  bool Return,
1273  bool isVarArg) const {
1274  switch (CC) {
1275  default:
1276  llvm_unreachable("Unsupported calling convention");
1277  case CallingConv::Fast:
1278  if (Subtarget->hasVFP2() && !isVarArg) {
1279  if (!Subtarget->isAAPCS_ABI())
1280  return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1281  // For AAPCS ABI targets, just use VFP variant of the calling convention.
1282  return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1283  }
1284  // Fallthrough
1285  case CallingConv::C: {
1286  // Use target triple & subtarget features to do actual dispatch.
1287  if (!Subtarget->isAAPCS_ABI())
1288  return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1289  else if (Subtarget->hasVFP2() &&
1291  !isVarArg)
1292  return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1293  return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1294  }
1296  if (!isVarArg)
1297  return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1298  // Fallthrough
1300  return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1301  case CallingConv::ARM_APCS:
1302  return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1303  case CallingConv::GHC:
1304  return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1305  }
1306 }
1307 
1308 /// LowerCallResult - Lower the result values of a call into the
1309 /// appropriate copies out of appropriate physical registers.
1310 SDValue
1311 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1312  CallingConv::ID CallConv, bool isVarArg,
1314  SDLoc dl, SelectionDAG &DAG,
1315  SmallVectorImpl<SDValue> &InVals,
1316  bool isThisReturn, SDValue ThisVal) const {
1317 
1318  // Assign locations to each value returned by this call.
1320  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1321  getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1322  CCInfo.AnalyzeCallResult(Ins,
1323  CCAssignFnForNode(CallConv, /* Return*/ true,
1324  isVarArg));
1325 
1326  // Copy all of the result registers out of their specified physreg.
1327  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1328  CCValAssign VA = RVLocs[i];
1329 
1330  // Pass 'this' value directly from the argument to return value, to avoid
1331  // reg unit interference
1332  if (i == 0 && isThisReturn) {
1333  assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1334  "unexpected return calling convention register assignment");
1335  InVals.push_back(ThisVal);
1336  continue;
1337  }
1338 
1339  SDValue Val;
1340  if (VA.needsCustom()) {
1341  // Handle f64 or half of a v2f64.
1342  SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1343  InFlag);
1344  Chain = Lo.getValue(1);
1345  InFlag = Lo.getValue(2);
1346  VA = RVLocs[++i]; // skip ahead to next loc
1347  SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1348  InFlag);
1349  Chain = Hi.getValue(1);
1350  InFlag = Hi.getValue(2);
1351  Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1352 
1353  if (VA.getLocVT() == MVT::v2f64) {
1354  SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1355  Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1356  DAG.getConstant(0, MVT::i32));
1357 
1358  VA = RVLocs[++i]; // skip ahead to next loc
1359  Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1360  Chain = Lo.getValue(1);
1361  InFlag = Lo.getValue(2);
1362  VA = RVLocs[++i]; // skip ahead to next loc
1363  Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1364  Chain = Hi.getValue(1);
1365  InFlag = Hi.getValue(2);
1366  Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1367  Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1368  DAG.getConstant(1, MVT::i32));
1369  }
1370  } else {
1371  Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1372  InFlag);
1373  Chain = Val.getValue(1);
1374  InFlag = Val.getValue(2);
1375  }
1376 
1377  switch (VA.getLocInfo()) {
1378  default: llvm_unreachable("Unknown loc info!");
1379  case CCValAssign::Full: break;
1380  case CCValAssign::BCvt:
1381  Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1382  break;
1383  }
1384 
1385  InVals.push_back(Val);
1386  }
1387 
1388  return Chain;
1389 }
1390 
1391 /// LowerMemOpCallTo - Store the argument to the stack.
1392 SDValue
1393 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1394  SDValue StackPtr, SDValue Arg,
1395  SDLoc dl, SelectionDAG &DAG,
1396  const CCValAssign &VA,
1397  ISD::ArgFlagsTy Flags) const {
1398  unsigned LocMemOffset = VA.getLocMemOffset();
1399  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1400  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1401  return DAG.getStore(Chain, dl, Arg, PtrOff,
1402  MachinePointerInfo::getStack(LocMemOffset),
1403  false, false, 0);
1404 }
1405 
1406 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1407  SDValue Chain, SDValue &Arg,
1408  RegsToPassVector &RegsToPass,
1409  CCValAssign &VA, CCValAssign &NextVA,
1410  SDValue &StackPtr,
1411  SmallVectorImpl<SDValue> &MemOpChains,
1412  ISD::ArgFlagsTy Flags) const {
1413 
1414  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1415  DAG.getVTList(MVT::i32, MVT::i32), Arg);
1416  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1417 
1418  if (NextVA.isRegLoc())
1419  RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1420  else {
1421  assert(NextVA.isMemLoc());
1422  if (StackPtr.getNode() == 0)
1423  StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1424 
1425  MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1426  dl, DAG, NextVA,
1427  Flags));
1428  }
1429 }
1430 
1431 /// LowerCall - Lowering a call into a callseq_start <-
1432 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1433 /// nodes.
1434 SDValue
1435 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1436  SmallVectorImpl<SDValue> &InVals) const {
1437  SelectionDAG &DAG = CLI.DAG;
1438  SDLoc &dl = CLI.DL;
1440  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1442  SDValue Chain = CLI.Chain;
1443  SDValue Callee = CLI.Callee;
1444  bool &isTailCall = CLI.IsTailCall;
1445  CallingConv::ID CallConv = CLI.CallConv;
1446  bool doesNotRet = CLI.DoesNotReturn;
1447  bool isVarArg = CLI.IsVarArg;
1448 
1449  MachineFunction &MF = DAG.getMachineFunction();
1450  bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1451  bool isThisReturn = false;
1452  bool isSibCall = false;
1453  // Disable tail calls if they're not supported.
1454  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1455  isTailCall = false;
1456  if (isTailCall) {
1457  // Check if it's really possible to do a tail call.
1458  isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1459  isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1460  Outs, OutVals, Ins, DAG);
1461  // We don't support GuaranteedTailCallOpt for ARM, only automatically
1462  // detected sibcalls.
1463  if (isTailCall) {
1464  ++NumTailCalls;
1465  isSibCall = true;
1466  }
1467  }
1468 
1469  // Analyze operands of the call, assigning locations to each operand.
1471  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1472  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1473  CCInfo.AnalyzeCallOperands(Outs,
1474  CCAssignFnForNode(CallConv, /* Return*/ false,
1475  isVarArg));
1476 
1477  // Get a count of how many bytes are to be pushed on the stack.
1478  unsigned NumBytes = CCInfo.getNextStackOffset();
1479 
1480  // For tail calls, memory operands are available in our caller's stack.
1481  if (isSibCall)
1482  NumBytes = 0;
1483 
1484  // Adjust the stack pointer for the new arguments...
1485  // These operations are automatically eliminated by the prolog/epilog pass
1486  if (!isSibCall)
1487  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1488  dl);
1489 
1490  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1491 
1492  RegsToPassVector RegsToPass;
1493  SmallVector<SDValue, 8> MemOpChains;
1494 
1495  // Walk the register/memloc assignments, inserting copies/loads. In the case
1496  // of tail call optimization, arguments are handled later.
1497  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1498  i != e;
1499  ++i, ++realArgIdx) {
1500  CCValAssign &VA = ArgLocs[i];
1501  SDValue Arg = OutVals[realArgIdx];
1502  ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1503  bool isByVal = Flags.isByVal();
1504 
1505  // Promote the value if needed.
1506  switch (VA.getLocInfo()) {
1507  default: llvm_unreachable("Unknown loc info!");
1508  case CCValAssign::Full: break;
1509  case CCValAssign::SExt:
1510  Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1511  break;
1512  case CCValAssign::ZExt:
1513  Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1514  break;
1515  case CCValAssign::AExt:
1516  Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1517  break;
1518  case CCValAssign::BCvt:
1519  Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1520  break;
1521  }
1522 
1523  // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1524  if (VA.needsCustom()) {
1525  if (VA.getLocVT() == MVT::v2f64) {
1526  SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1527  DAG.getConstant(0, MVT::i32));
1528  SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1529  DAG.getConstant(1, MVT::i32));
1530 
1531  PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1532  VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1533 
1534  VA = ArgLocs[++i]; // skip ahead to next loc
1535  if (VA.isRegLoc()) {
1536  PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1537  VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1538  } else {
1539  assert(VA.isMemLoc());
1540 
1541  MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1542  dl, DAG, VA, Flags));
1543  }
1544  } else {
1545  PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1546  StackPtr, MemOpChains, Flags);
1547  }
1548  } else if (VA.isRegLoc()) {
1549  if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1550  assert(VA.getLocVT() == MVT::i32 &&
1551  "unexpected calling convention register assignment");
1552  assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1553  "unexpected use of 'returned'");
1554  isThisReturn = true;
1555  }
1556  RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1557  } else if (isByVal) {
1558  assert(VA.isMemLoc());
1559  unsigned offset = 0;
1560 
1561  // True if this byval aggregate will be split between registers
1562  // and memory.
1563  unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1564  unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
1565 
1566  if (CurByValIdx < ByValArgsCount) {
1567 
1568  unsigned RegBegin, RegEnd;
1569  CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1570 
1571  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1572  unsigned int i, j;
1573  for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1574  SDValue Const = DAG.getConstant(4*i, MVT::i32);
1575  SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1576  SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1578  false, false, false,
1579  DAG.InferPtrAlignment(AddArg));
1580  MemOpChains.push_back(Load.getValue(1));
1581  RegsToPass.push_back(std::make_pair(j, Load));
1582  }
1583 
1584  // If parameter size outsides register area, "offset" value
1585  // helps us to calculate stack slot for remained part properly.
1586  offset = RegEnd - RegBegin;
1587 
1588  CCInfo.nextInRegsParam();
1589  }
1590 
1591  if (Flags.getByValSize() > 4*offset) {
1592  unsigned LocMemOffset = VA.getLocMemOffset();
1593  SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1594  SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1595  StkPtrOff);
1596  SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1597  SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1598  SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1599  MVT::i32);
1600  SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1601 
1602  SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1603  SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1604  MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1605  Ops, array_lengthof(Ops)));
1606  }
1607  } else if (!isSibCall) {
1608  assert(VA.isMemLoc());
1609 
1610  MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1611  dl, DAG, VA, Flags));
1612  }
1613  }
1614 
1615  if (!MemOpChains.empty())
1616  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1617  &MemOpChains[0], MemOpChains.size());
1618 
1619  // Build a sequence of copy-to-reg nodes chained together with token chain
1620  // and flag operands which copy the outgoing args into the appropriate regs.
1621  SDValue InFlag;
1622  // Tail call byval lowering might overwrite argument registers so in case of
1623  // tail call optimization the copies to registers are lowered later.
1624  if (!isTailCall)
1625  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1626  Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1627  RegsToPass[i].second, InFlag);
1628  InFlag = Chain.getValue(1);
1629  }
1630 
1631  // For tail calls lower the arguments to the 'real' stack slot.
1632  if (isTailCall) {
1633  // Force all the incoming stack arguments to be loaded from the stack
1634  // before any new outgoing arguments are stored to the stack, because the
1635  // outgoing stack slots may alias the incoming argument stack slots, and
1636  // the alias isn't otherwise explicit. This is slightly more conservative
1637  // than necessary, because it means that each store effectively depends
1638  // on every argument instead of just those arguments it would clobber.
1639 
1640  // Do not flag preceding copytoreg stuff together with the following stuff.
1641  InFlag = SDValue();
1642  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1643  Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1644  RegsToPass[i].second, InFlag);
1645  InFlag = Chain.getValue(1);
1646  }
1647  InFlag = SDValue();
1648  }
1649 
1650  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1651  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1652  // node so that legalize doesn't hack it.
1653  bool isDirect = false;
1654  bool isARMFunc = false;
1655  bool isLocalARMFunc = false;
1657 
1658  if (EnableARMLongCalls) {
1659  assert (getTargetMachine().getRelocationModel() == Reloc::Static
1660  && "long-calls with non-static relocation model!");
1661  // Handle a global address or an external symbol. If it's not one of
1662  // those, the target's already in a register, so we don't need to do
1663  // anything extra.
1664  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1665  const GlobalValue *GV = G->getGlobal();
1666  // Create a constant pool entry for the callee address
1667  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1668  ARMConstantPoolValue *CPV =
1669  ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1670 
1671  // Get the address of the callee into a register
1672  SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1673  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1674  Callee = DAG.getLoad(getPointerTy(), dl,
1675  DAG.getEntryNode(), CPAddr,
1677  false, false, false, 0);
1678  } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1679  const char *Sym = S->getSymbol();
1680 
1681  // Create a constant pool entry for the callee address
1682  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1683  ARMConstantPoolValue *CPV =
1685  ARMPCLabelIndex, 0);
1686  // Get the address of the callee into a register
1687  SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1688  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1689  Callee = DAG.getLoad(getPointerTy(), dl,
1690  DAG.getEntryNode(), CPAddr,
1692  false, false, false, 0);
1693  }
1694  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1695  const GlobalValue *GV = G->getGlobal();
1696  isDirect = true;
1697  bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1698  bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1700  isARMFunc = !Subtarget->isThumb() || isStub;
1701  // ARM call to a local ARM function is predicable.
1702  isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1703  // tBX takes a register source operand.
1704  if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1705  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1706  ARMConstantPoolValue *CPV =
1707  ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1708  SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1709  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1710  Callee = DAG.getLoad(getPointerTy(), dl,
1711  DAG.getEntryNode(), CPAddr,
1713  false, false, false, 0);
1714  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1715  Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1716  getPointerTy(), Callee, PICLabel);
1717  } else {
1718  // On ELF targets for PIC code, direct calls should go through the PLT
1719  unsigned OpFlags = 0;
1720  if (Subtarget->isTargetELF() &&
1722  OpFlags = ARMII::MO_PLT;
1723  Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1724  }
1725  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1726  isDirect = true;
1727  bool isStub = Subtarget->isTargetDarwin() &&
1729  isARMFunc = !Subtarget->isThumb() || isStub;
1730  // tBX takes a register source operand.
1731  const char *Sym = S->getSymbol();
1732  if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1733  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1734  ARMConstantPoolValue *CPV =
1736  ARMPCLabelIndex, 4);
1737  SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1738  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1739  Callee = DAG.getLoad(getPointerTy(), dl,
1740  DAG.getEntryNode(), CPAddr,
1742  false, false, false, 0);
1743  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1744  Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1745  getPointerTy(), Callee, PICLabel);
1746  } else {
1747  unsigned OpFlags = 0;
1748  // On ELF targets for PIC code, direct calls should go through the PLT
1749  if (Subtarget->isTargetELF() &&
1751  OpFlags = ARMII::MO_PLT;
1752  Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1753  }
1754  }
1755 
1756  // FIXME: handle tail calls differently.
1757  unsigned CallOpc;
1758  bool HasMinSizeAttr = MF.getFunction()->getAttributes().
1759  hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
1760  if (Subtarget->isThumb()) {
1761  if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1762  CallOpc = ARMISD::CALL_NOLINK;
1763  else
1764  CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1765  } else {
1766  if (!isDirect && !Subtarget->hasV5TOps())
1767  CallOpc = ARMISD::CALL_NOLINK;
1768  else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1769  // Emit regular call when code size is the priority
1770  !HasMinSizeAttr)
1771  // "mov lr, pc; b _foo" to avoid confusing the RSP
1772  CallOpc = ARMISD::CALL_NOLINK;
1773  else
1774  CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1775  }
1776 
1777  std::vector<SDValue> Ops;
1778  Ops.push_back(Chain);
1779  Ops.push_back(Callee);
1780 
1781  // Add argument registers to the end of the list so that they are known live
1782  // into the call.
1783  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1784  Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1785  RegsToPass[i].second.getValueType()));
1786 
1787  // Add a register mask operand representing the call-preserved registers.
1788  if (!isTailCall) {
1789  const uint32_t *Mask;
1791  const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
1792  if (isThisReturn) {
1793  // For 'this' returns, use the R0-preserving mask if applicable
1794  Mask = ARI->getThisReturnPreservedMask(CallConv);
1795  if (!Mask) {
1796  // Set isThisReturn to false if the calling convention is not one that
1797  // allows 'returned' to be modeled in this way, so LowerCallResult does
1798  // not try to pass 'this' straight through
1799  isThisReturn = false;
1800  Mask = ARI->getCallPreservedMask(CallConv);
1801  }
1802  } else
1803  Mask = ARI->getCallPreservedMask(CallConv);
1804 
1805  assert(Mask && "Missing call preserved mask for calling convention");
1806  Ops.push_back(DAG.getRegisterMask(Mask));
1807  }
1808 
1809  if (InFlag.getNode())
1810  Ops.push_back(InFlag);
1811 
1812  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1813  if (isTailCall)
1814  return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1815 
1816  // Returns a chain and a flag for retval copy to use.
1817  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1818  InFlag = Chain.getValue(1);
1819 
1820  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1821  DAG.getIntPtrConstant(0, true), InFlag, dl);
1822  if (!Ins.empty())
1823  InFlag = Chain.getValue(1);
1824 
1825  // Handle result values, copying them out of physregs into vregs that we
1826  // return.
1827  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1828  InVals, isThisReturn,
1829  isThisReturn ? OutVals[0] : SDValue());
1830 }
1831 
1832 /// HandleByVal - Every parameter *after* a byval parameter is passed
1833 /// on the stack. Remember the next parameter register to allocate,
1834 /// and then confiscate the rest of the parameter registers to insure
1835 /// this.
1836 void
1837 ARMTargetLowering::HandleByVal(
1838  CCState *State, unsigned &size, unsigned Align) const {
1839  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1840  assert((State->getCallOrPrologue() == Prologue ||
1841  State->getCallOrPrologue() == Call) &&
1842  "unhandled ParmContext");
1843 
1844  // For in-prologue parameters handling, we also introduce stack offset
1845  // for byval registers: see CallingConvLower.cpp, CCState::HandleByVal.
1846  // This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how
1847  // NSAA should be evaluted (NSAA means "next stacked argument address").
1848  // So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs.
1849  // Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs.
1850  unsigned NSAAOffset = State->getNextStackOffset();
1851  if (State->getCallOrPrologue() != Call) {
1852  for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) {
1853  unsigned RB, RE;
1854  State->getInRegsParamInfo(i, RB, RE);
1855  assert(NSAAOffset >= (RE-RB)*4 &&
1856  "Stack offset for byval regs doesn't introduced anymore?");
1857  NSAAOffset -= (RE-RB)*4;
1858  }
1859  }
1860  if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
1861  if (Subtarget->isAAPCS_ABI() && Align > 4) {
1862  unsigned AlignInRegs = Align / 4;
1863  unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1864  for (unsigned i = 0; i < Waste; ++i)
1865  reg = State->AllocateReg(GPRArgRegs, 4);
1866  }
1867  if (reg != 0) {
1868  unsigned excess = 4 * (ARM::R4 - reg);
1869 
1870  // Special case when NSAA != SP and parameter size greater than size of
1871  // all remained GPR regs. In that case we can't split parameter, we must
1872  // send it to stack. We also must set NCRN to R4, so waste all
1873  // remained registers.
1874  if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
1875  while (State->AllocateReg(GPRArgRegs, 4))
1876  ;
1877  return;
1878  }
1879 
1880  // First register for byval parameter is the first register that wasn't
1881  // allocated before this method call, so it would be "reg".
1882  // If parameter is small enough to be saved in range [reg, r4), then
1883  // the end (first after last) register would be reg + param-size-in-regs,
1884  // else parameter would be splitted between registers and stack,
1885  // end register would be r4 in this case.
1886  unsigned ByValRegBegin = reg;
1887  unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
1888  State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1889  // Note, first register is allocated in the beginning of function already,
1890  // allocate remained amount of registers we need.
1891  for (unsigned i = reg+1; i != ByValRegEnd; ++i)
1892  State->AllocateReg(GPRArgRegs, 4);
1893  // At a call site, a byval parameter that is split between
1894  // registers and memory needs its size truncated here. In a
1895  // function prologue, such byval parameters are reassembled in
1896  // memory, and are not truncated.
1897  if (State->getCallOrPrologue() == Call) {
1898  // Make remained size equal to 0 in case, when
1899  // the whole structure may be stored into registers.
1900  if (size < excess)
1901  size = 0;
1902  else
1903  size -= excess;
1904  }
1905  }
1906  }
1907 }
1908 
1909 /// MatchingStackOffset - Return true if the given stack call argument is
1910 /// already available in the same position (relatively) of the caller's
1911 /// incoming argument stack.
1912 static
1913 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1915  const TargetInstrInfo *TII) {
1916  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1917  int FI = INT_MAX;
1918  if (Arg.getOpcode() == ISD::CopyFromReg) {
1919  unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1921  return false;
1922  MachineInstr *Def = MRI->getVRegDef(VR);
1923  if (!Def)
1924  return false;
1925  if (!Flags.isByVal()) {
1926  if (!TII->isLoadFromStackSlot(Def, FI))
1927  return false;
1928  } else {
1929  return false;
1930  }
1931  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1932  if (Flags.isByVal())
1933  // ByVal argument is passed in as a pointer but it's now being
1934  // dereferenced. e.g.
1935  // define @foo(%struct.X* %A) {
1936  // tail call @bar(%struct.X* byval %A)
1937  // }
1938  return false;
1939  SDValue Ptr = Ld->getBasePtr();
1940  FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1941  if (!FINode)
1942  return false;
1943  FI = FINode->getIndex();
1944  } else
1945  return false;
1946 
1947  assert(FI != INT_MAX);
1948  if (!MFI->isFixedObjectIndex(FI))
1949  return false;
1950  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1951 }
1952 
1953 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1954 /// for tail call optimization. Targets which want to do tail call
1955 /// optimization should implement this function.
1956 bool
1957 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1958  CallingConv::ID CalleeCC,
1959  bool isVarArg,
1960  bool isCalleeStructRet,
1961  bool isCallerStructRet,
1962  const SmallVectorImpl<ISD::OutputArg> &Outs,
1963  const SmallVectorImpl<SDValue> &OutVals,
1964  const SmallVectorImpl<ISD::InputArg> &Ins,
1965  SelectionDAG& DAG) const {
1966  const Function *CallerF = DAG.getMachineFunction().getFunction();
1967  CallingConv::ID CallerCC = CallerF->getCallingConv();
1968  bool CCMatch = CallerCC == CalleeCC;
1969 
1970  // Look for obvious safe cases to perform tail call optimization that do not
1971  // require ABI changes. This is what gcc calls sibcall.
1972 
1973  // Do not sibcall optimize vararg calls unless the call site is not passing
1974  // any arguments.
1975  if (isVarArg && !Outs.empty())
1976  return false;
1977 
1978  // Exception-handling functions need a special set of instructions to indicate
1979  // a return to the hardware. Tail-calling another function would probably
1980  // break this.
1981  if (CallerF->hasFnAttribute("interrupt"))
1982  return false;
1983 
1984  // Also avoid sibcall optimization if either caller or callee uses struct
1985  // return semantics.
1986  if (isCalleeStructRet || isCallerStructRet)
1987  return false;
1988 
1989  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1990  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1991  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1992  // support in the assembler and linker to be used. This would need to be
1993  // fixed to fully support tail calls in Thumb1.
1994  //
1995  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1996  // LR. This means if we need to reload LR, it takes an extra instructions,
1997  // which outweighs the value of the tail call; but here we don't know yet
1998  // whether LR is going to be used. Probably the right approach is to
1999  // generate the tail call here and turn it back into CALL/RET in
2000  // emitEpilogue if LR is used.
2001 
2002  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
2003  // but we need to make sure there are enough registers; the only valid
2004  // registers are the 4 used for parameters. We don't currently do this
2005  // case.
2006  if (Subtarget->isThumb1Only())
2007  return false;
2008 
2009  // If the calling conventions do not match, then we'd better make sure the
2010  // results are returned in the same way as what the caller expects.
2011  if (!CCMatch) {
2013  ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2014  getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
2015  CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
2016 
2018  ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2019  getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
2020  CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
2021 
2022  if (RVLocs1.size() != RVLocs2.size())
2023  return false;
2024  for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2025  if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2026  return false;
2027  if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2028  return false;
2029  if (RVLocs1[i].isRegLoc()) {
2030  if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2031  return false;
2032  } else {
2033  if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2034  return false;
2035  }
2036  }
2037  }
2038 
2039  // If Caller's vararg or byval argument has been split between registers and
2040  // stack, do not perform tail call, since part of the argument is in caller's
2041  // local frame.
2042  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
2043  getInfo<ARMFunctionInfo>();
2044  if (AFI_Caller->getArgRegsSaveSize())
2045  return false;
2046 
2047  // If the callee takes no arguments then go on to check the results of the
2048  // call.
2049  if (!Outs.empty()) {
2050  // Check if stack adjustment is needed. For now, do not do this if any
2051  // argument is passed on the stack.
2053  ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2054  getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
2055  CCInfo.AnalyzeCallOperands(Outs,
2056  CCAssignFnForNode(CalleeCC, false, isVarArg));
2057  if (CCInfo.getNextStackOffset()) {
2058  MachineFunction &MF = DAG.getMachineFunction();
2059 
2060  // Check if the arguments are already laid out in the right way as
2061  // the caller's fixed stack objects.
2062  MachineFrameInfo *MFI = MF.getFrameInfo();
2063  const MachineRegisterInfo *MRI = &MF.getRegInfo();
2065  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2066  i != e;
2067  ++i, ++realArgIdx) {
2068  CCValAssign &VA = ArgLocs[i];
2069  EVT RegVT = VA.getLocVT();
2070  SDValue Arg = OutVals[realArgIdx];
2071  ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2072  if (VA.getLocInfo() == CCValAssign::Indirect)
2073  return false;
2074  if (VA.needsCustom()) {
2075  // f64 and vector types are split into multiple registers or
2076  // register/stack-slot combinations. The types will not match
2077  // the registers; give up on memory f64 refs until we figure
2078  // out what to do about this.
2079  if (!VA.isRegLoc())
2080  return false;
2081  if (!ArgLocs[++i].isRegLoc())
2082  return false;
2083  if (RegVT == MVT::v2f64) {
2084  if (!ArgLocs[++i].isRegLoc())
2085  return false;
2086  if (!ArgLocs[++i].isRegLoc())
2087  return false;
2088  }
2089  } else if (!VA.isRegLoc()) {
2090  if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2091  MFI, MRI, TII))
2092  return false;
2093  }
2094  }
2095  }
2096  }
2097 
2098  return true;
2099 }
2100 
2101 bool
2102 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2103  MachineFunction &MF, bool isVarArg,
2104  const SmallVectorImpl<ISD::OutputArg> &Outs,
2105  LLVMContext &Context) const {
2107  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2108  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2109  isVarArg));
2110 }
2111 
2113  SDLoc DL, SelectionDAG &DAG) {
2114  const MachineFunction &MF = DAG.getMachineFunction();
2115  const Function *F = MF.getFunction();
2116 
2117  StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2118 
2119  // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2120  // version of the "preferred return address". These offsets affect the return
2121  // instruction if this is a return from PL1 without hypervisor extensions.
2122  // IRQ/FIQ: +4 "subs pc, lr, #4"
2123  // SWI: 0 "subs pc, lr, #0"
2124  // ABORT: +4 "subs pc, lr, #4"
2125  // UNDEF: +4/+2 "subs pc, lr, #0"
2126  // UNDEF varies depending on where the exception came from ARM or Thumb
2127  // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2128 
2129  int64_t LROffset;
2130  if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2131  IntKind == "ABORT")
2132  LROffset = 4;
2133  else if (IntKind == "SWI" || IntKind == "UNDEF")
2134  LROffset = 0;
2135  else
2136  report_fatal_error("Unsupported interrupt attribute. If present, value "
2137  "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2138 
2139  RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
2140 
2141  return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other,
2142  RetOps.data(), RetOps.size());
2143 }
2144 
2145 SDValue
2146 ARMTargetLowering::LowerReturn(SDValue Chain,
2147  CallingConv::ID CallConv, bool isVarArg,
2148  const SmallVectorImpl<ISD::OutputArg> &Outs,
2149  const SmallVectorImpl<SDValue> &OutVals,
2150  SDLoc dl, SelectionDAG &DAG) const {
2151 
2152  // CCValAssign - represent the assignment of the return value to a location.
2154 
2155  // CCState - Info about the registers and stack slots.
2156  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2157  getTargetMachine(), RVLocs, *DAG.getContext(), Call);
2158 
2159  // Analyze outgoing return values.
2160  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2161  isVarArg));
2162 
2163  SDValue Flag;
2164  SmallVector<SDValue, 4> RetOps;
2165  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2166 
2167  // Copy the result values into the output registers.
2168  for (unsigned i = 0, realRVLocIdx = 0;
2169  i != RVLocs.size();
2170  ++i, ++realRVLocIdx) {
2171  CCValAssign &VA = RVLocs[i];
2172  assert(VA.isRegLoc() && "Can only return in registers!");
2173 
2174  SDValue Arg = OutVals[realRVLocIdx];
2175 
2176  switch (VA.getLocInfo()) {
2177  default: llvm_unreachable("Unknown loc info!");
2178  case CCValAssign::Full: break;
2179  case CCValAssign::BCvt:
2180  Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2181  break;
2182  }
2183 
2184  if (VA.needsCustom()) {
2185  if (VA.getLocVT() == MVT::v2f64) {
2186  // Extract the first half and return it in two registers.
2187  SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2188  DAG.getConstant(0, MVT::i32));
2189  SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2190  DAG.getVTList(MVT::i32, MVT::i32), Half);
2191 
2192  Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
2193  Flag = Chain.getValue(1);
2194  RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2195  VA = RVLocs[++i]; // skip ahead to next loc
2196  Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2197  HalfGPRs.getValue(1), Flag);
2198  Flag = Chain.getValue(1);
2199  RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2200  VA = RVLocs[++i]; // skip ahead to next loc
2201 
2202  // Extract the 2nd half and fall through to handle it as an f64 value.
2203  Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2204  DAG.getConstant(1, MVT::i32));
2205  }
2206  // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2207  // available.
2208  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2209  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
2210  Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
2211  Flag = Chain.getValue(1);
2212  RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2213  VA = RVLocs[++i]; // skip ahead to next loc
2214  Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
2215  Flag);
2216  } else
2217  Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2218 
2219  // Guarantee that all emitted copies are
2220  // stuck together, avoiding something bad.
2221  Flag = Chain.getValue(1);
2222  RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2223  }
2224 
2225  // Update chain and glue.
2226  RetOps[0] = Chain;
2227  if (Flag.getNode())
2228  RetOps.push_back(Flag);
2229 
2230  // CPUs which aren't M-class use a special sequence to return from
2231  // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2232  // though we use "subs pc, lr, #N").
2233  //
2234  // M-class CPUs actually use a normal return sequence with a special
2235  // (hardware-provided) value in LR, so the normal code path works.
2236  if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2237  !Subtarget->isMClass()) {
2238  if (Subtarget->isThumb1Only())
2239  report_fatal_error("interrupt attribute is not supported in Thumb1");
2240  return LowerInterruptReturn(RetOps, dl, DAG);
2241  }
2242 
2243  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
2244  RetOps.data(), RetOps.size());
2245 }
2246 
2247 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2248  if (N->getNumValues() != 1)
2249  return false;
2250  if (!N->hasNUsesOfValue(1, 0))
2251  return false;
2252 
2253  SDValue TCChain = Chain;
2254  SDNode *Copy = *N->use_begin();
2255  if (Copy->getOpcode() == ISD::CopyToReg) {
2256  // If the copy has a glue operand, we conservatively assume it isn't safe to
2257  // perform a tail call.
2258  if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2259  return false;
2260  TCChain = Copy->getOperand(0);
2261  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2262  SDNode *VMov = Copy;
2263  // f64 returned in a pair of GPRs.
2264  SmallPtrSet<SDNode*, 2> Copies;
2265  for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2266  UI != UE; ++UI) {
2267  if (UI->getOpcode() != ISD::CopyToReg)
2268  return false;
2269  Copies.insert(*UI);
2270  }
2271  if (Copies.size() > 2)
2272  return false;
2273 
2274  for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2275  UI != UE; ++UI) {
2276  SDValue UseChain = UI->getOperand(0);
2277  if (Copies.count(UseChain.getNode()))
2278  // Second CopyToReg
2279  Copy = *UI;
2280  else
2281  // First CopyToReg
2282  TCChain = UseChain;
2283  }
2284  } else if (Copy->getOpcode() == ISD::BITCAST) {
2285  // f32 returned in a single GPR.
2286  if (!Copy->hasOneUse())
2287  return false;
2288  Copy = *Copy->use_begin();
2289  if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2290  return false;
2291  TCChain = Copy->getOperand(0);
2292  } else {
2293  return false;
2294  }
2295 
2296  bool HasRet = false;
2297  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2298  UI != UE; ++UI) {
2299  if (UI->getOpcode() != ARMISD::RET_FLAG &&
2300  UI->getOpcode() != ARMISD::INTRET_FLAG)
2301  return false;
2302  HasRet = true;
2303  }
2304 
2305  if (!HasRet)
2306  return false;
2307 
2308  Chain = TCChain;
2309  return true;
2310 }
2311 
2312 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2313  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2314  return false;
2315 
2316  if (!CI->isTailCall())
2317  return false;
2318 
2319  return !Subtarget->isThumb1Only();
2320 }
2321 
2322 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2323 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2324 // one of the above mentioned nodes. It has to be wrapped because otherwise
2325 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2326 // be used to form addressing mode. These wrapped nodes will be selected
2327 // into MOVi.
2329  EVT PtrVT = Op.getValueType();
2330  // FIXME there is no actual debug info here
2331  SDLoc dl(Op);
2332  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2333  SDValue Res;
2334  if (CP->isMachineConstantPoolEntry())
2335  Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2336  CP->getAlignment());
2337  else
2338  Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2339  CP->getAlignment());
2340  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2341 }
2342 
2345 }
2346 
2347 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2348  SelectionDAG &DAG) const {
2349  MachineFunction &MF = DAG.getMachineFunction();
2351  unsigned ARMPCLabelIndex = 0;
2352  SDLoc DL(Op);
2353  EVT PtrVT = getPointerTy();
2354  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2356  SDValue CPAddr;
2357  if (RelocM == Reloc::Static) {
2358  CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2359  } else {
2360  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2361  ARMPCLabelIndex = AFI->createPICLabelUId();
2362  ARMConstantPoolValue *CPV =
2363  ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2364  ARMCP::CPBlockAddress, PCAdj);
2365  CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2366  }
2367  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2368  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2370  false, false, false, 0);
2371  if (RelocM == Reloc::Static)
2372  return Result;
2373  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2374  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2375 }
2376 
2377 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2378 SDValue
2379 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2380  SelectionDAG &DAG) const {
2381  SDLoc dl(GA);
2382  EVT PtrVT = getPointerTy();
2383  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2384  MachineFunction &MF = DAG.getMachineFunction();
2386  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2387  ARMConstantPoolValue *CPV =
2388  ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2389  ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2390  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2391  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2392  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2394  false, false, false, 0);
2395  SDValue Chain = Argument.getValue(1);
2396 
2397  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2398  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2399 
2400  // call __tls_get_addr.
2401  ArgListTy Args;
2402  ArgListEntry Entry;
2403  Entry.Node = Argument;
2404  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2405  Args.push_back(Entry);
2406  // FIXME: is there useful debug info available here?
2408  (Type *) Type::getInt32Ty(*DAG.getContext()),
2409  false, false, false, false,
2410  0, CallingConv::C, /*isTailCall=*/false,
2411  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2412  DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2413  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2414  return CallResult.first;
2415 }
2416 
2417 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2418 // "local exec" model.
2419 SDValue
2420 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2421  SelectionDAG &DAG,
2422  TLSModel::Model model) const {
2423  const GlobalValue *GV = GA->getGlobal();
2424  SDLoc dl(GA);
2425  SDValue Offset;
2426  SDValue Chain = DAG.getEntryNode();
2427  EVT PtrVT = getPointerTy();
2428  // Get the Thread Pointer
2430 
2431  if (model == TLSModel::InitialExec) {
2432  MachineFunction &MF = DAG.getMachineFunction();
2434  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2435  // Initial exec model.
2436  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2437  ARMConstantPoolValue *CPV =
2438  ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2440  true);
2441  Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2442  Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2443  Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2445  false, false, false, 0);
2446  Chain = Offset.getValue(1);
2447 
2448  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2449  Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2450 
2451  Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2453  false, false, false, 0);
2454  } else {
2455  // local exec model
2456  assert(model == TLSModel::LocalExec);
2457  ARMConstantPoolValue *CPV =
2459  Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2460  Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2461  Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2463  false, false, false, 0);
2464  }
2465 
2466  // The address of the thread local variable is the add of the thread
2467  // pointer with the offset of the variable.
2468  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2469 }
2470 
2471 SDValue
2472 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2473  // TODO: implement the "local dynamic" model
2474  assert(Subtarget->isTargetELF() &&
2475  "TLS not implemented for non-ELF targets");
2476  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2477 
2478  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2479 
2480  switch (model) {
2483  return LowerToTLSGeneralDynamicModel(GA, DAG);
2484  case TLSModel::InitialExec:
2485  case TLSModel::LocalExec:
2486  return LowerToTLSExecModels(GA, DAG, model);
2487  }
2488  llvm_unreachable("bogus TLS model");
2489 }
2490 
2491 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2492  SelectionDAG &DAG) const {
2493  EVT PtrVT = getPointerTy();
2494  SDLoc dl(Op);
2495  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2496  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2497  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2498  ARMConstantPoolValue *CPV =
2500  UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2501  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2502  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2503  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2504  CPAddr,
2506  false, false, false, 0);
2507  SDValue Chain = Result.getValue(1);
2508  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2509  Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2510  if (!UseGOTOFF)
2511  Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2513  false, false, false, 0);
2514  return Result;
2515  }
2516 
2517  // If we have T2 ops, we can materialize the address directly via movt/movw
2518  // pair. This is always cheaper.
2519  if (Subtarget->useMovt()) {
2520  ++NumMovwMovt;
2521  // FIXME: Once remat is capable of dealing with instructions with register
2522  // operands, expand this into two nodes.
2523  return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2524  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2525  } else {
2526  SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2527  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2528  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2530  false, false, false, 0);
2531  }
2532 }
2533 
2534 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2535  SelectionDAG &DAG) const {
2536  EVT PtrVT = getPointerTy();
2537  SDLoc dl(Op);
2538  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2540 
2541  // FIXME: Enable this for static codegen when tool issues are fixed. Also
2542  // update ARMFastISel::ARMMaterializeGV.
2543  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2544  ++NumMovwMovt;
2545  // FIXME: Once remat is capable of dealing with instructions with register
2546  // operands, expand this into two nodes.
2547  if (RelocM == Reloc::Static)
2548  return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2549  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2550 
2551  unsigned Wrapper = (RelocM == Reloc::PIC_)
2553  SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2554  DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2555  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2556  Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2558  false, false, false, 0);
2559  return Result;
2560  }
2561 
2562  unsigned ARMPCLabelIndex = 0;
2563  SDValue CPAddr;
2564  if (RelocM == Reloc::Static) {
2565  CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2566  } else {
2568  ARMPCLabelIndex = AFI->createPICLabelUId();
2569  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2570  ARMConstantPoolValue *CPV =
2571  ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2572  PCAdj);
2573  CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2574  }
2575  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2576 
2577  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2579  false, false, false, 0);
2580  SDValue Chain = Result.getValue(1);
2581 
2582  if (RelocM == Reloc::PIC_) {
2583  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2584  Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2585  }
2586 
2587  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2588  Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2589  false, false, false, 0);
2590 
2591  return Result;
2592 }
2593 
2594 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2595  SelectionDAG &DAG) const {
2596  assert(Subtarget->isTargetELF() &&
2597  "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2598  MachineFunction &MF = DAG.getMachineFunction();
2599  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2600  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2601  EVT PtrVT = getPointerTy();
2602  SDLoc dl(Op);
2603  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2604  ARMConstantPoolValue *CPV =
2605  ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2606  ARMPCLabelIndex, PCAdj);
2607  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2608  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2609  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2611  false, false, false, 0);
2612  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2613  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2614 }
2615 
2616 SDValue
2617 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2618  SDLoc dl(Op);
2619  SDValue Val = DAG.getConstant(0, MVT::i32);
2620  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2621  DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2622  Op.getOperand(1), Val);
2623 }
2624 
2625 SDValue
2626 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2627  SDLoc dl(Op);
2628  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2629  Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2630 }
2631 
2632 SDValue
2633 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2634  const ARMSubtarget *Subtarget) const {
2635  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2636  SDLoc dl(Op);
2637  switch (IntNo) {
2638  default: return SDValue(); // Don't custom lower most intrinsics.
2640  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2641  return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2642  }
2643  case Intrinsic::eh_sjlj_lsda: {
2644  MachineFunction &MF = DAG.getMachineFunction();
2646  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2647  EVT PtrVT = getPointerTy();
2649  SDValue CPAddr;
2650  unsigned PCAdj = (RelocM != Reloc::PIC_)
2651  ? 0 : (Subtarget->isThumb() ? 4 : 8);
2652  ARMConstantPoolValue *CPV =
2653  ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2654  ARMCP::CPLSDA, PCAdj);
2655  CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2656  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2657  SDValue Result =
2658  DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2660  false, false, false, 0);
2661 
2662  if (RelocM == Reloc::PIC_) {
2663  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2664  Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2665  }
2666  return Result;
2667  }
2670  unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2672  return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2673  Op.getOperand(1), Op.getOperand(2));
2674  }
2675  }
2676 }
2677 
2679  const ARMSubtarget *Subtarget) {
2680  // FIXME: handle "fence singlethread" more efficiently.
2681  SDLoc dl(Op);
2682  if (!Subtarget->hasDataBarrier()) {
2683  // Some ARMv6 cpus can support data barriers with an mcr instruction.
2684  // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2685  // here.
2686  assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2687  "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
2688  return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2689  DAG.getConstant(0, MVT::i32));
2690  }
2691 
2692  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2693  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2694  unsigned Domain = ARM_MB::ISH;
2695  if (Subtarget->isMClass()) {
2696  // Only a full system barrier exists in the M-class architectures.
2697  Domain = ARM_MB::SY;
2698  } else if (Subtarget->isSwift() && Ord == Release) {
2699  // Swift happens to implement ISHST barriers in a way that's compatible with
2700  // Release semantics but weaker than ISH so we'd be fools not to use
2701  // it. Beware: other processors probably don't!
2702  Domain = ARM_MB::ISHST;
2703  }
2704 
2705  return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
2707  DAG.getConstant(Domain, MVT::i32));
2708 }
2709 
2711  const ARMSubtarget *Subtarget) {
2712  // ARM pre v5TE and Thumb1 does not have preload instructions.
2713  if (!(Subtarget->isThumb2() ||
2714  (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2715  // Just preserve the chain.
2716  return Op.getOperand(0);
2717 
2718  SDLoc dl(Op);
2719  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2720  if (!isRead &&
2721  (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2722  // ARMv7 with MP extension has PLDW.
2723  return Op.getOperand(0);
2724 
2725  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2726  if (Subtarget->isThumb()) {
2727  // Invert the bits.
2728  isRead = ~isRead & 1;
2729  isData = ~isData & 1;
2730  }
2731 
2732  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2733  Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2734  DAG.getConstant(isData, MVT::i32));
2735 }
2736 
2738  MachineFunction &MF = DAG.getMachineFunction();
2739  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2740 
2741  // vastart just stores the address of the VarArgsFrameIndex slot into the
2742  // memory location argument.
2743  SDLoc dl(Op);
2744  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2745  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2746  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2747  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2748  MachinePointerInfo(SV), false, false, 0);
2749 }
2750 
2751 SDValue
2752 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2753  SDValue &Root, SelectionDAG &DAG,
2754  SDLoc dl) const {
2755  MachineFunction &MF = DAG.getMachineFunction();
2757 
2758  const TargetRegisterClass *RC;
2759  if (AFI->isThumb1OnlyFunction())
2760  RC = &ARM::tGPRRegClass;
2761  else
2762  RC = &ARM::GPRRegClass;
2763 
2764  // Transform the arguments stored in physical registers into virtual ones.
2765  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2766  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2767 
2768  SDValue ArgValue2;
2769  if (NextVA.isMemLoc()) {
2770  MachineFrameInfo *MFI = MF.getFrameInfo();
2771  int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2772 
2773  // Create load node to retrieve arguments from the stack.
2774  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2775  ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2777  false, false, false, 0);
2778  } else {
2779  Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2780  ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2781  }
2782 
2783  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2784 }
2785 
2786 void
2787 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2788  unsigned InRegsParamRecordIdx,
2789  unsigned ArgSize,
2790  unsigned &ArgRegsSize,
2791  unsigned &ArgRegsSaveSize)
2792  const {
2793  unsigned NumGPRs;
2794  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2795  unsigned RBegin, REnd;
2796  CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2797  NumGPRs = REnd - RBegin;
2798  } else {
2799  unsigned int firstUnalloced;
2800  firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2801  sizeof(GPRArgRegs) /
2802  sizeof(GPRArgRegs[0]));
2803  NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2804  }
2805 
2806  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2807  ArgRegsSize = NumGPRs * 4;
2808 
2809  // If parameter is split between stack and GPRs...
2810  if (NumGPRs && Align == 8 &&
2811  (ArgRegsSize < ArgSize ||
2812  InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
2813  // Add padding for part of param recovered from GPRs, so
2814  // its last byte must be at address K*8 - 1.
2815  // We need to do it, since remained (stack) part of parameter has
2816  // stack alignment, and we need to "attach" "GPRs head" without gaps
2817  // to it:
2818  // Stack:
2819  // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
2820  // [ [padding] [GPRs head] ] [ Tail passed via stack ....
2821  //
2823  unsigned Padding =
2824  ((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) -
2825  (ArgRegsSize + AFI->getArgRegsSaveSize());
2826  ArgRegsSaveSize = ArgRegsSize + Padding;
2827  } else
2828  // We don't need to extend regs save size for byval parameters if they
2829  // are passed via GPRs only.
2830  ArgRegsSaveSize = ArgRegsSize;
2831 }
2832 
2833 // The remaining GPRs hold either the beginning of variable-argument
2834 // data, or the beginning of an aggregate passed by value (usually
2835 // byval). Either way, we allocate stack slots adjacent to the data
2836 // provided by our caller, and store the unallocated registers there.
2837 // If this is a variadic function, the va_list pointer will begin with
2838 // these values; otherwise, this reassembles a (byval) structure that
2839 // was split between registers and memory.
2840 // Return: The frame index registers were stored into.
2841 int
2842 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2843  SDLoc dl, SDValue &Chain,
2844  const Value *OrigArg,
2845  unsigned InRegsParamRecordIdx,
2846  unsigned OffsetFromOrigArg,
2847  unsigned ArgOffset,
2848  unsigned ArgSize,
2849  bool ForceMutable) const {
2850 
2851  // Currently, two use-cases possible:
2852  // Case #1. Non var-args function, and we meet first byval parameter.
2853  // Setup first unallocated register as first byval register;
2854  // eat all remained registers
2855  // (these two actions are performed by HandleByVal method).
2856  // Then, here, we initialize stack frame with
2857  // "store-reg" instructions.
2858  // Case #2. Var-args function, that doesn't contain byval parameters.
2859  // The same: eat all remained unallocated registers,
2860  // initialize stack frame.
2861 
2862  MachineFunction &MF = DAG.getMachineFunction();
2863  MachineFrameInfo *MFI = MF.getFrameInfo();
2865  unsigned firstRegToSaveIndex, lastRegToSaveIndex;
2866  unsigned RBegin, REnd;
2867  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2868  CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2869  firstRegToSaveIndex = RBegin - ARM::R0;
2870  lastRegToSaveIndex = REnd - ARM::R0;
2871  } else {
2872  firstRegToSaveIndex = CCInfo.getFirstUnallocated
2874  lastRegToSaveIndex = 4;
2875  }
2876 
2877  unsigned ArgRegsSize, ArgRegsSaveSize;
2878  computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
2879  ArgRegsSize, ArgRegsSaveSize);
2880 
2881  // Store any by-val regs to their spots on the stack so that they may be
2882  // loaded by deferencing the result of formal parameter pointer or va_next.
2883  // Note: once stack area for byval/varargs registers
2884  // was initialized, it can't be initialized again.
2885  if (ArgRegsSaveSize) {
2886 
2887  unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
2888 
2889  if (Padding) {
2890  assert(AFI->getStoredByValParamsPadding() == 0 &&
2891  "The only parameter may be padded.");
2892  AFI->setStoredByValParamsPadding(Padding);
2893  }
2894 
2895  int FrameIndex = MFI->CreateFixedObject(
2896  ArgRegsSaveSize,
2897  Padding + ArgOffset,
2898  false);
2899  SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2900 
2901  SmallVector<SDValue, 4> MemOps;
2902  for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
2903  ++firstRegToSaveIndex, ++i) {
2904  const TargetRegisterClass *RC;
2905  if (AFI->isThumb1OnlyFunction())
2906  RC = &ARM::tGPRRegClass;
2907  else
2908  RC = &ARM::GPRRegClass;
2909 
2910  unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2911  SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2912  SDValue Store =
2913  DAG.getStore(Val.getValue(1), dl, Val, FIN,
2914  MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2915  false, false, 0);
2916  MemOps.push_back(Store);
2917  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2918  DAG.getConstant(4, getPointerTy()));
2919  }
2920 
2921  AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
2922 
2923  if (!MemOps.empty())
2924  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2925  &MemOps[0], MemOps.size());
2926  return FrameIndex;
2927  } else
2928  // This will point to the next argument passed via stack.
2929  return MFI->CreateFixedObject(
2930  4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable);
2931 }
2932 
2933 // Setup stack frame, the va_list pointer will start from.
2934 void
2935 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2936  SDLoc dl, SDValue &Chain,
2937  unsigned ArgOffset,
2938  bool ForceMutable) const {
2939  MachineFunction &MF = DAG.getMachineFunction();
2941 
2942  // Try to store any remaining integer argument regs
2943  // to their spots on the stack so that they may be loaded by deferencing
2944  // the result of va_next.
2945  // If there is no regs to be stored, just point address after last
2946  // argument passed via stack.
2947  int FrameIndex =
2948  StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(),
2949  0, ArgOffset, 0, ForceMutable);
2950 
2951  AFI->setVarArgsFrameIndex(FrameIndex);
2952 }
2953 
2954 SDValue
2955 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2956  CallingConv::ID CallConv, bool isVarArg,
2958  &Ins,
2959  SDLoc dl, SelectionDAG &DAG,
2960  SmallVectorImpl<SDValue> &InVals)
2961  const {
2962  MachineFunction &MF = DAG.getMachineFunction();
2963  MachineFrameInfo *MFI = MF.getFrameInfo();
2964 
2966 
2967  // Assign locations to all of the incoming arguments.
2969  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2970  getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2971  CCInfo.AnalyzeFormalArguments(Ins,
2972  CCAssignFnForNode(CallConv, /* Return*/ false,
2973  isVarArg));
2974 
2975  SmallVector<SDValue, 16> ArgValues;
2976  int lastInsIndex = -1;
2977  SDValue ArgValue;
2978  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2979  unsigned CurArgIdx = 0;
2980 
2981  // Initially ArgRegsSaveSize is zero.
2982  // Then we increase this value each time we meet byval parameter.
2983  // We also increase this value in case of varargs function.
2984  AFI->setArgRegsSaveSize(0);
2985 
2986  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2987  CCValAssign &VA = ArgLocs[i];
2988  std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2989  CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2990  // Arguments stored in registers.
2991  if (VA.isRegLoc()) {
2992  EVT RegVT = VA.getLocVT();
2993 
2994  if (VA.needsCustom()) {
2995  // f64 and vector types are split up into multiple registers or
2996  // combinations of registers and stack slots.
2997  if (VA.getLocVT() == MVT::v2f64) {
2998  SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2999  Chain, DAG, dl);
3000  VA = ArgLocs[++i]; // skip ahead to next loc
3001  SDValue ArgValue2;
3002  if (VA.isMemLoc()) {
3003  int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3004  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3005  ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3007  false, false, false, 0);
3008  } else {
3009  ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3010  Chain, DAG, dl);
3011  }
3012  ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3013  ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3014  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
3015  ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3016  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
3017  } else
3018  ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3019 
3020  } else {
3021  const TargetRegisterClass *RC;
3022 
3023  if (RegVT == MVT::f32)
3024  RC = &ARM::SPRRegClass;
3025  else if (RegVT == MVT::f64)
3026  RC = &ARM::DPRRegClass;
3027  else if (RegVT == MVT::v2f64)
3028  RC = &ARM::QPRRegClass;
3029  else if (RegVT == MVT::i32)
3030  RC = AFI->isThumb1OnlyFunction() ?
3031  (const TargetRegisterClass*)&ARM::tGPRRegClass :
3032  (const TargetRegisterClass*)&ARM::GPRRegClass;
3033  else
3034  llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3035 
3036  // Transform the arguments in physical registers into virtual ones.
3037  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3038  ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3039  }
3040 
3041  // If this is an 8 or 16-bit value, it is really passed promoted
3042  // to 32 bits. Insert an assert[sz]ext to capture this, then
3043  // truncate to the right size.
3044  switch (VA.getLocInfo()) {
3045  default: llvm_unreachable("Unknown loc info!");
3046  case CCValAssign::Full: break;
3047  case CCValAssign::BCvt:
3048  ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3049  break;
3050  case CCValAssign::SExt:
3051  ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3052  DAG.getValueType(VA.getValVT()));
3053  ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3054  break;
3055  case CCValAssign::ZExt:
3056  ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3057  DAG.getValueType(VA.getValVT()));
3058  ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3059  break;
3060  }
3061 
3062  InVals.push_back(ArgValue);
3063 
3064  } else { // VA.isRegLoc()
3065 
3066  // sanity check
3067  assert(VA.isMemLoc());
3068  assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3069 
3070  int index = ArgLocs[i].getValNo();
3071 
3072  // Some Ins[] entries become multiple ArgLoc[] entries.
3073  // Process them only once.
3074  if (index != lastInsIndex)
3075  {
3076  ISD::ArgFlagsTy Flags = Ins[index].Flags;
3077  // FIXME: For now, all byval parameter objects are marked mutable.
3078  // This can be changed with more analysis.
3079  // In case of tail call optimization mark all arguments mutable.
3080  // Since they could be overwritten by lowering of arguments in case of
3081  // a tail call.
3082  if (Flags.isByVal()) {
3083  unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
3084  int FrameIndex = StoreByValRegs(
3085  CCInfo, DAG, dl, Chain, CurOrigArg,
3086  CurByValIndex,
3087  Ins[VA.getValNo()].PartOffset,
3088  VA.getLocMemOffset(),
3089  Flags.getByValSize(),
3090  true /*force mutable frames*/);
3091  InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
3092  CCInfo.nextInRegsParam();
3093  } else {
3094  unsigned FIOffset = VA.getLocMemOffset() +
3096  int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3097  FIOffset, true);
3098 
3099  // Create load nodes to retrieve arguments from the stack.
3100  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3101  InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3103  false, false, false, 0));
3104  }
3105  lastInsIndex = index;
3106  }
3107  }
3108  }
3109 
3110  // varargs
3111  if (isVarArg)
3112  VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3113  CCInfo.getNextStackOffset());
3114 
3115  return Chain;
3116 }
3117 
3118 /// isFloatingPointZero - Return true if this is +0.0.
3119 static bool isFloatingPointZero(SDValue Op) {
3120  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3121  return CFP->getValueAPF().isPosZero();
3122  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3123  // Maybe this has already been legalized into the constant pool?
3124  if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3125  SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3126  if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3127  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3128  return CFP->getValueAPF().isPosZero();
3129  }
3130  }
3131  return false;
3132 }
3133 
3134 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3135 /// the given operands.
3136 SDValue
3137 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3138  SDValue &ARMcc, SelectionDAG &DAG,
3139  SDLoc dl) const {
3140  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3141  unsigned C = RHSC->getZExtValue();
3142  if (!isLegalICmpImmediate(C)) {
3143  // Constant does not fit, try adjusting it by one?
3144  switch (CC) {
3145  default: break;
3146  case ISD::SETLT:
3147  case ISD::SETGE:
3148  if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3149  CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3150  RHS = DAG.getConstant(C-1, MVT::i32);
3151  }
3152  break;
3153  case ISD::SETULT:
3154  case ISD::SETUGE:
3155  if (C != 0 && isLegalICmpImmediate(C-1)) {
3156  CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3157  RHS = DAG.getConstant(C-1, MVT::i32);
3158  }
3159  break;
3160  case ISD::SETLE:
3161  case ISD::SETGT:
3162  if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3163  CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3164  RHS = DAG.getConstant(C+1, MVT::i32);
3165  }
3166  break;
3167  case ISD::SETULE:
3168  case ISD::SETUGT:
3169  if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3170  CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3171  RHS = DAG.getConstant(C+1, MVT::i32);
3172  }
3173  break;
3174  }
3175  }
3176  }
3177 
3179  ARMISD::NodeType CompareType;
3180  switch (CondCode) {
3181  default:
3182  CompareType = ARMISD::CMP;
3183  break;
3184  case ARMCC::EQ:
3185  case ARMCC::NE:
3186  // Uses only Z Flag
3187  CompareType = ARMISD::CMPZ;
3188  break;
3189  }
3190  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3191  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3192 }
3193 
3194 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3195 SDValue
3196 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3197  SDLoc dl) const {
3198  SDValue Cmp;
3199  if (!isFloatingPointZero(RHS))
3200  Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3201  else
3202  Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3203  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3204 }
3205 
3206 /// duplicateCmp - Glue values can have only one use, so this function
3207 /// duplicates a comparison node.
3208 SDValue
3209 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3210  unsigned Opc = Cmp.getOpcode();
3211  SDLoc DL(Cmp);
3212  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3213  return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3214 
3215  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3216  Cmp = Cmp.getOperand(0);
3217  Opc = Cmp.getOpcode();
3218  if (Opc == ARMISD::CMPFP)
3219  Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3220  else {
3221  assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3222  Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3223  }
3224  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3225 }
3226 
3227 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3228  SDValue Cond = Op.getOperand(0);
3229  SDValue SelectTrue = Op.getOperand(1);
3230  SDValue SelectFalse = Op.getOperand(2);
3231  SDLoc dl(Op);
3232 
3233  // Convert:
3234  //
3235  // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3236  // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3237  //
3238  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3239  const ConstantSDNode *CMOVTrue =
3241  const ConstantSDNode *CMOVFalse =
3243 
3244  if (CMOVTrue && CMOVFalse) {
3245  unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3246  unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3247 
3248  SDValue True;
3249  SDValue False;
3250  if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3251  True = SelectTrue;
3252  False = SelectFalse;
3253  } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3254  True = SelectFalse;
3255  False = SelectTrue;
3256  }
3257 
3258  if (True.getNode() && False.getNode()) {
3259  EVT VT = Op.getValueType();
3260  SDValue ARMcc = Cond.getOperand(2);
3261  SDValue CCR = Cond.getOperand(3);
3262  SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3263  assert(True.getValueType() == VT);
3264  return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
3265  }
3266  }
3267  }
3268 
3269  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3270  // undefined bits before doing a full-word comparison with zero.
3271  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3272  DAG.getConstant(1, Cond.getValueType()));
3273 
3274  return DAG.getSelectCC(dl, Cond,
3275  DAG.getConstant(0, Cond.getValueType()),
3276  SelectTrue, SelectFalse, ISD::SETNE);
3277 }
3278 
3280  if (CC == ISD::SETNE)
3281  return ISD::SETEQ;
3282  return ISD::getSetCCSwappedOperands(CC);
3283 }
3284 
3286  bool &swpCmpOps, bool &swpVselOps) {
3287  // Start by selecting the GE condition code for opcodes that return true for
3288  // 'equality'
3289  if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3290  CC == ISD::SETULE)
3291  CondCode = ARMCC::GE;
3292 
3293  // and GT for opcodes that return false for 'equality'.
3294  else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3295  CC == ISD::SETULT)
3296  CondCode = ARMCC::GT;
3297 
3298  // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3299  // to swap the compare operands.
3300  if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3301  CC == ISD::SETULT)
3302  swpCmpOps = true;
3303 
3304  // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3305  // If we have an unordered opcode, we need to swap the operands to the VSEL
3306  // instruction (effectively negating the condition).
3307  //
3308  // This also has the effect of swapping which one of 'less' or 'greater'
3309  // returns true, so we also swap the compare operands. It also switches
3310  // whether we return true for 'equality', so we compensate by picking the
3311  // opposite condition code to our original choice.
3312  if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3313  CC == ISD::SETUGT) {
3314  swpCmpOps = !swpCmpOps;
3315  swpVselOps = !swpVselOps;
3316  CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3317  }
3318 
3319  // 'ordered' is 'anything but unordered', so use the VS condition code and
3320  // swap the VSEL operands.
3321  if (CC == ISD::SETO) {
3322  CondCode = ARMCC::VS;
3323  swpVselOps = true;
3324  }
3325 
3326  // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3327  // code and swap the VSEL operands.
3328  if (CC == ISD::SETUNE) {
3329  CondCode = ARMCC::EQ;
3330  swpVselOps = true;
3331  }
3332 }
3333 
3334 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3335  EVT VT = Op.getValueType();
3336  SDValue LHS = Op.getOperand(0);
3337  SDValue RHS = Op.getOperand(1);
3338  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3339  SDValue TrueVal = Op.getOperand(2);
3340  SDValue FalseVal = Op.getOperand(3);
3341  SDLoc dl(Op);
3342 
3343  if (LHS.getValueType() == MVT::i32) {
3344  // Try to generate VSEL on ARMv8.
3345  // The VSEL instruction can't use all the usual ARM condition
3346  // codes: it only has two bits to select the condition code, so it's
3347  // constrained to use only GE, GT, VS and EQ.
3348  //
3349  // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3350  // swap the operands of the previous compare instruction (effectively
3351  // inverting the compare condition, swapping 'less' and 'greater') and
3352  // sometimes need to swap the operands to the VSEL (which inverts the
3353  // condition in the sense of firing whenever the previous condition didn't)
3354  if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3355  TrueVal.getValueType() == MVT::f64)) {
3356  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3357  if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3358  CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3359  CC = getInverseCCForVSEL(CC);
3360  std::swap(TrueVal, FalseVal);
3361  }
3362  }
3363 
3364  SDValue ARMcc;
3365  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3366  SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3367  return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3368  Cmp);
3369  }
3370 
3371  ARMCC::CondCodes CondCode, CondCode2;
3372  FPCCToARMCC(CC, CondCode, CondCode2);
3373 
3374  // Try to generate VSEL on ARMv8.
3375  if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3376  TrueVal.getValueType() == MVT::f64)) {
3377  // We can select VMAXNM/VMINNM from a compare followed by a select with the
3378  // same operands, as follows:
3379  // c = fcmp [ogt, olt, ugt, ult] a, b
3380  // select c, a, b
3381  // We only do this in unsafe-fp-math, because signed zeros and NaNs are
3382  // handled differently than the original code sequence.
3383  if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal &&
3384  RHS == FalseVal) {
3385  if (CC == ISD::SETOGT || CC == ISD::SETUGT)
3386  return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3387  if (CC == ISD::SETOLT || CC == ISD::SETULT)
3388  return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3389  }
3390 
3391  bool swpCmpOps = false;
3392  bool swpVselOps = false;
3393  checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3394 
3395  if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3396  CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3397  if (swpCmpOps)
3398  std::swap(LHS, RHS);
3399  if (swpVselOps)
3400  std::swap(TrueVal, FalseVal);
3401  }
3402  }
3403 
3404  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3405  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3406  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3407  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
3408  ARMcc, CCR, Cmp);
3409  if (CondCode2 != ARMCC::AL) {
3410  SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3411  // FIXME: Needs another CMP because flag can have but one use.
3412  SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3413  Result = DAG.getNode(ARMISD::CMOV, dl, VT,
3414  Result, TrueVal, ARMcc2, CCR, Cmp2);
3415  }
3416  return Result;
3417 }
3418 
3419 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
3420 /// to morph to an integer compare sequence.
3421 static bool canChangeToInt(SDValue Op, bool &SeenZero,
3422  const ARMSubtarget *Subtarget) {
3423  SDNode *N = Op.getNode();
3424  if (!N->hasOneUse())
3425  // Otherwise it requires moving the value from fp to integer registers.
3426  return false;
3427  if (!N->getNumValues())
3428  return false;
3429  EVT VT = Op.getValueType();
3430  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3431  // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3432  // vmrs are very slow, e.g. cortex-a8.
3433  return false;
3434 
3435  if (isFloatingPointZero(Op)) {
3436  SeenZero = true;
3437  return true;
3438  }
3439  return ISD::isNormalLoad(N);
3440 }
3441 
3443  if (isFloatingPointZero(Op))
3444  return DAG.getConstant(0, MVT::i32);
3445 
3446  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3447  return DAG.getLoad(MVT::i32, SDLoc(Op),
3448  Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3449  Ld->isVolatile(), Ld->isNonTemporal(),
3450  Ld->isInvariant(), Ld->getAlignment());
3451 
3452  llvm_unreachable("Unknown VFP cmp argument!");
3453 }
3454 
3455 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3456  SDValue &RetVal1, SDValue &RetVal2) {
3457  if (isFloatingPointZero(Op)) {
3458  RetVal1 = DAG.getConstant(0, MVT::i32);
3459  RetVal2 = DAG.getConstant(0, MVT::i32);
3460  return;
3461  }
3462 
3463  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3464  SDValue Ptr = Ld->getBasePtr();
3465  RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3466  Ld->getChain(), Ptr,
3467  Ld->getPointerInfo(),
3468  Ld->isVolatile(), Ld->isNonTemporal(),
3469  Ld->isInvariant(), Ld->getAlignment());
3470 
3471  EVT PtrType = Ptr.getValueType();
3472  unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3473  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3474  PtrType, Ptr, DAG.getConstant(4, PtrType));
3475  RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3476  Ld->getChain(), NewPtr,
3477  Ld->getPointerInfo().getWithOffset(4),
3478  Ld->isVolatile(), Ld->isNonTemporal(),
3479  Ld->isInvariant(), NewAlign);
3480  return;
3481  }
3482 
3483  llvm_unreachable("Unknown VFP cmp argument!");
3484 }
3485 
3486 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3487 /// f32 and even f64 comparisons to integer ones.
3488 SDValue
3489 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3490  SDValue Chain = Op.getOperand(0);
3491  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3492  SDValue LHS = Op.getOperand(2);
3493  SDValue RHS = Op.getOperand(3);
3494  SDValue Dest = Op.getOperand(4);
3495  SDLoc dl(Op);
3496 
3497  bool LHSSeenZero = false;
3498  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3499  bool RHSSeenZero = false;
3500  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3501  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3502  // If unsafe fp math optimization is enabled and there are no other uses of
3503  // the CMP operands, and the condition code is EQ or NE, we can optimize it
3504  // to an integer comparison.
3505  if (CC == ISD::SETOEQ)
3506  CC = ISD::SETEQ;
3507  else if (CC == ISD::SETUNE)
3508  CC = ISD::SETNE;
3509 
3510  SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3511  SDValue ARMcc;
3512  if (LHS.getValueType() == MVT::f32) {
3513  LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3514  bitcastf32Toi32(LHS, DAG), Mask);
3515  RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3516  bitcastf32Toi32(RHS, DAG), Mask);
3517  SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3518  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3519  return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3520  Chain, Dest, ARMcc, CCR, Cmp);
3521  }
3522 
3523  SDValue LHS1, LHS2;
3524  SDValue RHS1, RHS2;
3525  expandf64Toi32(LHS, DAG, LHS1, LHS2);
3526  expandf64Toi32(RHS, DAG, RHS1, RHS2);
3527  LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3528  RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3529  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3530  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3531  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3532  SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3533  return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3534  }
3535 
3536  return SDValue();
3537 }
3538 
3539 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3540  SDValue Chain = Op.getOperand(0);
3541  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3542  SDValue LHS = Op.getOperand(2);
3543  SDValue RHS = Op.getOperand(3);
3544  SDValue Dest = Op.getOperand(4);
3545  SDLoc dl(Op);
3546 
3547  if (LHS.getValueType() == MVT::i32) {
3548  SDValue ARMcc;
3549  SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3550  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3551  return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3552  Chain, Dest, ARMcc, CCR, Cmp);
3553  }
3554 
3555  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3556 
3558  (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3559  CC == ISD::SETNE || CC == ISD::SETUNE)) {
3560  SDValue Result = OptimizeVFPBrcond(Op, DAG);
3561  if (Result.getNode())
3562  return Result;
3563  }
3564 
3565  ARMCC::CondCodes CondCode, CondCode2;
3566  FPCCToARMCC(CC, CondCode, CondCode2);
3567 
3568  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3569  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3570  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3571  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3572  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3573  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3574  if (CondCode2 != ARMCC::AL) {
3575  ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3576  SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3577  Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3578  }
3579  return Res;
3580 }
3581 
3582 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3583  SDValue Chain = Op.getOperand(0);
3584  SDValue Table = Op.getOperand(1);
3585  SDValue Index = Op.getOperand(2);
3586  SDLoc dl(Op);
3587 
3588  EVT PTy = getPointerTy();
3589  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3591  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3592  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3593  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3594  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3595  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3596  if (Subtarget->isThumb2()) {
3597  // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3598  // which does another jump to the destination. This also makes it easier
3599  // to translate it to TBB / TBH later.
3600  // FIXME: This might not work if the function is extremely large.
3601  return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3602  Addr, Op.getOperand(2), JTI, UId);
3603  }
3605  Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3607  false, false, false, 0);
3608  Chain = Addr.getValue(1);
3609  Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3610  return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3611  } else {
3612  Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3614  false, false, false, 0);
3615  Chain = Addr.getValue(1);
3616  return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3617  }
3618 }
3619 
3621  EVT VT = Op.getValueType();
3622  SDLoc dl(Op);
3623 
3624  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3626  return Op;
3627  return DAG.UnrollVectorOp(Op.getNode());
3628  }
3629 
3630  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3631  "Invalid type for custom lowering!");
3632  if (VT != MVT::v4i16)
3633  return DAG.UnrollVectorOp(Op.getNode());
3634 
3635  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3636  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3637 }
3638 
3640  EVT VT = Op.getValueType();
3641  if (VT.isVector())
3642  return LowerVectorFP_TO_INT(Op, DAG);
3643 
3644  SDLoc dl(Op);
3645  unsigned Opc;
3646 
3647  switch (Op.getOpcode()) {
3648  default: llvm_unreachable("Invalid opcode!");
3649  case ISD::FP_TO_SINT:
3650  Opc = ARMISD::FTOSI;
3651  break;
3652  case ISD::FP_TO_UINT:
3653  Opc = ARMISD::FTOUI;
3654  break;
3655  }
3656  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3657  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3658 }
3659 
3661  EVT VT = Op.getValueType();
3662  SDLoc dl(Op);
3663 
3665  if (VT.getVectorElementType() == MVT::f32)
3666  return Op;
3667  return DAG.UnrollVectorOp(Op.getNode());
3668  }
3669 
3670  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3671  "Invalid type for custom lowering!");
3672  if (VT != MVT::v4f32)
3673  return DAG.UnrollVectorOp(Op.getNode());
3674 
3675  unsigned CastOpc;
3676  unsigned Opc;
3677  switch (Op.getOpcode()) {
3678  default: llvm_unreachable("Invalid opcode!");
3679  case ISD::SINT_TO_FP:
3680  CastOpc = ISD::SIGN_EXTEND;
3681  Opc = ISD::SINT_TO_FP;
3682  break;
3683  case ISD::UINT_TO_FP:
3684  CastOpc = ISD::ZERO_EXTEND;
3685  Opc = ISD::UINT_TO_FP;
3686  break;
3687  }
3688 
3689  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3690  return DAG.getNode(Opc, dl, VT, Op);
3691 }
3692 
3694  EVT VT = Op.getValueType();
3695  if (VT.isVector())
3696  return LowerVectorINT_TO_FP(Op, DAG);
3697 
3698  SDLoc dl(Op);
3699  unsigned Opc;
3700 
3701  switch (Op.getOpcode()) {
3702  default: llvm_unreachable("Invalid opcode!");
3703  case ISD::SINT_TO_FP:
3704  Opc = ARMISD::SITOF;
3705  break;
3706  case ISD::UINT_TO_FP:
3707  Opc = ARMISD::UITOF;
3708  break;
3709  }
3710 
3711  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3712  return DAG.getNode(Opc, dl, VT, Op);
3713 }
3714 
3715 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3716  // Implement fcopysign with a fabs and a conditional fneg.
3717  SDValue Tmp0 = Op.getOperand(0);
3718  SDValue Tmp1 = Op.getOperand(1);
3719  SDLoc dl(Op);
3720  EVT VT = Op.getValueType();
3721  EVT SrcVT = Tmp1.getValueType();
3722  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3723  Tmp0.getOpcode() == ARMISD::VMOVDRR;
3724  bool UseNEON = !InGPR && Subtarget->hasNEON();
3725 
3726  if (UseNEON) {
3727  // Use VBSL to copy the sign bit.
3728  unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3729  SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3730  DAG.getTargetConstant(EncodedVal, MVT::i32));
3731  EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3732  if (VT == MVT::f64)
3733  Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3734  DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3735  DAG.getConstant(32, MVT::i32));
3736  else /*if (VT == MVT::f32)*/
3737  Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3738  if (SrcVT == MVT::f32) {
3739  Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3740  if (VT == MVT::f64)
3741  Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3742  DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3743  DAG.getConstant(32, MVT::i32));
3744  } else if (VT == MVT::f32)
3745  Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3746  DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3747  DAG.getConstant(32, MVT::i32));
3748  Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3749  Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3750 
3751  SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3752  MVT::i32);
3753  AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3754  SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3755  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3756 
3757  SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3758  DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3759  DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3760  if (VT == MVT::f32) {
3761  Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3762  Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3763  DAG.getConstant(0, MVT::i32));
3764  } else {
3765  Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3766  }
3767 
3768  return Res;
3769  }
3770 
3771  // Bitcast operand 1 to i32.
3772  if (SrcVT == MVT::f64)
3773  Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3774  &Tmp1, 1).getValue(1);
3775  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3776 
3777  // Or in the signbit with integer operations.
3778  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3779  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3780  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3781  if (VT == MVT::f32) {
3782  Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3783  DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3784  return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3785  DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3786  }
3787 
3788  // f64: Or the high part with signbit and then combine two parts.
3789  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3790  &Tmp0, 1);
3791  SDValue Lo = Tmp0.getValue(0);
3792  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3793  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3794  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3795 }
3796 
3797 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3798  MachineFunction &MF = DAG.getMachineFunction();
3799  MachineFrameInfo *MFI = MF.getFrameInfo();
3800  MFI->setReturnAddressIsTaken(true);
3801 
3802  EVT VT = Op.getValueType();
3803  SDLoc dl(Op);
3804  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3805  if (Depth) {
3806  SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3807  SDValue Offset = DAG.getConstant(4, MVT::i32);
3808  return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3809  DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3810  MachinePointerInfo(), false, false, false, 0);
3811  }
3812 
3813  // Return LR, which contains the return address. Mark it an implicit live-in.
3814  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3815  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3816 }
3817 
3818 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3820  MFI->setFrameAddressIsTaken(true);
3821 
3822  EVT VT = Op.getValueType();
3823  SDLoc dl(Op); // FIXME probably not meaningful
3824  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3825  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3826  ? ARM::R7 : ARM::R11;
3827  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3828  while (Depth--)
3829  FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3831  false, false, false, 0);
3832  return FrameAddr;
3833 }
3834 
3835 /// ExpandBITCAST - If the target supports VFP, this function is called to
3836 /// expand a bit convert where either the source or destination type is i64 to
3837 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
3838 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
3839 /// vectors), since the legalizer won't know what to do with that.
3841  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3842  SDLoc dl(N);
3843  SDValue Op = N->getOperand(0);
3844 
3845  // This function is only supposed to be called for i64 types, either as the
3846  // source or destination of the bit convert.
3847  EVT SrcVT = Op.getValueType();
3848  EVT DstVT = N->getValueType(0);
3849  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3850  "ExpandBITCAST called for non-i64 type");
3851 
3852  // Turn i64->f64 into VMOVDRR.
3853  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3854  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3855  DAG.getConstant(0, MVT::i32));
3856  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3857  DAG.getConstant(1, MVT::i32));
3858  return DAG.getNode(ISD::BITCAST, dl, DstVT,
3859  DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3860  }
3861 
3862  // Turn f64->i64 into VMOVRRD.
3863  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3864  SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3865  DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3866  // Merge the pieces into a single i64 value.
3867  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3868  }
3869 
3870  return SDValue();
3871 }
3872 
3873 /// getZeroVector - Returns a vector of specified type with all zero elements.
3874 /// Zero vectors are used to represent vector negation and in those cases
3875 /// will be implemented with the NEON VNEG instruction. However, VNEG does
3876 /// not support i64 elements, so sometimes the zero vectors will need to be
3877 /// explicitly constructed. Regardless, use a canonical VMOV to create the
3878 /// zero vector.
3880  assert(VT.isVector() && "Expected a vector type");
3881  // The canonical modified immediate encoding of a zero vector is....0!
3882  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3883  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3884  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3885  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3886 }
3887 
3888 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3889 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
3890 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3891  SelectionDAG &DAG) const {
3892  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3893  EVT VT = Op.getValueType();
3894  unsigned VTBits = VT.getSizeInBits();
3895  SDLoc dl(Op);
3896  SDValue ShOpLo = Op.getOperand(0);
3897  SDValue ShOpHi = Op.getOperand(1);
3898  SDValue ShAmt = Op.getOperand(2);
3899  SDValue ARMcc;
3900  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3901 
3902  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3903 
3904  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3905  DAG.getConstant(VTBits, MVT::i32), ShAmt);
3906  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3907  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3908  DAG.getConstant(VTBits, MVT::i32));
3909  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3910  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3911  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3912 
3913  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3914  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3915  ARMcc, DAG, dl);
3916  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3917  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3918  CCR, Cmp);
3919 
3920  SDValue Ops[2] = { Lo, Hi };
3921  return DAG.getMergeValues(Ops, 2, dl);
3922 }
3923 
3924 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3925 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
3926 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3927  SelectionDAG &DAG) const {
3928  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3929  EVT VT = Op.getValueType();
3930  unsigned VTBits = VT.getSizeInBits();
3931  SDLoc dl(Op);
3932  SDValue ShOpLo = Op.getOperand(0);
3933  SDValue ShOpHi = Op.getOperand(1);
3934  SDValue ShAmt = Op.getOperand(2);
3935  SDValue ARMcc;
3936 
3937  assert(Op.getOpcode() == ISD::SHL_PARTS);
3938  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3939  DAG.getConstant(VTBits, MVT::i32), ShAmt);
3940  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3941  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3942  DAG.getConstant(VTBits, MVT::i32));
3943  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3944  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3945 
3946  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3947  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3948  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3949  ARMcc, DAG, dl);
3950  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3951  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3952  CCR, Cmp);
3953 
3954  SDValue Ops[2] = { Lo, Hi };
3955  return DAG.getMergeValues(Ops, 2, dl);
3956 }
3957 
3958 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3959  SelectionDAG &DAG) const {
3960  // The rounding mode is in bits 23:22 of the FPSCR.
3961  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3962  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3963  // so that the shift + and get folded into a bitfield extract.
3964  SDLoc dl(Op);
3965  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3967  MVT::i32));
3968  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3969  DAG.getConstant(1U << 22, MVT::i32));
3970  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3971  DAG.getConstant(22, MVT::i32));
3972  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3973  DAG.getConstant(3, MVT::i32));
3974 }
3975 
3977  const ARMSubtarget *ST) {
3978  EVT VT = N->getValueType(0);
3979  SDLoc dl(N);
3980 
3981  if (!ST->hasV6T2Ops())
3982  return SDValue();
3983 
3984  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3985  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3986 }
3987 
3988 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
3989 /// for each 16-bit element from operand, repeated. The basic idea is to
3990 /// leverage vcnt to get the 8-bit counts, gather and add the results.
3991 ///
3992 /// Trace for v4i16:
3993 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
3994 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
3995 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
3996 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
3997 /// [b0 b1 b2 b3 b4 b5 b6 b7]
3998 /// +[b1 b0 b3 b2 b5 b4 b7 b6]
3999 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4000 /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
4002  EVT VT = N->getValueType(0);
4003  SDLoc DL(N);
4004 
4005  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4006  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4007  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4008  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4009  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4010  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4011 }
4012 
4013 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4014 /// bit-count for each 16-bit element from the operand. We need slightly
4015 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4016 /// 64/128-bit registers.
4017 ///
4018 /// Trace for v4i16:
4019 /// input = [v0 v1 v2 v3 ] (vi 16-bit element)
4020 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4021 /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
4022 /// v4i16:Extracted = [k0 k1 k2 k3 ]
4024  EVT VT = N->getValueType(0);
4025  SDLoc DL(N);
4026 
4027  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4028  if (VT.is64BitVector()) {
4029  SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4030  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4031  DAG.getIntPtrConstant(0));
4032  } else {
4033  SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4034  BitCounts, DAG.getIntPtrConstant(0));
4035  return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4036  }
4037 }
4038 
4039 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4040 /// bit-count for each 32-bit element from the operand. The idea here is
4041 /// to split the vector into 16-bit elements, leverage the 16-bit count
4042 /// routine, and then combine the results.
4043 ///
4044 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4045 /// input = [v0 v1 ] (vi: 32-bit elements)
4046 /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4047 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4048 /// vrev: N0 = [k1 k0 k3 k2 ]
4049 /// [k0 k1 k2 k3 ]
4050 /// N1 =+[k1 k0 k3 k2 ]
4051 /// [k0 k2 k1 k3 ]
4052 /// N2 =+[k1 k3 k0 k2 ]
4053 /// [k0 k2 k1 k3 ]
4054 /// Extended =+[k1 k3 k0 k2 ]
4055 /// [k0 k2 ]
4056 /// Extracted=+[k1 k3 ]
4057 ///
4059  EVT VT = N->getValueType(0);
4060  SDLoc DL(N);
4061 
4062  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4063 
4064  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4065  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4066  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4067  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4068  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4069 
4070  if (VT.is64BitVector()) {
4071  SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4072  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4073  DAG.getIntPtrConstant(0));
4074  } else {
4075  SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4076  DAG.getIntPtrConstant(0));
4077  return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4078  }
4079 }
4080 
4082  const ARMSubtarget *ST) {
4083  EVT VT = N->getValueType(0);
4084 
4085  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4086  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4087  VT == MVT::v4i16 || VT == MVT::v8i16) &&
4088  "Unexpected type for custom ctpop lowering");
4089 
4090  if (VT.getVectorElementType() == MVT::i32)
4091  return lowerCTPOP32BitElements(N, DAG);
4092  else
4093  return lowerCTPOP16BitElements(N, DAG);
4094 }
4095 
4097  const ARMSubtarget *ST) {
4098  EVT VT = N->getValueType(0);
4099  SDLoc dl(N);
4100 
4101  if (!VT.isVector())
4102  return SDValue();
4103 
4104  // Lower vector shifts on NEON to use VSHL.
4105  assert(ST->hasNEON() && "unexpected vector shift");
4106 
4107  // Left shifts translate directly to the vshiftu intrinsic.
4108  if (N->getOpcode() == ISD::SHL)
4109  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4111  N->getOperand(0), N->getOperand(1));
4112 
4113  assert((N->getOpcode() == ISD::SRA ||
4114  N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4115 
4116  // NEON uses the same intrinsics for both left and right shifts. For
4117  // right shifts, the shift amounts are negative, so negate the vector of
4118  // shift amounts.
4119  EVT ShiftVT = N->getOperand(1).getValueType();
4120  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4121  getZeroVector(ShiftVT, DAG, dl),
4122  N->getOperand(1));
4123  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4126  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4127  DAG.getConstant(vshiftInt, MVT::i32),
4128  N->getOperand(0), NegatedCount);
4129 }
4130 
4132  const ARMSubtarget *ST) {
4133  EVT VT = N->getValueType(0);
4134  SDLoc dl(N);
4135 
4136  // We can get here for a node like i32 = ISD::SHL i32, i64
4137  if (VT != MVT::i64)
4138  return SDValue();
4139 
4140  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4141  "Unknown shift to lower!");
4142 
4143  // We only lower SRA, SRL of 1 here, all others use generic lowering.
4144  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
4145  cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
4146  return SDValue();
4147 
4148  // If we are in thumb mode, we don't have RRX.
4149  if (ST->isThumb1Only()) return SDValue();
4150 
4151  // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
4152  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4153  DAG.getConstant(0, MVT::i32));
4154  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4155  DAG.getConstant(1, MVT::i32));
4156 
4157  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4158  // captures the result into a carry flag.
4159  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4160  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
4161 
4162  // The low part is an ARMISD::RRX operand, which shifts the carry in.
4163  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4164 
4165  // Merge the pieces into a single i64 value.
4166  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4167 }
4168 
4170  SDValue TmpOp0, TmpOp1;
4171  bool Invert = false;
4172  bool Swap = false;
4173  unsigned Opc = 0;
4174 
4175  SDValue Op0 = Op.getOperand(0);
4176  SDValue Op1 = Op.getOperand(1);
4177  SDValue CC = Op.getOperand(2);
4178  EVT VT = Op.getValueType();
4179  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4180  SDLoc dl(Op);
4181 
4182  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
4183  switch (SetCCOpcode) {
4184  default: llvm_unreachable("Illegal FP comparison");
4185  case ISD::SETUNE:
4186  case ISD::SETNE: Invert = true; // Fallthrough
4187  case ISD::SETOEQ:
4188  case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
4189  case ISD::SETOLT:
4190  case ISD::SETLT: Swap = true; // Fallthrough
4191  case ISD::SETOGT:
4192  case ISD::SETGT: Opc = ARMISD::VCGT; break;
4193  case ISD::SETOLE:
4194  case ISD::SETLE: Swap = true; // Fallthrough
4195  case ISD::SETOGE:
4196  case ISD::SETGE: Opc = ARMISD::VCGE; break;
4197  case ISD::SETUGE: Swap = true; // Fallthrough
4198  case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4199  case ISD::SETUGT: Swap = true; // Fallthrough
4200  case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4201  case ISD::SETUEQ: Invert = true; // Fallthrough
4202  case ISD::SETONE:
4203  // Expand this to (OLT | OGT).
4204  TmpOp0 = Op0;
4205  TmpOp1 = Op1;
4206  Opc = ISD::OR;
4207  Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4208  Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
4209  break;
4210  case ISD::SETUO: Invert = true; // Fallthrough
4211  case ISD::SETO:
4212  // Expand this to (OLT | OGE).
4213  TmpOp0 = Op0;
4214  TmpOp1 = Op1;
4215  Opc = ISD::OR;
4216  Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4217  Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
4218  break;
4219  }
4220  } else {
4221  // Integer comparisons.
4222  switch (SetCCOpcode) {
4223  default: llvm_unreachable("Illegal integer comparison");
4224  case ISD::SETNE: Invert = true;
4225  case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
4226  case ISD::SETLT: Swap = true;
4227  case ISD::SETGT: Opc = ARMISD::VCGT; break;
4228  case ISD::SETLE: Swap = true;
4229  case ISD::SETGE: Opc = ARMISD::VCGE; break;
4230  case ISD::SETULT: Swap = true;
4231  case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4232  case ISD::SETULE: Swap = true;
4233  case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4234  }
4235 
4236  // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4237  if (Opc == ARMISD::VCEQ) {
4238 
4239  SDValue AndOp;
4241  AndOp = Op0;
4242  else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4243  AndOp = Op1;
4244 
4245  // Ignore bitconvert.
4246  if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4247  AndOp = AndOp.getOperand(0);
4248 
4249  if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4250  Opc = ARMISD::VTST;
4251  Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
4252  Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
4253  Invert = !Invert;
4254  }
4255  }
4256  }
4257 
4258  if (Swap)
4259  std::swap(Op0, Op1);
4260 
4261  // If one of the operands is a constant vector zero, attempt to fold the
4262  // comparison to a specialized compare-against-zero form.
4263  SDValue SingleOp;
4265  SingleOp = Op0;
4266  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4267  if (Opc == ARMISD::VCGE)
4268  Opc = ARMISD::VCLEZ;
4269  else if (Opc == ARMISD::VCGT)
4270  Opc = ARMISD::VCLTZ;
4271  SingleOp = Op1;
4272  }
4273 
4274  SDValue Result;
4275  if (SingleOp.getNode()) {
4276  switch (Opc) {
4277  case ARMISD::VCEQ:
4278  Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
4279  case ARMISD::VCGE:
4280  Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
4281  case ARMISD::VCLEZ:
4282  Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
4283  case ARMISD::VCGT:
4284  Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
4285  case ARMISD::VCLTZ:
4286  Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
4287  default:
4288  Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4289  }
4290  } else {
4291  Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4292  }
4293 
4294  if (Invert)
4295  Result = DAG.getNOT(dl, Result, VT);
4296 
4297  return Result;
4298 }
4299 
4300 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
4301 /// valid vector constant for a NEON instruction with a "modified immediate"
4302 /// operand (e.g., VMOV). If so, return the encoded value.
4303 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4304  unsigned SplatBitSize, SelectionDAG &DAG,
4305  EVT &VT, bool is128Bits, NEONModImmType type) {
4306  unsigned OpCmode, Imm;
4307 
4308  // SplatBitSize is set to the smallest size that splats the vector, so a
4309  // zero vector will always have SplatBitSize == 8. However, NEON modified
4310  // immediate instructions others than VMOV do not support the 8-bit encoding
4311  // of a zero vector, and the default encoding of zero is supposed to be the
4312  // 32-bit version.
4313  if (SplatBits == 0)
4314  SplatBitSize = 32;
4315 
4316  switch (SplatBitSize) {
4317  case 8:
4318  if (type != VMOVModImm)
4319  return SDValue();
4320  // Any 1-byte value is OK. Op=0, Cmode=1110.
4321  assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4322  OpCmode = 0xe;
4323  Imm = SplatBits;
4324  VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4325  break;
4326 
4327  case 16:
4328  // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4329  VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4330  if ((SplatBits & ~0xff) == 0) {
4331  // Value = 0x00nn: Op=x, Cmode=100x.
4332  OpCmode = 0x8;
4333  Imm = SplatBits;
4334  break;
4335  }
4336  if ((SplatBits & ~0xff00) == 0) {
4337  // Value = 0xnn00: Op=x, Cmode=101x.
4338  OpCmode = 0xa;
4339  Imm = SplatBits >> 8;
4340  break;
4341  }
4342  return SDValue();
4343 
4344  case 32:
4345  // NEON's 32-bit VMOV supports splat values where:
4346  // * only one byte is nonzero, or
4347  // * the least significant byte is 0xff and the second byte is nonzero, or
4348  // * the least significant 2 bytes are 0xff and the third is nonzero.
4349  VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4350  if ((SplatBits & ~0xff) == 0) {
4351  // Value = 0x000000nn: Op=x, Cmode=000x.
4352  OpCmode = 0;
4353  Imm = SplatBits;
4354  break;
4355  }
4356  if ((SplatBits & ~0xff00) == 0) {
4357  // Value = 0x0000nn00: Op=x, Cmode=001x.
4358  OpCmode = 0x2;
4359  Imm = SplatBits >> 8;
4360  break;
4361  }
4362  if ((SplatBits & ~0xff0000) == 0) {
4363  // Value = 0x00nn0000: Op=x, Cmode=010x.
4364  OpCmode = 0x4;
4365  Imm = SplatBits >> 16;
4366  break;
4367  }
4368  if ((SplatBits & ~0xff000000) == 0) {
4369  // Value = 0xnn000000: Op=x, Cmode=011x.
4370  OpCmode = 0x6;
4371  Imm = SplatBits >> 24;
4372  break;
4373  }
4374 
4375  // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4376  if (type == OtherModImm) return SDValue();
4377 
4378  if ((SplatBits & ~0xffff) == 0 &&
4379  ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4380  // Value = 0x0000nnff: Op=x, Cmode=1100.
4381  OpCmode = 0xc;
4382  Imm = SplatBits >> 8;
4383  SplatBits |= 0xff;
4384  break;
4385  }
4386 
4387  if ((SplatBits & ~0xffffff) == 0 &&
4388  ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4389  // Value = 0x00nnffff: Op=x, Cmode=1101.
4390  OpCmode = 0xd;
4391  Imm = SplatBits >> 16;
4392  SplatBits |= 0xffff;
4393  break;
4394  }
4395 
4396  // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4397  // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4398  // VMOV.I32. A (very) minor optimization would be to replicate the value
4399  // and fall through here to test for a valid 64-bit splat. But, then the
4400  // caller would also need to check and handle the change in size.
4401  return SDValue();
4402 
4403  case 64: {
4404  if (type != VMOVModImm)
4405  return SDValue();
4406  // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4407  uint64_t BitMask = 0xff;
4408  uint64_t Val = 0;
4409  unsigned ImmMask = 1;
4410  Imm = 0;
4411  for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4412  if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4413  Val |= BitMask;
4414  Imm |= ImmMask;
4415  } else if ((SplatBits & BitMask) != 0) {
4416  return SDValue();
4417  }
4418  BitMask <<= 8;
4419  ImmMask <<= 1;
4420  }
4421  // Op=1, Cmode=1110.
4422  OpCmode = 0x1e;
4423  SplatBits = Val;
4424  VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4425  break;
4426  }
4427 
4428  default:
4429  llvm_unreachable("unexpected size for isNEONModifiedImm");
4430  }
4431 
4432  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4433  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4434 }
4435 
4436 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4437  const ARMSubtarget *ST) const {
4438  if (!ST->hasVFP3())
4439  return SDValue();
4440 
4441  bool IsDouble = Op.getValueType() == MVT::f64;
4442  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4443 
4444  // Try splatting with a VMOV.f32...
4445  APFloat FPVal = CFP->getValueAPF();
4446  int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
4447 
4448  if (ImmVal != -1) {
4449  if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
4450  // We have code in place to select a valid ConstantFP already, no need to
4451  // do any mangling.
4452  return Op;
4453  }
4454 
4455  // It's a float and we are trying to use NEON operations where
4456  // possible. Lower it to a splat followed by an extract.
4457  SDLoc DL(Op);
4458  SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4459  SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4460  NewVal);
4461  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4462  DAG.getConstant(0, MVT::i32));
4463  }
4464 
4465  // The rest of our options are NEON only, make sure that's allowed before
4466  // proceeding..
4467  if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
4468  return SDValue();
4469 
4470  EVT VMovVT;
4471  uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
4472 
4473  // It wouldn't really be worth bothering for doubles except for one very
4474  // important value, which does happen to match: 0.0. So make sure we don't do
4475  // anything stupid.
4476  if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
4477  return SDValue();
4478 
4479  // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
4480  SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4481  false, VMOVModImm);
4482  if (NewVal != SDValue()) {
4483  SDLoc DL(Op);
4484  SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4485  NewVal);
4486  if (IsDouble)
4487  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4488 
4489  // It's a float: cast and extract a vector element.
4490  SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4491  VecConstant);
4492  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4493  DAG.getConstant(0, MVT::i32));
4494  }
4495 
4496  // Finally, try a VMVN.i32
4497  NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4498  false, VMVNModImm);
4499  if (NewVal != SDValue()) {
4500  SDLoc DL(Op);
4501  SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4502 
4503  if (IsDouble)
4504  return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4505 
4506  // It's a float: cast and extract a vector element.
4507  SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4508  VecConstant);
4509  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4510  DAG.getConstant(0, MVT::i32));
4511  }
4512 
4513  return SDValue();
4514 }
4515 
4516 // check if an VEXT instruction can handle the shuffle mask when the
4517 // vector sources of the shuffle are the same.
4518 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4519  unsigned NumElts = VT.getVectorNumElements();
4520 
4521  // Assume that the first shuffle index is not UNDEF. Fail if it is.
4522  if (M[0] < 0)
4523  return false;
4524 
4525  Imm = M[0];
4526 
4527  // If this is a VEXT shuffle, the immediate value is the index of the first
4528  // element. The other shuffle indices must be the successive elements after
4529  // the first one.
4530  unsigned ExpectedElt = Imm;
4531  for (unsigned i = 1; i < NumElts; ++i) {
4532  // Increment the expected index. If it wraps around, just follow it
4533  // back to index zero and keep going.
4534  ++ExpectedElt;
4535  if (ExpectedElt == NumElts)
4536  ExpectedElt = 0;
4537 
4538  if (M[i] < 0) continue; // ignore UNDEF indices
4539  if (ExpectedElt != static_cast<unsigned>(M[i]))
4540  return false;
4541  }
4542 
4543  return true;
4544 }
4545 
4546 
4547 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4548  bool &ReverseVEXT, unsigned &Imm) {
4549  unsigned NumElts = VT.getVectorNumElements();
4550  ReverseVEXT = false;
4551 
4552  // Assume that the first shuffle index is not UNDEF. Fail if it is.
4553  if (M[0] < 0)
4554  return false;
4555 
4556  Imm = M[0];
4557 
4558  // If this is a VEXT shuffle, the immediate value is the index of the first
4559  // element. The other shuffle indices must be the successive elements after
4560  // the first one.
4561  unsigned ExpectedElt = Imm;
4562  for (unsigned i = 1; i < NumElts; ++i) {
4563  // Increment the expected index. If it wraps around, it may still be
4564  // a VEXT but the source vectors must be swapped.
4565  ExpectedElt += 1;
4566  if (ExpectedElt == NumElts * 2) {
4567  ExpectedElt = 0;
4568  ReverseVEXT = true;
4569  }
4570 
4571  if (M[i] < 0) continue; // ignore UNDEF indices
4572  if (ExpectedElt != static_cast<unsigned>(M[i]))
4573  return false;
4574  }
4575 
4576  // Adjust the index value if the source operands will be swapped.
4577  if (ReverseVEXT)
4578  Imm -= NumElts;
4579 
4580  return true;
4581 }
4582 
4583 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
4584 /// instruction with the specified blocksize. (The order of the elements
4585 /// within each block of the vector is reversed.)
4586 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4587  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4588  "Only possible block sizes for VREV are: 16, 32, 64");
4589 
4590  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4591  if (EltSz == 64)
4592  return false;
4593 
4594  unsigned NumElts = VT.getVectorNumElements();
4595  unsigned BlockElts = M[0] + 1;
4596  // If the first shuffle index is UNDEF, be optimistic.
4597  if (M[0] < 0)
4598  BlockElts = BlockSize / EltSz;
4599 
4600  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4601  return false;
4602 
4603  for (unsigned i = 0; i < NumElts; ++i) {
4604  if (M[i] < 0) continue; // ignore UNDEF indices
4605  if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4606  return false;
4607  }
4608 
4609  return true;
4610 }
4611 
4612 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4613  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4614  // range, then 0 is placed into the resulting vector. So pretty much any mask
4615  // of 8 elements can work here.
4616  return VT == MVT::v8i8 && M.size() == 8;
4617 }
4618 
4619 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4620  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4621  if (EltSz == 64)
4622  return false;
4623 
4624  unsigned NumElts = VT.getVectorNumElements();
4625  WhichResult = (M[0] == 0 ? 0 : 1);
4626  for (unsigned i = 0; i < NumElts; i += 2) {
4627  if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4628  (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4629  return false;
4630  }
4631  return true;
4632 }
4633 
4634 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4635 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4636 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4637 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4638  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4639  if (EltSz == 64)
4640  return false;
4641 
4642  unsigned NumElts = VT.getVectorNumElements();
4643  WhichResult = (M[0] == 0 ? 0 : 1);
4644  for (unsigned i = 0; i < NumElts; i += 2) {
4645  if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4646  (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4647  return false;
4648  }
4649  return true;
4650 }
4651 
4652 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4653  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4654  if (EltSz == 64)
4655  return false;
4656 
4657  unsigned NumElts = VT.getVectorNumElements();
4658  WhichResult = (M[0] == 0 ? 0 : 1);
4659  for (unsigned i = 0; i != NumElts; ++i) {
4660  if (M[i] < 0) continue; // ignore UNDEF indices
4661  if ((unsigned) M[i] != 2 * i + WhichResult)
4662  return false;
4663  }
4664 
4665  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4666  if (VT.is64BitVector() && EltSz == 32)
4667  return false;
4668 
4669  return true;
4670 }
4671 
4672 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4673 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4674 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4675 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4676  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4677  if (EltSz == 64)
4678  return false;
4679 
4680  unsigned Half = VT.getVectorNumElements() / 2;
4681  WhichResult = (M[0] == 0 ? 0 : 1);
4682  for (unsigned j = 0; j != 2; ++j) {
4683  unsigned Idx = WhichResult;
4684  for (unsigned i = 0; i != Half; ++i) {
4685  int MIdx = M[i + j * Half];
4686  if (MIdx >= 0 && (unsigned) MIdx != Idx)
4687  return false;
4688  Idx += 2;
4689  }
4690  }
4691 
4692  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4693  if (VT.is64BitVector() && EltSz == 32)
4694  return false;
4695 
4696  return true;
4697 }
4698 
4699 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4700  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4701  if (EltSz == 64)
4702  return false;
4703 
4704  unsigned NumElts = VT.getVectorNumElements();
4705  WhichResult = (M[0] == 0 ? 0 : 1);
4706  unsigned Idx = WhichResult * NumElts / 2;
4707  for (unsigned i = 0; i != NumElts; i += 2) {
4708  if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4709  (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4710  return false;
4711  Idx += 1;
4712  }
4713 
4714  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4715  if (VT.is64BitVector() && EltSz == 32)
4716  return false;
4717 
4718  return true;
4719 }
4720 
4721 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4722 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4723 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4724 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4725  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4726  if (EltSz == 64)
4727  return false;
4728 
4729  unsigned NumElts = VT.getVectorNumElements();
4730  WhichResult = (M[0] == 0 ? 0 : 1);
4731  unsigned Idx = WhichResult * NumElts / 2;
4732  for (unsigned i = 0; i != NumElts; i += 2) {
4733  if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4734  (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4735  return false;
4736  Idx += 1;
4737  }
4738 
4739  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4740  if (VT.is64BitVector() && EltSz == 32)
4741  return false;
4742 
4743  return true;
4744 }
4745 
4746 /// \return true if this is a reverse operation on an vector.
4747 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4748  unsigned NumElts = VT.getVectorNumElements();
4749  // Make sure the mask has the right size.
4750  if (NumElts != M.size())
4751  return false;
4752 
4753  // Look for <15, ..., 3, -1, 1, 0>.
4754  for (unsigned i = 0; i != NumElts; ++i)
4755  if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4756  return false;
4757 
4758  return true;
4759 }
4760 
4761 // If N is an integer constant that can be moved into a register in one
4762 // instruction, return an SDValue of such a constant (will become a MOV
4763 // instruction). Otherwise return null.
4765  const ARMSubtarget *ST, SDLoc dl) {
4766  uint64_t Val;
4767  if (!isa<ConstantSDNode>(N))
4768  return SDValue();
4769  Val = cast<ConstantSDNode>(N)->getZExtValue();
4770 
4771  if (ST->isThumb1Only()) {
4772  if (Val <= 255 || ~Val <= 255)
4773  return DAG.getConstant(Val, MVT::i32);
4774  } else {
4775  if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4776  return DAG.getConstant(Val, MVT::i32);
4777  }
4778  return SDValue();
4779 }
4780 
4781 // If this is a case we can't handle, return null and let the default
4782 // expansion code take care of it.
4783 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4784  const ARMSubtarget *ST) const {
4785  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4786  SDLoc dl(Op);
4787  EVT VT = Op.getValueType();
4788 
4789  APInt SplatBits, SplatUndef;
4790  unsigned SplatBitSize;
4791  bool HasAnyUndefs;
4792  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4793  if (SplatBitSize <= 64) {
4794  // Check if an immediate VMOV works.
4795  EVT VmovVT;
4796  SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4797  SplatUndef.getZExtValue(), SplatBitSize,
4798  DAG, VmovVT, VT.is128BitVector(),
4799  VMOVModImm);
4800  if (Val.getNode()) {
4801  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4802  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4803  }
4804 
4805  // Try an immediate VMVN.
4806  uint64_t NegatedImm = (~SplatBits).getZExtValue();
4807  Val = isNEONModifiedImm(NegatedImm,
4808  SplatUndef.getZExtValue(), SplatBitSize,
4809  DAG, VmovVT, VT.is128BitVector(),
4810  VMVNModImm);
4811  if (Val.getNode()) {
4812  SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4813  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4814  }
4815 
4816  // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4817  if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4818  int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4819  if (ImmVal != -1) {
4820  SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4821  return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4822  }
4823  }
4824  }
4825  }
4826 
4827  // Scan through the operands to see if only one value is used.
4828  //
4829  // As an optimisation, even if more than one value is used it may be more
4830  // profitable to splat with one value then change some lanes.
4831  //
4832  // Heuristically we decide to do this if the vector has a "dominant" value,
4833  // defined as splatted to more than half of the lanes.
4834  unsigned NumElts = VT.getVectorNumElements();
4835  bool isOnlyLowElement = true;
4836  bool usesOnlyOneValue = true;
4837  bool hasDominantValue = false;
4838  bool isConstant = true;
4839 
4840  // Map of the number of times a particular SDValue appears in the
4841  // element list.
4842  DenseMap<SDValue, unsigned> ValueCounts;
4843  SDValue Value;
4844  for (unsigned i = 0; i < NumElts; ++i) {
4845  SDValue V = Op.getOperand(i);
4846  if (V.getOpcode() == ISD::UNDEF)
4847  continue;
4848  if (i > 0)
4849  isOnlyLowElement = false;
4850  if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4851  isConstant = false;
4852 
4853  ValueCounts.insert(std::make_pair(V, 0));
4854  unsigned &Count = ValueCounts[V];
4855 
4856  // Is this value dominant? (takes up more than half of the lanes)
4857  if (++Count > (NumElts / 2)) {
4858  hasDominantValue = true;
4859  Value = V;
4860  }
4861  }
4862  if (ValueCounts.size() != 1)
4863  usesOnlyOneValue = false;
4864  if (!Value.getNode() && ValueCounts.size() > 0)
4865  Value = ValueCounts.begin()->first;
4866 
4867  if (ValueCounts.size() == 0)
4868  return DAG.getUNDEF(VT);
4869 
4870  // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
4871  // Keep going if we are hitting this case.
4872  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4873  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4874 
4875  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4876 
4877  // Use VDUP for non-constant splats. For f32 constant splats, reduce to
4878  // i32 and try again.
4879  if (hasDominantValue && EltSize <= 32) {
4880  if (!isConstant) {
4881  SDValue N;
4882 
4883  // If we are VDUPing a value that comes directly from a vector, that will
4884  // cause an unnecessary move to and from a GPR, where instead we could
4885  // just use VDUPLANE. We can only do this if the lane being extracted
4886  // is at a constant index, as the VDUP from lane instructions only have
4887  // constant-index forms.
4888  if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4889  isa<ConstantSDNode>(Value->getOperand(1))) {
4890  // We need to create a new undef vector to use for the VDUPLANE if the
4891  // size of the vector from which we get the value is different than the
4892  // size of the vector that we need to create. We will insert the element
4893  // such that the register coalescer will remove unnecessary copies.
4894  if (VT != Value->getOperand(0).getValueType()) {
4895  ConstantSDNode *constIndex;
4896  constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4897  assert(constIndex && "The index is not a constant!");
4898  unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4899  VT.getVectorNumElements();
4900  N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4901  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4902  Value, DAG.getConstant(index, MVT::i32)),
4903  DAG.getConstant(index, MVT::i32));
4904  } else
4905  N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4906  Value->getOperand(0), Value->getOperand(1));
4907  } else
4908  N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4909 
4910  if (!usesOnlyOneValue) {
4911  // The dominant value was splatted as 'N', but we now have to insert
4912  // all differing elements.
4913  for (unsigned I = 0; I < NumElts; ++I) {
4914  if (Op.getOperand(I) == Value)
4915  continue;
4917  Ops.push_back(N);
4918  Ops.push_back(Op.getOperand(I));
4919  Ops.push_back(DAG.getConstant(I, MVT::i32));
4920  N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4921  }
4922  }
4923  return N;
4924  }
4927  for (unsigned i = 0; i < NumElts; ++i)
4928  Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4929  Op.getOperand(i)));
4930  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4931  SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4932  Val = LowerBUILD_VECTOR(Val, DAG, ST);
4933  if (Val.getNode())
4934  return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4935  }
4936  if (usesOnlyOneValue) {
4937  SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4938  if (isConstant && Val.getNode())
4939  return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4940  }
4941  }
4942 
4943  // If all elements are constants and the case above didn't get hit, fall back
4944  // to the default expansion, which will generate a load from the constant
4945  // pool.
4946  if (isConstant)
4947  return SDValue();
4948 
4949  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4950  if (NumElts >= 4) {
4951  SDValue shuffle = ReconstructShuffle(Op, DAG);
4952  if (shuffle != SDValue())
4953  return shuffle;
4954  }
4955 
4956  // Vectors with 32- or 64-bit elements can be built by directly assigning
4957  // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
4958  // will be legalized.
4959  if (EltSize >= 32) {
4960  // Do the expansion with floating-point types, since that is what the VFP
4961  // registers are defined to use, and since i64 is not legal.
4962  EVT EltVT = EVT::getFloatingPointVT(EltSize);
4963  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4965  for (unsigned i = 0; i < NumElts; ++i)
4966  Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4967  SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4968  return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4969  }
4970 
4971  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
4972  // know the default expansion would otherwise fall back on something even
4973  // worse. For a vector with one or two non-undef values, that's
4974  // scalar_to_vector for the elements followed by a shuffle (provided the
4975  // shuffle is valid for the target) and materialization element by element
4976  // on the stack followed by a load for everything else.
4977  if (!isConstant && !usesOnlyOneValue) {
4978  SDValue Vec = DAG.getUNDEF(VT);
4979  for (unsigned i = 0 ; i < NumElts; ++i) {
4980  SDValue V = Op.getOperand(i);
4981  if (V.getOpcode() == ISD::UNDEF)
4982  continue;
4983  SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
4984  Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
4985  }
4986  return Vec;
4987  }
4988 
4989  return SDValue();
4990 }
4991 
4992 // Gather data to see if the operation can be modelled as a
4993 // shuffle in combination with VEXTs.
4994 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4995  SelectionDAG &DAG) const {
4996  SDLoc dl(Op);
4997  EVT VT = Op.getValueType();
4998  unsigned NumElts = VT.getVectorNumElements();
4999 
5000  SmallVector<SDValue, 2> SourceVecs;
5001  SmallVector<unsigned, 2> MinElts;
5002  SmallVector<unsigned, 2> MaxElts;
5003 
5004  for (unsigned i = 0; i < NumElts; ++i) {
5005  SDValue V = Op.getOperand(i);
5006  if (V.getOpcode() == ISD::UNDEF)
5007  continue;
5008  else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5009  // A shuffle can only come from building a vector from various
5010  // elements of other vectors.
5011  return SDValue();
5012  } else if (V.getOperand(0).getValueType().getVectorElementType() !=
5013  VT.getVectorElementType()) {
5014  // This code doesn't know how to handle shuffles where the vector
5015  // element types do not match (this happens because type legalization
5016  // promotes the return type of EXTRACT_VECTOR_ELT).
5017  // FIXME: It might be appropriate to extend this code to handle
5018  // mismatched types.
5019  return SDValue();
5020  }
5021 
5022  // Record this extraction against the appropriate vector if possible...
5023  SDValue SourceVec = V.getOperand(0);
5024  // If the element number isn't a constant, we can't effectively
5025  // analyze what's going on.
5026  if (!isa<ConstantSDNode>(V.getOperand(1)))
5027  return SDValue();
5028  unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5029  bool FoundSource = false;
5030  for (unsigned j = 0; j < SourceVecs.size(); ++j) {
5031  if (SourceVecs[j] == SourceVec) {
5032  if (MinElts[j] > EltNo)
5033  MinElts[j] = EltNo;
5034  if (MaxElts[j] < EltNo)
5035  MaxElts[j] = EltNo;
5036  FoundSource = true;
5037  break;
5038  }
5039  }
5040 
5041  // Or record a new source if not...
5042  if (!FoundSource) {
5043  SourceVecs.push_back(SourceVec);
5044  MinElts.push_back(EltNo);
5045  MaxElts.push_back(EltNo);
5046  }
5047  }
5048 
5049  // Currently only do something sane when at most two source vectors
5050  // involved.
5051  if (SourceVecs.size() > 2)
5052  return SDValue();
5053 
5054  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
5055  int VEXTOffsets[2] = {0, 0};
5056 
5057  // This loop extracts the usage patterns of the source vectors
5058  // and prepares appropriate SDValues for a shuffle if possible.
5059  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
5060  if (SourceVecs[i].getValueType() == VT) {
5061  // No VEXT necessary
5062  ShuffleSrcs[i] = SourceVecs[i];
5063  VEXTOffsets[i] = 0;
5064  continue;
5065  } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
5066  // It probably isn't worth padding out a smaller vector just to
5067  // break it down again in a shuffle.
5068  return SDValue();
5069  }
5070 
5071  // Since only 64-bit and 128-bit vectors are legal on ARM and
5072  // we've eliminated the other cases...
5073  assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
5074  "unexpected vector sizes in ReconstructShuffle");
5075 
5076  if (MaxElts[i] - MinElts[i] >= NumElts) {
5077  // Span too large for a VEXT to cope
5078  return SDValue();
5079  }
5080 
5081  if (MinElts[i] >= NumElts) {
5082  // The extraction can just take the second half
5083  VEXTOffsets[i] = NumElts;
5084  ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5085  SourceVecs[i],
5086  DAG.getIntPtrConstant(NumElts));
5087  } else if (MaxElts[i] < NumElts) {
5088  // The extraction can just take the first half
5089  VEXTOffsets[i] = 0;
5090  ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5091  SourceVecs[i],
5092  DAG.getIntPtrConstant(0));
5093  } else {
5094  // An actual VEXT is needed
5095  VEXTOffsets[i] = MinElts[i];
5096  SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5097  SourceVecs[i],
5098  DAG.getIntPtrConstant(0));
5099  SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5100  SourceVecs[i],
5101  DAG.getIntPtrConstant(NumElts));
5102  ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
5103  DAG.getConstant(VEXTOffsets[i], MVT::i32));
5104  }
5105  }
5106 
5107  SmallVector<int, 8> Mask;
5108 
5109  for (unsigned i = 0; i < NumElts; ++i) {
5110  SDValue Entry = Op.getOperand(i);
5111  if (Entry.getOpcode() == ISD::UNDEF) {
5112  Mask.push_back(-1);
5113  continue;
5114  }
5115 
5116  SDValue ExtractVec = Entry.getOperand(0);
5117  int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
5118  .getOperand(1))->getSExtValue();
5119  if (ExtractVec == SourceVecs[0]) {
5120  Mask.push_back(ExtractElt - VEXTOffsets[0]);
5121  } else {
5122  Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
5123  }
5124  }
5125 
5126  // Final check before we try to produce nonsense...
5127  if (isShuffleMaskLegal(Mask, VT))
5128  return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
5129  &Mask[0]);
5130 
5131  return SDValue();
5132 }
5133 
5134 /// isShuffleMaskLegal - Targets can use this to indicate that they only
5135 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5136 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5137 /// are assumed to be legal.
5138 bool
5140  EVT VT) const {
5141  if (VT.getVectorNumElements() == 4 &&
5142  (VT.is128BitVector() || VT.is64BitVector())) {
5143  unsigned PFIndexes[4];
5144  for (unsigned i = 0; i != 4; ++i) {
5145  if (M[i] < 0)
5146  PFIndexes[i] = 8;
5147  else
5148  PFIndexes[i] = M[i];
5149  }
5150 
5151  // Compute the index in the perfect shuffle table.
5152  unsigned PFTableIndex =
5153  PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5154  unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5155  unsigned Cost = (PFEntry >> 30);
5156 
5157  if (Cost <= 4)
5158  return true;
5159  }
5160 
5161  bool ReverseVEXT;
5162  unsigned Imm, WhichResult;
5163 
5164  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5165  return (EltSize >= 32 ||
5166  ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5167  isVREVMask(M, VT, 64) ||
5168  isVREVMask(M, VT, 32) ||
5169  isVREVMask(M, VT, 16) ||
5170  isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5171  isVTBLMask(M, VT) ||
5172  isVTRNMask(M, VT, WhichResult) ||
5173  isVUZPMask(M, VT, WhichResult) ||
5174  isVZIPMask(M, VT, WhichResult) ||
5175  isVTRN_v_undef_Mask(M, VT, WhichResult) ||
5176  isVUZP_v_undef_Mask(M, VT, WhichResult) ||
5177  isVZIP_v_undef_Mask(M, VT, WhichResult) ||
5178  ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5179 }
5180 
5181 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5182 /// the specified operations to build the shuffle.
5183 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5184  SDValue RHS, SelectionDAG &DAG,
5185  SDLoc dl) {
5186  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5187  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5188  unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
5189 
5190  enum {
5191  OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5192  OP_VREV,
5193  OP_VDUP0,
5194  OP_VDUP1,
5195  OP_VDUP2,
5196  OP_VDUP3,
5197  OP_VEXT1,
5198  OP_VEXT2,
5199  OP_VEXT3,
5200  OP_VUZPL, // VUZP, left result
5201  OP_VUZPR, // VUZP, right result
5202  OP_VZIPL, // VZIP, left result
5203  OP_VZIPR, // VZIP, right result
5204  OP_VTRNL, // VTRN, left result
5205  OP_VTRNR // VTRN, right result
5206  };
5207 
5208  if (OpNum == OP_COPY) {
5209  if (LHSID == (1*9+2)*9+3) return LHS;
5210  assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5211  return RHS;
5212  }
5213 
5214  SDValue OpLHS, OpRHS;
5215  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5216  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5217  EVT VT = OpLHS.getValueType();
5218 
5219  switch (OpNum) {
5220  default: llvm_unreachable("Unknown shuffle opcode!");
5221  case OP_VREV:
5222  // VREV divides the vector in half and swaps within the half.
5223  if (VT.getVectorElementType() == MVT::i32 ||
5225  return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
5226  // vrev <4 x i16> -> VREV32
5227  if (VT.getVectorElementType() == MVT::i16)
5228  return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
5229  // vrev <4 x i8> -> VREV16
5230  assert(VT.getVectorElementType() == MVT::i8);
5231  return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
5232  case OP_VDUP0:
5233  case OP_VDUP1:
5234  case OP_VDUP2:
5235  case OP_VDUP3:
5236  return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5237  OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
5238  case OP_VEXT1:
5239  case OP_VEXT2:
5240  case OP_VEXT3:
5241  return DAG.getNode(ARMISD::VEXT, dl, VT,
5242  OpLHS, OpRHS,
5243  DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
5244  case OP_VUZPL:
5245  case OP_VUZPR:
5246  return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5247  OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
5248  case OP_VZIPL:
5249  case OP_VZIPR:
5250  return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5251  OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5252  case OP_VTRNL:
5253  case OP_VTRNR:
5254  return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5255  OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5256  }
5257 }
5258 
5260  ArrayRef<int> ShuffleMask,
5261  SelectionDAG &DAG) {
5262  // Check to see if we can use the VTBL instruction.
5263  SDValue V1 = Op.getOperand(0);
5264  SDValue V2 = Op.getOperand(1);
5265  SDLoc DL(Op);
5266 
5267  SmallVector<SDValue, 8> VTBLMask;
5269  I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5270  VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5271 
5272  if (V2.getNode()->getOpcode() == ISD::UNDEF)
5273  return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5275  &VTBLMask[0], 8));
5276 
5277  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5279  &VTBLMask[0], 8));
5280 }
5281 
5283  SelectionDAG &DAG) {
5284  SDLoc DL(Op);
5285  SDValue OpLHS = Op.getOperand(0);
5286  EVT VT = OpLHS.getValueType();
5287 
5288  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
5289  "Expect an v8i16/v16i8 type");
5290  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5291  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5292  // extract the first 8 bytes into the top double word and the last 8 bytes
5293  // into the bottom double word. The v8i16 case is similar.
5294  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5295  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5296  DAG.getConstant(ExtractNum, MVT::i32));
5297 }
5298 
5300  SDValue V1 = Op.getOperand(0);
5301  SDValue V2 = Op.getOperand(1);
5302  SDLoc dl(Op);
5303  EVT VT = Op.getValueType();
5304  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5305 
5306  // Convert shuffles that are directly supported on NEON to target-specific
5307  // DAG nodes, instead of keeping them as shuffles and matching them again
5308  // during code selection. This is more efficient and avoids the possibility
5309  // of inconsistencies between legalization and selection.
5310  // FIXME: floating-point vectors should be canonicalized to integer vectors
5311  // of the same time so that they get CSEd properly.
5312  ArrayRef<int> ShuffleMask = SVN->getMask();
5313 
5314  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5315  if (EltSize <= 32) {
5316  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5317  int Lane = SVN->getSplatIndex();
5318  // If this is undef splat, generate it via "just" vdup, if possible.
5319  if (Lane == -1) Lane = 0;
5320 
5321  // Test if V1 is a SCALAR_TO_VECTOR.
5322  if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5323  return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5324  }
5325  // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5326  // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5327  // reaches it).
5328  if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5329  !isa<ConstantSDNode>(V1.getOperand(0))) {
5330  bool IsScalarToVector = true;
5331  for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5332  if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5333  IsScalarToVector = false;
5334  break;
5335  }
5336  if (IsScalarToVector)
5337  return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5338  }
5339  return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5340  DAG.getConstant(Lane, MVT::i32));
5341  }
5342 
5343  bool ReverseVEXT;
5344  unsigned Imm;
5345  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5346  if (ReverseVEXT)
5347  std::swap(V1, V2);
5348  return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5349  DAG.getConstant(Imm, MVT::i32));
5350  }
5351 
5352  if (isVREVMask(ShuffleMask, VT, 64))
5353  return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5354  if (isVREVMask(ShuffleMask, VT, 32))
5355  return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5356  if (isVREVMask(ShuffleMask, VT, 16))
5357  return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5358 
5359  if (V2->getOpcode() == ISD::UNDEF &&
5360  isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5361  return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5362  DAG.getConstant(Imm, MVT::i32));
5363  }
5364 
5365  // Check for Neon shuffles that modify both input vectors in place.
5366  // If both results are used, i.e., if there are two shuffles with the same
5367  // source operands and with masks corresponding to both results of one of
5368  // these operations, DAG memoization will ensure that a single node is
5369  // used for both shuffles.
5370  unsigned WhichResult;
5371  if (isVTRNMask(ShuffleMask, VT, WhichResult))
5372  return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5373  V1, V2).getValue(WhichResult);
5374  if (isVUZPMask(ShuffleMask, VT, WhichResult))
5375  return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5376  V1, V2).getValue(WhichResult);
5377  if (isVZIPMask(ShuffleMask, VT, WhichResult))
5378  return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5379  V1, V2).getValue(WhichResult);
5380 
5381  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5382  return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5383  V1, V1).getValue(WhichResult);
5384  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5385  return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5386  V1, V1).getValue(WhichResult);
5387  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5388  return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5389  V1, V1).getValue(WhichResult);
5390  }
5391 
5392  // If the shuffle is not directly supported and it has 4 elements, use
5393  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5394  unsigned NumElts = VT.getVectorNumElements();
5395  if (NumElts == 4) {
5396  unsigned PFIndexes[4];
5397  for (unsigned i = 0; i != 4; ++i) {
5398  if (ShuffleMask[i] < 0)
5399  PFIndexes[i] = 8;
5400  else
5401  PFIndexes[i] = ShuffleMask[i];
5402  }
5403 
5404  // Compute the index in the perfect shuffle table.
5405  unsigned PFTableIndex =
5406  PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5407  unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5408  unsigned Cost = (PFEntry >> 30);
5409 
5410  if (Cost <= 4)
5411  return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5412  }
5413 
5414  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5415  if (EltSize >= 32) {
5416  // Do the expansion with floating-point types, since that is what the VFP
5417  // registers are defined to use, and since i64 is not legal.
5418  EVT EltVT = EVT::getFloatingPointVT(EltSize);
5419  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5420  V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5421  V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5423  for (unsigned i = 0; i < NumElts; ++i) {
5424  if (ShuffleMask[i] < 0)
5425  Ops.push_back(DAG.getUNDEF(EltVT));
5426  else
5427  Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5428  ShuffleMask[i] < (int)NumElts ? V1 : V2,
5429  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5430  MVT::i32)));
5431  }
5432  SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
5433  return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5434  }
5435 
5436  if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5438 
5439  if (VT == MVT::v8i8) {
5440  SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5441  if (NewOp.getNode())
5442  return NewOp;
5443  }
5444 
5445  return SDValue();
5446 }
5447 
5449  // INSERT_VECTOR_ELT is legal only for immediate indexes.
5450  SDValue Lane = Op.getOperand(2);
5451  if (!isa<ConstantSDNode>(Lane))
5452  return SDValue();
5453 
5454  return Op;
5455 }
5456 
5458  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5459  SDValue Lane = Op.getOperand(1);
5460  if (!isa<ConstantSDNode>(Lane))
5461  return SDValue();
5462 
5463  SDValue Vec = Op.getOperand(0);
5464  if (Op.getValueType() == MVT::i32 &&
5466  SDLoc dl(Op);
5467  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5468  }
5469 
5470  return Op;
5471 }
5472 
5474  // The only time a CONCAT_VECTORS operation can have legal types is when
5475  // two 64-bit vectors are concatenated to a 128-bit vector.
5476  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5477  "unexpected CONCAT_VECTORS");
5478  SDLoc dl(Op);
5479  SDValue Val = DAG.getUNDEF(MVT::v2f64);
5480  SDValue Op0 = Op.getOperand(0);
5481  SDValue Op1 = Op.getOperand(1);
5482  if (Op0.getOpcode() != ISD::UNDEF)
5483  Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5484  DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5485  DAG.getIntPtrConstant(0));
5486  if (Op1.getOpcode() != ISD::UNDEF)
5487  Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5488  DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5489  DAG.getIntPtrConstant(1));
5490  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5491 }
5492 
5493 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5494 /// element has been zero/sign-extended, depending on the isSigned parameter,
5495 /// from an integer type half its size.
5497  bool isSigned) {
5498  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5499  EVT VT = N->getValueType(0);
5500  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5501  SDNode *BVN = N->getOperand(0).getNode();
5502  if (BVN->getValueType(0) != MVT::v4i32 ||
5503  BVN->getOpcode() != ISD::BUILD_VECTOR)
5504  return false;
5505  unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5506  unsigned HiElt = 1 - LoElt;
5507  ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5508  ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5509  ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5510  ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5511  if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5512  return false;
5513  if (isSigned) {
5514  if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5515  Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5516  return true;
5517  } else {
5518  if (Hi0->isNullValue() && Hi1->isNullValue())
5519  return true;
5520  }
5521  return false;
5522  }
5523 
5524  if (N->getOpcode() != ISD::BUILD_VECTOR)
5525  return false;
5526 
5527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5528  SDNode *Elt = N->getOperand(i).getNode();
5529  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5530  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5531  unsigned HalfSize = EltSize / 2;
5532  if (isSigned) {
5533  if (!isIntN(HalfSize, C->getSExtValue()))
5534  return false;
5535  } else {
5536  if (!isUIntN(HalfSize, C->getZExtValue()))
5537  return false;
5538  }
5539  continue;
5540  }
5541  return false;
5542  }
5543 
5544  return true;
5545 }
5546 
5547 /// isSignExtended - Check if a node is a vector value that is sign-extended
5548 /// or a constant BUILD_VECTOR with sign-extended elements.
5549 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5550  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5551  return true;
5552  if (isExtendedBUILD_VECTOR(N, DAG, true))
5553  return true;
5554  return false;
5555 }
5556 
5557 /// isZeroExtended - Check if a node is a vector value that is zero-extended
5558 /// or a constant BUILD_VECTOR with zero-extended elements.
5559 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5560  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5561  return true;
5562  if (isExtendedBUILD_VECTOR(N, DAG, false))
5563  return true;
5564  return false;
5565 }
5566 
5567 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5568  if (OrigVT.getSizeInBits() >= 64)
5569  return OrigVT;
5570 
5571  assert(OrigVT.isSimple() && "Expecting a simple value type");
5572 
5573  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5574  switch (OrigSimpleTy) {
5575  default: llvm_unreachable("Unexpected Vector Type");
5576  case MVT::v2i8:
5577  case MVT::v2i16:
5578  return MVT::v2i32;
5579  case MVT::v4i8:
5580  return MVT::v4i16;
5581  }
5582 }
5583 
5584 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5585 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5586 /// We insert the required extension here to get the vector to fill a D register.
5588  const EVT &OrigTy,
5589  const EVT &ExtTy,
5590  unsigned ExtOpcode) {
5591  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5592  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5593  // 64-bits we need to insert a new extension so that it will be 64-bits.
5594  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5595  if (OrigTy.getSizeInBits() >= 64)
5596  return N;
5597 
5598  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5599  EVT NewVT = getExtensionTo64Bits(OrigTy);
5600 
5601  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5602 }
5603 
5604 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
5605 /// does not do any sign/zero extension. If the original vector is less
5606 /// than 64 bits, an appropriate extension will be added after the load to
5607 /// reach a total size of 64 bits. We have to add the extension separately
5608 /// because ARM does not have a sign/zero extending load for vectors.
5610  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5611 
5612  // The load already has the right type.
5613  if (ExtendedTy == LD->getMemoryVT())
5614  return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5615  LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5616  LD->isNonTemporal(), LD->isInvariant(),
5617  LD->getAlignment());
5618 
5619  // We need to create a zextload/sextload. We cannot just create a load
5620  // followed by a zext/zext node because LowerMUL is also run during normal
5621  // operation legalization where we can't create illegal types.
5622  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5623  LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5624  LD->getMemoryVT(), LD->isVolatile(),
5625  LD->isNonTemporal(), LD->getAlignment());
5626 }
5627 
5628 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5629 /// extending load, or BUILD_VECTOR with extended elements, return the
5630 /// unextended value. The unextended vector should be 64 bits so that it can
5631 /// be used as an operand to a VMULL instruction. If the original vector size
5632 /// before extension is less than 64 bits we add a an extension to resize
5633 /// the vector to 64 bits.
5635  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5636  return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5637  N->getOperand(0)->getValueType(0),
5638  N->getValueType(0),
5639  N->getOpcode());
5640 
5641  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5642  return SkipLoadExtensionForVMULL(LD, DAG);
5643 
5644  // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
5645  // have been legalized as a BITCAST from v4i32.
5646  if (N->getOpcode() == ISD::BITCAST) {
5647  SDNode *BVN = N->getOperand(0).getNode();
5648  assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5649  BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5650  unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5651  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5652  BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5653  }
5654  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5655  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5656  EVT VT = N->getValueType(0);
5657  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5658  unsigned NumElts = VT.getVectorNumElements();
5659  MVT TruncVT = MVT::getIntegerVT(EltSize);
5661  for (unsigned i = 0; i != NumElts; ++i) {
5662  ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5663  const APInt &CInt = C->getAPIntValue();
5664  // Element types smaller than 32 bits are not legal, so use i32 elements.
5665  // The values are implicitly truncated so sext vs. zext doesn't matter.
5666  Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5667  }
5668  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5669  MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
5670 }
5671 
5672 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5673  unsigned Opcode = N->getOpcode();
5674  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5675  SDNode *N0 = N->getOperand(0).getNode();
5676  SDNode *N1 = N->getOperand(1).getNode();
5677  return N0->hasOneUse() && N1->hasOneUse() &&
5678  isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5679  }
5680  return false;
5681 }
5682 
5683 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5684  unsigned Opcode = N->getOpcode();
5685  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5686  SDNode *N0 = N->getOperand(0).getNode();
5687  SDNode *N1 = N->getOperand(1).getNode();
5688  return N0->hasOneUse() && N1->hasOneUse() &&
5689  isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5690  }
5691  return false;
5692 }
5693 
5695  // Multiplications are only custom-lowered for 128-bit vectors so that
5696  // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
5697  EVT VT = Op.getValueType();
5698  assert(VT.is128BitVector() && VT.isInteger() &&
5699  "unexpected type for custom-lowering ISD::MUL");
5700  SDNode *N0 = Op.getOperand(0).getNode();
5701  SDNode *N1 = Op.getOperand(1).getNode();
5702  unsigned NewOpc = 0;
5703  bool isMLA = false;
5704  bool isN0SExt = isSignExtended(N0, DAG);
5705  bool isN1SExt = isSignExtended(N1, DAG);
5706  if (isN0SExt && isN1SExt)
5707  NewOpc = ARMISD::VMULLs;
5708  else {
5709  bool isN0ZExt = isZeroExtended(N0, DAG);
5710  bool isN1ZExt = isZeroExtended(N1, DAG);
5711  if (isN0ZExt && isN1ZExt)
5712  NewOpc = ARMISD::VMULLu;
5713  else if (isN1SExt || isN1ZExt) {
5714  // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5715  // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5716  if (isN1SExt && isAddSubSExt(N0, DAG)) {
5717  NewOpc = ARMISD::VMULLs;
5718  isMLA = true;
5719  } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5720  NewOpc = ARMISD::VMULLu;
5721  isMLA = true;
5722  } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5723  std::swap(N0, N1);
5724  NewOpc = ARMISD::VMULLu;
5725  isMLA = true;
5726  }
5727  }
5728 
5729  if (!NewOpc) {
5730  if (VT == MVT::v2i64)
5731  // Fall through to expand this. It is not legal.
5732  return SDValue();
5733  else
5734  // Other vector multiplications are legal.
5735  return Op;
5736  }
5737  }
5738 
5739  // Legalize to a VMULL instruction.
5740  SDLoc DL(Op);
5741  SDValue Op0;
5742  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5743  if (!isMLA) {
5744  Op0 = SkipExtensionForVMULL(N0, DAG);
5745  assert(Op0.getValueType().is64BitVector() &&
5746  Op1.getValueType().is64BitVector() &&
5747  "unexpected types for extended operands to VMULL");
5748  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5749  }
5750 
5751  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5752  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5753  // vmull q0, d4, d6
5754  // vmlal q0, d5, d6
5755  // is faster than
5756  // vaddl q0, d4, d5
5757  // vmovl q1, d6
5758  // vmul q0, q0, q1
5759  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5760  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5761  EVT Op1VT = Op1.getValueType();
5762  return DAG.getNode(N0->getOpcode(), DL, VT,
5763  DAG.getNode(NewOpc, DL, VT,
5764  DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5765  DAG.getNode(NewOpc, DL, VT,
5766  DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5767 }
5768 
5769 static SDValue
5771  // Convert to float
5772  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5773  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5774  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5775  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5776  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5777  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5778  // Get reciprocal estimate.
5779  // float4 recip = vrecpeq_f32(yf);
5781  DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5782  // Because char has a smaller range than uchar, we can actually get away
5783  // without any newton steps. This requires that we use a weird bias
5784  // of 0xb000, however (again, this has been exhaustively tested).
5785  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5786  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5787  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5788  Y = DAG.getConstant(0xb000, MVT::i32);
5789  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5790  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5791  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5792  // Convert back to short.
5793  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5794  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5795  return X;
5796 }
5797 
5798 static SDValue
5800  SDValue N2;
5801  // Convert to float.
5802  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5803  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5804  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5805  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5806  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5807  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5808 
5809  // Use reciprocal estimate and one refinement step.
5810  // float4 recip = vrecpeq_f32(yf);
5811  // recip *= vrecpsq_f32(yf, recip);
5813  DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5815  DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5816  N1, N2);
5817  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5818  // Because short has a smaller range than ushort, we can actually get away
5819  // with only a single newton step. This requires that we use a weird bias
5820  // of 89, however (again, this has been exhaustively tested).
5821  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5822  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5823  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5824  N1 = DAG.getConstant(0x89, MVT::i32);
5825  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5826  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5827  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5828  // Convert back to integer and return.
5829  // return vmovn_s32(vcvt_s32_f32(result));
5830  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5831  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5832  return N0;
5833 }
5834 
5836  EVT VT = Op.getValueType();
5837  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5838  "unexpected type for custom-lowering ISD::SDIV");
5839 
5840  SDLoc dl(Op);
5841  SDValue N0 = Op.getOperand(0);
5842  SDValue N1 = Op.getOperand(1);
5843  SDValue N2, N3;
5844 
5845  if (VT == MVT::v8i8) {
5846  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5847  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5848 
5849  N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5850  DAG.getIntPtrConstant(4));
5851  N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5852  DAG.getIntPtrConstant(4));
5853  N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5854  DAG.getIntPtrConstant(0));
5855  N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5856  DAG.getIntPtrConstant(0));
5857 
5858  N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5859  N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5860 
5861  N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5862  N0 = LowerCONCAT_VECTORS(N0, DAG);
5863 
5864  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5865  return N0;
5866  }
5867  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5868 }
5869 
5871  EVT VT = Op.getValueType();
5872  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5873  "unexpected type for custom-lowering ISD::UDIV");
5874 
5875  SDLoc dl(Op);
5876  SDValue N0 = Op.getOperand(0);
5877  SDValue N1 = Op.getOperand(1);
5878  SDValue N2, N3;
5879 
5880  if (VT == MVT::v8i8) {
5881  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5882  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5883 
5884  N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5885  DAG.getIntPtrConstant(4));
5886  N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5887  DAG.getIntPtrConstant(4));
5888  N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5889  DAG.getIntPtrConstant(0));
5890  N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5891  DAG.getIntPtrConstant(0));
5892 
5893  N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5894  N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5895 
5896  N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5897  N0 = LowerCONCAT_VECTORS(N0, DAG);
5898 
5901  N0);
5902  return N0;
5903  }
5904 
5905  // v4i16 sdiv ... Convert to float.
5906  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5907  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5908  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5909  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5910  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5911  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5912 
5913  // Use reciprocal estimate and two refinement steps.
5914  // float4 recip = vrecpeq_f32(yf);
5915  // recip *= vrecpsq_f32(yf, recip);
5916  // recip *= vrecpsq_f32(yf, recip);
5918  DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5920  DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5921  BN1, N2);
5922  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5924  DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5925  BN1, N2);
5926  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5927  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5928  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5929  // and that it will never cause us to return an answer too large).
5930  // float4 result = as_float4(as_int4(xf*recip) + 2);
5931  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5932  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5933  N1 = DAG.getConstant(2, MVT::i32);
5934  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5935  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5936  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5937  // Convert back to integer and return.
5938  // return vmovn_u32(vcvt_s32_f32(result));
5939  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5940  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5941  return N0;
5942 }
5943 
5945  EVT VT = Op.getNode()->getValueType(0);
5946  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5947 
5948  unsigned Opc;
5949  bool ExtraOp = false;
5950  switch (Op.getOpcode()) {
5951  default: llvm_unreachable("Invalid code");
5952  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5953  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5954  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5955  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5956  }
5957 
5958  if (!ExtraOp)
5959  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5960  Op.getOperand(1));
5961  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5962  Op.getOperand(1), Op.getOperand(2));
5963 }
5964 
5965 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
5966  assert(Subtarget->isTargetDarwin());
5967 
5968  // For iOS, we want to call an alternative entry point: __sincos_stret,
5969  // return values are passed via sret.
5970  SDLoc dl(Op);
5971  SDValue Arg = Op.getOperand(0);
5972  EVT ArgVT = Arg.getValueType();
5973  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
5974 
5975  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5976  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5977 
5978  // Pair of floats / doubles used to pass the result.
5979  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
5980 
5981  // Create stack object for sret.
5982  const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
5983  const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
5984  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
5985  SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
5986 
5987  ArgListTy Args;
5988  ArgListEntry Entry;
5989 
5990  Entry.Node = SRet;
5991  Entry.Ty = RetTy->getPointerTo();
5992  Entry.isSExt = false;
5993  Entry.isZExt = false;
5994  Entry.isSRet = true;
5995  Args.push_back(Entry);
5996 
5997  Entry.Node = Arg;
5998  Entry.Ty = ArgTy;
5999  Entry.isSExt = false;
6000  Entry.isZExt = false;
6001  Args.push_back(Entry);
6002 
6003  const char *LibcallName = (ArgVT == MVT::f64)
6004  ? "__sincos_stret" : "__sincosf_stret";
6005  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
6006 
6009  false, false, false, false, 0,
6010  CallingConv::C, /*isTaillCall=*/false,
6011  /*doesNotRet=*/false, /*isReturnValueUsed*/false,
6012  Callee, Args, DAG, dl);
6013  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6014 
6015  SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6016  MachinePointerInfo(), false, false, false, 0);
6017 
6018  // Address of cos field.
6019  SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
6020  DAG.getIntPtrConstant(ArgVT.getStoreSize()));
6021  SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6022  MachinePointerInfo(), false, false, false, 0);
6023 
6024  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6025  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6026  LoadSin.getValue(0), LoadCos.getValue(0));
6027 }
6028 
6030  // Monotonic load/store is legal for all targets
6031  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
6032  return Op;
6033 
6034  // Aquire/Release load/store is not legal for targets without a
6035  // dmb or equivalent available.
6036  return SDValue();
6037 }
6038 
6039 static void
6041  SelectionDAG &DAG) {
6042  SDLoc dl(Node);
6043  assert (Node->getValueType(0) == MVT::i64 &&
6044  "Only know how to expand i64 atomics");
6045  AtomicSDNode *AN = cast<AtomicSDNode>(Node);
6046 
6048  Ops.push_back(Node->getOperand(0)); // Chain
6049  Ops.push_back(Node->getOperand(1)); // Ptr
6050  for(unsigned i=2; i<Node->getNumOperands(); i++) {
6051  // Low part
6052  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6053  Node->getOperand(i), DAG.getIntPtrConstant(0)));
6054  // High part
6055  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6056  Node->getOperand(i), DAG.getIntPtrConstant(1)));
6057  }
6058  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6059  SDValue Result =
6060  DAG.getAtomic(Node->getOpcode(), dl, MVT::i64, Tys, Ops.data(), Ops.size(),
6061  cast<MemSDNode>(Node)->getMemOperand(), AN->getOrdering(),
6062  AN->getSynchScope());
6063  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
6064  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6065  Results.push_back(Result.getValue(2));
6066 }
6067 
6069  SmallVectorImpl<SDValue> &Results,
6070  SelectionDAG &DAG,
6071  const ARMSubtarget *Subtarget) {
6072  SDLoc DL(N);
6073  SDValue Cycles32, OutChain;
6074 
6075  if (Subtarget->hasPerfMon()) {
6076  // Under Power Management extensions, the cycle-count is:
6077  // mrc p15, #0, <Rt>, c9, c13, #0
6078  SDValue Ops[] = { N->getOperand(0), // Chain
6079  DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
6080  DAG.getConstant(15, MVT::i32),
6081  DAG.getConstant(0, MVT::i32),
6082  DAG.getConstant(9, MVT::i32),
6083  DAG.getConstant(13, MVT::i32),
6084  DAG.getConstant(0, MVT::i32)
6085  };
6086 
6087  Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6088  DAG.getVTList(MVT::i32, MVT::Other), &Ops[0],
6089  array_lengthof(Ops));
6090  OutChain = Cycles32.getValue(1);
6091  } else {
6092  // Intrinsic is defined to return 0 on unsupported platforms. Technically
6093  // there are older ARM CPUs that have implementation-specific ways of
6094  // obtaining this information (FIXME!).
6095  Cycles32 = DAG.getConstant(0, MVT::i32);
6096  OutChain = DAG.getEntryNode();
6097  }
6098 
6099 
6100  SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
6101  Cycles32, DAG.getConstant(0, MVT::i32));
6102  Results.push_back(Cycles64);
6103  Results.push_back(OutChain);
6104 }
6105 
6107  switch (Op.getOpcode()) {
6108  default: llvm_unreachable("Don't know how to custom lower this!");
6109  case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6110  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
6111  case ISD::GlobalAddress:
6112  return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
6113  LowerGlobalAddressELF(Op, DAG);
6114  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6115  case ISD::SELECT: return LowerSELECT(Op, DAG);
6116  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
6117  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
6118  case ISD::BR_JT: return LowerBR_JT(Op, DAG);
6119  case ISD::VASTART: return LowerVASTART(Op, DAG);
6120  case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
6121  case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
6122  case ISD::SINT_TO_FP:
6123  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
6124  case ISD::FP_TO_SINT:
6125  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
6126  case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6127  case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6128  case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6129  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
6130  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
6131  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
6132  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
6133  Subtarget);
6134  case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
6135  case ISD::SHL:
6136  case ISD::SRL:
6137  case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
6138  case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
6139  case ISD::SRL_PARTS:
6140  case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
6141  case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
6142  case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
6143  case ISD::SETCC: return LowerVSETCC(Op, DAG);
6144  case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
6145  case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
6146  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6147  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6148  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6149  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
6150  case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6151  case ISD::MUL: return LowerMUL(Op, DAG);
6152  case ISD::SDIV: return LowerSDIV(Op, DAG);
6153  case ISD::UDIV: return LowerUDIV(Op, DAG);
6154  case ISD::ADDC:
6155  case ISD::ADDE:
6156  case ISD::SUBC:
6157  case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
6158  case ISD::ATOMIC_LOAD:
6159  case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
6160  case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
6161  case ISD::SDIVREM:
6162  case ISD::UDIVREM: return LowerDivRem(Op, DAG);
6163  }
6164 }
6165 
6166 /// ReplaceNodeResults - Replace the results of node with an illegal result
6167 /// type with new values built out of custom code.
6169  SmallVectorImpl<SDValue>&Results,
6170  SelectionDAG &DAG) const {
6171  SDValue Res;
6172  switch (N->getOpcode()) {
6173  default:
6174  llvm_unreachable("Don't know how to custom expand this!");
6175  case ISD::BITCAST:
6176  Res = ExpandBITCAST(N, DAG);
6177  break;
6178  case ISD::SRL:
6179  case ISD::SRA:
6180  Res = Expand64BitShift(N, DAG, Subtarget);
6181  break;
6182  case ISD::READCYCLECOUNTER:
6183  ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
6184  return;
6185  case ISD::ATOMIC_STORE:
6186  case ISD::ATOMIC_LOAD:
6187  case ISD::ATOMIC_LOAD_ADD:
6188  case ISD::ATOMIC_LOAD_AND:
6189  case ISD::ATOMIC_LOAD_NAND:
6190  case ISD::ATOMIC_LOAD_OR:
6191  case ISD::ATOMIC_LOAD_SUB:
6192  case ISD::ATOMIC_LOAD_XOR:
6193  case ISD::ATOMIC_SWAP:
6194  case ISD::ATOMIC_CMP_SWAP:
6195  case ISD::ATOMIC_LOAD_MIN:
6196  case ISD::ATOMIC_LOAD_UMIN:
6197  case ISD::ATOMIC_LOAD_MAX:
6198  case ISD::ATOMIC_LOAD_UMAX:
6199  ReplaceATOMIC_OP_64(N, Results, DAG);
6200  return;
6201  }
6202  if (Res.getNode())
6203  Results.push_back(Res);
6204 }
6205 
6206 //===----------------------------------------------------------------------===//
6207 // ARM Scheduler Hooks
6208 //===----------------------------------------------------------------------===//
6209 
6211 ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
6212  MachineBasicBlock *BB,
6213  unsigned Size) const {
6214  unsigned dest = MI->getOperand(0).getReg();
6215  unsigned ptr = MI->getOperand(1).getReg();
6216  unsigned oldval = MI->getOperand(2).getReg();
6217  unsigned newval = MI->getOperand(3).getReg();
6219  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
6220  DebugLoc dl = MI->getDebugLoc();
6221  bool isThumb2 = Subtarget->isThumb2();
6222 
6223  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6224  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
6225  (const TargetRegisterClass*)&ARM::rGPRRegClass :
6226  (const TargetRegisterClass*)&ARM::GPRRegClass);
6227 
6228  if (isThumb2) {
6229  MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6230  MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
6231  MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
6232  }
6233 
6234  unsigned ldrOpc, strOpc;
6235  getExclusiveOperation(Size, Ord, isThumb2, ldrOpc, strOpc);
6236 
6237  MachineFunction *MF = BB->getParent();
6238  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6239  MachineFunction::iterator It = BB;
6240  ++It; // insert the new blocks after the current block
6241 
6242  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
6243  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
6244  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6245  MF->insert(It, loop1MBB);
6246  MF->insert(It, loop2MBB);
6247  MF->insert(It, exitMBB);
6248 
6249  // Transfer the remainder of BB and its successor edges to exitMBB.
6250  exitMBB->splice(exitMBB->begin(), BB,
6252  BB->end());
6253  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6254 
6255  // thisMBB:
6256  // ...
6257  // fallthrough --> loop1MBB
6258  BB->addSuccessor(loop1MBB);
6259 
6260  // loop1MBB:
6261  // ldrex dest, [ptr]
6262  // cmp dest, oldval
6263  // bne exitMBB
6264  BB = loop1MBB;
6265  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6266  if (ldrOpc == ARM::t2LDREX)
6267  MIB.addImm(0);
6268  AddDefaultPred(MIB);
6269  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6270  .addReg(dest).addReg(oldval));
6271  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6272  .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6273  BB->addSuccessor(loop2MBB);
6274  BB->addSuccessor(exitMBB);
6275 
6276  // loop2MBB:
6277  // strex scratch, newval, [ptr]
6278  // cmp scratch, #0
6279  // bne loop1MBB
6280  BB = loop2MBB;
6281  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
6282  if (strOpc == ARM::t2STREX)
6283  MIB.addImm(0);
6284  AddDefaultPred(MIB);
6285  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6286  .addReg(scratch).addImm(0));
6287  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6288  .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6289  BB->addSuccessor(loop1MBB);
6290  BB->addSuccessor(exitMBB);
6291 
6292  // exitMBB:
6293  // ...
6294  BB = exitMBB;
6295 
6296  MI->eraseFromParent(); // The instruction is gone now.
6297 
6298  return BB;
6299 }
6300 
6302 ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6303  unsigned Size, unsigned BinOpcode) const {
6304  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6306 
6307  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6308  MachineFunction *MF = BB->getParent();
6309  MachineFunction::iterator It = BB;
6310  ++It;
6311 
6312  unsigned dest = MI->getOperand(0).getReg();
6313  unsigned ptr = MI->getOperand(1).getReg();
6314  unsigned incr = MI->getOperand(2).getReg();
6315  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
6316  DebugLoc dl = MI->getDebugLoc();
6317  bool isThumb2 = Subtarget->isThumb2();
6318 
6319  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6320  if (isThumb2) {
6321  MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6322  MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6323  MRI.constrainRegClass(incr, &ARM::rGPRRegClass);
6324  }
6325 
6326  unsigned ldrOpc, strOpc;
6327  getExclusiveOperation(Size, Ord, isThumb2, ldrOpc, strOpc);
6328 
6329  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6330  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6331  MF->insert(It, loopMBB);
6332  MF->insert(It, exitMBB);
6333 
6334  // Transfer the remainder of BB and its successor edges to exitMBB.
6335  exitMBB->splice(exitMBB->begin(), BB,
6337  BB->end());
6338  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6339 
6340  const TargetRegisterClass *TRC = isThumb2 ?
6341  (const TargetRegisterClass*)&ARM::rGPRRegClass :
6342  (const TargetRegisterClass*)&ARM::GPRRegClass;
6343  unsigned scratch = MRI.createVirtualRegister(TRC);
6344  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
6345 
6346  // thisMBB:
6347  // ...
6348  // fallthrough --> loopMBB
6349  BB->addSuccessor(loopMBB);
6350 
6351  // loopMBB:
6352  // ldrex dest, ptr
6353  // <binop> scratch2, dest, incr
6354  // strex scratch, scratch2, ptr
6355  // cmp scratch, #0
6356  // bne- loopMBB
6357  // fallthrough --> exitMBB
6358  BB = loopMBB;
6359  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6360  if (ldrOpc == ARM::t2LDREX)
6361  MIB.addImm(0);
6362  AddDefaultPred(MIB);
6363  if (BinOpcode) {
6364  // operand order needs to go the other way for NAND
6365  if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
6366  AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6367  addReg(incr).addReg(dest)).addReg(0);
6368  else
6369  AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6370  addReg(dest).addReg(incr)).addReg(0);
6371  }
6372 
6373  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6374  if (strOpc == ARM::t2STREX)
6375  MIB.addImm(0);
6376  AddDefaultPred(MIB);
6377  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6378  .addReg(scratch).addImm(0));
6379  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6380  .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6381 
6382  BB->addSuccessor(loopMBB);
6383  BB->addSuccessor(exitMBB);
6384 
6385  // exitMBB:
6386  // ...
6387  BB = exitMBB;
6388 
6389  MI->eraseFromParent(); // The instruction is gone now.
6390 
6391  return BB;
6392 }
6393 
6395 ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
6396  MachineBasicBlock *BB,
6397  unsigned Size,
6398  bool signExtend,
6399  ARMCC::CondCodes Cond) const {
6401 
6402  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6403  MachineFunction *MF = BB->getParent();
6404  MachineFunction::iterator It = BB;
6405  ++It;
6406 
6407  unsigned dest = MI->getOperand(0).getReg();
6408  unsigned ptr = MI->getOperand(1).getReg();
6409  unsigned incr = MI->getOperand(2).getReg();
6410  unsigned oldval = dest;
6411  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
6412  DebugLoc dl = MI->getDebugLoc();
6413  bool isThumb2 = Subtarget->isThumb2();
6414 
6415  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6416  if (isThumb2) {
6417  MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6418  MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6419  MRI.constrainRegClass(incr, &ARM::rGPRRegClass);
6420  }
6421 
6422  unsigned ldrOpc, strOpc, extendOpc;
6423  getExclusiveOperation(Size, Ord, isThumb2, ldrOpc, strOpc);
6424  switch (Size) {
6425  default: llvm_unreachable("unsupported size for AtomicBinaryMinMax!");
6426  case 1:
6427  extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
6428  break;
6429  case 2:
6430  extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
6431  break;
6432  case 4:
6433  extendOpc = 0;
6434  break;
6435  }
6436 
6437  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6438  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6439  MF->insert(It, loopMBB);
6440  MF->insert(It, exitMBB);
6441 
6442  // Transfer the remainder of BB and its successor edges to exitMBB.
6443  exitMBB->splice(exitMBB->begin(), BB,
6445  BB->end());
6446  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6447 
6448  const TargetRegisterClass *TRC = isThumb2 ?
6449  (const TargetRegisterClass*)&ARM::rGPRRegClass :
6450  (const TargetRegisterClass*)&ARM::GPRRegClass;
6451  unsigned scratch = MRI.createVirtualRegister(TRC);
6452  unsigned scratch2 = MRI.createVirtualRegister(TRC);
6453 
6454  // thisMBB:
6455  // ...
6456  // fallthrough --> loopMBB
6457  BB->addSuccessor(loopMBB);
6458 
6459  // loopMBB:
6460  // ldrex dest, ptr
6461  // (sign extend dest, if required)
6462  // cmp dest, incr
6463  // cmov.cond scratch2, incr, dest
6464  // strex scratch, scratch2, ptr
6465  // cmp scratch, #0
6466  // bne- loopMBB
6467  // fallthrough --> exitMBB
6468  BB = loopMBB;
6469  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6470  if (ldrOpc == ARM::t2LDREX)
6471  MIB.addImm(0);
6472  AddDefaultPred(MIB);
6473 
6474  // Sign extend the value, if necessary.
6475  if (signExtend && extendOpc) {
6476  oldval = MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass
6477  : &ARM::GPRnopcRegClass);
6478  if (!isThumb2)
6479  MRI.constrainRegClass(dest, &ARM::GPRnopcRegClass);
6480  AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
6481  .addReg(dest)
6482  .addImm(0));
6483  }
6484 
6485  // Build compare and cmov instructions.
6486  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6487  .addReg(oldval).addReg(incr));
6488  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
6489  .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
6490 
6491  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6492  if (strOpc == ARM::t2STREX)
6493  MIB.addImm(0);
6494  AddDefaultPred(MIB);
6495  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6496  .addReg(scratch).addImm(0));
6497  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6498  .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6499 
6500  BB->addSuccessor(loopMBB);
6501  BB->addSuccessor(exitMBB);
6502 
6503  // exitMBB:
6504  // ...
6505  BB = exitMBB;
6506 
6507  MI->eraseFromParent(); // The instruction is gone now.
6508 
6509  return BB;
6510 }
6511 
6513 ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
6514  unsigned Op1, unsigned Op2,
6515  bool NeedsCarry, bool IsCmpxchg,
6516  bool IsMinMax, ARMCC::CondCodes CC) const {
6517  // This also handles ATOMIC_SWAP and ATOMIC_STORE, indicated by Op1==0.
6519 
6520  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6521  MachineFunction *MF = BB->getParent();
6522  MachineFunction::iterator It = BB;
6523  ++It;
6524 
6525  bool isStore = (MI->getOpcode() == ARM::ATOMIC_STORE_I64);
6526  unsigned offset = (isStore ? -2 : 0);
6527  unsigned destlo = MI->getOperand(0).getReg();
6528  unsigned desthi = MI->getOperand(1).getReg();
6529  unsigned ptr = MI->getOperand(offset+2).getReg();
6530  unsigned vallo = MI->getOperand(offset+3).getReg();
6531  unsigned valhi = MI->getOperand(offset+4).getReg();
6532  unsigned OrdIdx = offset + (IsCmpxchg ? 7 : 5);
6533  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(OrdIdx).getImm());
6534  DebugLoc dl = MI->getDebugLoc();
6535  bool isThumb2 = Subtarget->isThumb2();
6536 
6537  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6538  if (isThumb2) {
6539  MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
6540  MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
6541  MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6542  MRI.constrainRegClass(vallo, &ARM::rGPRRegClass);
6543  MRI.constrainRegClass(valhi, &ARM::rGPRRegClass);
6544  }
6545 
6546  unsigned ldrOpc, strOpc;
6547  getExclusiveOperation(8, Ord, isThumb2, ldrOpc, strOpc);
6548 
6549  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6550  MachineBasicBlock *contBB = 0, *cont2BB = 0;
6551  if (IsCmpxchg || IsMinMax)
6552  contBB = MF->CreateMachineBasicBlock(LLVM_BB);
6553  if (IsCmpxchg)
6554  cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
6555  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6556 
6557  MF->insert(It, loopMBB);
6558  if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
6559  if (IsCmpxchg) MF->insert(It, cont2BB);
6560  MF->insert(It, exitMBB);
6561 
6562  // Transfer the remainder of BB and its successor edges to exitMBB.
6563  exitMBB->splice(exitMBB->begin(), BB,
6565  BB->end());
6566  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6567 
6568  const TargetRegisterClass *TRC = isThumb2 ?
6569  (const TargetRegisterClass*)&ARM::tGPRRegClass :
6570  (const TargetRegisterClass*)&ARM::GPRRegClass;
6571  unsigned storesuccess = MRI.createVirtualRegister(TRC);
6572 
6573  // thisMBB:
6574  // ...
6575  // fallthrough --> loopMBB
6576  BB->addSuccessor(loopMBB);
6577 
6578  // loopMBB:
6579  // ldrexd r2, r3, ptr
6580  // <binopa> r0, r2, incr
6581  // <binopb> r1, r3, incr
6582  // strexd storesuccess, r0, r1, ptr
6583  // cmp storesuccess, #0
6584  // bne- loopMBB
6585  // fallthrough --> exitMBB
6586  BB = loopMBB;
6587 
6588  if (!isStore) {
6589  // Load
6590  if (isThumb2) {
6591  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
6592  .addReg(destlo, RegState::Define)
6593  .addReg(desthi, RegState::Define)
6594  .addReg(ptr));
6595  } else {
6596  unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6597  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
6598  .addReg(GPRPair0, RegState::Define).addReg(ptr));
6599  // Copy r2/r3 into dest. (This copy will normally be coalesced.)
6600  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
6601  .addReg(GPRPair0, 0, ARM::gsub_0);
6602  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
6603  .addReg(GPRPair0, 0, ARM::gsub_1);
6604  }
6605  }
6606 
6607  unsigned StoreLo, StoreHi;
6608  if (IsCmpxchg) {
6609  // Add early exit
6610  for (unsigned i = 0; i < 2; i++) {
6611  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
6612  ARM::CMPrr))
6613  .addReg(i == 0 ? destlo : desthi)
6614  .addReg(i == 0 ? vallo : valhi));
6615  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6616  .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6617  BB->addSuccessor(exitMBB);
6618  BB->addSuccessor(i == 0 ? contBB : cont2BB);
6619  BB = (i == 0 ? contBB : cont2BB);
6620  }
6621 
6622  // Copy to physregs for strexd
6623  StoreLo = MI->getOperand(5).getReg();
6624  StoreHi = MI->getOperand(6).getReg();
6625  } else if (Op1) {
6626  // Perform binary operation
6627  unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
6628  AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
6629  .addReg(destlo).addReg(vallo))
6630  .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
6631  unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
6632  AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
6633  .addReg(desthi).addReg(valhi))
6634  .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
6635 
6636  StoreLo = tmpRegLo;
6637  StoreHi = tmpRegHi;
6638  } else {
6639  // Copy to physregs for strexd
6640  StoreLo = vallo;
6641  StoreHi = valhi;
6642  }
6643  if (IsMinMax) {
6644  // Compare and branch to exit block.
6645  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6646  .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
6647  BB->addSuccessor(exitMBB);
6648  BB->addSuccessor(contBB);
6649  BB = contBB;
6650  StoreLo = vallo;
6651  StoreHi = valhi;
6652  }
6653 
6654  // Store
6655  if (isThumb2) {
6656  MRI.constrainRegClass(StoreLo, &ARM::rGPRRegClass);
6657  MRI.constrainRegClass(StoreHi, &ARM::rGPRRegClass);
6658  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
6659  .addReg(StoreLo).addReg(StoreHi).addReg(ptr));
6660  } else {
6661  // Marshal a pair...
6662  unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6663  unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6664  unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6665  BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6666  BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6667  .addReg(UndefPair)
6668  .addReg(StoreLo)
6669  .addImm(ARM::gsub_0);
6670  BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
6671  .addReg(r1)
6672  .addReg(StoreHi)
6673  .addImm(ARM::gsub_1);
6674 
6675  // ...and store it
6676  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
6677  .addReg(StorePair).addReg(ptr));
6678  }
6679  // Cmp+jump
6680  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6681  .addReg(storesuccess).addImm(0));
6682  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6683  .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6684 
6685  BB->addSuccessor(loopMBB);
6686  BB->addSuccessor(exitMBB);
6687 
6688  // exitMBB:
6689  // ...
6690  BB = exitMBB;
6691 
6692  MI->eraseFromParent(); // The instruction is gone now.
6693 
6694  return BB;
6695 }
6696 
6698 ARMTargetLowering::EmitAtomicLoad64(MachineInstr *MI, MachineBasicBlock *BB) const {
6699 
6701 
6702  unsigned destlo = MI->getOperand(0).getReg();
6703  unsigned desthi = MI->getOperand(1).getReg();
6704  unsigned ptr = MI->getOperand(2).getReg();
6705  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
6706  DebugLoc dl = MI->getDebugLoc();
6707  bool isThumb2 = Subtarget->isThumb2();
6708 
6709  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6710  if (isThumb2) {
6711  MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
6712  MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
6713  MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6714  }
6715  unsigned ldrOpc, strOpc;
6716  getExclusiveOperation(8, Ord, isThumb2, ldrOpc, strOpc);
6717 
6718  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(ldrOpc));
6719 
6720  if (isThumb2) {
6721  MIB.addReg(destlo, RegState::Define)
6722  .addReg(desthi, RegState::Define)
6723  .addReg(ptr);
6724 
6725  } else {
6726  unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6727  MIB.addReg(GPRPair0, RegState::Define).addReg(ptr);
6728 
6729  // Copy GPRPair0 into dest. (This copy will normally be coalesced.)
6730  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), destlo)
6731  .addReg(GPRPair0, 0, ARM::gsub_0);
6732  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), desthi)
6733  .addReg(GPRPair0, 0, ARM::gsub_1);
6734  }
6735  AddDefaultPred(MIB);
6736 
6737  MI->eraseFromParent(); // The instruction is gone now.
6738 
6739  return BB;
6740 }
6741 
6742 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6743 /// registers the function context.
6744 void ARMTargetLowering::
6745 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6746  MachineBasicBlock *DispatchBB, int FI) const {
6748  DebugLoc dl = MI->getDebugLoc();
6749  MachineFunction *MF = MBB->getParent();
6750  MachineRegisterInfo *MRI = &MF->getRegInfo();
6751  MachineConstantPool *MCP = MF->getConstantPool();
6752  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6753  const Function *F = MF->getFunction();
6754 
6755  bool isThumb = Subtarget->isThumb();
6756  bool isThumb2 = Subtarget->isThumb2();
6757 
6758  unsigned PCLabelId = AFI->createPICLabelUId();
6759  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6760  ARMConstantPoolValue *CPV =
6761  ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6762  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6763 
6764  const TargetRegisterClass *TRC = isThumb ?
6765  (const TargetRegisterClass*)&ARM::tGPRRegClass :
6766  (const TargetRegisterClass*)&ARM::GPRRegClass;
6767 
6768  // Grab constant pool and fixed stack memory operands.
6769  MachineMemOperand *CPMMO =
6772 
6773  MachineMemOperand *FIMMOSt =
6776 
6777  // Load the address of the dispatch MBB into the jump buffer.
6778  if (isThumb2) {
6779  // Incoming value: jbuf
6780  // ldr.n r5, LCPI1_1
6781  // orr r5, r5, #1
6782  // add r5, pc
6783  // str r5, [$jbuf, #+4] ; &jbuf[1]
6784  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6785  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6786  .addConstantPoolIndex(CPI)
6787  .addMemOperand(CPMMO));
6788  // Set the low bit because of thumb mode.
6789  unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6790  AddDefaultCC(
6791  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6792  .addReg(NewVReg1, RegState::Kill)
6793  .addImm(0x01)));
6794  unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6795  BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6796  .addReg(NewVReg2, RegState::Kill)
6797  .addImm(PCLabelId);
6798  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6799  .addReg(NewVReg3, RegState::Kill)
6800  .addFrameIndex(FI)
6801  .addImm(36) // &jbuf[1] :: pc
6802  .addMemOperand(FIMMOSt));
6803  } else if (isThumb) {
6804  // Incoming value: jbuf
6805  // ldr.n r1, LCPI1_4
6806  // add r1, pc
6807  // mov r2, #1
6808  // orrs r1, r2
6809  // add r2, $jbuf, #+4 ; &jbuf[1]
6810  // str r1, [r2]
6811  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6812  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6813  .addConstantPoolIndex(CPI)
6814  .addMemOperand(CPMMO));
6815  unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6816  BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6817  .addReg(NewVReg1, RegState::Kill)
6818  .addImm(PCLabelId);
6819  // Set the low bit because of thumb mode.
6820  unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6821  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6822  .addReg(ARM::CPSR, RegState::Define)
6823  .addImm(1));
6824  unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6825  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6826  .addReg(ARM::CPSR, RegState::Define)
6827  .addReg(NewVReg2, RegState::Kill)
6828  .addReg(NewVReg3, RegState::Kill));
6829  unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6830  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6831  .addFrameIndex(FI)
6832  .addImm(36)); // &jbuf[1] :: pc
6833  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6834  .addReg(NewVReg4, RegState::Kill)
6835  .addReg(NewVReg5, RegState::Kill)
6836  .addImm(0)
6837  .addMemOperand(FIMMOSt));
6838  } else {
6839  // Incoming value: jbuf
6840  // ldr r1, LCPI1_1
6841  // add r1, pc, r1
6842  // str r1, [$jbuf, #+4] ; &jbuf[1]
6843  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6844  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
6845  .addConstantPoolIndex(CPI)
6846  .addImm(0)
6847  .addMemOperand(CPMMO));
6848  unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6849  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6850  .addReg(NewVReg1, RegState::Kill)
6851  .addImm(PCLabelId));
6852  AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6853  .addReg(NewVReg2, RegState::Kill)
6854  .addFrameIndex(FI)
6855  .addImm(36) // &jbuf[1] :: pc
6856  .addMemOperand(FIMMOSt));
6857  }
6858 }
6859 
6860 MachineBasicBlock *ARMTargetLowering::
6861 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6863  DebugLoc dl = MI->getDebugLoc();
6864  MachineFunction *MF = MBB->getParent();
6865  MachineRegisterInfo *MRI = &MF->getRegInfo();
6866  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6867  MachineFrameInfo *MFI = MF->getFrameInfo();
6868  int FI = MFI->getFunctionContextIndex();
6869 
6870  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6871  (const TargetRegisterClass*)&ARM::tGPRRegClass :
6872  (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6873 
6874  // Get a mapping of the call site numbers to all of the landing pads they're
6875  // associated with.
6877  unsigned MaxCSNum = 0;
6878  MachineModuleInfo &MMI = MF->getMMI();
6879  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6880  ++BB) {
6881  if (!BB->isLandingPad()) continue;
6882 
6883  // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6884  // pad.
6886  II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6887  if (!II->isEHLabel()) continue;
6888 
6889  MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6890  if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6891 
6892  SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6894  CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6895  CSI != CSE; ++CSI) {
6896  CallSiteNumToLPad[*CSI].push_back(BB);
6897  MaxCSNum = std::max(MaxCSNum, *CSI);
6898  }
6899  break;
6900  }
6901  }
6902 
6903  // Get an ordered list of the machine basic blocks for the jump table.
6904  std::vector<MachineBasicBlock*> LPadList;
6906  LPadList.reserve(CallSiteNumToLPad.size());
6907  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6908  SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6910  II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6911  LPadList.push_back(*II);
6912  InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6913  }
6914  }
6915 
6916  assert(!LPadList.empty() &&
6917  "No landing pad destinations for the dispatch jump table!");
6918 
6919  // Create the jump table and associated information.
6920  MachineJumpTableInfo *JTI =
6922  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6923  unsigned UId = AFI->createJumpTableUId();
6925 
6926  // Create the MBBs for the dispatch code.
6927 
6928  // Shove the dispatch's address into the return slot in the function context.
6929  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6930  DispatchBB->setIsLandingPad();
6931 
6933  unsigned trap_opcode;
6934  if (Subtarget->isThumb())
6935  trap_opcode = ARM::tTRAP;
6936  else
6937  trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6938 
6939  BuildMI(TrapBB, dl, TII->get(trap_opcode));
6940  DispatchBB->addSuccessor(TrapBB);
6941 
6942  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6943  DispatchBB->addSuccessor(DispContBB);
6944 
6945  // Insert and MBBs.
6946  MF->insert(MF->end(), DispatchBB);
6947  MF->insert(MF->end(), DispContBB);
6948  MF->insert(MF->end(), TrapBB);
6949 
6950  // Insert code into the entry block that creates and registers the function
6951  // context.
6952  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6953 
6954  MachineMemOperand *FIMMOLd =
6958 
6959  MachineInstrBuilder MIB;
6960  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6961 
6962  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6963  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6964 
6965  // Add a register mask with no preserved registers. This results in all
6966  // registers being marked as clobbered.
6967  MIB.addRegMask(RI.getNoPreservedMask());
6968 
6969  unsigned NumLPads = LPadList.size();
6970  if (Subtarget->isThumb2()) {
6971  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6972  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6973  .addFrameIndex(FI)
6974  .addImm(4)
6975  .addMemOperand(FIMMOLd));
6976 
6977  if (NumLPads < 256) {
6978  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6979  .addReg(NewVReg1)
6980  .addImm(LPadList.size()));
6981  } else {
6982  unsigned VReg1 = MRI->createVirtualRegister(TRC);
6983  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6984  .addImm(NumLPads & 0xFFFF));
6985 
6986  unsigned VReg2 = VReg1;
6987  if ((NumLPads & 0xFFFF0000) != 0) {
6988  VReg2 = MRI->createVirtualRegister(TRC);
6989  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6990  .addReg(VReg1)
6991  .addImm(NumLPads >> 16));
6992  }
6993 
6994  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6995  .addReg(NewVReg1)
6996  .addReg(VReg2));
6997  }
6998 
6999  BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7000  .addMBB(TrapBB)
7001  .addImm(ARMCC::HI)
7002  .addReg(ARM::CPSR);
7003 
7004  unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7005  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
7006  .addJumpTableIndex(MJTI)
7007  .addImm(UId));
7008 
7009  unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7010  AddDefaultCC(
7012  BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7013  .addReg(NewVReg3, RegState::Kill)
7014  .addReg(NewVReg1)
7016 
7017  BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7018  .addReg(NewVReg4, RegState::Kill)
7019  .addReg(NewVReg1)
7020  .addJumpTableIndex(MJTI)
7021  .addImm(UId);
7022  } else if (Subtarget->isThumb()) {
7023  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7024  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7025  .addFrameIndex(FI)
7026  .addImm(1)
7027  .addMemOperand(FIMMOLd));
7028 
7029  if (NumLPads < 256) {
7030  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7031  .addReg(NewVReg1)
7032  .addImm(NumLPads));
7033  } else {
7036  const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7037 
7038  // MachineConstantPool wants an explicit alignment.
7039  unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7040  if (Align == 0)
7041  Align = getDataLayout()->getTypeAllocSize(C->getType());
7042  unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7043 
7044  unsigned VReg1 = MRI->createVirtualRegister(TRC);
7045  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7046  .addReg(VReg1, RegState::Define)
7047  .addConstantPoolIndex(Idx));
7048  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7049  .addReg(NewVReg1)
7050  .addReg(VReg1));
7051  }
7052 
7053  BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7054  .addMBB(TrapBB)
7055  .addImm(ARMCC::HI)
7056  .addReg(ARM::CPSR);
7057 
7058  unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7059  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7060  .addReg(ARM::CPSR, RegState::Define)
7061  .addReg(NewVReg1)
7062  .addImm(2));
7063 
7064  unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7065  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7066  .addJumpTableIndex(MJTI)
7067  .addImm(UId));
7068 
7069  unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7070  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
7071  .addReg(ARM::CPSR, RegState::Define)
7072  .addReg(NewVReg2, RegState::Kill)
7073  .addReg(NewVReg3));
7074 
7075  MachineMemOperand *JTMMOLd =
7078 
7079  unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7080  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
7081  .addReg(NewVReg4, RegState::Kill)
7082  .addImm(0)
7083  .addMemOperand(JTMMOLd));
7084 
7085  unsigned NewVReg6 = NewVReg5;
7086  if (RelocM == Reloc::PIC_) {
7087  NewVReg6 = MRI->createVirtualRegister(TRC);
7088  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
7089  .addReg(ARM::CPSR, RegState::Define)
7090  .addReg(NewVReg5, RegState::Kill)
7091  .addReg(NewVReg3));
7092  }
7093 
7094  BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
7095  .addReg(NewVReg6, RegState::Kill)
7096  .addJumpTableIndex(MJTI)
7097  .addImm(UId);
7098  } else {
7099  unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7100  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
7101  .addFrameIndex(FI)
7102  .addImm(4)
7103  .addMemOperand(FIMMOLd));
7104 
7105  if (NumLPads < 256) {
7106  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
7107  .addReg(NewVReg1)
7108  .addImm(NumLPads));
7109  } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
7110  unsigned VReg1 = MRI->createVirtualRegister(TRC);
7111  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
7112  .addImm(NumLPads & 0xFFFF));
7113 
7114  unsigned VReg2 = VReg1;
7115  if ((NumLPads & 0xFFFF0000) != 0) {
7116  VReg2 = MRI->createVirtualRegister(TRC);
7117  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
7118  .addReg(VReg1)
7119  .addImm(NumLPads >> 16));
7120  }
7121 
7122  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7123  .addReg(NewVReg1)
7124  .addReg(VReg2));
7125  } else {
7126  MachineConstantPool *ConstantPool = MF->getConstantPool();
7127  Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7128  const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7129 
7130  // MachineConstantPool wants an explicit alignment.
7131  unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7132  if (Align == 0)
7133  Align = getDataLayout()->getTypeAllocSize(C->getType());
7134  unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7135 
7136  unsigned VReg1 = MRI->createVirtualRegister(TRC);
7137  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
7138  .addReg(VReg1, RegState::Define)
7139  .addConstantPoolIndex(Idx)
7140  .addImm(0));
7141  AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7142  .addReg(NewVReg1)
7143  .addReg(VReg1, RegState::Kill));
7144  }
7145 
7146  BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
7147  .addMBB(TrapBB)
7148  .addImm(ARMCC::HI)
7149  .addReg(ARM::CPSR);
7150 
7151  unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7152  AddDefaultCC(
7153  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
7154  .addReg(NewVReg1)
7156  unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7157  AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
7158  .addJumpTableIndex(MJTI)
7159  .addImm(UId));
7160 
7161  MachineMemOperand *JTMMOLd =
7164  unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7166  BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
7167  .addReg(NewVReg3, RegState::Kill)
7168  .addReg(NewVReg4)
7169  .addImm(0)
7170  .addMemOperand(JTMMOLd));
7171 
7172  if (RelocM == Reloc::PIC_) {
7173  BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
7174  .addReg(NewVReg5, RegState::Kill)
7175  .addReg(NewVReg4)
7176  .addJumpTableIndex(MJTI)
7177  .addImm(UId);
7178  } else {
7179  BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
7180  .addReg(NewVReg5, RegState::Kill)
7181  .addJumpTableIndex(MJTI)
7182  .addImm(UId);
7183  }
7184  }
7185 
7186  // Add the jump table entries as successors to the MBB.
7188  for (std::vector<MachineBasicBlock*>::iterator
7189  I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
7190  MachineBasicBlock *CurMBB = *I;
7191  if (SeenMBBs.insert(CurMBB))
7192  DispContBB->addSuccessor(CurMBB);
7193  }
7194 
7195  // N.B. the order the invoke BBs are processed in doesn't matter here.
7196  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
7199  I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
7200  MachineBasicBlock *BB = *I;
7201 
7202  // Remove the landing pad successor from the invoke block and replace it
7203  // with the new dispatch block.
7205  BB->succ_end());
7206  while (!Successors.empty()) {
7207  MachineBasicBlock *SMBB = Successors.pop_back_val();
7208  if (SMBB->isLandingPad()) {
7209  BB->removeSuccessor(SMBB);
7210  MBBLPads.push_back(SMBB);
7211  }
7212  }
7213 
7214  BB->addSuccessor(DispatchBB);
7215 
7216  // Find the invoke call and mark all of the callee-saved registers as
7217  // 'implicit defined' so that they're spilled. This prevents code from
7218  // moving instructions to before the EH block, where they will never be
7219  // executed.
7221  II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
7222  if (!II->isCall()) continue;
7223 
7224  DenseMap<unsigned, bool> DefRegs;
7226  OI = II->operands_begin(), OE = II->operands_end();
7227  OI != OE; ++OI) {
7228  if (!OI->isReg()) continue;
7229  DefRegs[OI->getReg()] = true;
7230  }
7231 
7232  MachineInstrBuilder MIB(*MF, &*II);
7233 
7234  for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
7235  unsigned Reg = SavedRegs[i];
7236  if (Subtarget->isThumb2() &&
7237  !ARM::tGPRRegClass.contains(Reg) &&
7238  !ARM::hGPRRegClass.contains(Reg))
7239  continue;
7240  if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
7241  continue;
7242  if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
7243  continue;
7244  if (!DefRegs[Reg])
7246  }
7247 
7248  break;
7249  }
7250  }
7251 
7252  // Mark all former landing pads as non-landing pads. The dispatch is the only
7253  // landing pad now.
7255  I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7256  (*I)->setIsLandingPad(false);
7257 
7258  // The instruction is gone now.
7259  MI->eraseFromParent();
7260 
7261  return MBB;
7262 }
7263 
7264 static
7267  E = MBB->succ_end(); I != E; ++I)
7268  if (*I != Succ)
7269  return *I;
7270  llvm_unreachable("Expecting a BB with two successors!");
7271 }
7272 
7273 /// Return the load opcode for a given load size. If load size >= 8,
7274 /// neon opcode will be returned.
7275 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7276  if (LdSize >= 8)
7277  return LdSize == 16 ? ARM::VLD1q32wb_fixed
7278  : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7279  if (IsThumb1)
7280  return LdSize == 4 ? ARM::tLDRi
7281  : LdSize == 2 ? ARM::tLDRHi
7282  : LdSize == 1 ? ARM::tLDRBi : 0;
7283  if (IsThumb2)
7284  return LdSize == 4 ? ARM::t2LDR_POST
7285  : LdSize == 2 ? ARM::t2LDRH_POST
7286  : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7287  return LdSize == 4 ? ARM::LDR_POST_IMM
7288  : LdSize == 2 ? ARM::LDRH_POST
7289  : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7290 }
7291 
7292 /// Return the store opcode for a given store size. If store size >= 8,
7293 /// neon opcode will be returned.
7294 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
7295  if (StSize >= 8)
7296  return StSize == 16 ? ARM::VST1q32wb_fixed
7297  : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
7298  if (IsThumb1)
7299  return StSize == 4 ? ARM::tSTRi
7300  : StSize == 2 ? ARM::tSTRHi
7301  : StSize == 1 ? ARM::tSTRBi : 0;
7302  if (IsThumb2)
7303  return StSize == 4 ? ARM::t2STR_POST
7304  : StSize == 2 ? ARM::t2STRH_POST
7305  : StSize == 1 ? ARM::t2STRB_POST : 0;
7306  return StSize == 4 ? ARM::STR_POST_IMM
7307  : StSize == 2 ? ARM::STRH_POST
7308  : StSize == 1 ? ARM::STRB_POST_IMM : 0;
7309 }
7310 
7311 /// Emit a post-increment load operation with given size. The instructions
7312 /// will be added to BB at Pos.
7314  const TargetInstrInfo *TII, DebugLoc dl,
7315  unsigned LdSize, unsigned Data, unsigned AddrIn,
7316  unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7317  unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
7318  assert(LdOpc != 0 && "Should have a load opcode");
7319  if (LdSize >= 8) {
7320  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7321  .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7322  .addImm(0));
7323  } else if (IsThumb1) {
7324  // load + update AddrIn
7325  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7326  .addReg(AddrIn).addImm(0));
7327  MachineInstrBuilder MIB =
7328  BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7329  MIB = AddDefaultT1CC(MIB);
7330  MIB.addReg(AddrIn).addImm(LdSize);
7331  AddDefaultPred(MIB);
7332  } else if (IsThumb2) {
7333  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7334  .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7335  .addImm(LdSize));
7336  } else { // arm
7337  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7338  .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7339  .addReg(0).addImm(LdSize));
7340  }
7341 }
7342 
7343 /// Emit a post-increment store operation with given size. The instructions
7344 /// will be added to BB at Pos.
7346  const TargetInstrInfo *TII, DebugLoc dl,
7347  unsigned StSize, unsigned Data, unsigned AddrIn,
7348  unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7349  unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
7350  assert(StOpc != 0 && "Should have a store opcode");
7351  if (StSize >= 8) {
7352  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7353  .addReg(AddrIn).addImm(0).addReg(Data));
7354  } else if (IsThumb1) {
7355  // store + update AddrIn
7356  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
7357  .addReg(AddrIn).addImm(0));
7358  MachineInstrBuilder MIB =
7359  BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7360  MIB = AddDefaultT1CC(MIB);
7361  MIB.addReg(AddrIn).addImm(StSize);
7362  AddDefaultPred(MIB);
7363  } else if (IsThumb2) {
7364  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7365  .addReg(Data).addReg(AddrIn).addImm(StSize));
7366  } else { // arm
7367  AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7368  .addReg(Data).addReg(AddrIn).addReg(0)
7369  .addImm(StSize));
7370  }
7371 }
7372 
7374 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
7375  MachineBasicBlock *BB) const {
7376  // This pseudo instruction has 3 operands: dst, src, size
7377  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7378  // Otherwise, we will generate unrolled scalar copies.
7380  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7381  MachineFunction::iterator It = BB;
7382  ++It;
7383 
7384  unsigned dest = MI->getOperand(0).getReg();
7385  unsigned src = MI->getOperand(1).getReg();
7386  unsigned SizeVal = MI->getOperand(2).getImm();
7387  unsigned Align = MI->getOperand(3).getImm();
7388  DebugLoc dl = MI->getDebugLoc();
7389 
7390  MachineFunction *MF = BB->getParent();
7391  MachineRegisterInfo &MRI = MF->getRegInfo();
7392  unsigned UnitSize = 0;
7393  const TargetRegisterClass *TRC = 0;
7394  const TargetRegisterClass *VecTRC = 0;
7395 
7396  bool IsThumb1 = Subtarget->isThumb1Only();
7397  bool IsThumb2 = Subtarget->isThumb2();
7398 
7399  if (Align & 1) {
7400  UnitSize = 1;
7401  } else if (Align & 2) {
7402  UnitSize = 2;
7403  } else {
7404  // Check whether we can use NEON instructions.
7405  if (!MF->getFunction()->getAttributes().
7406  hasAttribute(AttributeSet::FunctionIndex,
7408  Subtarget->hasNEON()) {
7409  if ((Align % 16 == 0) && SizeVal >= 16)
7410  UnitSize = 16;
7411  else if ((Align % 8 == 0) && SizeVal >= 8)
7412  UnitSize = 8;
7413  }
7414  // Can't use NEON instructions.
7415  if (UnitSize == 0)
7416  UnitSize = 4;
7417  }
7418 
7419  // Select the correct opcode and register class for unit size load/store
7420  bool IsNeon = UnitSize >= 8;
7421  TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass
7422  : (const TargetRegisterClass *)&ARM::GPRRegClass;
7423  if (IsNeon)
7424  VecTRC = UnitSize == 16
7425  ? (const TargetRegisterClass *)&ARM::DPairRegClass
7426  : UnitSize == 8
7427  ? (const TargetRegisterClass *)&ARM::DPRRegClass
7428  : 0;
7429 
7430  unsigned BytesLeft = SizeVal % UnitSize;
7431  unsigned LoopSize = SizeVal - BytesLeft;
7432 
7433  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7434  // Use LDR and STR to copy.
7435  // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7436  // [destOut] = STR_POST(scratch, destIn, UnitSize)
7437  unsigned srcIn = src;
7438  unsigned destIn = dest;
7439  for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7440  unsigned srcOut = MRI.createVirtualRegister(TRC);
7441  unsigned destOut = MRI.createVirtualRegister(TRC);
7442  unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7443  emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7444  IsThumb1, IsThumb2);
7445  emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7446  IsThumb1, IsThumb2);
7447  srcIn = srcOut;
7448  destIn = destOut;
7449  }
7450 
7451  // Handle the leftover bytes with LDRB and STRB.
7452  // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7453  // [destOut] = STRB_POST(scratch, destIn, 1)
7454  for (unsigned i = 0; i < BytesLeft; i++) {
7455  unsigned srcOut = MRI.createVirtualRegister(TRC);
7456  unsigned destOut = MRI.createVirtualRegister(TRC);
7457  unsigned scratch = MRI.createVirtualRegister(TRC);
7458  emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7459  IsThumb1, IsThumb2);
7460  emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7461  IsThumb1, IsThumb2);
7462  srcIn = srcOut;
7463  destIn = destOut;
7464  }
7465  MI->eraseFromParent(); // The instruction is gone now.
7466  return BB;
7467  }
7468 
7469  // Expand the pseudo op to a loop.
7470  // thisMBB:
7471  // ...
7472  // movw varEnd, # --> with thumb2
7473  // movt varEnd, #
7474  // ldrcp varEnd, idx --> without thumb2
7475  // fallthrough --> loopMBB
7476  // loopMBB:
7477  // PHI varPhi, varEnd, varLoop
7478  // PHI srcPhi, src, srcLoop
7479  // PHI destPhi, dst, destLoop
7480  // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7481  // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7482  // subs varLoop, varPhi, #UnitSize
7483  // bne loopMBB
7484  // fallthrough --> exitMBB
7485  // exitMBB:
7486  // epilogue to handle left-over bytes
7487  // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7488  // [destOut] = STRB_POST(scratch, destLoop, 1)
7489  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7490  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7491  MF->insert(It, loopMBB);
7492  MF->insert(It, exitMBB);
7493 
7494  // Transfer the remainder of BB and its successor edges to exitMBB.
7495  exitMBB->splice(exitMBB->begin(), BB,
7497  BB->end());
7498  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7499 
7500  // Load an immediate to varEnd.
7501  unsigned varEnd = MRI.createVirtualRegister(TRC);
7502  if (IsThumb2) {
7503  unsigned Vtmp = varEnd;
7504  if ((LoopSize & 0xFFFF0000) != 0)
7505  Vtmp = MRI.createVirtualRegister(TRC);
7506  AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp)
7507  .addImm(LoopSize & 0xFFFF));
7508 
7509  if ((LoopSize & 0xFFFF0000) != 0)
7510  AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
7511  .addReg(Vtmp).addImm(LoopSize >> 16));
7512  } else {
7513  MachineConstantPool *ConstantPool = MF->getConstantPool();
7514  Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7515  const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7516 
7517  // MachineConstantPool wants an explicit alignment.
7518  unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7519  if (Align == 0)
7520  Align = getDataLayout()->getTypeAllocSize(C->getType());
7521  unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7522 
7523  if (IsThumb1)
7524  AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7525  varEnd, RegState::Define).addConstantPoolIndex(Idx));
7526  else
7527  AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7528  varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7529  }
7530  BB->addSuccessor(loopMBB);
7531 
7532  // Generate the loop body:
7533  // varPhi = PHI(varLoop, varEnd)
7534  // srcPhi = PHI(srcLoop, src)
7535  // destPhi = PHI(destLoop, dst)
7536  MachineBasicBlock *entryBB = BB;
7537  BB = loopMBB;
7538  unsigned varLoop = MRI.createVirtualRegister(TRC);
7539  unsigned varPhi = MRI.createVirtualRegister(TRC);
7540  unsigned srcLoop = MRI.createVirtualRegister(TRC);
7541  unsigned srcPhi = MRI.createVirtualRegister(TRC);
7542  unsigned destLoop = MRI.createVirtualRegister(TRC);
7543  unsigned destPhi = MRI.createVirtualRegister(TRC);
7544 
7545  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7546  .addReg(varLoop).addMBB(loopMBB)
7547  .addReg(varEnd).addMBB(entryBB);
7548  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7549  .addReg(srcLoop).addMBB(loopMBB)
7550  .addReg(src).addMBB(entryBB);
7551  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7552  .addReg(destLoop).addMBB(loopMBB)
7553  .addReg(dest).addMBB(entryBB);
7554 
7555  // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7556  // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7557  unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7558  emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7559  IsThumb1, IsThumb2);
7560  emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7561  IsThumb1, IsThumb2);
7562 
7563  // Decrement loop variable by UnitSize.
7564  if (IsThumb1) {
7565  MachineInstrBuilder MIB =
7566  BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7567  MIB = AddDefaultT1CC(MIB);
7568  MIB.addReg(varPhi).addImm(UnitSize);
7569  AddDefaultPred(MIB);
7570  } else {
7571  MachineInstrBuilder MIB =
7572  BuildMI(*BB, BB->end(), dl,
7573  TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7574  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7575  MIB->getOperand(5).setReg(ARM::CPSR);
7576  MIB->getOperand(5).setIsDef(true);
7577  }
7578  BuildMI(*BB, BB->end(), dl,
7579  TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7580  .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7581 
7582  // loopMBB can loop back to loopMBB or fall through to exitMBB.
7583  BB->addSuccessor(loopMBB);
7584  BB->addSuccessor(exitMBB);
7585 
7586  // Add epilogue to handle BytesLeft.
7587  BB = exitMBB;
7588  MachineInstr *StartOfExit = exitMBB->begin();
7589 
7590  // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7591  // [destOut] = STRB_POST(scratch, destLoop, 1)
7592  unsigned srcIn = srcLoop;
7593  unsigned destIn = destLoop;
7594  for (unsigned i = 0; i < BytesLeft; i++) {
7595  unsigned srcOut = MRI.createVirtualRegister(TRC);
7596  unsigned destOut = MRI.createVirtualRegister(TRC);
7597  unsigned scratch = MRI.createVirtualRegister(TRC);
7598  emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7599  IsThumb1, IsThumb2);
7600  emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7601  IsThumb1, IsThumb2);
7602  srcIn = srcOut;
7603  destIn = destOut;
7604  }
7605 
7606  MI->eraseFromParent(); // The instruction is gone now.
7607  return BB;
7608 }
7609 
7612  MachineBasicBlock *BB) const {
7614  DebugLoc dl = MI->getDebugLoc();
7615  bool isThumb2 = Subtarget->isThumb2();
7616  switch (MI->getOpcode()) {
7617  default: {
7618  MI->dump();
7619  llvm_unreachable("Unexpected instr type to insert");
7620  }
7621  // The Thumb2 pre-indexed stores have the same MI operands, they just
7622  // define them differently in the .td files from the isel patterns, so
7623  // they need pseudos.
7624  case ARM::t2STR_preidx:
7625  MI->setDesc(TII->get(ARM::t2STR_PRE));
7626  return BB;
7627  case ARM::t2STRB_preidx:
7628  MI->setDesc(TII->get(ARM::t2STRB_PRE));
7629  return BB;
7630  case ARM::t2STRH_preidx:
7631  MI->setDesc(TII->get(ARM::t2STRH_PRE));
7632  return BB;
7633 
7634  case ARM::STRi_preidx:
7635  case ARM::STRBi_preidx: {
7636  unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7637  ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7638  // Decode the offset.
7639  unsigned Offset = MI->getOperand(4).getImm();
7640  bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7641  Offset = ARM_AM::getAM2Offset(Offset);
7642  if (isSub)
7643  Offset = -Offset;
7644 
7645  MachineMemOperand *MMO = *MI->memoperands_begin();
7646  BuildMI(*BB, MI, dl, TII->get(NewOpc))
7647  .addOperand(MI->getOperand(0)) // Rn_wb
7648  .addOperand(MI->getOperand(1)) // Rt
7649  .addOperand(MI->getOperand(2)) // Rn
7650  .addImm(Offset) // offset (skip GPR==zero_reg)
7651  .addOperand(MI->getOperand(5)) // pred
7652  .addOperand(MI->getOperand(6))
7653  .addMemOperand(MMO);
7654  MI->eraseFromParent();
7655  return BB;
7656  }
7657  case ARM::STRr_preidx:
7658  case ARM::STRBr_preidx:
7659  case ARM::STRH_preidx: {
7660  unsigned NewOpc;
7661  switch (MI->getOpcode()) {
7662  default: llvm_unreachable("unexpected opcode!");
7663  case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7664  case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7665  case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7666  }
7667  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7668  for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7669  MIB.addOperand(MI->getOperand(i));
7670  MI->eraseFromParent();
7671  return BB;
7672  }
7673  case ARM::ATOMIC_LOAD_ADD_I8:
7674  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7675  case ARM::ATOMIC_LOAD_ADD_I16:
7676  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7677  case ARM::ATOMIC_LOAD_ADD_I32:
7678  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7679 
7680  case ARM::ATOMIC_LOAD_AND_I8:
7681  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7682  case ARM::ATOMIC_LOAD_AND_I16:
7683  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7684  case ARM::ATOMIC_LOAD_AND_I32:
7685  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7686 
7687  case ARM::ATOMIC_LOAD_OR_I8:
7688  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7689  case ARM::ATOMIC_LOAD_OR_I16:
7690  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7691  case ARM::ATOMIC_LOAD_OR_I32:
7692  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7693 
7694  case ARM::ATOMIC_LOAD_XOR_I8:
7695  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7696  case ARM::ATOMIC_LOAD_XOR_I16:
7697  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7698  case ARM::ATOMIC_LOAD_XOR_I32:
7699  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7700 
7701  case ARM::ATOMIC_LOAD_NAND_I8:
7702  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7703  case ARM::ATOMIC_LOAD_NAND_I16:
7704  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7705  case ARM::ATOMIC_LOAD_NAND_I32:
7706  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7707 
7708  case ARM::ATOMIC_LOAD_SUB_I8:
7709  return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7710  case ARM::ATOMIC_LOAD_SUB_I16:
7711  return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7712  case ARM::ATOMIC_LOAD_SUB_I32:
7713  return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7714 
7715  case ARM::ATOMIC_LOAD_MIN_I8:
7716  return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
7717  case ARM::ATOMIC_LOAD_MIN_I16:
7718  return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
7719  case ARM::ATOMIC_LOAD_MIN_I32:
7720  return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
7721 
7722  case ARM::ATOMIC_LOAD_MAX_I8:
7723  return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
7724  case ARM::ATOMIC_LOAD_MAX_I16:
7725  return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
7726  case ARM::ATOMIC_LOAD_MAX_I32:
7727  return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
7728 
7729  case ARM::ATOMIC_LOAD_UMIN_I8:
7730  return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
7731  case ARM::ATOMIC_LOAD_UMIN_I16:
7732  return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
7733  case ARM::ATOMIC_LOAD_UMIN_I32:
7734  return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
7735 
7736  case ARM::ATOMIC_LOAD_UMAX_I8:
7737  return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
7738  case ARM::ATOMIC_LOAD_UMAX_I16:
7739  return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
7740  case ARM::ATOMIC_LOAD_UMAX_I32:
7741  return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
7742 
7743  case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
7744  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
7745  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
7746 
7747  case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
7748  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
7749  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
7750 
7751  case ARM::ATOMIC_LOAD_I64:
7752  return EmitAtomicLoad64(MI, BB);
7753 
7754  case ARM::ATOMIC_LOAD_ADD_I64:
7755  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
7756  isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
7757  /*NeedsCarry*/ true);
7758  case ARM::ATOMIC_LOAD_SUB_I64:
7759  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7760  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7761  /*NeedsCarry*/ true);
7762  case ARM::ATOMIC_LOAD_OR_I64:
7763  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
7764  isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7765  case ARM::ATOMIC_LOAD_XOR_I64:
7766  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
7767  isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7768  case ARM::ATOMIC_LOAD_AND_I64:
7769  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
7770  isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7771  case ARM::ATOMIC_STORE_I64:
7772  case ARM::ATOMIC_SWAP_I64:
7773  return EmitAtomicBinary64(MI, BB, 0, 0, false);
7774  case ARM::ATOMIC_CMP_SWAP_I64:
7775  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7776  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7777  /*NeedsCarry*/ false, /*IsCmpxchg*/true);
7778  case ARM::ATOMIC_LOAD_MIN_I64:
7779  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7780  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7781  /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7782  /*IsMinMax*/ true, ARMCC::LT);
7783  case ARM::ATOMIC_LOAD_MAX_I64:
7784  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7785  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7786  /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7787  /*IsMinMax*/ true, ARMCC::GE);
7788  case ARM::ATOMIC_LOAD_UMIN_I64:
7789  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7790  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7791  /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7792  /*IsMinMax*/ true, ARMCC::LO);
7793  case ARM::ATOMIC_LOAD_UMAX_I64:
7794  return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7795  isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7796  /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7797  /*IsMinMax*/ true, ARMCC::HS);
7798 
7799  case ARM::tMOVCCr_pseudo: {
7800  // To "insert" a SELECT_CC instruction, we actually have to insert the
7801  // diamond control-flow pattern. The incoming instruction knows the
7802  // destination vreg to set, the condition code register to branch on, the
7803  // true/false values to select between, and a branch opcode to use.
7804  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7805  MachineFunction::iterator It = BB;
7806  ++It;
7807 
7808  // thisMBB:
7809  // ...
7810  // TrueVal = ...
7811  // cmpTY ccX, r1, r2
7812  // bCC copy1MBB
7813  // fallthrough --> copy0MBB
7814  MachineBasicBlock *thisMBB = BB;
7815  MachineFunction *F = BB->getParent();
7816  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7817  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7818  F->insert(It, copy0MBB);
7819  F->insert(It, sinkMBB);
7820 
7821  // Transfer the remainder of BB and its successor edges to sinkMBB.
7822  sinkMBB->splice(sinkMBB->begin(), BB,
7824  BB->end());
7825  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7826 
7827  BB->addSuccessor(copy0MBB);
7828  BB->addSuccessor(sinkMBB);
7829 
7830  BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7831  .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7832 
7833  // copy0MBB:
7834  // %FalseValue = ...
7835  // # fallthrough to sinkMBB
7836  BB = copy0MBB;
7837 
7838  // Update machine-CFG edges
7839  BB->addSuccessor(sinkMBB);
7840 
7841  // sinkMBB:
7842  // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7843  // ...
7844  BB = sinkMBB;
7845  BuildMI(*BB, BB->begin(), dl,
7846  TII->get(ARM::PHI), MI->getOperand(0).getReg())
7847  .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7848  .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7849 
7850  MI->eraseFromParent(); // The pseudo instruction is gone now.
7851  return BB;
7852  }
7853 
7854  case ARM::BCCi64:
7855  case ARM::BCCZi64: {
7856  // If there is an unconditional branch to the other successor, remove it.
7858 
7859  // Compare both parts that make up the double comparison separately for
7860  // equality.
7861  bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7862 
7863  unsigned LHS1 = MI->getOperand(1).getReg();
7864  unsigned LHS2 = MI->getOperand(2).getReg();
7865  if (RHSisZero) {
7866  AddDefaultPred(BuildMI(BB, dl,
7867  TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7868  .addReg(LHS1).addImm(0));
7869  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7870  .addReg(LHS2).addImm(0)
7871  .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7872  } else {
7873  unsigned RHS1 = MI->getOperand(3).getReg();
7874  unsigned RHS2 = MI->getOperand(4).getReg();
7875  AddDefaultPred(BuildMI(BB, dl,
7876  TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7877  .addReg(LHS1).addReg(RHS1));
7878  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7879  .addReg(LHS2).addReg(RHS2)
7880  .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7881  }
7882 
7883  MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7884  MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7885  if (MI->getOperand(0).getImm() == ARMCC::NE)
7886  std::swap(destMBB, exitMBB);
7887 
7888  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7889  .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7890  if (isThumb2)
7891  AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7892  else
7893  BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7894 
7895  MI->eraseFromParent(); // The pseudo instruction is gone now.
7896  return BB;
7897  }
7898 
7899  case ARM::Int_eh_sjlj_setjmp:
7900  case ARM::Int_eh_sjlj_setjmp_nofp:
7901  case ARM::tInt_eh_sjlj_setjmp:
7902  case ARM::t2Int_eh_sjlj_setjmp:
7903  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7904  EmitSjLjDispatchBlock(MI, BB);
7905  return BB;
7906 
7907  case ARM::ABS:
7908  case ARM::t2ABS: {
7909  // To insert an ABS instruction, we have to insert the
7910  // diamond control-flow pattern. The incoming instruction knows the
7911  // source vreg to test against 0, the destination vreg to set,
7912  // the condition code register to branch on, the
7913  // true/false values to select between, and a branch opcode to use.
7914  // It transforms
7915  // V1 = ABS V0
7916  // into
7917  // V2 = MOVS V0
7918  // BCC (branch to SinkBB if V0 >= 0)
7919  // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
7920  // SinkBB: V1 = PHI(V2, V3)
7921  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7922  MachineFunction::iterator BBI = BB;
7923  ++BBI;
7924  MachineFunction *Fn = BB->getParent();
7925  MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7926  MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7927  Fn->insert(BBI, RSBBB);
7928  Fn->insert(BBI, SinkBB);
7929 
7930  unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7931  unsigned int ABSDstReg = MI->getOperand(0).getReg();
7932  bool isThumb2 = Subtarget->isThumb2();
7933  MachineRegisterInfo &MRI = Fn->getRegInfo();
7934  // In Thumb mode S must not be specified if source register is the SP or
7935  // PC and if destination register is the SP, so restrict register class
7936  unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7937  (const TargetRegisterClass*)&ARM::rGPRRegClass :
7938  (const TargetRegisterClass*)&ARM::GPRRegClass);
7939 
7940  // Transfer the remainder of BB and its successor edges to sinkMBB.
7941  SinkBB->splice(SinkBB->begin(), BB,
7943  BB->end());
7944  SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7945 
7946  BB->addSuccessor(RSBBB);
7947  BB->addSuccessor(SinkBB);
7948 
7949  // fall through to SinkMBB
7950  RSBBB->addSuccessor(SinkBB);
7951 
7952  // insert a cmp at the end of BB
7953  AddDefaultPred(BuildMI(BB, dl,
7954  TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7955  .addReg(ABSSrcReg).addImm(0));
7956 
7957  // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7958  BuildMI(BB, dl,
7959  TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7961 
7962  // insert rsbri in RSBBB
7963  // Note: BCC and rsbri will be converted into predicated rsbmi
7964  // by if-conversion pass
7965  BuildMI(*RSBBB, RSBBB->begin(), dl,
7966  TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7967  .addReg(ABSSrcReg, RegState::Kill)
7968  .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7969 
7970  // insert PHI in SinkBB,
7971  // reuse ABSDstReg to not change uses of ABS instruction
7972  BuildMI(*SinkBB, SinkBB->begin(), dl,
7973  TII->get(ARM::PHI), ABSDstReg)
7974  .addReg(NewRsbDstReg).addMBB(RSBBB)
7975  .addReg(ABSSrcReg).addMBB(BB);
7976 
7977  // remove ABS instruction
7978  MI->eraseFromParent();
7979 
7980  // return last added BB
7981  return SinkBB;
7982  }
7983  case ARM::COPY_STRUCT_BYVAL_I32:
7984  ++NumLoopByVals;
7985  return EmitStructByval(MI, BB);
7986  }
7987 }
7988 
7990  SDNode *Node) const {
7991  if (!MI->hasPostISelHook()) {
7992  assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7993  "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7994  return;
7995  }
7996 
7997  const MCInstrDesc *MCID = &MI->getDesc();
7998  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7999  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8000  // operand is still set to noreg. If needed, set the optional operand's
8001  // register to CPSR, and remove the redundant implicit def.
8002  //
8003  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8004 
8005  // Rename pseudo opcodes.
8006  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
8007  if (NewOpc) {
8008  const ARMBaseInstrInfo *TII =
8009  static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
8010  MCID = &TII->get(NewOpc);
8011 
8012  assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
8013  "converted opcode should be the same except for cc_out");
8014 
8015  MI->setDesc(*MCID);
8016 
8017  // Add the optional cc_out operand
8018  MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
8019  }
8020  unsigned ccOutIdx = MCID->getNumOperands() - 1;
8021 
8022  // Any ARM instruction that sets the 's' bit should specify an optional
8023  // "cc_out" operand in the last operand position.
8024  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
8025  assert(!NewOpc && "Optional cc_out operand required");
8026  return;
8027  }
8028  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
8029  // since we already have an optional CPSR def.
8030  bool definesCPSR = false;
8031  bool deadCPSR = false;
8032  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
8033  i != e; ++i) {
8034  const MachineOperand &MO = MI->getOperand(i);
8035  if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
8036  definesCPSR = true;
8037  if (MO.isDead())
8038  deadCPSR = true;
8039  MI->RemoveOperand(i);
8040  break;
8041  }
8042  }
8043  if (!definesCPSR) {
8044  assert(!NewOpc && "Optional cc_out operand required");
8045  return;
8046  }
8047  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
8048  if (deadCPSR) {
8049  assert(!MI->getOperand(ccOutIdx).getReg() &&
8050  "expect uninitialized optional cc_out operand");
8051  return;
8052  }
8053 
8054  // If this instruction was defined with an optional CPSR def and its dag node
8055  // had a live implicit CPSR def, then activate the optional CPSR def.
8056  MachineOperand &MO = MI->getOperand(ccOutIdx);
8057  MO.setReg(ARM::CPSR);
8058  MO.setIsDef(true);
8059 }
8060 
8061 //===----------------------------------------------------------------------===//
8062 // ARM Optimization Hooks
8063 //===----------------------------------------------------------------------===//
8064 
8065 // Helper function that checks if N is a null or all ones constant.
8066 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
8068  if (!C)
8069  return false;
8070  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
8071 }
8072 
8073 // Return true if N is conditionally 0 or all ones.
8074 // Detects these expressions where cc is an i1 value:
8075 //
8076 // (select cc 0, y) [AllOnes=0]
8077 // (select cc y, 0) [AllOnes=0]
8078 // (zext cc) [AllOnes=0]
8079 // (sext cc) [AllOnes=0/1]
8080 // (select cc -1, y) [AllOnes=1]
8081 // (select cc y, -1) [AllOnes=1]
8082 //
8083 // Invert is set when N is the null/all ones constant when CC is false.
8084 // OtherOp is set to the alternative value of N.
8085 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
8086  SDValue &CC, bool &Invert,
8087  SDValue &OtherOp,
8088  SelectionDAG &DAG) {
8089  switch (N->getOpcode()) {
8090  default: return false;
8091  case ISD::SELECT: {
8092  CC = N->getOperand(0);
8093  SDValue N1 = N->getOperand(1);
8094  SDValue N2 = N->getOperand(2);
8095  if (isZeroOrAllOnes(N1, AllOnes)) {
8096  Invert = false;
8097  OtherOp = N2;
8098  return true;
8099  }
8100  if (isZeroOrAllOnes(N2, AllOnes)) {
8101  Invert = true;
8102  OtherOp = N1;
8103  return true;
8104  }
8105  return false;
8106  }
8107  case ISD::ZERO_EXTEND:
8108  // (zext cc) can never be the all ones value.
8109  if (AllOnes)
8110  return false;
8111  // Fall through.
8112  case ISD::SIGN_EXTEND: {
8113  EVT VT = N->getValueType(0);
8114  CC = N->getOperand(0);
8115  if (CC.getValueType() != MVT::i1)
8116  return false;
8117  Invert = !AllOnes;
8118  if (AllOnes)
8119  // When looking for an AllOnes constant, N is an sext, and the 'other'
8120  // value is 0.
8121  OtherOp = DAG.getConstant(0, VT);
8122  else if (N->getOpcode() == ISD::ZERO_EXTEND)
8123  // When looking for a 0 constant, N can be zext or sext.
8124  OtherOp = DAG.getConstant(1, VT);
8125  else
8126  OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
8127  return true;
8128  }
8129  }
8130 }
8131 
8132 // Combine a constant select operand into its use:
8133 //
8134 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8135 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8136 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
8137 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8138 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8139 //
8140 // The transform is rejected if the select doesn't have a constant operand that
8141 // is null, or all ones when AllOnes is set.
8142 //
8143 // Also recognize sext/zext from i1:
8144 //
8145 // (add (zext cc), x) -> (select cc (add x, 1), x)
8146 // (add (sext cc), x) -> (select cc (add x, -1), x)
8147 //
8148 // These transformations eventually create predicated instructions.
8149 //
8150 // @param N The node to transform.
8151 // @param Slct The N operand that is a select.
8152 // @param OtherOp The other N operand (x above).
8153 // @param DCI Context.
8154 // @param AllOnes Require the select constant to be all ones instead of null.
8155 // @returns The new node, or SDValue() on failure.
8156 static
8159  bool AllOnes = false) {
8160  SelectionDAG &DAG = DCI.DAG;
8161  EVT VT = N->getValueType(0);
8162  SDValue NonConstantVal;
8163  SDValue CCOp;
8164  bool SwapSelectOps;
8165  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
8166  NonConstantVal, DAG))
8167  return SDValue();
8168 
8169  // Slct is now know to be the desired identity constant when CC is true.
8170  SDValue TrueVal = OtherOp;
8171  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
8172  OtherOp, NonConstantVal);
8173  // Unless SwapSelectOps says CC should be false.
8174  if (SwapSelectOps)
8175  std::swap(TrueVal, FalseVal);
8176 
8177  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8178  CCOp, TrueVal, FalseVal);
8179 }
8180 
8181 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8182 static
8185  SDValue N0 = N->getOperand(0);
8186  SDValue N1 = N->getOperand(1);
8187  if (N0.getNode()->hasOneUse()) {
8188  SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
8189  if (Result.getNode())
8190  return Result;
8191  }
8192  if (N1.getNode()->hasOneUse()) {
8193  SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
8194  if (Result.getNode())
8195  return Result;
8196  }
8197  return SDValue();
8198 }
8199 
8200 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
8201 // (only after legalization).
8204  const ARMSubtarget *Subtarget) {
8205 
8206  // Only perform optimization if after legalize, and if NEON is available. We
8207  // also expected both operands to be BUILD_VECTORs.
8208  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
8209  || N0.getOpcode() != ISD::BUILD_VECTOR
8210  || N1.getOpcode() != ISD::BUILD_VECTOR)
8211  return SDValue();
8212 
8213  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
8214  EVT VT = N->getValueType(0);
8215  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
8216  return SDValue();
8217 
8218  // Check that the vector operands are of the right form.
8219  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
8220  // operands, where N is the size of the formed vector.
8221  // Each EXTRACT_VECTOR should have the same input vector and odd or even
8222  // index such that we have a pair wise add pattern.
8223 
8224  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
8225  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8226  return SDValue();
8227  SDValue Vec = N0->getOperand(0)->getOperand(0);
8228  SDNode *V = Vec.getNode();
8229  unsigned nextIndex = 0;
8230 
8231  // For each operands to the ADD which are BUILD_VECTORs,
8232  // check to see if each of their operands are an EXTRACT_VECTOR with
8233  // the same vector and appropriate index.
8234  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
8236  && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8237 
8238  SDValue ExtVec0 = N0->getOperand(i);
8239  SDValue ExtVec1 = N1->getOperand(i);
8240 
8241  // First operand is the vector, verify its the same.
8242  if (V != ExtVec0->getOperand(0).getNode() ||
8243  V != ExtVec1->getOperand(0).getNode())
8244  return SDValue();
8245 
8246  // Second is the constant, verify its correct.
8247  ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
8248  ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
8249 
8250  // For the constant, we want to see all the even or all the odd.
8251  if (!C0 || !C1 || C0->getZExtValue() != nextIndex
8252  || C1->getZExtValue() != nextIndex+1)
8253  return SDValue();
8254 
8255  // Increment index.
8256  nextIndex+=2;
8257  } else
8258  return SDValue();
8259  }
8260 
8261  // Create VPADDL node.
8262  SelectionDAG &DAG = DCI.DAG;
8263  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8264 
8265  // Build operand list.
8268  TLI.getPointerTy()));
8269 
8270  // Input is the vector.
8271  Ops.push_back(Vec);
8272 
8273  // Get widened type and narrowed type.
8274  MVT widenType;
8275  unsigned numElem = VT.getVectorNumElements();
8276  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
8277  case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
8278  case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
8279  case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
8280  default:
8281  llvm_unreachable("Invalid vector element type for padd optimization.");
8282  }
8283 
8285  widenType, &Ops[0], Ops.size());
8286  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp);
8287 }
8288 
8290  if (V->getOpcode() == ISD::UMUL_LOHI ||
8291  V->getOpcode() == ISD::SMUL_LOHI)
8292  return V;
8293  return SDValue();
8294 }
8295 
8298  const ARMSubtarget *Subtarget) {
8299 
8300  if (Subtarget->isThumb1Only()) return SDValue();
8301 
8302  // Only perform the checks after legalize when the pattern is available.
8303  if (DCI.isBeforeLegalize()) return SDValue();
8304 
8305  // Look for multiply add opportunities.
8306  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
8307  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
8308  // a glue link from the first add to the second add.
8309  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
8310  // a S/UMLAL instruction.
8311  // loAdd UMUL_LOHI
8312  // \ / :lo \ :hi
8313  // \ / \ [no multiline comment]
8314  // ADDC | hiAdd
8315  // \ :glue / /
8316  // \ / /
8317  // ADDE
8318  //
8319  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
8320  SDValue AddcOp0 = AddcNode->getOperand(0);
8321  SDValue AddcOp1 = AddcNode->getOperand(1);
8322 
8323  // Check if the two operands are from the same mul_lohi node.
8324  if (AddcOp0.getNode() == AddcOp1.getNode())
8325  return SDValue();
8326 
8327  assert(AddcNode->getNumValues() == 2 &&
8328  AddcNode->getValueType(0) == MVT::i32 &&
8329  "Expect ADDC with two result values. First: i32");
8330 
8331  // Check that we have a glued ADDC node.
8332  if (AddcNode->getValueType(1) != MVT::Glue)
8333  return SDValue();
8334 
8335  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8336  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8337  AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8338  AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8339  AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8340  return SDValue();
8341 
8342  // Look for the glued ADDE.
8343  SDNode* AddeNode = AddcNode->getGluedUser();
8344  if (AddeNode == NULL)
8345  return SDValue();
8346 
8347  // Make sure it is really an ADDE.
8348  if (AddeNode->getOpcode() != ISD::ADDE)
8349  return SDValue();
8350 
8351  assert(AddeNode->getNumOperands() == 3 &&
8352  AddeNode->getOperand(2).getValueType() == MVT::Glue &&
8353  "ADDE node has the wrong inputs");
8354 
8355  // Check for the triangle shape.
8356  SDValue AddeOp0 = AddeNode->getOperand(0);
8357  SDValue AddeOp1 = AddeNode->getOperand(1);
8358 
8359  // Make sure that the ADDE operands are not coming from the same node.
8360  if (AddeOp0.getNode() == AddeOp1.getNode())
8361  return SDValue();
8362 
8363  // Find the MUL_LOHI node walking up ADDE's operands.
8364  bool IsLeftOperandMUL = false;
8365  SDValue MULOp = findMUL_LOHI(AddeOp0);
8366  if (MULOp == SDValue())
8367  MULOp = findMUL_LOHI(AddeOp1);
8368  else
8369  IsLeftOperandMUL = true;
8370  if (MULOp == SDValue())
8371  return SDValue();
8372 
8373  // Figure out the right opcode.
8374  unsigned Opc = MULOp->getOpcode();
8375  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8376 
8377  // Figure out the high and low input values to the MLAL node.
8378  SDValue* HiMul = &MULOp;
8379  SDValue* HiAdd = NULL;
8380  SDValue* LoMul = NULL;
8381  SDValue* LowAdd = NULL;
8382 
8383  if (IsLeftOperandMUL)
8384  HiAdd = &AddeOp1;
8385  else
8386  HiAdd = &AddeOp0;
8387 
8388 
8389  if (AddcOp0->getOpcode() == Opc) {
8390  LoMul = &AddcOp0;
8391  LowAdd = &AddcOp1;
8392  }
8393  if (AddcOp1->getOpcode() == Opc) {
8394  LoMul = &AddcOp1;
8395  LowAdd = &AddcOp0;
8396  }
8397 
8398  if (LoMul == NULL)
8399  return SDValue();
8400 
8401  if (LoMul->getNode() != HiMul->getNode())
8402  return SDValue();
8403 
8404  // Create the merged node.
8405  SelectionDAG &DAG = DCI.DAG;
8406 
8407  // Build operand list.
8409  Ops.push_back(LoMul->getOperand(0));
8410  Ops.push_back(LoMul->getOperand(1));
8411  Ops.push_back(*LowAdd);
8412  Ops.push_back(*HiAdd);
8413 
8414  SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
8415  DAG.getVTList(MVT::i32, MVT::i32),
8416  &Ops[0], Ops.size());
8417 
8418  // Replace the ADDs' nodes uses by the MLA node's values.
8419  SDValue HiMLALResult(MLALNode.getNode(), 1);
8420  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8421 
8422  SDValue LoMLALResult(MLALNode.getNode(), 0);
8423  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8424 
8425  // Return original node to notify the driver to stop replacing.
8426  SDValue resNode(AddcNode, 0);
8427  return resNode;
8428 }
8429 
8430 /// PerformADDCCombine - Target-specific dag combine transform from
8431 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8434  const ARMSubtarget *Subtarget) {
8435 
8436  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8437 
8438 }
8439 
8440 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8441 /// operands N0 and N1. This is a helper for PerformADDCombine that is
8442 /// called with the default operands, and if that fails, with commuted
8443 /// operands.
8446  const ARMSubtarget *Subtarget){
8447 
8448  // Attempt to create vpaddl for this add.
8449  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
8450  if (Result.getNode())
8451  return Result;
8452 
8453  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8454  if (N0.getNode()->hasOneUse()) {
8455  SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
8456  if (Result.getNode()) return Result;
8457  }
8458  return SDValue();
8459 }
8460 
8461 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8462 ///
8465  const ARMSubtarget *Subtarget) {
8466  SDValue N0 = N->getOperand(0);
8467  SDValue N1 = N->getOperand(1);
8468 
8469  // First try with the default operand order.
8470  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
8471  if (Result.getNode())
8472  return Result;
8473 
8474  // If that didn't work, try again with the operands commuted.
8475  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8476 }
8477 
8478 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8479 ///
8482  SDValue N0 = N->getOperand(0);
8483  SDValue N1 = N->getOperand(1);
8484 
8485  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8486  if (N1.getNode()->hasOneUse()) {
8487  SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
8488  if (Result.getNode()) return Result;
8489  }
8490 
8491  return SDValue();
8492 }
8493 
8494 /// PerformVMULCombine
8495 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8496 /// special multiplier accumulator forwarding.
8497 /// vmul d3, d0, d2
8498 /// vmla d3, d1, d2
8499 /// is faster than
8500 /// vadd d3, d0, d1
8501 /// vmul d3, d3, d2
8502 // However, for (A + B) * (A + B),
8503 // vadd d2, d0, d1
8504 // vmul d3, d0, d2
8505 // vmla d3, d1, d2
8506 // is slower than
8507 // vadd d2, d0, d1
8508 // vmul d3, d2, d2
8511  const ARMSubtarget *Subtarget) {
8512  if (!Subtarget->hasVMLxForwarding())
8513  return SDValue();
8514 
8515  SelectionDAG &DAG = DCI.DAG;
8516  SDValue N0 = N->getOperand(0);
8517  SDValue N1 = N->getOperand(1);
8518  unsigned Opcode = N0.getOpcode();
8519  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8520  Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8521  Opcode = N1.getOpcode();
8522  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8523  Opcode != ISD::FADD && Opcode != ISD::FSUB)
8524  return SDValue();
8525  std::swap(N0, N1);
8526  }
8527 
8528  if (N0 == N1)
8529  return SDValue();
8530 
8531  EVT VT = N->getValueType(0);
8532  SDLoc DL(N);
8533  SDValue N00 = N0->getOperand(0);
8534  SDValue N01 = N0->getOperand(1);
8535  return DAG.getNode(Opcode, DL, VT,
8536  DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8537  DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8538 }
8539 
8542  const ARMSubtarget *Subtarget) {
8543  SelectionDAG &DAG = DCI.DAG;
8544 
8545  if (Subtarget->isThumb1Only())
8546  return SDValue();
8547 
8548  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8549  return SDValue();
8550 
8551  EVT VT = N->getValueType(0);
8552  if (VT.is64BitVector() || VT.is128BitVector())
8553  return PerformVMULCombine(N, DCI, Subtarget);
8554  if (VT != MVT::i32)
8555  return SDValue();
8556 
8558  if (!C)
8559  return SDValue();
8560 
8561  int64_t MulAmt = C->getSExtValue();
8562  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8563 
8564  ShiftAmt = ShiftAmt & (32 - 1);
8565  SDValue V = N->getOperand(0);
8566  SDLoc DL(N);
8567 
8568  SDValue Res;
8569  MulAmt >>= ShiftAmt;
8570 
8571  if (MulAmt >= 0) {
8572  if (isPowerOf2_32(MulAmt - 1)) {
8573  // (mul x, 2^N + 1) => (add (shl x, N), x)
8574  Res = DAG.getNode(ISD::ADD, DL, VT,
8575  V,
8576  DAG.getNode(ISD::SHL, DL, VT,
8577  V,
8578  DAG.getConstant(Log2_32(MulAmt - 1),
8579  MVT::i32)));
8580  } else if (isPowerOf2_32(MulAmt + 1)) {
8581  // (mul x, 2^N - 1) => (sub (shl x, N), x)
8582  Res = DAG.getNode(ISD::SUB, DL, VT,
8583  DAG.getNode(ISD::SHL, DL, VT,
8584  V,
8585  DAG.getConstant(Log2_32(MulAmt + 1),
8586  MVT::i32)),
8587  V);
8588  } else
8589  return SDValue();
8590  } else {
8591  uint64_t MulAmtAbs = -MulAmt;
8592  if (isPowerOf2_32(MulAmtAbs + 1)) {
8593  // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8594  Res = DAG.getNode(ISD::SUB, DL, VT,
8595  V,
8596  DAG.getNode(ISD::SHL, DL, VT,
8597  V,
8598  DAG.getConstant(Log2_32(MulAmtAbs + 1),
8599  MVT::i32)));
8600  } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8601  // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8602  Res = DAG.getNode(ISD::ADD, DL, VT,
8603  V,
8604  DAG.getNode(ISD::SHL, DL, VT,
8605  V,
8606  DAG.getConstant(Log2_32(MulAmtAbs-1),
8607  MVT::i32)));
8608  Res = DAG.getNode(ISD::SUB, DL, VT,
8609  DAG.getConstant(0, MVT::i32),Res);
8610 
8611  } else
8612  return SDValue();
8613  }
8614 
8615  if (ShiftAmt != 0)
8616  Res = DAG.getNode(ISD::SHL, DL, VT,
8617  Res, DAG.getConstant(ShiftAmt, MVT::i32));
8618 
8619  // Do not add new nodes to DAG combiner worklist.
8620  DCI.CombineTo(N, Res, false);
8621  return SDValue();
8622 }
8623 
8626  const ARMSubtarget *Subtarget) {
8627 
8628  // Attempt to use immediate-form VBIC
8630  SDLoc dl(N);
8631  EVT VT = N->getValueType(0);
8632  SelectionDAG &DAG = DCI.DAG;
8633 
8634  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8635  return SDValue();
8636 
8637  APInt SplatBits, SplatUndef;
8638  unsigned SplatBitSize;
8639  bool HasAnyUndefs;
8640  if (BVN &&
8641  BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8642  if (SplatBitSize <= 64) {
8643  EVT VbicVT;
8644  SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8645  SplatUndef.getZExtValue(), SplatBitSize,
8646  DAG, VbicVT, VT.is128BitVector(),
8647  OtherModImm);
8648  if (Val.getNode()) {
8649  SDValue Input =
8650  DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8651  SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8652  return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8653  }
8654  }
8655  }
8656 
8657  if (!Subtarget->isThumb1Only()) {
8658  // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8659  SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8660  if (Result.getNode())
8661  return Result;
8662  }
8663 
8664  return SDValue();
8665 }
8666 
8667 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8670  const ARMSubtarget *Subtarget) {
8671  // Attempt to use immediate-form VORR
8673  SDLoc dl(N);
8674  EVT VT = N->getValueType(0);
8675  SelectionDAG &DAG = DCI.DAG;
8676 
8677  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8678  return SDValue();
8679 
8680  APInt SplatBits, SplatUndef;
8681  unsigned SplatBitSize;
8682  bool HasAnyUndefs;
8683  if (BVN && Subtarget->hasNEON() &&
8684  BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8685  if (SplatBitSize <= 64) {
8686  EVT VorrVT;
8687  SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8688  SplatUndef.getZExtValue(), SplatBitSize,
8689  DAG, VorrVT, VT.is128BitVector(),
8690  OtherModImm);
8691  if (Val.getNode()) {
8692  SDValue Input =
8693  DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8694  SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8695  return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8696  }
8697  }
8698  }
8699 
8700  if (!Subtarget->isThumb1Only()) {
8701  // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8702  SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8703  if (Result.getNode())
8704  return Result;
8705  }
8706 
8707  // The code below optimizes (or (and X, Y), Z).
8708  // The AND operand needs to have a single user to make these optimizations
8709  // profitable.
8710  SDValue N0 = N->getOperand(0);
8711  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8712  return SDValue();
8713  SDValue N1 = N->getOperand(1);
8714 
8715  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8716  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8717  DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8718  APInt SplatUndef;
8719  unsigned SplatBitSize;
8720  bool HasAnyUndefs;
8721 
8722  APInt SplatBits0, SplatBits1;
8725  // Ensure that the second operand of both ands are constants
8726  if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8727  HasAnyUndefs) && !HasAnyUndefs) {
8728  if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8729  HasAnyUndefs) && !HasAnyUndefs) {
8730  // Ensure that the bit width of the constants are the same and that
8731  // the splat arguments are logical inverses as per the pattern we
8732  // are trying to simplify.
8733  if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
8734  SplatBits0 == ~SplatBits1) {
8735  // Canonicalize the vector type to make instruction selection
8736  // simpler.
8737  EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8738  SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8739  N0->getOperand(1),
8740  N0->getOperand(0),
8741  N1->getOperand(0));
8742  return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8743  }
8744  }
8745  }
8746  }
8747 
8748  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8749  // reasonable.
8750 
8751  // BFI is only available on V6T2+
8752  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8753  return SDValue();
8754 
8755  SDLoc DL(N);
8756  // 1) or (and A, mask), val => ARMbfi A, val, mask
8757  // iff (val & mask) == val
8758  //
8759  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8760  // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8761  // && mask == ~mask2
8762  // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8763  // && ~mask == mask2
8764  // (i.e., copy a bitfield value into another bitfield of the same width)
8765 
8766  if (VT != MVT::i32)
8767  return SDValue();
8768 
8769  SDValue N00 = N0.getOperand(0);
8770 
8771  // The value and the mask need to be constants so we can verify this is
8772  // actually a bitfield set. If the mask is 0xffff, we can do better
8773  // via a movt instruction, so don't use BFI in that case.
8774  SDValue MaskOp = N0.getOperand(1);
8775  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8776  if (!MaskC)
8777  return SDValue();
8778  unsigned Mask = MaskC->getZExtValue();
8779  if (Mask == 0xffff)
8780  return SDValue();
8781  SDValue Res;
8782  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8784  if (N1C) {
8785  unsigned Val = N1C->getZExtValue();
8786  if ((Val & ~Mask) != Val)
8787  return SDValue();
8788 
8789  if (ARM::isBitFieldInvertedMask(Mask)) {
8790  Val >>= countTrailingZeros(~Mask);
8791 
8792  Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8793  DAG.getConstant(Val, MVT::i32),
8794  DAG.getConstant(Mask, MVT::i32));
8795 
8796  // Do not add new nodes to DAG combiner worklist.
8797  DCI.CombineTo(N, Res, false);
8798  return SDValue();
8799  }
8800  } else if (N1.getOpcode() == ISD::AND) {
8801  // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8803  if (!N11C)
8804  return SDValue();
8805  unsigned Mask2 = N11C->getZExtValue();
8806 
8807  // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8808  // as is to match.
8809  if (ARM::isBitFieldInvertedMask(Mask) &&
8810  (Mask == ~Mask2)) {
8811  // The pack halfword instruction works better for masks that fit it,
8812  // so use that when it's available.
8813  if (Subtarget->hasT2ExtractPack() &&
8814  (Mask == 0xffff || Mask == 0xffff0000))
8815  return SDValue();
8816  // 2a
8817  unsigned amt = countTrailingZeros(Mask2);
8818  Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8819  DAG.getConstant(amt, MVT::i32));
8820  Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8821  DAG.getConstant(Mask, MVT::i32));
8822  // Do not add new nodes to DAG combiner worklist.
8823  DCI.CombineTo(N, Res, false);
8824  return SDValue();
8825  } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8826  (~Mask == Mask2)) {
8827  // The pack halfword instruction works better for masks that fit it,
8828  // so use that when it's available.
8829  if (Subtarget->hasT2ExtractPack() &&
8830  (Mask2 == 0xffff || Mask2 == 0xffff0000))
8831  return SDValue();
8832  // 2b
8833  unsigned lsb = countTrailingZeros(Mask);
8834  Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8835  DAG.getConstant(lsb, MVT::i32));
8836  Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8837  DAG.getConstant(Mask2, MVT::i32));
8838  // Do not add new nodes to DAG combiner worklist.
8839  DCI.CombineTo(N, Res, false);
8840  return SDValue();
8841  }
8842  }
8843 
8844  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8845  N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8846  ARM::isBitFieldInvertedMask(~Mask)) {
8847  // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8848  // where lsb(mask) == #shamt and masked bits of B are known zero.
8849  SDValue ShAmt = N00.getOperand(1);
8850  unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8851  unsigned LSB = countTrailingZeros(Mask);
8852  if (ShAmtC != LSB)
8853  return SDValue();
8854 
8855  Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8856  DAG.getConstant(~Mask, MVT::i32));
8857 
8858  // Do not add new nodes to DAG combiner worklist.
8859  DCI.CombineTo(N, Res, false);
8860  }
8861 
8862  return SDValue();
8863 }
8864 
8867  const ARMSubtarget *Subtarget) {
8868  EVT VT = N->getValueType(0);
8869  SelectionDAG &DAG = DCI.DAG;
8870 
8871  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8872  return SDValue();
8873 
8874  if (!Subtarget->isThumb1Only()) {
8875  // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8876  SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8877  if (Result.getNode())
8878  return Result;
8879  }
8880 
8881  return SDValue();
8882 }
8883 
8884 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8885 /// the bits being cleared by the AND are not demanded by the BFI.
8888  SDValue N1 = N->getOperand(1);
8889  if (N1.getOpcode() == ISD::AND) {
8891  if (!N11C)
8892  return SDValue();
8893  unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8894  unsigned LSB = countTrailingZeros(~InvMask);
8895  unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8896  unsigned Mask = (1 << Width)-1;
8897  unsigned Mask2 = N11C->getZExtValue();
8898  if ((Mask & (~Mask2)) == 0)
8899  return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8900  N->getOperand(0), N1.getOperand(0),
8901  N->getOperand(2));
8902  }
8903  return SDValue();
8904 }
8905 
8906 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8907 /// ARMISD::VMOVRRD.
8910  // vmovrrd(vmovdrr x, y) -> x,y
8911  SDValue InDouble = N->getOperand(0);
8912  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8913  return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8914 
8915  // vmovrrd(load f64) -> (load i32), (load i32)
8916  SDNode *InNode = InDouble.getNode();
8917  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8918  InNode->getValueType(0) == MVT::f64 &&
8919  InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8920  !cast<LoadSDNode>(InNode)->isVolatile()) {
8921  // TODO: Should this be done for non-FrameIndex operands?
8922  LoadSDNode *LD = cast<LoadSDNode>(InNode);
8923 
8924  SelectionDAG &DAG = DCI.DAG;
8925  SDLoc DL(LD);
8926  SDValue BasePtr = LD->getBasePtr();
8927  SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8928  LD->getPointerInfo(), LD->isVolatile(),
8929  LD->isNonTemporal(), LD->isInvariant(),
8930  LD->getAlignment());
8931 
8932  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8933  DAG.getConstant(4, MVT::i32));
8934  SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8935  LD->getPointerInfo(), LD->isVolatile(),
8936  LD->isNonTemporal(), LD->isInvariant(),
8937  std::min(4U, LD->getAlignment() / 2));
8938 
8939  DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8940  SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8941  DCI.RemoveFromWorklist(LD);
8942  DAG.DeleteNode(LD);
8943  return Result;
8944  }
8945 
8946  return SDValue();
8947 }
8948 
8949 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8950 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
8952  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8953  SDValue Op0 = N->getOperand(0);
8954  SDValue Op1 = N->getOperand(1);
8955  if (Op0.getOpcode() == ISD::BITCAST)
8956  Op0 = Op0.getOperand(0);
8957  if (Op1.getOpcode() == ISD::BITCAST)
8958  Op1 = Op1.getOperand(0);
8959  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8960  Op0.getNode() == Op1.getNode() &&
8961  Op0.getResNo() == 0 && Op1.getResNo() == 1)
8962  return DAG.getNode(ISD::BITCAST, SDLoc(N),
8963  N->getValueType(0), Op0.getOperand(0));
8964  return SDValue();
8965 }
8966 
8967 /// PerformSTORECombine - Target-specific dag combine xforms for
8968 /// ISD::STORE.
8971  StoreSDNode *St = cast<StoreSDNode>(N);
8972  if (St->isVolatile())
8973  return SDValue();
8974 
8975  // Optimize trunc store (of multiple scalars) to shuffle and store. First,
8976  // pack all of the elements in one place. Next, store to memory in fewer
8977  // chunks.
8978  SDValue StVal = St->getValue();
8979  EVT VT = StVal.getValueType();
8980  if (St->isTruncatingStore() && VT.isVector()) {
8981  SelectionDAG &DAG = DCI.DAG;
8982  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8983  EVT StVT = St->getMemoryVT();
8984  unsigned NumElems = VT.getVectorNumElements();
8985  assert(StVT != VT && "Cannot truncate to the same type");
8986  unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8987  unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8988 
8989  // From, To sizes and ElemCount must be pow of two
8990  if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8991 
8992  // We are going to use the original vector elt for storing.
8993  // Accumulated smaller vector elements must be a multiple of the store size.
8994  if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8995 
8996  unsigned SizeRatio = FromEltSz / ToEltSz;
8997  assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8998 
8999  // Create a type on which we perform the shuffle.
9000  EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
9001  NumElems*SizeRatio);
9002  assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
9003 
9004  SDLoc DL(St);
9005  SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
9006  SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
9007  for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
9008 
9009  // Can't shuffle using an illegal type.
9010  if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
9011 
9012  SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
9013  DAG.getUNDEF(WideVec.getValueType()),
9014  ShuffleVec.data());
9015  // At this point all of the data is stored at the bottom of the
9016  // register. We now need to save it to mem.
9017 
9018  // Find the largest store unit
9019  MVT StoreType = MVT::i8;
9020  for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
9021  tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
9022  MVT Tp = (MVT::SimpleValueType)tp;
9023  if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
9024  StoreType = Tp;
9025  }
9026  // Didn't find a legal store type.
9027  if (!TLI.isTypeLegal(StoreType))
9028  return SDValue();
9029 
9030  // Bitcast the original vector into a vector of store-size units
9031  EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
9032  StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
9033  assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
9034  SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
9035  SmallVector<SDValue, 8> Chains;
9036  SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
9037  TLI.getPointerTy());
9038  SDValue BasePtr = St->getBasePtr();
9039 
9040  // Perform one or more big stores into memory.
9041  unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
9042  for (unsigned I = 0; I < E; I++) {
9043  SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
9044  StoreType, ShuffWide,
9045  DAG.getIntPtrConstant(I));
9046  SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
9047  St->getPointerInfo(), St->isVolatile(),
9048  St->isNonTemporal(), St->getAlignment());
9049  BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
9050  Increment);
9051  Chains.push_back(Ch);
9052  }
9053  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
9054  Chains.size());
9055  }
9056 
9057  if (!ISD::isNormalStore(St))
9058  return SDValue();
9059 
9060  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
9061  // ARM stores of arguments in the same cache line.
9062  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
9063  StVal.getNode()->hasOneUse()) {
9064  SelectionDAG &DAG = DCI.DAG;
9065  SDLoc DL(St);
9066  SDValue BasePtr = St->getBasePtr();
9067  SDValue NewST1 = DAG.getStore(St->getChain(), DL,
9068  StVal.getNode()->getOperand(0), BasePtr,
9069  St->getPointerInfo(), St->isVolatile(),
9070  St->isNonTemporal(), St->getAlignment());
9071 
9072  SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9073  DAG.getConstant(4, MVT::i32));
9074  return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
9075  OffsetPtr, St->getPointerInfo(), St->isVolatile(),
9076  St->isNonTemporal(),
9077  std::min(4U, St->getAlignment() / 2));
9078  }
9079 
9080  if (StVal.getValueType() != MVT::i64 ||
9082  return SDValue();
9083 
9084  // Bitcast an i64 store extracted from a vector to f64.
9085  // Otherwise, the i64 value will be legalized to a pair of i32 values.
9086  SelectionDAG &DAG = DCI.DAG;
9087  SDLoc dl(StVal);
9088  SDValue IntVec = StVal.getOperand(0);
9089  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9090  IntVec.getValueType().getVectorNumElements());
9091  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
9092  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
9093  Vec, StVal.getOperand(1));
9094  dl = SDLoc(N);
9095  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
9096  // Make the DAGCombiner fold the bitcasts.
9097  DCI.AddToWorklist(Vec.getNode());
9098  DCI.AddToWorklist(ExtElt.getNode());
9099  DCI.AddToWorklist(V.getNode());
9100  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
9101  St->getPointerInfo(), St->isVolatile(),
9102  St->isNonTemporal(), St->getAlignment(),
9103  St->getTBAAInfo());
9104 }
9105 
9106 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
9107 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
9108 /// i64 vector to have f64 elements, since the value can then be loaded
9109 /// directly into a VFP register.
9110 static bool hasNormalLoadOperand(SDNode *N) {
9111  unsigned NumElts = N->getValueType(0).getVectorNumElements();
9112  for (unsigned i = 0; i < NumElts; ++i) {
9113  SDNode *Elt = N->getOperand(i).getNode();
9114  if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
9115  return true;
9116  }
9117  return false;
9118 }
9119 
9120 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
9121 /// ISD::BUILD_VECTOR.
9124  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
9125  // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
9126  // into a pair of GPRs, which is fine when the value is used as a scalar,
9127  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
9128  SelectionDAG &DAG = DCI.DAG;
9129  if (N->getNumOperands() == 2) {
9130  SDValue RV = PerformVMOVDRRCombine(N, DAG);
9131  if (RV.getNode())
9132  return RV;
9133  }
9134 
9135  // Load i64 elements as f64 values so that type legalization does not split
9136  // them up into i32 values.
9137  EVT VT = N->getValueType(0);
9139  return SDValue();
9140  SDLoc dl(N);
9142  unsigned NumElts = VT.getVectorNumElements();
9143  for (unsigned i = 0; i < NumElts; ++i) {
9144  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
9145  Ops.push_back(V);
9146  // Make the DAGCombiner fold the bitcast.
9147  DCI.AddToWorklist(V.getNode());
9148  }
9149  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
9150  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
9151  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9152 }
9153 
9154 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
9155 static SDValue
9157  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
9158  // At that time, we may have inserted bitcasts from integer to float.
9159  // If these bitcasts have survived DAGCombine, change the lowering of this
9160  // BUILD_VECTOR in something more vector friendly, i.e., that does not
9161  // force to use floating point types.
9162 
9163  // Make sure we can change the type of the vector.
9164  // This is possible iff:
9165  // 1. The vector is only used in a bitcast to a integer type. I.e.,
9166  // 1.1. Vector is used only once.
9167  // 1.2. Use is a bit convert to an integer type.
9168  // 2. The size of its operands are 32-bits (64-bits are not legal).
9169  EVT VT = N->getValueType(0);
9170  EVT EltVT = VT.getVectorElementType();
9171 
9172  // Check 1.1. and 2.
9173  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
9174  return SDValue();
9175 
9176  // By construction, the input type must be float.
9177  assert(EltVT == MVT::f32 && "Unexpected type!");
9178 
9179  // Check 1.2.
9180  SDNode *Use = *N->use_begin();
9181  if (Use->getOpcode() != ISD::BITCAST ||
9182  Use->getValueType(0).isFloatingPoint())
9183  return SDValue();
9184 
9185  // Check profitability.
9186  // Model is, if more than half of the relevant operands are bitcast from
9187  // i32, turn the build_vector into a sequence of insert_vector_elt.
9188  // Relevant operands are everything that is not statically
9189  // (i.e., at compile time) bitcasted.
9190  unsigned NumOfBitCastedElts = 0;
9191  unsigned NumElts = VT.getVectorNumElements();
9192  unsigned NumOfRelevantElts = NumElts;
9193  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
9194  SDValue Elt = N->getOperand(Idx);
9195  if (Elt->getOpcode() == ISD::BITCAST) {
9196  // Assume only bit cast to i32 will go away.
9197  if (Elt->getOperand(0).getValueType() == MVT::i32)
9198  ++NumOfBitCastedElts;
9199  } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
9200  // Constants are statically casted, thus do not count them as
9201  // relevant operands.
9202  --NumOfRelevantElts;
9203  }
9204 
9205  // Check if more than half of the elements require a non-free bitcast.
9206  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
9207  return SDValue();
9208 
9209  SelectionDAG &DAG = DCI.DAG;
9210  // Create the new vector type.
9211  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
9212  // Check if the type is legal.
9213  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9214  if (!TLI.isTypeLegal(VecVT))
9215  return SDValue();
9216 
9217  // Combine:
9218  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
9219  // => BITCAST INSERT_VECTOR_ELT
9220  // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
9221  // (BITCAST EN), N.
9222  SDValue Vec = DAG.getUNDEF(VecVT);
9223  SDLoc dl(N);
9224  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
9225  SDValue V = N->getOperand(Idx);
9226  if (V.getOpcode() == ISD::UNDEF)
9227  continue;
9228  if (V.getOpcode() == ISD::BITCAST &&
9229  V->getOperand(0).getValueType() == MVT::i32)
9230  // Fold obvious case.
9231  V = V.getOperand(0);
9232  else {
9233  V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
9234  // Make the DAGCombiner fold the bitcasts.
9235  DCI.AddToWorklist(V.getNode());
9236  }
9237  SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
9238  Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
9239  }
9240  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
9241  // Make the DAGCombiner fold the bitcasts.
9242  DCI.AddToWorklist(Vec.getNode());
9243  return Vec;
9244 }
9245 
9246 /// PerformInsertEltCombine - Target-specific dag combine xforms for
9247 /// ISD::INSERT_VECTOR_ELT.
9250  // Bitcast an i64 load inserted into a vector to f64.
9251  // Otherwise, the i64 value will be legalized to a pair of i32 values.
9252  EVT VT = N->getValueType(0);
9253  SDNode *Elt = N->getOperand(1).getNode();
9254  if (VT.getVectorElementType() != MVT::i64 ||
9255  !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
9256  return SDValue();
9257 
9258  SelectionDAG &DAG = DCI.DAG;
9259  SDLoc dl(N);
9260  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9261  VT.getVectorNumElements());
9262  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
9263  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
9264  // Make the DAGCombiner fold the bitcasts.
9265  DCI.AddToWorklist(Vec.getNode());
9266  DCI.AddToWorklist(V.getNode());
9267  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
9268  Vec, V, N->getOperand(2));
9269  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
9270 }
9271 
9272 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
9273 /// ISD::VECTOR_SHUFFLE.
9275  // The LLVM shufflevector instruction does not require the shuffle mask
9276  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
9277  // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
9278  // operands do not match the mask length, they are extended by concatenating
9279  // them with undef vectors. That is probably the right thing for other
9280  // targets, but for NEON it is better to concatenate two double-register
9281  // size vector operands into a single quad-register size vector. Do that
9282  // transformation here:
9283  // shuffle(concat(v1, undef), concat(v2, undef)) ->
9284  // shuffle(concat(v1, v2), undef)
9285  SDValue Op0 = N->getOperand(0);
9286  SDValue Op1 = N->getOperand(1);
9287  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
9288  Op1.getOpcode() != ISD::CONCAT_VECTORS ||
9289  Op0.getNumOperands() != 2 ||
9290  Op1.getNumOperands() != 2)
9291  return SDValue();
9292  SDValue Concat0Op1 = Op0.getOperand(1);
9293  SDValue Concat1Op1 = Op1.getOperand(1);
9294  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
9295  Concat1Op1.getOpcode() != ISD::UNDEF)
9296  return SDValue();
9297  // Skip the transformation if any of the types are illegal.
9298  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9299  EVT VT = N->getValueType(0);
9300  if (!TLI.isTypeLegal(VT) ||
9301  !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
9302  !TLI.isTypeLegal(Concat1Op1.getValueType()))
9303  return SDValue();
9304 
9305  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
9306  Op0.getOperand(0), Op1.getOperand(0));
9307  // Translate the shuffle mask.
9308  SmallVector<int, 16> NewMask;
9309  unsigned NumElts = VT.getVectorNumElements();
9310  unsigned HalfElts = NumElts/2;
9311  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9312  for (unsigned n = 0; n < NumElts; ++n) {
9313  int MaskElt = SVN->getMaskElt(n);
9314  int NewElt = -1;
9315  if (MaskElt < (int)HalfElts)
9316  NewElt = MaskElt;
9317  else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
9318  NewElt = HalfElts + MaskElt - NumElts;
9319  NewMask.push_back(NewElt);
9320  }
9321  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
9322  DAG.getUNDEF(VT), NewMask.data());
9323 }
9324 
9325 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
9326 /// NEON load/store intrinsics to merge base address updates.
9329  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9330  return SDValue();
9331 
9332  SelectionDAG &DAG = DCI.DAG;
9333  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
9335  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
9336  SDValue Addr = N->getOperand(AddrOpIdx);
9337 
9338  // Search for a use of the address operand that is an increment.
9339  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9340  UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9341  SDNode *User = *UI;
9342  if (User->getOpcode() != ISD::ADD ||
9343  UI.getUse().getResNo() != Addr.getResNo())
9344  continue;
9345 
9346  // Check that the add is independent of the load/store. Otherwise, folding
9347  // it would create a cycle.
9348  if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9349  continue;
9350 
9351  // Find the new opcode for the updating load/store.
9352  bool isLoad = true;
9353  bool isLaneOp = false;
9354  unsigned NewOpc = 0;
9355  unsigned NumVecs = 0;
9356  if (isIntrinsic) {
9357  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9358  switch (IntNo) {
9359  default: llvm_unreachable("unexpected intrinsic for Neon base update");
9361  NumVecs = 1; break;
9363  NumVecs = 2; break;
9365  NumVecs = 3; break;
9367  NumVecs = 4; break;
9369  NumVecs = 2; isLaneOp = true; break;
9371  NumVecs = 3; isLaneOp = true; break;
9373  NumVecs = 4; isLaneOp = true; break;
9375  NumVecs = 1; isLoad = false; break;
9377  NumVecs = 2; isLoad = false; break;
9379  NumVecs = 3; isLoad = false; break;
9381  NumVecs = 4; isLoad = false; break;
9383  NumVecs = 2; isLoad = false; isLaneOp = true; break;
9385  NumVecs = 3; isLoad = false; isLaneOp = true; break;
9387  NumVecs = 4; isLoad = false; isLaneOp = true; break;
9388  }
9389  } else {
9390  isLaneOp = true;
9391  switch (N->getOpcode()) {
9392  default: llvm_unreachable("unexpected opcode for Neon base update");
9393  case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9394  case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9395  case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9396  }
9397  }
9398 
9399  // Find the size of memory referenced by the load/store.
9400  EVT VecTy;
9401  if (isLoad)
9402  VecTy = N->getValueType(0);
9403  else
9404  VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9405  unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9406  if (isLaneOp)
9407  NumBytes /= VecTy.getVectorNumElements();
9408 
9409  // If the increment is a constant, it must match the memory ref size.
9410  SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9411  if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9412  uint64_t IncVal = CInc->getZExtValue();
9413  if (IncVal != NumBytes)
9414  continue;
9415  } else if (NumBytes >= 3 * 16) {
9416  // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9417  // separate instructions that make it harder to use a non-constant update.
9418  continue;
9419  }
9420 
9421  // Create the new updating load/store node.
9422  EVT Tys[6];
9423  unsigned NumResultVecs = (isLoad ? NumVecs : 0);
9424  unsigned n;
9425  for (n = 0; n < NumResultVecs; ++n)
9426  Tys[n] = VecTy;
9427  Tys[n++] = MVT::i32;
9428  Tys[n] = MVT::Other;
9429  SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
9431  Ops.push_back(N->getOperand(0)); // incoming chain
9432  Ops.push_back(N->getOperand(AddrOpIdx));
9433  Ops.push_back(Inc);
9434  for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
9435  Ops.push_back(N->getOperand(i));
9436  }
9437  MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9438  SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
9439  Ops.data(), Ops.size(),
9440  MemInt->getMemoryVT(),
9441  MemInt->getMemOperand());
9442 
9443  // Update the uses.
9444  std::vector<SDValue> NewResults;
9445  for (unsigned i = 0; i < NumResultVecs; ++i) {
9446  NewResults.push_back(SDValue(UpdN.getNode(), i));
9447  }
9448  NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9449  DCI.CombineTo(N, NewResults);
9450  DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9451 
9452  break;
9453  }
9454  return SDValue();
9455 }
9456 
9457 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9458 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9459 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
9460 /// return true.
9462  SelectionDAG &DAG = DCI.DAG;
9463  EVT VT = N->getValueType(0);
9464  // vldN-dup instructions only support 64-bit vectors for N > 1.
9465  if (!VT.is64BitVector())
9466  return false;
9467 
9468  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9469  SDNode *VLD = N->getOperand(0).getNode();
9470  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9471  return false;
9472  unsigned NumVecs = 0;
9473  unsigned NewOpc = 0;
9474  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9475  if (IntNo == Intrinsic::arm_neon_vld2lane) {
9476  NumVecs = 2;
9477  NewOpc = ARMISD::VLD2DUP;
9478  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9479  NumVecs = 3;
9480  NewOpc = ARMISD::VLD3DUP;
9481  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9482  NumVecs = 4;
9483  NewOpc = ARMISD::VLD4DUP;
9484  } else {
9485  return false;
9486  }
9487 
9488  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9489  // numbers match the load.
9490  unsigned VLDLaneNo =
9491  cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9492  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9493  UI != UE; ++UI) {
9494  // Ignore uses of the chain result.
9495  if (UI.getUse().getResNo() == NumVecs)
9496  continue;
9497  SDNode *User = *UI;
9498  if (User->getOpcode() != ARMISD::VDUPLANE ||
9499  VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9500  return false;
9501  }
9502 
9503  // Create the vldN-dup node.
9504  EVT Tys[5];
9505  unsigned n;
9506  for (n = 0; n < NumVecs; ++n)
9507  Tys[n] = VT;
9508  Tys[n] = MVT::Other;
9509  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
9510  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9511  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9512  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9513  Ops, 2, VLDMemInt->getMemoryVT(),
9514  VLDMemInt->getMemOperand());
9515 
9516  // Update the uses.
9517  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9518  UI != UE; ++UI) {
9519  unsigned ResNo = UI.getUse().getResNo();
9520  // Ignore uses of the chain result.
9521  if (ResNo == NumVecs)
9522  continue;
9523  SDNode *User = *UI;
9524  DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9525  }
9526 
9527  // Now the vldN-lane intrinsic is dead except for its chain result.
9528  // Update uses of the chain.
9529  std::vector<SDValue> VLDDupResults;
9530  for (unsigned n = 0; n < NumVecs; ++n)
9531  VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9532  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9533  DCI.CombineTo(VLD, VLDDupResults);
9534 
9535  return true;
9536 }
9537 
9538 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
9539 /// ARMISD::VDUPLANE.
9542  SDValue Op = N->getOperand(0);
9543 
9544  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9545  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9546  if (CombineVLDDUP(N, DCI))
9547  return SDValue(N, 0);
9548 
9549  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9550  // redundant. Ignore bit_converts for now; element sizes are checked below.
9551  while (Op.getOpcode() == ISD::BITCAST)
9552  Op = Op.getOperand(0);
9553  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9554  return SDValue();
9555 
9556  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9557  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9558  // The canonical VMOV for a zero vector uses a 32-bit element size.
9559  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9560  unsigned EltBits;
9561  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
9562  EltSize = 8;
9563  EVT VT = N->getValueType(0);
9564  if (EltSize > VT.getVectorElementType().getSizeInBits())
9565  return SDValue();
9566 
9567  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
9568 }
9569 
9570 // isConstVecPow2 - Return true if each vector element is a power of 2, all
9571 // elements are the same constant, C, and Log2(C) ranges from 1 to 32.
9572 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
9573 {
9574  integerPart cN;
9575  integerPart c0 = 0;
9576  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
9577  I != E; I++) {
9579  if (!C)
9580  return false;
9581 
9582  bool isExact;
9583  APFloat APF = C->getValueAPF();
9584  if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
9585  != APFloat::opOK || !isExact)
9586  return false;
9587 
9588  c0 = (I == 0) ? cN : c0;
9589  if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
9590  return false;
9591  }
9592  C = c0;
9593  return true;
9594 }
9595 
9596 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
9597 /// can replace combinations of VMUL and VCVT (floating-point to integer)
9598 /// when the VMUL has a constant operand that is a power of 2.
9599 ///
9600 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9601 /// vmul.f32 d16, d17, d16
9602 /// vcvt.s32.f32 d16, d16
9603 /// becomes:
9604 /// vcvt.s32.f32 d16, d16, #3
9607  const ARMSubtarget *Subtarget) {
9608  SelectionDAG &DAG = DCI.DAG;
9609  SDValue Op = N->getOperand(0);
9610 
9611  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
9612  Op.getOpcode() != ISD::FMUL)
9613  return SDValue();
9614 
9615  uint64_t C;
9616  SDValue N0 = Op->getOperand(0);
9617  SDValue ConstVec = Op->getOperand(1);
9618  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
9619 
9620  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9621  !isConstVecPow2(ConstVec, isSigned, C))
9622  return SDValue();
9623 
9624  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9626  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9627  // These instructions only exist converting from f32 to i32. We can handle
9628  // smaller integers by generating an extra truncate, but larger ones would
9629  // be lossy.
9630  return SDValue();
9631  }
9632 
9633  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9635  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9636  SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9637  NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9638  DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9639  DAG.getConstant(Log2_64(C), MVT::i32));
9640 
9641  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9642  FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9643 
9644  return FixConv;
9645 }
9646 
9647 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9648 /// can replace combinations of VCVT (integer to floating-point) and VDIV
9649 /// when the VDIV has a constant operand that is a power of 2.
9650 ///
9651 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9652 /// vcvt.f32.s32 d16, d16
9653 /// vdiv.f32 d16, d17, d16
9654 /// becomes:
9655 /// vcvt.f32.s32 d16, d16, #3
9658  const ARMSubtarget *Subtarget) {
9659  SelectionDAG &DAG = DCI.DAG;
9660  SDValue Op = N->getOperand(0);
9661  unsigned OpOpcode = Op.getNode()->getOpcode();
9662 
9663  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9664  (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9665  return SDValue();
9666 
9667  uint64_t C;
9668  SDValue ConstVec = N->getOperand(1);
9669  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9670 
9671  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9672  !isConstVecPow2(ConstVec, isSigned, C))
9673  return SDValue();
9674 
9675  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9677  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9678  // These instructions only exist converting from i32 to f32. We can handle
9679  // smaller integers by generating an extra extend, but larger ones would
9680  // be lossy.
9681  return SDValue();
9682  }
9683 
9684  SDValue ConvInput = Op.getOperand(0);
9685  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9686  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9687  ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9688  SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9689  ConvInput);
9690 
9691  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9693  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9694  Op.getValueType(),
9695  DAG.getConstant(IntrinsicOpcode, MVT::i32),
9696  ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9697 }
9698 
9699 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
9700 /// operand of a vector shift operation, where all the elements of the
9701 /// build_vector must have the same constant integer value.
9702 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9703  // Ignore bit_converts.
9704  while (Op.getOpcode() == ISD::BITCAST)
9705  Op = Op.getOperand(0);
9707  APInt SplatBits, SplatUndef;
9708  unsigned SplatBitSize;
9709  bool HasAnyUndefs;
9710  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9711  HasAnyUndefs, ElementBits) ||
9712  SplatBitSize > ElementBits)
9713  return false;
9714  Cnt = SplatBits.getSExtValue();
9715  return true;
9716 }
9717 
9718 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
9719 /// operand of a vector shift left operation. That value must be in the range:
9720 /// 0 <= Value < ElementBits for a left shift; or
9721 /// 0 <= Value <= ElementBits for a long left shift.
9722 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9723  assert(VT.isVector() && "vector shift count is not a vector type");
9724  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9725  if (! getVShiftImm(Op, ElementBits, Cnt))
9726  return false;
9727  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9728 }
9729 
9730 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
9731 /// operand of a vector shift right operation. For a shift opcode, the value
9732 /// is positive, but for an intrinsic the value count must be negative. The
9733 /// absolute value must be in the range:
9734 /// 1 <= |Value| <= ElementBits for a right shift; or
9735 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
9736 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9737  int64_t &Cnt) {
9738  assert(VT.isVector() && "vector shift count is not a vector type");
9739  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9740  if (! getVShiftImm(Op, ElementBits, Cnt))
9741  return false;
9742  if (isIntrinsic)
9743  Cnt = -Cnt;
9744  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9745 }
9746 
9747 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9749  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9750  switch (IntNo) {
9751  default:
9752  // Don't do anything for most intrinsics.
9753  break;
9754 
9755  // Vector shifts: check for immediate versions and lower them.
9756  // Note: This is done during DAG combining instead of DAG legalizing because
9757  // the build_vectors for 64-bit vector element shift counts are generally
9758  // not legal, and it is hard to see their values after they get legalized to
9759  // loads from a constant pool.
9777  EVT VT = N->getOperand(1).getValueType();
9778  int64_t Cnt;
9779  unsigned VShiftOpc = 0;
9780 
9781  switch (IntNo) {
9784  if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9785  VShiftOpc = ARMISD::VSHL;
9786  break;
9787  }
9788  if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9789  VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9791  break;
9792  }
9793  return SDValue();
9794 
9797  if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
9798  break;
9799  llvm_unreachable("invalid shift count for vshll intrinsic");
9800 
9803  if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9804  break;
9805  return SDValue();
9806 
9809  if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9810  break;
9811  return SDValue();
9812 
9814  if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9815  break;
9816  llvm_unreachable("invalid shift count for vqshlu intrinsic");
9817 
9826  // Narrowing shifts require an immediate right shift.
9827  if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9828  break;
9829  llvm_unreachable("invalid shift count for narrowing vector shift "
9830  "intrinsic");
9831 
9832  default:
9833  llvm_unreachable("unhandled vector shift");
9834  }
9835 
9836  switch (IntNo) {
9839  // Opcode already set above.
9840  break;
9843  if (Cnt == VT.getVectorElementType().getSizeInBits())
9844  VShiftOpc = ARMISD::VSHLLi;
9845  else
9846  VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
9848  break;
9850  VShiftOpc = ARMISD::VSHRN; break;
9852  VShiftOpc = ARMISD::VRSHRs; break;
9854  VShiftOpc = ARMISD::VRSHRu; break;
9856  VShiftOpc = ARMISD::VRSHRN; break;
9858  VShiftOpc = ARMISD::VQSHLs; break;
9860  VShiftOpc = ARMISD::VQSHLu; break;
9862  VShiftOpc = ARMISD::VQSHLsu; break;
9864  VShiftOpc = ARMISD::VQSHRNs; break;
9866  VShiftOpc = ARMISD::VQSHRNu; break;
9868  VShiftOpc = ARMISD::VQSHRNsu; break;
9870  VShiftOpc = ARMISD::VQRSHRNs; break;
9872  VShiftOpc = ARMISD::VQRSHRNu; break;
9874  VShiftOpc = ARMISD::VQRSHRNsu; break;
9875  }
9876 
9877  return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9878  N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9879  }
9880 
9882  EVT VT = N->getOperand(1).getValueType();
9883  int64_t Cnt;
9884  unsigned VShiftOpc = 0;
9885 
9886  if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9887  VShiftOpc = ARMISD::VSLI;
9888  else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9889  VShiftOpc = ARMISD::VSRI;
9890  else {
9891  llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9892  }
9893 
9894  return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9895  N->getOperand(1), N->getOperand(2),
9896  DAG.getConstant(Cnt, MVT::i32));
9897  }
9898 
9901  // No immediate versions of these to check for.
9902  break;
9903  }
9904 
9905  return SDValue();
9906 }
9907 
9908 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
9909 /// lowers them. As with the vector shift intrinsics, this is done during DAG
9910 /// combining instead of DAG legalizing because the build_vectors for 64-bit
9911 /// vector element shift counts are generally not legal, and it is hard to see
9912 /// their values after they get legalized to loads from a constant pool.
9914  const ARMSubtarget *ST) {
9915  EVT VT = N->getValueType(0);
9916  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9917  // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9918  // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9919  SDValue N1 = N->getOperand(1);
9920  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9921  SDValue N0 = N->getOperand(0);
9922  if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9923  DAG.MaskedValueIsZero(N0.getOperand(0),
9924  APInt::getHighBitsSet(32, 16)))
9925  return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9926  }
9927  }
9928 
9929  // Nothing to be done for scalar shifts.
9930  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9931  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9932  return SDValue();
9933 
9934  assert(ST->hasNEON() && "unexpected vector shift");
9935  int64_t Cnt;
9936 
9937  switch (N->getOpcode()) {
9938  default: llvm_unreachable("unexpected shift opcode");
9939 
9940  case ISD::SHL:
9941  if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9942  return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9943  DAG.getConstant(Cnt, MVT::i32));
9944  break;
9945 
9946  case ISD::SRA:
9947  case ISD::SRL:
9948  if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9949  unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9951  return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9952  DAG.getConstant(Cnt, MVT::i32));
9953  }
9954  }
9955  return SDValue();
9956 }
9957 
9958 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9959 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9961  const ARMSubtarget *ST) {
9962  SDValue N0 = N->getOperand(0);
9963 
9964  // Check for sign- and zero-extensions of vector extract operations of 8-
9965  // and 16-bit vector elements. NEON supports these directly. They are
9966  // handled during DAG combining because type legalization will promote them
9967  // to 32-bit types and it is messy to recognize the operations after that.
9968  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9969  SDValue Vec = N0.getOperand(0);
9970  SDValue Lane = N0.getOperand(1);
9971  EVT VT = N->getValueType(0);
9972  EVT EltVT = N0.getValueType();
9973  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9974 
9975  if (VT == MVT::i32 &&
9976  (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9977  TLI.isTypeLegal(Vec.getValueType()) &&
9978  isa<ConstantSDNode>(Lane)) {
9979 
9980  unsigned Opc = 0;
9981  switch (N->getOpcode()) {
9982  default: llvm_unreachable("unexpected opcode");
9983  case ISD::SIGN_EXTEND:
9984  Opc = ARMISD::VGETLANEs;
9985  break;
9986  case ISD::ZERO_EXTEND:
9987  case ISD::ANY_EXTEND:
9988  Opc = ARMISD::VGETLANEu;
9989  break;
9990  }
9991  return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9992  }
9993  }
9994 
9995  return SDValue();
9996 }
9997 
9998 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9999 /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
10001  const ARMSubtarget *ST) {
10002  // If the target supports NEON, try to use vmax/vmin instructions for f32
10003  // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
10004  // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
10005  // a NaN; only do the transformation when it matches that behavior.
10006 
10007  // For now only do this when using NEON for FP operations; if using VFP, it
10008  // is not obvious that the benefit outweighs the cost of switching to the
10009  // NEON pipeline.
10010  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
10011  N->getValueType(0) != MVT::f32)
10012  return SDValue();
10013 
10014  SDValue CondLHS = N->getOperand(0);
10015  SDValue CondRHS = N->getOperand(1);
10016  SDValue LHS = N->getOperand(2);
10017  SDValue RHS = N->getOperand(3);
10018  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
10019 
10020  unsigned Opcode = 0;
10021  bool IsReversed;
10022  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
10023  IsReversed = false; // x CC y ? x : y
10024  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
10025  IsReversed = true ; // x CC y ? y : x
10026  } else {
10027  return SDValue();
10028  }
10029 
10030  bool IsUnordered;
10031  switch (CC) {
10032  default: break;
10033  case ISD::SETOLT:
10034  case ISD::SETOLE:
10035  case ISD::SETLT:
10036  case ISD::SETLE:
10037  case ISD::SETULT:
10038  case ISD::SETULE:
10039  // If LHS is NaN, an ordered comparison will be false and the result will
10040  // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
10041  // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
10042  IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
10043  if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
10044  break;
10045  // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
10046  // will return -0, so vmin can only be used for unsafe math or if one of
10047  // the operands is known to be nonzero.
10048  if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
10049  !DAG.getTarget().Options.UnsafeFPMath &&
10050  !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10051  break;
10052  Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
10053  break;
10054 
10055  case ISD::SETOGT:
10056  case ISD::SETOGE:
10057  case ISD::SETGT:
10058  case ISD::SETGE:
10059  case ISD::SETUGT:
10060  case ISD::SETUGE:
10061  // If LHS is NaN, an ordered comparison will be false and the result will
10062  // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
10063  // != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
10064  IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
10065  if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
10066  break;
10067  // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
10068  // will return +0, so vmax can only be used for unsafe math or if one of
10069  // the operands is known to be nonzero.
10070  if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
10071  !DAG.getTarget().Options.UnsafeFPMath &&
10072  !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10073  break;
10074  Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
10075  break;
10076  }
10077 
10078  if (!Opcode)
10079  return SDValue();
10080  return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
10081 }
10082 
10083 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
10084 SDValue
10086  SDValue Cmp = N->getOperand(4);
10087  if (Cmp.getOpcode() != ARMISD::CMPZ)
10088  // Only looking at EQ and NE cases.
10089  return SDValue();
10090 
10091  EVT VT = N->getValueType(0);
10092  SDLoc dl(N);
10093  SDValue LHS = Cmp.getOperand(0);
10094  SDValue RHS = Cmp.getOperand(1);
10095  SDValue FalseVal = N->getOperand(0);
10096  SDValue TrueVal = N->getOperand(1);
10097  SDValue ARMcc = N->getOperand(2);
10098  ARMCC::CondCodes CC =
10099  (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10100 
10101  // Simplify
10102  // mov r1, r0
10103  // cmp r1, x
10104  // mov r0, y
10105  // moveq r0, x
10106  // to
10107  // cmp r0, x
10108  // movne r0, y
10109  //
10110  // mov r1, r0
10111  // cmp r1, x
10112  // mov r0, x
10113  // movne r0, y
10114  // to
10115  // cmp r0, x
10116  // movne r0, y
10117  /// FIXME: Turn this into a target neutral optimization?
10118  SDValue Res;
10119  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
10120  Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
10121  N->getOperand(3), Cmp);
10122  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
10123  SDValue ARMcc;
10124  SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
10125  Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
10126  N->getOperand(3), NewCmp);
10127  }
10128 
10129  if (Res.getNode()) {
10130  APInt KnownZero, KnownOne;
10131  DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
10132  // Capture demanded bits information that would be otherwise lost.
10133  if (KnownZero == 0xfffffffe)
10134  Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10135  DAG.getValueType(MVT::i1));
10136  else if (KnownZero == 0xffffff00)
10137  Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10138  DAG.getValueType(MVT::i8));
10139  else if (KnownZero == 0xffff0000)
10140  Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
10141  DAG.getValueType(MVT::i16));
10142  }
10143 
10144  return Res;
10145 }
10146 
10148  DAGCombinerInfo &DCI) const {
10149  switch (N->getOpcode()) {
10150  default: break;
10151  case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
10152  case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
10153  case ISD::SUB: return PerformSUBCombine(N, DCI);
10154  case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
10155  case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
10156  case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
10157  case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
10158  case ARMISD::BFI: return PerformBFICombine(N, DCI);
10159  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
10160  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
10161  case ISD::STORE: return PerformSTORECombine(N, DCI);
10162  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
10163  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
10165  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
10166  case ISD::FP_TO_SINT:
10167  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
10168  case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
10170  case ISD::SHL:
10171  case ISD::SRA:
10172  case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
10173  case ISD::SIGN_EXTEND:
10174  case ISD::ZERO_EXTEND:
10175  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
10176  case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
10177  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
10178  case ARMISD::VLD2DUP:
10179  case ARMISD::VLD3DUP:
10180  case ARMISD::VLD4DUP:
10181  return CombineBaseUpdate(N, DCI);
10182  case ARMISD::BUILD_VECTOR:
10183  return PerformARMBUILD_VECTORCombine(N, DCI);
10184  case ISD::INTRINSIC_VOID:
10186  switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10201  return CombineBaseUpdate(N, DCI);
10202  default: break;
10203  }
10204  break;
10205  }
10206  return SDValue();
10207 }
10208 
10210  EVT VT) const {
10211  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
10212 }
10213 
10215  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
10216  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
10217 
10218  switch (VT.getSimpleVT().SimpleTy) {
10219  default:
10220  return false;
10221  case MVT::i8:
10222  case MVT::i16:
10223  case MVT::i32: {
10224  // Unaligned access can use (for example) LRDB, LRDH, LDR
10225  if (AllowsUnaligned) {
10226  if (Fast)
10227  *Fast = Subtarget->hasV7Ops();
10228  return true;
10229  }
10230  return false;
10231  }
10232  case MVT::f64:
10233  case MVT::v2f64: {
10234  // For any little-endian targets with neon, we can support unaligned ld/st
10235  // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
10236  // A big-endian target may also explictly support unaligned accesses
10237  if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
10238  if (Fast)
10239  *Fast = true;
10240  return true;
10241  }
10242  return false;
10243  }
10244  }
10245 }
10246 
10247 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
10248  unsigned AlignCheck) {
10249  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
10250  (DstAlign == 0 || DstAlign % AlignCheck == 0));
10251 }
10252 
10254  unsigned DstAlign, unsigned SrcAlign,
10255  bool IsMemset, bool ZeroMemset,
10256  bool MemcpyStrSrc,
10257  MachineFunction &MF) const {
10258  const Function *F = MF.getFunction();
10259 
10260  // See if we can use NEON instructions for this...
10261  if ((!IsMemset || ZeroMemset) &&
10262  Subtarget->hasNEON() &&
10263  !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
10265  bool Fast;
10266  if (Size >= 16 &&
10267  (memOpAlign(SrcAlign, DstAlign, 16) ||
10268  (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
10269  return MVT::v2f64;
10270  } else if (Size >= 8 &&
10271  (memOpAlign(SrcAlign, DstAlign, 8) ||
10272  (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
10273  return MVT::f64;
10274  }
10275  }
10276 
10277  // Lowering to i32/i16 if the size permits.
10278  if (Size >= 4)
10279  return MVT::i32;
10280  else if (Size >= 2)
10281  return MVT::i16;
10282 
10283  // Let the target-independent logic figure it out.
10284  return MVT::Other;
10285 }
10286 
10288  if (Val.getOpcode() != ISD::LOAD)
10289  return false;
10290 
10291  EVT VT1 = Val.getValueType();
10292  if (!VT1.isSimple() || !VT1.isInteger() ||
10293  !VT2.isSimple() || !VT2.isInteger())
10294  return false;
10295 
10296  switch (VT1.getSimpleVT().SimpleTy) {
10297  default: break;
10298  case MVT::i1:
10299  case MVT::i8:
10300  case MVT::i16:
10301  // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
10302  return true;
10303  }
10304 
10305  return false;
10306 }
10307 
10309  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10310  return false;
10311 
10312  if (!isTypeLegal(EVT::getEVT(Ty1)))
10313  return false;
10314 
10315  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
10316 
10317  // Assuming the caller doesn't have a zeroext or signext return parameter,
10318  // truncation all the way down to i1 is valid.
10319  return true;
10320 }
10321 
10322 
10323 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
10324  if (V < 0)
10325  return false;
10326 
10327  unsigned Scale = 1;
10328  switch (VT.getSimpleVT().SimpleTy) {
10329  default: return false;
10330  case MVT::i1:
10331  case MVT::i8:
10332  // Scale == 1;
10333  break;
10334  case MVT::i16:
10335  // Scale == 2;
10336  Scale = 2;
10337  break;
10338  case MVT::i32:
10339  // Scale == 4;
10340  Scale = 4;
10341  break;
10342  }
10343 
10344  if ((V & (Scale - 1)) != 0)
10345  return false;
10346  V /= Scale;
10347  return V == (V & ((1LL << 5) - 1));
10348 }
10349 
10350 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
10351  const ARMSubtarget *Subtarget) {
10352  bool isNeg = false;
10353  if (V < 0) {
10354  isNeg = true;
10355  V = - V;
10356  }
10357 
10358  switch (VT.getSimpleVT().SimpleTy) {
10359  default: return false;
10360  case MVT::i1:
10361  case MVT::i8:
10362  case MVT::i16:
10363  case MVT::i32:
10364  // + imm12 or - imm8
10365  if (isNeg)
10366  return V == (V & ((1LL << 8) - 1));
10367  return V == (V & ((1LL << 12) - 1));
10368  case MVT::f32:
10369  case MVT::f64:
10370  // Same as ARM mode. FIXME: NEON?
10371  if (!Subtarget->hasVFP2())
10372  return false;
10373  if ((V & 3) != 0)
10374  return false;
10375  V >>= 2;
10376  return V == (V & ((1LL << 8) - 1));
10377  }
10378 }
10379 
10380 /// isLegalAddressImmediate - Return true if the integer value can be used
10381 /// as the offset of the target addressing mode for load / store of the
10382 /// given type.
10383 static bool isLegalAddressImmediate(int64_t V, EVT VT,
10384  const ARMSubtarget *Subtarget) {
10385  if (V == 0)
10386  return true;
10387 
10388  if (!VT.isSimple())
10389  return false;
10390 
10391  if (Subtarget->isThumb1Only())
10392  return isLegalT1AddressImmediate(V, VT);
10393  else if (Subtarget->isThumb2())
10394  return isLegalT2AddressImmediate(V, VT, Subtarget);
10395 
10396  // ARM mode.
10397  if (V < 0)
10398  V = - V;
10399  switch (VT.getSimpleVT().SimpleTy) {
10400  default: return false;
10401  case MVT::i1:
10402  case MVT::i8:
10403  case MVT::i32:
10404  // +- imm12
10405  return V == (V & ((1LL << 12) - 1));
10406  case MVT::i16:
10407  // +- imm8
10408  return V == (V & ((1LL << 8) - 1));
10409  case MVT::f32:
10410  case MVT::f64:
10411  if (!Subtarget->hasVFP2()) // FIXME: NEON?
10412  return false;
10413  if ((V & 3) != 0)
10414  return false;
10415  V >>= 2;
10416  return V == (V & ((1LL << 8) - 1));
10417  }
10418 }
10419 
10421  EVT VT) const {
10422  int Scale = AM.Scale;
10423  if (Scale < 0)
10424  return false;
10425 
10426  switch (VT.getSimpleVT().SimpleTy) {
10427  default: return false;
10428  case MVT::i1:
10429  case MVT::i8:
10430  case MVT::i16:
10431  case MVT::i32:
10432  if (Scale == 1)
10433  return true;
10434  // r + r << imm
10435  Scale = Scale & ~1;
10436  return Scale == 2 || Scale == 4 || Scale == 8;
10437  case MVT::i64:
10438  // r + r
10439  if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10440  return true;
10441  return false;
10442  case MVT::isVoid:
10443  // Note, we allow "void" uses (basically, uses that aren't loads or
10444  // stores), because arm allows folding a scale into many arithmetic
10445  // operations. This should be made more precise and revisited later.
10446 
10447  // Allow r << imm, but the imm has to be a multiple of two.
10448  if (Scale & 1) return false;
10449  return isPowerOf2_32(Scale);
10450  }
10451 }
10452 
10453 /// isLegalAddressingMode - Return true if the addressing mode represented
10454 /// by AM is legal for this target, for a load/store of the specified type.
10456  Type *Ty) const {
10457  EVT VT = getValueType(Ty, true);
10458  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
10459  return false;
10460 
10461  // Can never fold addr of global into load/store.
10462  if (AM.BaseGV)
10463  return false;
10464 
10465  switch (AM.Scale) {
10466  case 0: // no scale reg, must be "r+i" or "r", or "i".
10467  break;
10468  case 1:
10469  if (Subtarget->isThumb1Only())
10470  return false;
10471  // FALL THROUGH.
10472  default:
10473  // ARM doesn't support any R+R*scale+imm addr modes.
10474  if (AM.BaseOffs)
10475  return false;
10476 
10477  if (!VT.isSimple())
10478  return false;
10479 
10480  if (Subtarget->isThumb2())
10481  return isLegalT2ScaledAddressingMode(AM, VT);
10482 
10483  int Scale = AM.Scale;
10484  switch (VT.getSimpleVT().SimpleTy) {
10485  default: return false;
10486  case MVT::i1:
10487  case MVT::i8:
10488  case MVT::i32:
10489  if (Scale < 0) Scale = -Scale;
10490  if (Scale == 1)
10491  return true;
10492  // r + r << imm
10493  return isPowerOf2_32(Scale & ~1);
10494  case MVT::i16:
10495  case MVT::i64:
10496  // r + r
10497  if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10498  return true;
10499  return false;
10500 
10501  case MVT::isVoid:
10502  // Note, we allow "void" uses (basically, uses that aren't loads or
10503  // stores), because arm allows folding a scale into many arithmetic
10504  // operations. This should be made more precise and revisited later.
10505 
10506  // Allow r << imm, but the imm has to be a multiple of two.
10507  if (Scale & 1) return false;
10508  return isPowerOf2_32(Scale);
10509  }
10510  }
10511  return true;
10512 }
10513 
10514 /// isLegalICmpImmediate - Return true if the specified immediate is legal
10515 /// icmp immediate, that is the target has icmp instructions which can compare
10516 /// a register against the immediate without having to materialize the
10517 /// immediate into a register.
10519  // Thumb2 and ARM modes can use cmn for negative immediates.
10520  if (!Subtarget->isThumb())
10521  return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
10522  if (Subtarget->isThumb2())
10523  return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
10524  // Thumb1 doesn't have cmn, and only 8-bit immediates.
10525  return Imm >= 0 && Imm <= 255;
10526 }
10527 
10528 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
10529 /// *or sub* immediate, that is the target has add or sub instructions which can
10530 /// add a register with the immediate without having to materialize the
10531 /// immediate into a register.
10533  // Same encoding for add/sub, just flip the sign.
10534  int64_t AbsImm = llvm::abs64(Imm);
10535  if (!Subtarget->isThumb())
10536  return ARM_AM::getSOImmVal(AbsImm) != -1;
10537  if (Subtarget->isThumb2())
10538  return ARM_AM::getT2SOImmVal(AbsImm) != -1;
10539  // Thumb1 only has 8-bit unsigned immediate.
10540  return AbsImm >= 0 && AbsImm <= 255;
10541 }
10542 
10543 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
10544  bool isSEXTLoad, SDValue &Base,
10545  SDValue &Offset, bool &isInc,
10546  SelectionDAG &DAG) {
10547  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10548  return false;
10549 
10550  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
10551  // AddressingMode 3
10552  Base = Ptr->getOperand(0);
10553  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10554  int RHSC = (int)RHS->getZExtValue();
10555  if (RHSC < 0 && RHSC > -256) {
10556  assert(Ptr->getOpcode() == ISD::ADD);
10557  isInc = false;
10558  Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10559  return true;
10560  }
10561  }
10562  isInc = (Ptr->getOpcode() == ISD::ADD);
10563  Offset = Ptr->getOperand(1);
10564  return true;
10565  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
10566  // AddressingMode 2
10567  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10568  int RHSC = (int)RHS->getZExtValue();
10569  if (RHSC < 0 && RHSC > -0x1000) {
10570  assert(Ptr->getOpcode() == ISD::ADD);
10571  isInc = false;
10572  Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10573  Base = Ptr->getOperand(0);
10574  return true;
10575  }
10576  }
10577 
10578  if (Ptr->getOpcode() == ISD::ADD) {
10579  isInc = true;
10580  ARM_AM::ShiftOpc ShOpcVal=
10582  if (ShOpcVal != ARM_AM::no_shift) {
10583  Base = Ptr->getOperand(1);
10584  Offset = Ptr->getOperand(0);
10585  } else {
10586  Base = Ptr->getOperand(0);
10587  Offset = Ptr->getOperand(1);
10588  }
10589  return true;
10590  }
10591 
10592  isInc = (Ptr->getOpcode() == ISD::ADD);
10593  Base = Ptr->getOperand(0);
10594  Offset = Ptr->getOperand(1);
10595  return true;
10596  }
10597 
10598  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
10599  return false;
10600 }
10601 
10602 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
10603  bool isSEXTLoad, SDValue &Base,
10604  SDValue &Offset, bool &isInc,
10605  SelectionDAG &DAG) {
10606  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10607  return false;
10608 
10609  Base = Ptr->getOperand(0);
10610  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10611  int RHSC = (int)RHS->getZExtValue();
10612  if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
10613  assert(Ptr->getOpcode() == ISD::ADD);
10614  isInc = false;
10615  Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10616  return true;
10617  } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
10618  isInc = Ptr->getOpcode() == ISD::ADD;
10619  Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
10620  return true;
10621  }
10622  }
10623 
10624  return false;
10625 }
10626 
10627 /// getPreIndexedAddressParts - returns true by value, base pointer and
10628 /// offset pointer and addressing mode by reference if the node's address
10629 /// can be legally represented as pre-indexed load / store address.
10630 bool
10632  SDValue &Offset,
10633  ISD::MemIndexedMode &AM,
10634  SelectionDAG &DAG) const {
10635  if (Subtarget->isThumb1Only())
10636  return false;
10637 
10638  EVT VT;
10639  SDValue Ptr;
10640  bool isSEXTLoad = false;
10641  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10642  Ptr = LD->getBasePtr();
10643  VT = LD->getMemoryVT();
10644  isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10645  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10646  Ptr = ST->getBasePtr();
10647  VT = ST->getMemoryVT();
10648  } else
10649  return false;
10650 
10651  bool isInc;
10652  bool isLegal = false;
10653  if (Subtarget->isThumb2())
10654  isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10655  Offset, isInc, DAG);
10656  else
10657  isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10658  Offset, isInc, DAG);
10659  if (!isLegal)
10660  return false;
10661 
10662  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10663  return true;
10664 }
10665 
10666 /// getPostIndexedAddressParts - returns true by value, base pointer and
10667 /// offset pointer and addressing mode by reference if this node can be
10668 /// combined with a load / store to form a post-indexed load / store.
10670  SDValue &Base,
10671  SDValue &Offset,
10672  ISD::MemIndexedMode &AM,
10673  SelectionDAG &DAG) const {
10674  if (Subtarget->isThumb1Only())
10675  return false;
10676 
10677  EVT VT;
10678  SDValue Ptr;
10679  bool isSEXTLoad = false;
10680  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10681  VT = LD->getMemoryVT();
10682  Ptr = LD->getBasePtr();
10683  isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10684  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10685  VT = ST->getMemoryVT();
10686  Ptr = ST->getBasePtr();
10687  } else
10688  return false;
10689 
10690  bool isInc;
10691  bool isLegal = false;
10692  if (Subtarget->isThumb2())
10693  isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10694  isInc, DAG);
10695  else
10696  isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10697  isInc, DAG);
10698  if (!isLegal)
10699  return false;
10700 
10701  if (Ptr != Base) {
10702  // Swap base ptr and offset to catch more post-index load / store when
10703  // it's legal. In Thumb2 mode, offset must be an immediate.
10704  if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10705  !Subtarget->isThumb2())
10706  std::swap(Base, Offset);
10707 
10708  // Post-indexed load / store update the base pointer.
10709  if (Ptr != Base)
10710  return false;
10711  }
10712 
10713  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10714  return true;
10715 }
10716 
10718  APInt &KnownZero,
10719  APInt &KnownOne,
10720  const SelectionDAG &DAG,
10721  unsigned Depth) const {
10722  unsigned BitWidth = KnownOne.getBitWidth();
10723  KnownZero = KnownOne = APInt(BitWidth, 0);
10724  switch (Op.getOpcode()) {
10725  default: break;
10726  case ARMISD::ADDC:
10727  case ARMISD::ADDE:
10728  case ARMISD::SUBC:
10729  case ARMISD::SUBE:
10730  // These nodes' second result is a boolean
10731  if (Op.getResNo() == 0)
10732  break;
10733  KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10734  break;
10735  case ARMISD::CMOV: {
10736  // Bits are known zero/one if known on the LHS and RHS.
10737  DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10738  if (KnownZero == 0 && KnownOne == 0) return;
10739 
10740  APInt KnownZeroRHS, KnownOneRHS;
10741  DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10742  KnownZero &= KnownZeroRHS;
10743  KnownOne &= KnownOneRHS;
10744  return;
10745  }
10746  }
10747 }
10748 
10749 //===----------------------------------------------------------------------===//
10750 // ARM Inline Assembly Support
10751 //===----------------------------------------------------------------------===//
10752 
10754  // Looking for "rev" which is V6+.
10755  if (!Subtarget->hasV6Ops())
10756  return false;
10757 
10758  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10759  std::string AsmStr = IA->getAsmString();
10760  SmallVector<StringRef, 4> AsmPieces;
10761  SplitString(AsmStr, AsmPieces, ";\n");
10762 
10763  switch (AsmPieces.size()) {
10764  default: return false;
10765  case 1:
10766  AsmStr = AsmPieces[0];
10767  AsmPieces.clear();
10768  SplitString(AsmStr, AsmPieces, " \t,");
10769 
10770  // rev $0, $1
10771  if (AsmPieces.size() == 3 &&
10772  AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10773  IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10774  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10775  if (Ty && Ty->getBitWidth() == 32)
10777  }
10778  break;
10779  }
10780 
10781  return false;
10782 }
10783 
10784 /// getConstraintType - Given a constraint letter, return the type of
10785 /// constraint it is for this target.
10787 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10788  if (Constraint.size() == 1) {
10789  switch (Constraint[0]) {
10790  default: break;
10791  case 'l': return C_RegisterClass;
10792  case 'w': return C_RegisterClass;
10793  case 'h': return C_RegisterClass;
10794  case 'x': return C_RegisterClass;
10795  case 't': return C_RegisterClass;
10796  case 'j': return C_Other; // Constant for movw.
10797  // An address with a single base register. Due to the way we
10798  // currently handle addresses it is the same as an 'r' memory constraint.
10799  case 'Q': return C_Memory;
10800  }
10801  } else if (Constraint.size() == 2) {
10802  switch (Constraint[0]) {
10803  default: break;
10804  // All 'U+' constraints are addresses.
10805  case 'U': return C_Memory;
10806  }
10807  }
10808  return TargetLowering::getConstraintType(Constraint);
10809 }
10810 
10811 /// Examine constraint type and operand type and determine a weight value.
10812 /// This object must already have been set up with the operand type
10813 /// and the current alternative constraint selected.
10816  AsmOperandInfo &info, const char *constraint) const {
10817  ConstraintWeight weight = CW_Invalid;
10818  Value *CallOperandVal = info.CallOperandVal;
10819  // If we don't have a value, we can't do a match,
10820  // but allow it at the lowest weight.
10821  if (CallOperandVal == NULL)
10822  return CW_Default;
10823  Type *type = CallOperandVal->getType();
10824  // Look at the constraint type.
10825  switch (*constraint) {
10826  default:
10827  weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10828  break;
10829  case 'l':
10830  if (type->isIntegerTy()) {
10831  if (Subtarget->isThumb())
10832  weight = CW_SpecificReg;
10833  else
10834  weight = CW_Register;
10835  }
10836  break;
10837  case 'w':
10838  if (type->isFloatingPointTy())
10839  weight = CW_Register;
10840  break;
10841  }
10842  return weight;
10843 }
10844 
10845 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10846 RCPair
10848  MVT VT) const {
10849  if (Constraint.size() == 1) {
10850  // GCC ARM Constraint Letters
10851  switch (Constraint[0]) {
10852  case 'l': // Low regs or general regs.
10853  if (Subtarget->isThumb())
10854  return RCPair(0U, &ARM::tGPRRegClass);
10855  return RCPair(0U, &ARM::GPRRegClass);
10856  case 'h': // High regs or no regs.
10857  if (Subtarget->isThumb())
10858  return RCPair(0U, &ARM::hGPRRegClass);
10859  break;
10860  case 'r':
10861  return RCPair(0U, &ARM::GPRRegClass);
10862  case 'w':
10863  if (VT == MVT::Other)
10864  break;
10865  if (VT == MVT::f32)
10866  return RCPair(0U, &ARM::SPRRegClass);
10867  if (VT.getSizeInBits() == 64)
10868  return RCPair(0U, &ARM::DPRRegClass);
10869  if (VT.getSizeInBits() == 128)
10870  return RCPair(0U, &ARM::QPRRegClass);
10871  break;
10872  case 'x':
10873  if (VT == MVT::Other)
10874  break;
10875  if (VT == MVT::f32)
10876  return RCPair(0U, &ARM::SPR_8RegClass);
10877  if (VT.getSizeInBits() == 64)
10878  return RCPair(0U, &ARM::DPR_8RegClass);
10879  if (VT.getSizeInBits() == 128)
10880  return RCPair(0U, &ARM::QPR_8RegClass);
10881  break;
10882  case 't':
10883  if (VT == MVT::f32)
10884  return RCPair(0U, &ARM::SPRRegClass);
10885  break;
10886  }
10887  }
10888  if (StringRef("{cc}").equals_lower(Constraint))
10889  return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10890 
10891  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10892 }
10893 
10894 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10895 /// vector. If it is invalid, don't add anything to Ops.
10897  std::string &Constraint,
10898  std::vector<SDValue>&Ops,
10899  SelectionDAG &DAG) const {
10900  SDValue Result(0, 0);
10901 
10902  // Currently only support length 1 constraints.
10903  if (Constraint.length() != 1) return;
10904 
10905  char ConstraintLetter = Constraint[0];
10906  switch (ConstraintLetter) {
10907  default: break;
10908  case 'j':
10909  case 'I': case 'J': case 'K': case 'L':
10910  case 'M': case 'N': case 'O':
10912  if (!C)
10913  return;
10914 
10915  int64_t CVal64 = C->getSExtValue();
10916  int CVal = (int) CVal64;
10917  // None of these constraints allow values larger than 32 bits. Check
10918  // that the value fits in an int.
10919  if (CVal != CVal64)
10920  return;
10921 
10922  switch (ConstraintLetter) {
10923  case 'j':
10924  // Constant suitable for movw, must be between 0 and
10925  // 65535.
10926  if (Subtarget->hasV6T2Ops())
10927  if (CVal >= 0 && CVal <= 65535)
10928  break;
10929  return;
10930  case 'I':
10931  if (Subtarget->isThumb1Only()) {
10932  // This must be a constant between 0 and 255, for ADD
10933  // immediates.
10934  if (CVal >= 0 && CVal <= 255)
10935  break;
10936  } else if (Subtarget->isThumb2()) {
10937  // A constant that can be used as an immediate value in a
10938  // data-processing instruction.
10939  if (ARM_AM::getT2SOImmVal(CVal) != -1)
10940  break;
10941  } else {
10942  // A constant that can be used as an immediate value in a
10943  // data-processing instruction.
10944  if (ARM_AM::getSOImmVal(CVal) != -1)
10945  break;
10946  }
10947  return;
10948 
10949  case 'J':
10950  if (Subtarget->isThumb()) { // FIXME thumb2
10951  // This must be a constant between -255 and -1, for negated ADD
10952  // immediates. This can be used in GCC with an "n" modifier that
10953  // prints the negated value, for use with SUB instructions. It is
10954  // not useful otherwise but is implemented for compatibility.
10955  if (CVal >= -255 && CVal <= -1)
10956  break;
10957  } else {
10958  // This must be a constant between -4095 and 4095. It is not clear
10959  // what this constraint is intended for. Implemented for
10960  // compatibility with GCC.
10961  if (CVal >= -4095 && CVal <= 4095)
10962  break;
10963  }
10964  return;
10965 
10966  case 'K':
10967  if (Subtarget->isThumb1Only()) {
10968  // A 32-bit value where only one byte has a nonzero value. Exclude
10969  // zero to match GCC. This constraint is used by GCC internally for
10970  // constants that can be loaded with a move/shift combination.
10971  // It is not useful otherwise but is implemented for compatibility.
10972  if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10973  break;
10974  } else if (Subtarget->isThumb2()) {
10975  // A constant whose bitwise inverse can be used as an immediate
10976  // value in a data-processing instruction. This can be used in GCC
10977  // with a "B" modifier that prints the inverted value, for use with
10978  // BIC and MVN instructions. It is not useful otherwise but is
10979  // implemented for compatibility.
10980  if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10981  break;
10982  } else {
10983  // A constant whose bitwise inverse can be used as an immediate
10984  // value in a data-processing instruction. This can be used in GCC
10985  // with a "B" modifier that prints the inverted value, for use with
10986  // BIC and MVN instructions. It is not useful otherwise but is
10987  // implemented for compatibility.
10988  if (ARM_AM::getSOImmVal(~CVal) != -1)
10989  break;
10990  }
10991  return;
10992 
10993  case 'L':
10994  if (Subtarget->isThumb1Only()) {
10995  // This must be a constant between -7 and 7,
10996  // for 3-operand ADD/SUB immediate instructions.
10997  if (CVal >= -7 && CVal < 7)
10998  break;
10999  } else if (Subtarget->isThumb2()) {
11000  // A constant whose negation can be used as an immediate value in a
11001  // data-processing instruction. This can be used in GCC with an "n"
11002  // modifier that prints the negated value, for use with SUB
11003  // instructions. It is not useful otherwise but is implemented for
11004  // compatibility.
11005  if (ARM_AM::getT2SOImmVal(-CVal) != -1)
11006  break;
11007  } else {
11008  // A constant whose negation can be used as an immediate value in a
11009  // data-processing instruction. This can be used in GCC with an "n"
11010  // modifier that prints the negated value, for use with SUB
11011  // instructions. It is not useful otherwise but is implemented for
11012  // compatibility.
11013  if (ARM_AM::getSOImmVal(-CVal) != -1)
11014  break;
11015  }
11016  return;
11017 
11018  case 'M':
11019  if (Subtarget->isThumb()) { // FIXME thumb2
11020  // This must be a multiple of 4 between 0 and 1020, for
11021  // ADD sp + immediate.
11022  if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
11023  break;
11024  } else {
11025  // A power of two or a constant between 0 and 32. This is used in
11026  // GCC for the shift amount on shifted register operands, but it is
11027  // useful in general for any shift amounts.
11028  if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
11029  break;
11030  }
11031  return;
11032 
11033  case 'N':
11034  if (Subtarget->isThumb()) { // FIXME thumb2
11035  // This must be a constant between 0 and 31, for shift amounts.
11036  if (CVal >= 0 && CVal <= 31)
11037  break;
11038  }
11039  return;
11040 
11041  case 'O':
11042  if (Subtarget->isThumb()) { // FIXME thumb2
11043  // This must be a multiple of 4 between -508 and 508, for
11044  // ADD/SUB sp = sp + immediate.
11045  if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
11046  break;
11047  }
11048  return;
11049  }
11050  Result = DAG.getTargetConstant(CVal, Op.getValueType());
11051  break;
11052  }
11053 
11054  if (Result.getNode()) {
11055  Ops.push_back(Result);
11056  return;
11057  }
11058  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11059 }
11060 
11061 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
11062  assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
11063  unsigned Opcode = Op->getOpcode();
11064  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
11065  "Invalid opcode for Div/Rem lowering");
11066  bool isSigned = (Opcode == ISD::SDIVREM);
11067  EVT VT = Op->getValueType(0);
11068  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
11069 
11070  RTLIB::Libcall LC;
11071  switch (VT.getSimpleVT().SimpleTy) {
11072  default: llvm_unreachable("Unexpected request for libcall!");
11073  case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
11074  case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
11075  case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
11076  case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
11077  }
11078 
11079  SDValue InChain = DAG.getEntryNode();
11080 
11083  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
11084  EVT ArgVT = Op->getOperand(i).getValueType();
11085  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
11086  Entry.Node = Op->getOperand(i);
11087  Entry.Ty = ArgTy;
11088  Entry.isSExt = isSigned;
11089  Entry.isZExt = !isSigned;
11090  Args.push_back(Entry);
11091  }
11092 
11093  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
11094  getPointerTy());
11095 
11096  Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
11097 
11098  SDLoc dl(Op);
11100  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, true,
11101  0, getLibcallCallingConv(LC), /*isTailCall=*/false,
11102  /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
11103  Callee, Args, DAG, dl);
11104  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
11105 
11106  return CallInfo.first;
11107 }
11108 
11109 bool
11111  // The ARM target isn't yet aware of offsets.
11112  return false;
11113 }
11114 
11116  if (v == 0xffffffff)
11117  return false;
11118 
11119  // there can be 1's on either or both "outsides", all the "inside"
11120  // bits must be 0's
11121  unsigned TO = CountTrailingOnes_32(v);
11122  unsigned LO = CountLeadingOnes_32(v);
11123  v = (v >> TO) << TO;
11124  v = (v << LO) >> LO;
11125  return v == 0;
11126 }
11127 
11128 /// isFPImmLegal - Returns true if the target can instruction select the
11129 /// specified FP immediate natively. If false, the legalizer will
11130 /// materialize the FP immediate as a load from a constant pool.
11131 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
11132  if (!Subtarget->hasVFP3())
11133  return false;
11134  if (VT == MVT::f32)
11135  return ARM_AM::getFP32Imm(Imm) != -1;
11136  if (VT == MVT::f64)
11137  return ARM_AM::getFP64Imm(Imm) != -1;
11138  return false;
11139 }
11140 
11141 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
11142 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
11143 /// specified in the intrinsic calls.
11145  const CallInst &I,
11146  unsigned Intrinsic) const {
11147  switch (Intrinsic) {
11155  Info.opc = ISD::INTRINSIC_W_CHAIN;
11156  // Conservatively set memVT to the entire set of vectors loaded.
11157  uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
11158  Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
11159  Info.ptrVal = I.getArgOperand(0);
11160  Info.offset = 0;
11161  Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
11162  Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
11163  Info.vol = false; // volatile loads with NEON intrinsics not supported
11164  Info.readMem = true;
11165  Info.writeMem = false;
11166  return true;
11167  }
11175  Info.opc = ISD::INTRINSIC_VOID;
11176  // Conservatively set memVT to the entire set of vectors stored.
11177  unsigned NumElts = 0;
11178  for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
11179  Type *ArgTy = I.getArgOperand(ArgI)->getType();
11180  if (!ArgTy->isVectorTy())
11181  break;
11182  NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
11183  }
11184  Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
11185  Info.ptrVal = I.getArgOperand(0);
11186  Info.offset = 0;
11187  Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
11188  Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
11189  Info.vol = false; // volatile stores with NEON intrinsics not supported
11190  Info.readMem = false;
11191  Info.writeMem = true;
11192  return true;
11193  }
11194  case Intrinsic::arm_ldrex: {
11195  PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
11196  Info.opc = ISD::INTRINSIC_W_CHAIN;
11197  Info.memVT = MVT::getVT(PtrTy->getElementType());
11198  Info.ptrVal = I.getArgOperand(0);
11199  Info.offset = 0;
11201  Info.vol = true;
11202  Info.readMem = true;
11203  Info.writeMem = false;
11204  return true;
11205  }
11206  case Intrinsic::arm_strex: {
11207  PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
11208  Info.opc = ISD::INTRINSIC_W_CHAIN;
11209  Info.memVT = MVT::getVT(PtrTy->getElementType());
11210  Info.ptrVal = I.getArgOperand(1);
11211  Info.offset = 0;
11213  Info.vol = true;
11214  Info.readMem = false;
11215  Info.writeMem = true;
11216  return true;
11217  }
11218  case Intrinsic::arm_strexd: {
11219  Info.opc = ISD::INTRINSIC_W_CHAIN;
11220  Info.memVT = MVT::i64;
11221  Info.ptrVal = I.getArgOperand(2);
11222  Info.offset = 0;
11223  Info.align = 8;
11224  Info.vol = true;
11225  Info.readMem = false;
11226  Info.writeMem = true;
11227  return true;
11228  }
11229  case Intrinsic::arm_ldrexd: {
11230  Info.opc = ISD::INTRINSIC_W_CHAIN;
11231  Info.memVT = MVT::i64;
11232  Info.ptrVal = I.getArgOperand(0);
11233  Info.offset = 0;
11234  Info.align = 8;
11235  Info.vol = true;
11236  Info.readMem = true;
11237  Info.writeMem = false;
11238  return true;
11239  }
11240  default:
11241  break;
11242  }
11243 
11244  return false;
11245 }
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG)
PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG)
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG)
OSType getOS() const
getOS - Get the parsed operating system type of this triple.
Definition: Triple.h:178
int getFunctionContextIndex() const
void setFrameAddressIsTaken(bool T)
unsigned getStackAlignment() const
const Value * getCalledValue() const
static MVT getIntegerVT(unsigned BitWidth)
Definition: ValueTypes.h:481
The memory access reads data.
const MachineFunction * getParent() const
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG)
SDValue getConstant(uint64_t Val, EVT VT, bool isTarget=false)
static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool isVZIPMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
The machine constant pool.
SDValue getValue(unsigned R) const
bool hasPostISelHook(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:540
instr_iterator erase(instr_iterator I)
The memory access writes data.
MVT getValVT() const
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt)
#define R4(n)
LLVMContext & getContext() const
Definition: Function.cpp:167
bool isFPOnlySP() const
Definition: ARMSubtarget.h:286
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:450
LLVMContext * getContext() const
Definition: SelectionDAG.h:285
LLVM Argument representation.
Definition: Argument.h:35
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG)
std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(MVT VT) const
SDValue getCopyToReg(SDValue Chain, SDLoc dl, unsigned Reg, SDValue N)
Definition: SelectionDAG.h:487
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, SDLoc DL)
Definition: SelectionDAG.h:572
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG)
bool isKnownNeverNaN(SDValue Op) const
isKnownNeverNan - Test whether the given SDValue is known to never be NaN.
Reloc::Model getRelocationModel() const
static SDValue PerformVMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, SelectionDAG &DAG)
LocInfo getLocInfo() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
Definition: ValueTypes.h:500
bool hasOneUse() const
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
MachineBasicBlock * getMBB() const
static MachinePointerInfo getJumpTable()
void setIsLandingPad(bool V=true)
bool hasOneUse() const
void getInRegsParamInfo(unsigned InRegsParamRecordIndex, unsigned &BeginReg, unsigned &EndReg) const
virtual void AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const
const TargetMachine & getTargetMachine() const
static SDValue PerformVMOVRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Y = RRC X, rotate right via carry.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions. Register definitions always occur...
Definition: MCInstrDesc.h:198
unsigned createVirtualRegister(const TargetRegisterClass *RegClass)
virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const
static unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm)
static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG)
static SDValue PerformInsertEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isVTRNMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG &DAG)
const TargetMachine & getTarget() const
Definition: SelectionDAG.h:281
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, unsigned f, uint64_t s, unsigned base_alignment, const MDNode *TBAAInfo=0, const MDNode *Ranges=0)
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, bool isSigned)
unsigned addLiveIn(unsigned PReg, const TargetRegisterClass *RC)
void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
unsigned getPrefTypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:600
void setIsDef(bool Val=true)
Change a def to a use, or a use to a def.
virtual ConstraintType getConstraintType(const std::string &Constraint) const
Given a constraint, return the type of constraint it is for this target.
static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord, bool isThumb2, unsigned &LdrOpc, unsigned &StrOpc)
ARM_AAPCS_VFP - Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:85
iterator end() const
Definition: ArrayRef.h:98
bool isDead() const
static bool isVirtualRegister(unsigned Reg)
static bool hasNormalLoadOperand(SDNode *N)
bool hasT2ExtractPack() const
Definition: ARMSubtarget.h:277
unsigned InferPtrAlignment(SDValue Ptr) const
const GlobalValue * getGlobal() const
const std::string & getAsmString() const
Definition: InlineAsm.h:86
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(MVT VT) const
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
unsigned getOpcode() const
SDValue getSelectCC(SDLoc DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Definition: SelectionDAG.h:679
ARMTargetLowering(TargetMachine &TM)
static bool isLegalT1AddressImmediate(int64_t V, EVT VT)
static cl::opt< bool > ARMInterworking("arm-interworking", cl::Hidden, cl::desc("Enable / disable ARM interworking (for debugging only)"), cl::init(true))
Type * getTypeForEVT(LLVMContext &Context) const
Definition: ValueTypes.cpp:180
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
unsigned getByValSize() const
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Definition: APInt.h:408
unsigned getInRegsParamsCount() const
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG)
const MCInstrDesc & getDesc() const
Definition: MachineInstr.h:257
unsigned getNumOperands() const
void setBooleanVectorContents(BooleanContent Ty)
bool hasV5TEOps() const
Definition: ARMSubtarget.h:246
const std::string & getConstraintString() const
Definition: InlineAsm.h:87
unsigned getNumOperands() const
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG)
bool hasV6Ops() const
Definition: ARMSubtarget.h:247
static SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, TargetLowering::DAGCombinerInfo &DCI)
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB)
const SDValue & getOperand(unsigned Num) const
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.h:208
F(f)
const Function * getFunction() const
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static MachinePointerInfo getConstantPool()
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
#define R2(n)
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned char TargetFlags=0)
void ComputeMaskedBits(SDValue Op, APInt &KnownZero, APInt &KnownOne, unsigned Depth=0) const
bool hasV6T2Ops() const
Definition: ARMSubtarget.h:249
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const
Return true if the attribute exists at the given index.
Definition: Attributes.cpp:818
bool isThumb1Only() const
Definition: ARMSubtarget.h:320
static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
unsigned getValNo() const
const SDValue & getBasePtr() const
static bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, const TargetInstrInfo *TII)
bool hasDivide() const
Definition: ARMSubtarget.h:275
static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
The address of the GOT.
Definition: ISDOpcodes.h:66
ConstraintType getConstraintType(const std::string &Constraint) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
bool isRegLoc() const
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
static cl::opt< bool > EnableARMTailCalls("arm-tail-calls", cl::Hidden, cl::desc("Generate tail calls (TEMPORARY OPTION)."), cl::init(false))
bool isAllOnesValue() const
SDValue getExternalSymbol(const char *Sym, EVT VT)
CallingConv::ID getCallingConv() const
Definition: Function.h:161
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
EVT getValueType(Type *Ty, bool AllowUnknown=false) const
static MachinePointerInfo getFixedStack(int FI, int64_t offset=0)
bool hasPerfMon() const
Definition: ARMSubtarget.h:287
MachineJumpTableInfo * getOrCreateJumpTableInfo(unsigned JTEntryKind)
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG)
bool isKnownNeverZero(SDValue Op) const
SDValue getLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const MDNode *TBAAInfo=0, const MDNode *Ranges=0)
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:661
static SDValue LowerInterruptReturn(SmallVectorImpl< SDValue > &RetOps, SDLoc DL, SelectionDAG &DAG)
lazy value info
static SDValue PerformVCVTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
bool isTargetAEABI() const
Definition: ARMSubtarget.h:312
bool isSEXTLoad(const SDNode *N)
static error_code advance(T &it, size_t Val)
bool hasV8Ops() const
Definition: ARMSubtarget.h:251
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
static bool isFloatingPointZero(SDValue Op)
isFloatingPointZero - Return true if this is +0.0.
bool isLittleEndian() const
static const MachineInstrBuilder & AddDefaultPred(const MachineInstrBuilder &MIB)
SDValue getStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
bool hasVFP3() const
Definition: ARMSubtarget.h:265
ParmContext getCallOrPrologue() const
const HexagonInstrInfo * TII
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
bool isTargetELF() const
Definition: ARMSubtarget.h:306
static bool definesCPSR(MachineInstr *MI)
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false)
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG)
static bool isVUZPMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
bool isTargetDarwin() const
Definition: ARMSubtarget.h:303
bool isNormalStore(const SDNode *N)
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const
Definition: APFloat.cpp:2157
#define llvm_unreachable(msg)
bool isBuildVectorAllZeros(const SDNode *N)
EVT getValueType(unsigned ResNo) const
Definition: Use.h:60
static SDValue findMUL_LOHI(SDValue V)
static bool isVREVMask(ArrayRef< int > M, EVT VT, unsigned BlockSize)
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:280
static bool isVZIP_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
unsigned getNumArgOperands() const
SDValue getTargetGlobalAddress(const GlobalValue *GV, SDLoc DL, EVT VT, int64_t offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:434
static SDValue PerformADDCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
std::vector< MachineBasicBlock * >::iterator succ_iterator
bool isZEXTLoad(const SDNode *N)
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const
getSetCCResultType - Return the value type to use for ISD::SETCC.
int64_t abs64(int64_t x)
Definition: MathExtras.h:579
EVT getScalarType() const
Definition: ValueTypes.h:756
Abstract Stack Frame Information.
bool isFixedObjectIndex(int ObjectIdx) const
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
bool hasMPExtension() const
Definition: ARMSubtarget.h:293
int getMaskElt(unsigned Idx) const
static bool isSingletonVEXTMask(ArrayRef< int > M, EVT VT, unsigned &Imm)
SDVTList getVTList(EVT VT)
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG)
virtual MVT getPointerTy(uint32_t=0) const
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:120
The memory access is volatile.
static ShiftOpc getShiftOpcForNode(unsigned Opcode)
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, int64_t &Cnt)
bool isFPBrccSlow() const
Definition: ARMSubtarget.h:285
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
virtual const InstrItineraryData * getInstrItineraryData() const
bool isThumb() const
Definition: ARMSubtarget.h:319
const MachineInstrBuilder & addImm(int64_t Val) const
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
#define G(x, y, z)
Definition: MD5.cpp:52
bool isInteger() const
isInteger - Return true if this is an integer, or a vector integer type.
Definition: ValueTypes.h:656
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2)
virtual FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
SmallVector< ISD::InputArg, 32 > Ins
AtomicOrdering
Definition: Instructions.h:36
EVT getVectorElementType() const
Definition: ValueTypes.h:762
bool hasV7Ops() const
Definition: ARMSubtarget.h:250
SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, unsigned Alignment, AtomicOrdering Ordering, SynchronizationScope SynchScope)
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG)
SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, SDLoc DL)
Definition: SelectionDAG.h:563
void RemoveOperand(unsigned i)
unsigned getLocReg() const
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG)
const Triple & getTargetTriple() const
Definition: ARMSubtarget.h:300
STATISTIC(NumTailCalls,"Number of tail calls")
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
static unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
unsigned createJumpTableIndex(const std::vector< MachineBasicBlock * > &DestBBs)
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
unsigned getNumValues() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
SDValue getRegisterMask(const uint32_t *RegMask)
bool hasStructRetAttr() const
Determine if the function returns a structure through first pointer argument.
Definition: Function.h:299
bool hasCallSiteLandingPad(MCSymbol *Sym)
int getOpcode() const
Definition: MachineInstr.h:261
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG)
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
SDValue CombineTo(SDNode *N, const std::vector< SDValue > &To, bool AddTo=true)
This contains information for each constraint that we are lowering.
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const
static int getT2SOImmVal(unsigned Arg)
SDValue getVectorShuffle(EVT VT, SDLoc dl, SDValue N1, SDValue N2, const int *MaskElts)
void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd)
SmallVector< ISD::OutputArg, 32 > Outs
static void ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
bool hasFPARMv8() const
Definition: ARMSubtarget.h:267
bool isFloatingPointTy() const
Definition: Type.h:162
bool hasNEON() const
Definition: ARMSubtarget.h:268
bool hasAnyDataBarrier() const
Definition: ARMSubtarget.h:279
const SDValue & getBasePtr() const
MachineConstantPoolValue * getMachineCPVal() const
SDValue getUNDEF(EVT VT)
getUNDEF - Return an UNDEF node. UNDEF does not have a useful SDLoc.
Definition: SelectionDAG.h:585
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
const APInt & getAPIntValue() const
bool hasVFP4() const
Definition: ARMSubtarget.h:266
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
static int getFP32Imm(const APInt &Imm)
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
int64_t getImm() const
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, EVT &VT, bool is128Bits, NEONModImmType type)
unsigned getStoredByValParamsPadding() const
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG)
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const
reverse_iterator rend()
Type * getElementType() const
Definition: DerivedTypes.h:319
bool hasARMOps() const
Definition: ARMSubtarget.h:262
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
const TargetRegisterClass * constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
reverse_iterator rbegin()
const BasicBlock * getBasicBlock() const
UNDEF - An undefined node.
Definition: ISDOpcodes.h:154
static bool isThumbImmShiftedVal(unsigned V)
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG)
#define LO(Val)
static bool isWeakForLinker(LinkageTypes Linkage)
Definition: GlobalValue.h:183
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:510
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false)
bool isTargetIOS() const
Definition: ARMSubtarget.h:302
static EVT getExtensionTo64Bits(const EVT &OrigVT)
unsigned getDefRegState(bool B)
SDNode * getNode() const
get the SDNode which holds the desired result
bundle_iterator< MachineInstr, instr_iterator > iterator
bool isiOS() const
Is this an iOS triple.
Definition: Triple.h:308
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
unsigned getStoreSize() const
Definition: ValueTypes.h:787
bool isTypeLegal(EVT VT) const
const uint32_t * getCallPreservedMask(CallingConv::ID) const
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
#define true
Definition: ConvertUTF.c:65
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
bool isNormalLoad(const SDNode *N)
static SDValue PerformBFICombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
bool isInteger() const
isInteger - Return true if this is an integer, or a vector integer type.
Definition: ValueTypes.h:182
static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *bb=0)
static bool isSignExtended(SDNode *N, SelectionDAG &DAG)
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG)
bool isMachineConstantPoolEntry() const
virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, ArrayRef< int > ShuffleMask, SelectionDAG &DAG)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes=false)
const SDValue & getOperand(unsigned i) const
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
virtual EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
Type * Int32Ty
void setTargetDAGCombine(ISD::NodeType NT)
bool isNonTemporal() const
bool isVectorTy() const
Definition: Type.h:229
bool supportsTailCall() const
Definition: ARMSubtarget.h:330
MVT getLocVT() const
bool isOptionalDef() const
Definition: MCInstrDesc.h:87
LLVM Constant Representation.
Definition: Constant.h:41
bool isMClass() const
Definition: ARMSubtarget.h:323
bool hasHiddenVisibility() const
Definition: GlobalValue.h:89
const Constant * getConstVal() const
virtual bool ExpandInlineAsm(CallInst *CI) const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
static bool isReverseMask(ArrayRef< int > M, EVT VT)
virtual void computeMaskedBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth) const
static bool isZeroOrAllOnes(SDValue N, bool AllOnes)
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC)
IntCCToARMCC - Convert a DAG integer condition code to an ARM CC.
virtual bool isZExtFree(SDValue Val, EVT VT2) const
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl)
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:227
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
SDValue getCopyFromReg(SDValue Chain, SDLoc dl, unsigned Reg, EVT VT)
Definition: SelectionDAG.h:510
const DataLayout * getDataLayout() const
static EVT getFloatingPointVT(unsigned BitWidth)
Definition: ValueTypes.h:601
static TargetLoweringObjectFile * createTLOF(TargetMachine &TM)
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
iterator begin() const
Definition: ArrayRef.h:97
unsigned getOpcode() const
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:586
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
unsigned convertAddSubFlagsOpcode(unsigned OldOpc)
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, SDValue &RetVal1, SDValue &RetVal2)
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const
PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
arg_iterator arg_begin()
Definition: Function.h:410
static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG)
bool hasVMLxForwarding() const
Definition: ARMSubtarget.h:284
Integer representation type.
Definition: DerivedTypes.h:37
CondCode getSetCCSwappedOperands(CondCode Operation)
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Definition: ValueTypes.cpp:247
static SDValue PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
bool useNEONForSinglePrecisionFP() const
Definition: ARMSubtarget.h:272
use_iterator use_begin() const
MachineConstantPool * getConstantPool()
bool isVolatile() const
const SDValue & getValue() const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
unsigned MaxStoresPerMemmove
Specify maximum bytes of store instructions per memmove call.
Bit counting operators with an undefined result for zero inputs.
Definition: ISDOpcodes.h:312
static SDValue PerformVDUPLANECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:411
void removeSuccessor(MachineBasicBlock *succ)
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
virtual const TargetFrameLowering * getFrameLowering() const
static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformORCombine - Target-specific dag combine xforms for ISD::OR.
bool isIntN(unsigned N, int64_t x)
Definition: MathExtras.h:321
std::vector< ArgListEntry > ArgListTy
const APFloat & getValueAPF() const
unsigned getNextStackOffset() const
bool hasSinCos() const
unsigned getFirstUnallocated(const uint16_t *Regs, unsigned NumRegs) const
bool isEqualTo(SDValue A, SDValue B) const
PointerType * getPointerTo(unsigned AddrSpace=0)
Definition: Type.cpp:756
static ARMConstantPoolMBB * Create(LLVMContext &C, const MachineBasicBlock *mbb, unsigned ID, unsigned char PCAdj)
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements)
Definition: ValueTypes.h:616
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
const ARMSubtarget * getSubtarget() const
std::pair< unsigned, const TargetRegisterClass * > RCPair
static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG)
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
bool needsCustom() const
bool isEXTLoad(const SDNode *N)
const MachinePointerInfo & getPointerInfo() const
int64_t getObjectOffset(int ObjectIdx) const
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG)
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC)
unsigned getByValAlign() const
void SplitString(StringRef Source, SmallVectorImpl< StringRef > &OutFragments, StringRef Delimiters=" \t\n\v\f\r")
SmallVectorImpl< unsigned > & getCallSiteLandingPad(MCSymbol *Sym)
virtual unsigned getJumpTableEncoding() const
void setLoadExtAction(unsigned ExtType, MVT VT, LegalizeAction Action)
ArrayRef< int > getMask() const
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static AddrOpc getAM2Op(unsigned AM2Opc)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align=0, int Offset=0, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:451
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags=0)
Definition: SelectionDAG.h:445
virtual const TargetInstrInfo * getInstrInfo() const
unsigned getABITypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:582
static const MachineInstrBuilder & AddDefaultCC(const MachineInstrBuilder &MIB)
static int getFP64Imm(const APInt &Imm)
SDValue getNOT(SDLoc DL, SDValue Val, EVT VT)
getNOT - Create a bitwise NOT operation as (XOR Val, -1).
bool isSwift() const
Definition: ARMSubtarget.h:257
virtual unsigned getMaximalGlobalOffset() const
void setDesc(const MCInstrDesc &tid)
Definition: MachineInstr.h:984
const STC & getSubtarget() const
unsigned CountTrailingOnes_32(uint32_t Value)
Definition: MathExtras.h:402
void addOperand(MachineFunction &MF, const MachineOperand &Op)
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const
GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
void setExceptionPointerRegister(unsigned R)
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
Definition: Type.cpp:405
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG)
static unsigned getAM2Offset(unsigned AM2Opc)
bool isInvariant() const
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt)
const MachineInstrBuilder & addJumpTableIndex(unsigned Idx, unsigned char TargetFlags=0) const
bool isPredecessorOf(const SDNode *N) const
SDValue getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode)
Instr is a return instruction.
Definition: GCMetadata.h:52
Type * getType() const
Definition: Value.h:111
CCValAssign - Represent assignment of one arg/retval to a location.
static void ReplaceREADCYCLECOUNTER(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
const uint32_t * getNoPreservedMask() const
SDNode * getGluedUser() const
SDValue getIntPtrConstant(uint64_t Val, bool isTarget=false)
const SDValue & getChain() const
bool useMovt() const
Definition: ARMSubtarget.h:329
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:309
MachineMemOperand * getMemOperand() const
bool hasVFP2() const
Definition: ARMSubtarget.h:264
virtual bool isLegalICmpImmediate(int64_t Imm) const
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG)
unsigned size() const
Definition: SmallPtrSet.h:75
virtual bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
unsigned getInRegsParamsProceed() const
MachineFrameInfo * getFrameInfo()
static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos, const TargetInstrInfo *TII, DebugLoc dl, unsigned StSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2)
const MachineInstrBuilder & addFrameIndex(int Idx) const
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, bool &swpCmpOps, bool &swpVselOps)
static MachinePointerInfo getStack(int64_t Offset)
getStack - stack pointer relative access.
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG)
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
void dump() const
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, const ARMSubtarget *ST, SDLoc dl)
const MDNode * getTBAAInfo() const
Returns the TBAAInfo that describes the dereference.
Value * getArgOperand(unsigned i) const
const uint16_t * getCalleeSavedRegs(const MachineFunction *MF=0) const
Code Generation virtual methods...
ISD::LoadExtType getExtensionType() const
void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Class for arbitrary precision integers.
Definition: APInt.h:75
SDValue getMemIntrinsicNode(unsigned Opcode, SDLoc dl, const EVT *VTs, unsigned NumVTs, const SDValue *Ops, unsigned NumOps, EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align=0, bool Vol=false, bool ReadMem=true, bool WriteMem=true)
static ARMConstantPoolSymbol * Create(LLVMContext &C, const char *s, unsigned ID, unsigned char PCAdj)
void setExceptionSelectorRegister(unsigned R)
void setMinFunctionAlignment(unsigned Align)
Set the target's minimum function alignment (in log2(bytes))
int64_t getSExtValue() const
bool isIntegerTy() const
Definition: Type.h:196
virtual const TargetRegisterClass * getRegClassFor(MVT VT) const
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
bool isPowerOf2_64(uint64_t Value)
Definition: MathExtras.h:360
bool isMemLoc() const
SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT)
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:360
bool isShuffleMaskLegal(const SmallVectorImpl< int > &M, EVT VT) const
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
bool useNaClTrap() const
Definition: ARMSubtarget.h:295
static int getSOImmVal(unsigned Arg)
bool isOSVersionLT(unsigned Major, unsigned Minor=0, unsigned Micro=0) const
Definition: Triple.h:270
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const
static SDValue PerformXORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static bool isVTBLMask(ArrayRef< int > M, EVT VT)
static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos, const TargetInstrInfo *TII, DebugLoc dl, unsigned LdSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2)
static MachinePointerInfo getGOT()
uint64_t MinAlign(uint64_t A, uint64_t B)
Definition: MathExtras.h:535
int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS, bool MayNeedSP=false, const AllocaInst *Alloca=0)
static CondCodes getOppositeCondition(CondCodes CC)
Definition: ARMBaseInfo.h:47
static bool canChangeToInt(SDValue Op, bool &SeenZero, const ARMSubtarget *Subtarget)
static const unsigned PerfectShuffleTable[6561+1]
void setVarArgsFrameIndex(int Index)
SmallVector< SDValue, 32 > OutVals
unsigned getSchedClass() const
Return the scheduling class for this instruction. The scheduling class is an index into the InstrItin...
Definition: MCInstrDesc.h:570
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, SDLoc dl)
static bool LowerToByteSwap(CallInst *CI)
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
bool hasAnyUseOfValue(unsigned Value) const
void setStoredByValParamsPadding(unsigned p)
pointer data()
data - Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:135
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.h:200
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
MachineRegisterInfo & getRegInfo()
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
bool isThumb2() const
Definition: ARMSubtarget.h:321
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
bool isDeclaration() const
Definition: Globals.cpp:66
static bool isVUZP_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
bool hasV5TOps() const
Definition: ARMSubtarget.h:245
virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
static bool isLegalT2AddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget)
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
static bool isLegalAddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget)
void setReg(unsigned Reg)
static SDValue PerformVDIVCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned char TargetFlags=0) const
void setArgRegsSaveSize(unsigned s)
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2)
FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
virtual bool isLegalAddImmediate(int64_t Imm) const
iterator end() const
Definition: SmallPtrSet.h:279
void setStackPointerRegisterToSaveRestore(unsigned R)
bool isTailCall() const
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
bool allowsUnalignedMem() const
Definition: ARMSubtarget.h:332
const TargetMachine & getTarget() const
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC)
virtual const TargetRegisterInfo * getRegisterInfo() const
bool isNON_EXTLoad(const SDNode *N)
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG)
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
FSINCOS - Compute both fsin and fcos as a single operation.
Definition: ISDOpcodes.h:454
unsigned MaxStoresPerMemcpy
Specify maximum bytes of store instructions per memcpy call.
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Definition: ValueTypes.cpp:275
static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
EVT getValueType() const
MachineInstr * getVRegDef(unsigned Reg) const
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool is128BitVector() const
is128BitVector - Return true if this is a 128-bit vector type.
Definition: ValueTypes.h:681
TLSModel::Model getTLSModel(const GlobalValue *GV) const
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Definition: SelectionDAG.h:591
unsigned getReg() const
getReg - Returns the register number.
StringRef getValueAsString() const
Return the attribute's value as a string. This requires the attribute to be a string attribute...
Definition: Attributes.cpp:127
bool isFloatingPoint() const
isFloatingPoint - Return true if this is a FP, or a vector FP type.
Definition: ValueTypes.h:651
bool isLikeA9() const
Definition: ARMSubtarget.h:259
static bool isVTRN_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG)
void insert(iterator MBBI, MachineBasicBlock *MBB)
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
void setReturnAddressIsTaken(bool s)
bool isSimple() const
Definition: ValueTypes.h:640
unsigned getAlignment() const
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
cl::opt< bool > EnableARMLongCalls("arm-long-calls", cl::Hidden, cl::desc("Generate calls via indirect call instructions"), cl::init(false))
void setMinStackArgumentAlignment(unsigned Align)
Set the minimum stack alignment of an argument (in log2(bytes)).
const uint32_t * getThisReturnPreservedMask(CallingConv::ID) const
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
std::reverse_iterator< iterator > reverse_iterator
LLVM Value Representation.
Definition: Value.h:66
bool hasRAS() const
Definition: ARMSubtarget.h:292
SDValue getRegister(unsigned Reg, EVT VT)
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
void setInsertFencesForAtomic(bool fence)
iterator begin() const
Definition: SmallPtrSet.h:276
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2)
bool isTruncatingStore() const
bool hasFP16() const
Definition: ARMSubtarget.h:297
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction. Note that variadic (isVari...
Definition: MCInstrDesc.h:190
SDValue getValueType(EVT)
Disable implicit floating point insts.
Definition: Attributes.h:84
const MCOperandInfo * OpInfo
Definition: MCInstrDesc.h:148
bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:298
const MachineInstrBuilder & addOperand(const MachineOperand &MO) const
BasicBlockListType::iterator iterator
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:282
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG)
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
bool isAAPCS_ABI() const
Definition: ARMSubtarget.h:317
bool hasDataBarrier() const
Definition: ARMSubtarget.h:278
static SDValue PerformSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
bool hasDivideInARMMode() const
Definition: ARMSubtarget.h:276
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG)
MachineModuleInfo & getMMI() const
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
const MCRegisterInfo & MRI
static MachineBasicBlock * OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ)
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
SDValue getTargetConstant(uint64_t Val, EVT VT)
Definition: SelectionDAG.h:408
bool hasOptionalDef(QueryType Type=IgnoreBundle) const
Definition: MachineInstr.h:334
unsigned getLocMemOffset() const
MVT getVectorElementType() const
Definition: ValueTypes.h:263
unsigned getArgRegsSaveSize(unsigned Align=0) const
SDValue getEntryNode() const
Definition: SelectionDAG.h:332
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable)
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG)
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
bool isUIntN(unsigned N, uint64_t x)
Definition: MathExtras.h:315
unsigned getAlignment() const
bool isBitFieldInvertedMask(unsigned v)
unsigned AllocateReg(unsigned Reg)
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
MVT getSimpleValueType(unsigned ResNo) const
bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const
bool is64BitVector() const
is64BitVector - Return true if this is a 64-bit vector type.
Definition: ValueTypes.h:676
void addSuccessor(MachineBasicBlock *succ, uint32_t weight=0)
bool hasThumb2DSP() const
Definition: ARMSubtarget.h:294
static const uint16_t GPRArgRegs[]
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
unsigned Log2_64(uint64_t Value)
Definition: MathExtras.h:449
int64_t getObjectSize(int ObjectIdx) const
static ARMConstantPoolConstant * Create(const Constant *C, unsigned ID)
static bool isSplatMask(const int *Mask, EVT VT)
unsigned getConstantPoolIndex(const Constant *C, unsigned Alignment)
static bool isVEXTMask(ArrayRef< int > M, EVT VT, bool &ReverseVEXT, unsigned &Imm)
EVT changeVectorElementTypeToInteger() const
Definition: ValueTypes.h:626
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, unsigned AlignCheck)
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG)
MVT getSimpleVT() const
Definition: ValueTypes.h:749
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
static const MachineInstrBuilder & AddDefaultT1CC(const MachineInstrBuilder &MIB, bool isDead=false)
bool isMachineOpcode() const
unsigned getMachineOpcode() const
unsigned CountLeadingOnes_32(uint32_t Value)
Definition: MathExtras.h:386
void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
FloatABI::ABIType FloatABIType
uint64_t getZExtValue() const
static uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits)
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:291
uint64_t integerPart
Definition: APInt.h:35
virtual const TargetRegisterClass * getRegClassFor(MVT VT) const
unsigned getVectorNumElements() const
Definition: ValueTypes.h:771
Function must be optimized for size first.
Definition: Attributes.h:77